1
|
Fu J, Zeng C, Huang J, Guo J, Su Z, Luo S, Zhang W, Zhang Z, Zhu H, Li Y. Dietary patterns and association with Iron deficiency among children and adolescents aged 9-17 years in rural Guangzhou, China: a cross-sectional study. Front Nutr 2024; 11:1443849. [PMID: 39285861 PMCID: PMC11403371 DOI: 10.3389/fnut.2024.1443849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Iron deficiency and iron deficiency anemia cause a huge disease burden worldwide. Diet is an important factor affecting the iron levels. This study aims to explore the dietary patterns of school-aged children in rural areas of Guangzhou and their association with iron deficiency. Methods Data on dietary surveys, lifestyle, demographic and laboratory tests were gathered from rural school-age children in Guangzhou. Factor analysis was applied to derive dietary patterns. Robust Poisson regression and subgroup analysis were used to analyze the association between dietary patterns and iron deficiency. Results A total of 2,530 children and adolescents aged 9-17 years were enrolled. The prevalence of iron deficiency was 13.36%. Four dietary patterns were identified including snack and fast-food pattern, fruit and vegetable pattern, cereal and tuber pattern and meat and offal pattern. Both children and adolescents in the Q4 group (the highest propensity) of snack and fast-food pattern and cereal and tuber pattern had a higher risk of iron deficiency than the Q1 group (the lowest propensity). Both children and adolescents in the Q4 group of meat and offal pattern and fruit and vegetable pattern had a lower risk of iron deficiency than the Q1 group. The results of stratified analysis showed the negative effect of snack and fast-food pattern and the protective benefits of meat and offal pattern are more obvious for boys, and the negative effect of cereal and tuber pattern were obvious for girls. The negative effect or protective benefits of the four dietary patterns were obvious for children aged 9-13. Conclusion Females, older children, and those with shorter sleep duration are at higher risk of iron deficiency. Snack and fast-food pattern and cereal and tuber pattern are risk factors for iron deficiency, and fruit and vegetable pattern and meat and offal pattern are protective factors for iron deficiency. The impact of diet on body iron levels is more obvious in boys and younger children. The findings of this study can provide evidence for formulating prevention and control measures on children and adolescents iron deficiency and iron deficiency anemia.
Collapse
Affiliation(s)
- Jinhan Fu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Chunzi Zeng
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jie Huang
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jiaying Guo
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zheng Su
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shiyun Luo
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Weiwei Zhang
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zhoubin Zhang
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Huilian Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Department of Foodborne Diseases and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
2
|
Ahmadi Badi S, Malek A, Seyedi SA, Bereimipour A, Irian S, Shojaie S, Sohouli MH, Rohani P, Masotti A, Khatami S, Siadat SD. Direct and macrophage stimulation mediated effects of active, inactive, and cell-free supernatant forms of Akkermansia muciniphila and Faecalibacterium duncaniae on hepcidin gene expression in HepG2 cells. Arch Microbiol 2024; 206:287. [PMID: 38833010 DOI: 10.1007/s00203-024-04007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Amin Malek
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Saeed Irian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Ruan N, Shi C, Al-Momani Z, Jaber F, Ghaly R, Wooldridge D. Management of Severe Anemia in a Jehovah's Witness Patient With Lung Abscess Secondary to Malpositioned Laparoscopic Adjustable Gastric Band: A Case Report. J Investig Med High Impact Case Rep 2024; 12:23247096241231649. [PMID: 38353220 PMCID: PMC10868478 DOI: 10.1177/23247096241231649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Jehovah's Witnesses is a Christian denomination widely recognized for their steadfast refusal of blood transfusions, even when facing severe anemia. We describe a unique case of a 42-year-old Jehovah's Witness woman with severe iron deficiency anemia. She necessitated surgical correction of a malpositioned gastric band within the context of a complex necrotizing aspiration pneumonia secondary to esophageal obstruction. Medical management of this severe anemia has been a challenge as traditional approaches, like a blood transfusion, are not possible. Instead, a multifaceted approach has been described with intravenous iron infusions, recombinant human erythropoietin, vitamin B12, folate, and vitamin C administration. We emphasize the lack of consensus on guideline protocols regarding management of severe anemia for Jehovah's Witness patients and the subsequent need for more investigation into that matter. It also underscores the significance of respecting patient autonomy through close collaboration between patients and their health care providers to ensure effective patient-centered care.
Collapse
Affiliation(s)
- Nina Ruan
- University of Missouri-Kansas City, USA
| | - Chloe Shi
- University of Missouri-Kansas City, USA
| | | | | | | | | |
Collapse
|
4
|
D’Andrea P, Giampieri F, Battino M. Nutritional Modulation of Hepcidin in the Treatment of Various Anemic States. Nutrients 2023; 15:5081. [PMID: 38140340 PMCID: PMC10745534 DOI: 10.3390/nu15245081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Twenty years after its discovery, hepcidin is still considered the main regulator of iron homeostasis in humans. The increase in hepcidin expression drastically blocks the flow of iron, which can come from one's diet, from iron stores, and from erythrophagocytosis. Many anemic conditions are caused by non-physiologic increases in hepcidin. The sequestration of iron in the intestine and in other tissues poses worrying premises in view of discoveries about the mechanisms of ferroptosis. The nutritional treatment of these anemic states cannot ignore the nutritional modulation of hepcidin, in addition to the bioavailability of iron. This work aims to describe and summarize the few findings about the role of hepcidin in anemic diseases and ferroptosis, as well as the modulation of hepcidin levels by diet and nutrients.
Collapse
Affiliation(s)
- Patrizia D’Andrea
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Bhoot HR, Zamwar UM, Chakole S, Anjankar A. Dietary Sources, Bioavailability, and Functions of Ascorbic Acid (Vitamin C) and Its Role in the Common Cold, Tissue Healing, and Iron Metabolism. Cureus 2023; 15:e49308. [PMID: 38146585 PMCID: PMC10749424 DOI: 10.7759/cureus.49308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
Ascorbic acid is also popularly known as vitamin C or ascorbate. It is a water-soluble vitamin. Ascorbic acid is necessary for bone formation, wound healing, connective tissue growth, and the maintenance of healthy gum tissue. Antioxidants like ascorbic acid shield the body from free radical damage. In many illnesses and conditions, vitamin C is employed as a medicinal agent. It improves the immunity of the body, reduces the severity of allergies, and aids in the management of infectious disorders. Additionally, ascorbic acid has health benefits for conditions including atherosclerosis, cancer, the common cold, iron deficiency anemia, etc. Therefore, continuous efforts may open new avenues to understand the importance of vitamin C in managing various diseases.
Collapse
Affiliation(s)
- Harshit R Bhoot
- Endocrinology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Udit M Zamwar
- Endocrinology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Mehta N, Pokharna P, Shetty SR. Unwinding the potentials of vitamin C in COVID-19 and other diseases: An updated review. Nutr Health 2023; 29:415-433. [PMID: 36445072 PMCID: PMC9713540 DOI: 10.1177/02601060221139628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: The discovery of vitamin C (ascorbic acid) is related to the ancient history of persistent research on the origins of the haemorrhagic disease scurvy. Vitamin C is an important nutrient that aids in a variety of biological and physiological processes. Scientists have been researching the function of vitamin C in the prevention and ailment of sepsis and pneumonia for decades. This has created a potential platform for applying these results to individuals suffering from severe coronavirus infection (COVID-19). Vitamin C's ability to activate and enhance the immune system makes it a promising treatment in the present COVID-19 pandemic. Vitamin C also aids in the activation of vitamin B, the production of certain neurotransmitters, and the transformation of cholesterol into bile acids. Hence, vitamin C is used for the treatment of many diseases. Aim: This review highlights the Vitamin C investigations that are performed by various researchers on patients with COVID 19 infection, the clinical studies and their observations. The authors have additionally updated information on the significance of vitamin C insufficiency, as well as its relevance and involvement in diseases such as cancer, wound healing, iron deficiency anaemia, atherosclerosis and neurodegenerative disorders. Here, we discuss them with the references. Methods: The method used in order to perform literature search was done using SciFinder, PubMed and ScienceDirect. Results: There is a potential role of vitamin C in various diseases including neurodegenerative disorders, COVID-19 and other diseases and the results are highlighted in the review with the help of clinical and preclinical data. Conclusion: More research on vitamin C and the undergoing clinical trials might prove a potential role of vitamin C in protecting the population from current COVID-19 pandemic.
Collapse
Affiliation(s)
- Nikhil Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| | - Purvi Pokharna
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| | - Saritha R Shetty
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| |
Collapse
|
7
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
8
|
Delijewski M, Bartoń A, Maksym B, Pawlas N. The Link between Iron Turnover and Pharmacotherapy in Transplant Patients. Nutrients 2023; 15:nu15061453. [PMID: 36986181 PMCID: PMC10052361 DOI: 10.3390/nu15061453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Iron is a transition metal that plays a crucial role in several physiological processes. It can also exhibit toxic effects on cells, due to its role in the formation of free radicals. Iron deficiency and anemia, as well as iron overload, are the result of impaired iron metabolism, in which a number of proteins, such as hepcidin, hemojuvelin and transferrin, take part. Iron deficiency is common in individuals with renal and cardiac transplants, while iron overload is more common in patients with hepatic transplantation. The current knowledge about iron metabolism in lung graft recipients and donors is limited. The problem is even more complex when we consider the fact that iron metabolism may be also driven by certain drugs used by graft recipients and donors. In this work, we overview the available literature reports on iron turnover in the human body, with particular emphasis on transplant patients, and we also attempt to assess the drugs’ impact on iron metabolism, which may be useful in perioperative treatment in transplantology.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38, 41-808 Zabrze, Poland
- Correspondence: ; Tel.: +48-(32)-2722683
| | | | - Beata Maksym
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38, 41-808 Zabrze, Poland
| | - Natalia Pawlas
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38, 41-808 Zabrze, Poland
| |
Collapse
|
9
|
Ferroptosis - A new target of osteoporosis. Exp Gerontol 2022; 165:111836. [DOI: 10.1016/j.exger.2022.111836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022]
|
10
|
Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta 2021; 523:454-468. [PMID: 34755647 DOI: 10.1016/j.cca.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Iron is an essential element due to its role in a wide variety of physiological processes. Iron homeostasis is crucial to prevent iron overload disorders as well as iron deficiency anemia. The liver synthesized peptide hormone hepcidin is a master regulator of systemic iron metabolism. Given its role in overall health, measurement of hepcidin can be used as a predictive marker in disease states. In addition, hepcidin-targeting drugs appear beneficial as therapeutic agents. This review emphasizes recent development on analytical techniques (immunochemical, mass spectrometry and biosensors) and therapeutic approaches (hepcidin agonists, stimulators and antagonists). These insights highlight hepcidin as a potential biomarker as well as an aid in the development of new drugs for iron disorders.
Collapse
Affiliation(s)
- Shilpa Rana
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
11
|
Lanser L, Fuchs D, Kurz K, Weiss G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021; 13:3732. [PMID: 34835988 PMCID: PMC8619077 DOI: 10.3390/nu13113732] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anemia is very common in patients with inflammatory disorders. Its prevalence is associated with severity of the underlying disease, and it negatively affects quality of life and cardio-vascular performance of patients. Anemia of inflammation (AI) is caused by disturbances of iron metabolism resulting in iron retention within macrophages, a reduced erythrocyte half-life, and cytokine mediated inhibition of erythropoietin function and erythroid progenitor cell differentiation. AI is mostly mild to moderate, normochromic and normocytic, and characterized by low circulating iron, but normal and increased levels of the storage protein ferritin and the iron hormone hepcidin. The primary therapeutic approach for AI is treatment of the underlying inflammatory disease which mostly results in normalization of hemoglobin levels over time unless other pathologies such as vitamin deficiencies, true iron deficiency on the basis of bleeding episodes, or renal insufficiency are present. If the underlying disease and/or anemia are not resolved, iron supplementation therapy and/or treatment with erythropoietin stimulating agents may be considered whereas blood transfusions are an emergency treatment for life-threatening anemia. New treatments with hepcidin-modifying strategies and stabilizers of hypoxia inducible factors emerge but their therapeutic efficacy for treatment of AI in ill patients needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Associations of Food and Nutrient Intake with Serum Hepcidin and the Risk of Gestational Iron-Deficiency Anemia among Pregnant Women: A Population-Based Study. Nutrients 2021; 13:nu13103501. [PMID: 34684502 PMCID: PMC8537751 DOI: 10.3390/nu13103501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Hepcidin is a regulator of iron metabolism. Diet affects the body's iron status, but how it influences hepcidin concentrations and the risk of gestational iron-deficiency anemia (IDA) remains unclear. We investigated relationships of food and nutrient intake with serum hepcidin levels in relation to the iron status at a population scale. A retrospective cross-sectional study was conducted based on data obtained from the Nationwide Nutrition and Health Survey in pregnant women, Taiwan (2017~2020). In total, 1430 pregnant women aged 20~45 years with a singleton pregnancy were included. Data from blood biochemistry, 24-h dietary recall, and a food frequency questionnaire were collected during a prenatal checkup. Adjusted multivariate linear and logistic regression analyses were employed to measure the beta coefficient (ß) and 95% confidence interval (CI) of serum hepcidin and the odds ratio (OR) of IDA. In IDA women, serum hepcidin levels were positively correlated with the intake frequency of Chinese dim sum and related foods (β = 0.037 (95% CI = 0.015~0.058), p = 0.001) and dark leafy vegetables (β = 0.013 (0.001~0.025), p = 0.040), but they were negatively correlated with noodles and related products (β = -0.022 (-0.043~-0.001), p = 0.038). An adjusted multivariate logistic regression analysis showed that dietary protein [OR: 0.990 (0.981~1.000), p = 0.041], total fiber [OR: 0.975 (0.953~0.998), p = 0.031], and rice/rice porridge [OR: 1.007 (1.00~1.014), p = 0.041] predicted gestational IDA. Total carbohydrates [OR: 1.003 (1.000~1.006), p = 0.036], proteins [OR: 0.992 (0.985~0.999), p = 0.028], gourds/shoots/root vegetables [OR: 1.007 (0.092~1.010), p = 0.005], and to a lesser extent, savory and sweet glutinous rice products [OR: 0.069 (0.937~1.002), p = 0.067] and dark leafy vegetables [OR: 1.005 (0.999~1.011), p = 0.088] predicted IDA. The risk of IDA due to vegetable consumption decreased with an increasing vitamin C intake (p for trend = 0.024). Carbohydrates and vegetables may affect the gestational iron status through influencing hepcidin levels. Vitamin C may lower the risk of gestational IDA due to high vegetable consumption.
Collapse
|
13
|
Madeddu C, Neri M, Sanna E, Oppi S, Macciò A. Experimental Drugs for Chemotherapy- and Cancer-Related Anemia. J Exp Pharmacol 2021; 13:593-611. [PMID: 34194245 PMCID: PMC8238072 DOI: 10.2147/jep.s262349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia in cancer patients is a relevant condition complicating the course of the neoplastic disease. Overall, we distinguish the anemia which arises under chemotherapy as pure adverse event of the toxic effects of the drugs used, and the anemia induced by the tumour-associated inflammation, oxidative stress, and systemic metabolic changes, which can be worsened by the concomitant anticancer treatments. This more properly cancer-related anemia depends on several overlapping mechanism, including impaired erythropoiesis and functional iron deficiency, which make its treatment more difficult. Standard therapies approved and recommended for cancer anemia, as erythropoiesis-stimulating agents and intravenous iron administration, are limited to the treatment of chemotherapy-induced anemia, preferably in patients with advanced disease, in view of the still unclear effect of erythropoiesis-stimulating agents on tumour progression and survival. Outside the use of chemotherapy, there are no recommendations for the treatment of cancer-related anemia. For a more complete approach, it is fundamentally a careful evaluation of the type of anemia and iron homeostasis, markers of inflammation and changes in energy metabolism. In this way, anemia management in cancer patient would permit a tailored approach that could give major benefits. Experimental drugs targeting hepcidin and activin II receptor pathways are raising great expectations, and future clinical trials will confirm their role as remedies for cancer-related anemia. Recent evidence on the effect of integrated managements, including nutritional support, antioxidants and anti-inflammatory substances, for the treatment of cancer anemia are emerging. In this review article, we show standard, innovative, and experimental treatment used as remedy for anemia in cancer patients.
Collapse
Affiliation(s)
- Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Manuela Neri
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Elisabetta Sanna
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Sara Oppi
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Antonio Macciò
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| |
Collapse
|
14
|
Abstract
Despite increasing use of targeted therapies to treat cancer, anemia remains a common complication of cancer therapy. Physician concerns about the safety of intravenous (IV) iron products and erythropoiesis-stimulating agents (ESAs) have resulted in many patients with cancer receiving no or suboptimal anemia therapy. In this article, we present 4 patient cases that illustrate both common and complex clinical scenarios. We first present a review of erythropoiesis and then describe our approach to cancer-associated anemia by identifying the contributing causes before selecting specific treatments. We summarize clinical trial data affirming the safety and efficacy of currently available IV iron products used to treat cancer-associated anemia and illustrate how we use commonly available laboratory tests to assess iron status during routine patient management. We compare adverse event rates associated with IV iron vs red cell transfusion and discuss using first-line IV iron monotherapy to treat anemic patients with cancer, which decreases the need for ESAs. A possible mechanism behind ESA-induced tumor progression is discussed. Finally, we review the potential of novel therapies such as ascorbic acid, prolyl hydroxylase inhibitors, activin traps, hepcidin, and bone morphogenetic protein antagonists in treating cancer-associated anemia.
Collapse
|
15
|
The effect of food and nutrients on iron overload: what do we know so far? Eur J Clin Nutr 2021; 75:1771-1780. [PMID: 33712721 DOI: 10.1038/s41430-021-00887-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/30/2021] [Accepted: 02/16/2021] [Indexed: 01/16/2023]
Abstract
There has been no established food and nutrition guidance for diseases characterized by the presence of iron overload (IOL) yet. Hepcidin is a hormone that diminishes iron bioavailability. Its levels increase in response to increased iron stores. Hence, IOL conditions could hypothetically trigger a self-regulatory mechanism for the reduction of the intestinal absorption of iron. In addition, some food substances may modulate intestinal iron absorption and may be useful in the dietary management of patients with IOL. This scoping review aimed to systematize studies that support dietary prescriptions for IOL patients. It was carried out according to the method proposed by the Joanna Briggs Institute and the preferred reporting items for systematic reviews and meta-analyses (PRISMA). Although the need to restrict iron in the diet of individuals with hemochromatosis is quite clear, there is a consensus that IOL diminishes the rate of iron absorption. Reduced iron absorption is also present and has been reported in some diseases with transfusion IOL, in which serum hepcidin is usually high. The consumption of polyphenols and 6-shogaol seems to reduce iron absorption or serum ferritin concentration, while procyanidins do not cause any changes. Vitamin C deficiency is often found in IOL patients. However, vitamin C supplementation and alcohol consumption should be avoided not only because they increase iron absorption, but also because they provoke toxic oxidative reactions when the iron is excessive. Dietary approaches must consider the differences in the pathophysiology and treatment of IOL diseases.
Collapse
|
16
|
Cotoraci C, Ciceu A, Sasu A, Hermenean A. Natural Antioxidants in Anemia Treatment. Int J Mol Sci 2021; 22:ijms22041883. [PMID: 33668657 PMCID: PMC7918704 DOI: 10.3390/ijms22041883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
- Correspondence:
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
17
|
Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S, Shang P. The Effect of Abnormal Iron Metabolism on Osteoporosis. Biol Trace Elem Res 2020; 195:353-365. [PMID: 31473898 DOI: 10.1007/s12011-019-01867-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
Iron is one of the important trace elements in life activities. Abnormal iron metabolism increases the incidence of many skeletal diseases, especially for osteoporosis. Iron metabolism plays a key role in the bone homeostasis. Disturbance of iron metabolism not only promotes osteoclast differentiation and apoptosis of osteoblasts but also inhibits proliferation and differentiation of osteoblasts, which eventually destroys the balance of bone remodeling. The strength and density of bone can be weakened by the disordered iron metabolism, which increases the incidence of osteoporosis. Clinically, compounds or drugs that regulate iron metabolism are used for the treatment of osteoporosis. The goal of this review summarizes the new progress on the effect of iron overload or deficiency on osteoporosis and the mechanism of disordered iron metabolism on osteoporosis. Explaining the relationship of iron metabolism with osteoporosis may provide ideas for clinical treatment and development of new drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China.
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
18
|
Rodgers GM, Gilreath JA. The Role of Intravenous Iron in the Treatment of Anemia Associated with Cancer and Chemotherapy. Acta Haematol 2019; 142:13-20. [PMID: 30970366 DOI: 10.1159/000496967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
Abstract
Cancer-related anemia (CRA) is a commonly occurring problem for patients with cancer regardless of whether they are receiving treatment with chemotherapy or immunotherapy. It may result from one or more processes (decreased production, increased destruction, or increased loss of red blood cells, RBC). Perturbations in iron availability form the primary basis for anemia in many patients with cancer-related anemia. Functional iron deficiency (FID) anemia is a condition in which the patient has adequate or increased iron stores, but this iron pool is not available for erythropoiesis. Erythropoiesis-stimulating agents (ESAs) were the original treatment for FID; over time, however, if the supply of iron cannot keep pace with increased RBC synthesis driven by ESAs, FID may eventually lead to the lack or loss of ESA responsiveness. Subsequent clinical trials reported that intravenous (IV) iron could enhance the erythropoietic response to ESAs. This chapter reviews the pathogenesis of FID and summarizes the literature on the treatment of cancer- and chemotherapy-induced anemia. Clinical trials using IV iron with or without ESAs are reviewed in addition to the currently available IV iron products. The consensus conclusions from these trials, as well as guideline recommendations, support the use of IV iron in these patients to enhance ESA responsiveness, decrease ESA dosage, and reduce RBC transfusions. Little data have been published on the long-term safety of IV iron or its impact on tumor growth. This paper also briefly explores novel approaches for the treatment of FID anemia, which has relevance in treating not only cancer patients but also patients with benign inflammatory disorders.
Collapse
Affiliation(s)
- George M Rodgers
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, Utah, USA,
| | - Jeffrey A Gilreath
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Ghatpande NS, Apte PP, Naik SS, Kulkarni PP. Fruit and Vegetable Consumption and Their Association With the Indicators of Iron and Inflammation Status Among Adolescent Girls. J Am Coll Nutr 2018; 38:218-226. [PMID: 30130470 DOI: 10.1080/07315724.2018.1492470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The objective of this study was to identify an association among dietary components, iron, and inflammatory status among adolescent girls. METHOD Dietary information for 85 adolescent girls was collected through food frequency questionnaires. Biomarkers of iron and inflammatory status were analyzed. RESULTS We found that 28.2% of adolescent girls had anemia and 65.9% girls were iron-deficient. Girls who did not consume guava had 3.8-fold (95% confidence interval =1.1-9.4; p = 0.020) increased the risk of having low serum iron levels. Girls who consumed amaranth had significantly (p = 0.024) higher serum hepcidin levels (n = 44; 129.7 ± 81.40 pg/mL vs n = 41; 94.6 ± 55.8 pg/mL) as well as ferritin levels (n = 44; 19.7 ± 16.4 µg/L vs n = 41; 14.0 ± 10.2 µg/L). Overall consumption of fruits and green leafy vegetables among girls significantly affects their iron status. CONCLUSIONS Regular consumption of vitamin C-rich fruits and green leafy vegetable intake are imperative for improvement of iron status among adolescent girls.
Collapse
Affiliation(s)
- Niraj S Ghatpande
- a Bioprospecting Group, Agharkar Research Institute , Pune , India.,b Savitribai Phule Pune University, Ganeshkhind , Pune , India
| | - Priti P Apte
- b Savitribai Phule Pune University, Ganeshkhind , Pune , India
| | | | | |
Collapse
|
20
|
Zhang Y, Wang X, Wu Q, Wang H, Zhao L, Wang X, Mu M, Xie E, He X, Shao D, Shang Y, Lai Y, Ginzburg Y, Min J, Wang F. Adenine alleviates iron overload by cAMP/PKA mediated hepatic hepcidin in mice. J Cell Physiol 2018; 233:7268-7278. [PMID: 29600572 DOI: 10.1002/jcp.26559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022]
Abstract
Hemochromatosis is prevalent and often associated with high rates of morbidity and mortality worldwide. The safe alternative iron-reducing approaches are urgently needed in order to better control iron overload. Our unbiased vitamin screen for modulators of hepcidin, a master iron regulatory hormone, identifies adenine (vitamin B4) as a potent hepcidin agonist. Adenine significantly induced hepcidin mRNA level and promoter activity activation in human cell lines, possibly through BMP/SMAD pathway. Further studies in mice validated the effect of adenine on hepcidin upregulation. Consistently, adenine dietary supplement in mice led to an increase of hepatic hepcidin expression compared with normal diet-fed mice via BMP/SMAD pathway. Notably, adenine-rich diet significantly ameliorated iron overload accompanied by the enhanced hepcidin expression in both high iron-fed mice and in Hfe-/- mice, a murine model of hereditary hemochromatosis. To further validate this finding, we selected pharmacological inhibitors against BMP (LDN193189). We found LDN193189 strongly blocked the hepcidin induction by adenine. Moreover, we uncovered an essential role of cAMP/PKA-dependent axis in triggering adenine-induced hepcidin expression in primary hepatocytes by using 8 br cAMP, a cAMP analog, and H89, a potent inhibitor for PKA signaling. These findings suggest a potential therapeutic role of adenine for hereditary hemochromatosis.
Collapse
Affiliation(s)
- Yingqi Zhang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xudong Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qian Wu
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Institute, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lu Zhao
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhui Wang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingdao Mu
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Enjun Xie
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan He
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dandan Shao
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanna Shang
- Precision Nutrition Innovation Institute, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongrong Lai
- Department of Hematology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yelena Ginzburg
- Division of Hematology and Medical Oncology/Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NewYork
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Institute, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients 2017; 9:E671. [PMID: 28657578 PMCID: PMC5537786 DOI: 10.3390/nu9070671] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions.
Collapse
Affiliation(s)
- Mustapha Umar Imam
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Shenshen Zhang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jifei Ma
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Hao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
- Department of Nutrition, Nutrition Discovery Innovation Center, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
- Department of Nutrition, Nutrition Discovery Innovation Center, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Reichert CO, da Cunha J, Levy D, Maselli LMF, Bydlowski SP, Spada C. Hepcidin: Homeostasis and Diseases Related to Iron Metabolism. Acta Haematol 2017; 137:220-236. [PMID: 28514781 DOI: 10.1159/000471838] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Iron is an essential metal for cell survival that is regulated by the peptide hormone hepcidin. However, its influence on certain diseases is directly related to iron metabolism or secondary to underlying diseases. Genetic alterations influence the serum hepcidin concentration, which can lead to an iron overload in tissues, as observed in haemochromatosis, in which serum hepcidin or defective hepcidin synthesis is observed. Another genetic imbalance of iron is iron-refractory anaemia, in which serum concentrations of hepcidin are increased, precluding the flow and efflux of extra- and intracellular iron. During the pathogenesis of certain diseases, the resulting oxidative stress, as well as the increase in inflammatory cytokines, influences the transcription of the HAMP gene to generate a secondary anaemia due to the increase in the serum concentration of hepcidin. To date, there is no available drug to inhibit or enhance hepcidin transcription, mostly due to the cytotoxicity described in the in vitro models. The proposed therapeutic targets are still in the early stages of clinical trials. Some candidates are promising, such as heparin derivatives and minihepcidins. This review describes the main pathways of systemic and genetic regulation of hepcidin, as well as its influence on the disorders related to iron metabolism.
Collapse
Affiliation(s)
- Cadiele Oliana Reichert
- Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
The iron-regulatory hormone hepcidin: A possible therapeutic target? Pharmacol Ther 2015; 146:35-52. [DOI: 10.1016/j.pharmthera.2014.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 01/19/2023]
|
24
|
de Almeida CAN, De Mello ED, Ramos APR, João CA, João CR, Dutra-de-Oliveira JE. Assessment of drinking water fortification with iron plus ascorbic Acid or ascorbic Acid alone in daycare centers as a strategy to control iron-deficiency anemia and iron deficiency: a randomized blind clinical study. J Trop Pediatr 2014; 60:40-6. [PMID: 23963460 DOI: 10.1093/tropej/fmt071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Assess drinking water fortification with iron and/or ascorbic acid as a strategy to control iron-deficiency anemia and iron deficiency. METHODS Randomized blind clinical study, fortifying drinking water to 153 pre-school children during 3 months, with iron and ascorbic acid (A), ascorbic acid (B) or plain water (C). Hemoglobin (Hb), mean corpuscular volume (MCV) and ferritin were measured. RESULTS Within the groups, Hb raised in all three groups, MCV in A and B and ferritin in A. The difference between time points 0 and 1 was significant between A and B for Hb, when A and B were compared with C for MCV and when A was compared with either B or C for ferritin. CONCLUSIONS Water fortification is efficient in controlling iron deficiency and anemia. Iron stores' recovery depends on a more effective offer of iron. Water fortification must be preceded by a careful assessment of the previous nutritional status.
Collapse
Affiliation(s)
- Carlos A N de Almeida
- University of Ribeirão Preto, Eugênio Ferrante, 170, Ribeirão Preto - SP - Brazil, CEP 14027-150
| | | | | | | | | | | |
Collapse
|
25
|
Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013; 28:314-28. [PMID: 24426232 DOI: 10.1007/s12291-013-0375-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
The recognition of vitamin C is associated with a history of an unrelenting search for the cause of the ancient haemorrhagic disease scurvy. Isolated in 1928, vitamin C is essential for the development and maintenance of connective tissues. It plays an important role in bone formation, wound healing and the maintenance of healthy gums. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. It is an antioxidant that protects body from free radical damage. It is used as therapeutic agent in many diseases and disorders. Vitamin C protects the immune system, reduces the severity of allergic reactions and helps to fight off infections. However the significance and beneficial effect of vitamin C in respect to human disease such as cancer, atherosclerosis, diabetes, neurodegenerative disease and metal toxicity however remains equivocal. Thus further continuous uninterrupted efforts may open new vistas to understand its significance in disease management.
Collapse
Affiliation(s)
- Shailja Chambial
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Placheril J John
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, 302004 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| |
Collapse
|