1
|
Ahrens SM, Arredondo KH, Bagić AI, Bai S, Chapman KE, Ciliberto MA, Clarke DF, Eisner M, Fountain NB, Gavvala JR, Perry MS, Rossi KC, Wong-Kisiel LC, Herman ST, Ostendorf AP. Epilepsy center characteristics and geographic region influence presurgical testing in the United States. Epilepsia 2023; 64:127-138. [PMID: 36317952 PMCID: PMC10099541 DOI: 10.1111/epi.17452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Persons with drug-resistant epilepsy may benefit from epilepsy surgery and should undergo presurgical testing to determine potential candidacy and appropriate intervention. Institutional expertise can influence use and availability of evaluations and epilepsy surgery candidacy. This census survey study aims to examine the influence of geographic region and other center characteristics on presurgical testing for medically intractable epilepsy. METHODS We analyzed annual report and supplemental survey data reported in 2020 from 206 adult epilepsy center directors and 136 pediatric epilepsy center directors in the United States. Test utilization data were compiled with annual center volumes, available resources, and US Census regional data. We used Wilcoxon rank-sum, Kruskal-Wallis, and chi-squared tests for univariate analysis of procedure utilization. Multivariable modeling was also performed to assign odds ratios (ORs) of significant variables. RESULTS The response rate was 100% with individual element missingness < 11% across 342 observations undergoing univariate analysis. A total of 278 complete observations were included in the multivariable models, and significant regional differences were present. For instance, compared to centers in the South, those in the Midwest used neuropsychological testing (OR = 2.87, 95% confidence interval [CI] = 1.2-6.86; p = .018) and fluorodeoxyglucose-positron emission tomography (OR = 2.74, 95% CI = = 1.14-6.61; p = .025) more commonly. For centers in the Northeast (OR = .46, 95% CI = .23-.93; p = .031) and West (OR = .41, 95% CI = .19-.87; p = .022), odds of performing single-photon emission computerized tomography were lower by nearly 50% compared to those in the South. Center accreditation level, demographics, volume, and resources were also associated with varying individual testing rates. SIGNIFICANCE Presurgical testing for drug-resistant epilepsy is influenced by US geographic region and other center characteristics. These findings have potential implications for comparing outcomes between US epilepsy centers and may inject disparities in access to surgical treatment.
Collapse
Affiliation(s)
- Stephanie M Ahrens
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital and Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kristen H Arredondo
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Anto I Bagić
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, Pennsylvania, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kevin E Chapman
- Barrow Neurologic Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Michael A Ciliberto
- Department of Pediatrics, Stead Family Children's Hospital, University of Iowa, Iowa City, Iowa, USA
| | - Dave F Clarke
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Mariah Eisner
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nathan B Fountain
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, Virginia, USA
| | - Jay R Gavvala
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - M Scott Perry
- Jane and John Justin Neurosciences Center, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Kyle C Rossi
- Department of Neurology, Division of Epilepsy, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Adam P Ostendorf
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital and Ohio State University College of Medicine, Columbus, Ohio, USA
| | | |
Collapse
|
2
|
Carvalho MS, Alvim MKM, Etchebehere E, Santos ADO, Ramos CD, Argenton JLP, Cendes F, Amorim BJ. Interictal and postictal 18F-FDG PET/CT in epileptogenic zone localization. Radiol Bras 2022; 55:273-279. [PMID: 36320375 PMCID: PMC9620847 DOI: 10.1590/0100-3984.2021.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Objective To evaluate the performance of 18F-fluorodeoxyglucose
positron-emission tomography/computed tomography ( 18F-FDG
PET/CT) in localizing epileptogenic zones, comparing 18F-FDG
injection performed in the traditional interictal period with that performed
near the time of a seizure. Materials and Methods We evaluated patients with refractory epilepsy who underwent
18F-FDG PET/CT. The reference standards for localization of the
epileptogenic zone were histopathology and follow-up examinations (in
patients who underwent surgery) or serial electroencephalography (EEG)
recordings, long-term video EEG, and magnetic resonance imaging (in patients
who did not). The 18F-FDG injection was performed whether the
patient had an epileptic seizure during the EEG monitoring period or not.
The 18F-FDG PET/CT results were categorized as concordant or
discordant with the reference standards. Results Of the 110 patients evaluated, 10 were in a postictal group (FDG injection
after a seizure) and 100 were in the interictal group. The
18F-FDG PET/CT was concordant with the reference standards in
nine (90%) of the postictal group patients and in 60 (60%) of the interictal
group patients. Among the nine postictal group patients in whom the results
were concordant, the 18F-FDG PET/CT showed hypermetabolism and
hypometabolism in the epileptogenic zone in four (44.4%) and five (55.6%),
respectively. Conclusion Our data indicate that 18F-FDG PET/CT is a helpful tool for
localization of the epileptogenic zone and that EEG monitoring is an
important means of correlating the findings. In addition, postictal
18F-FDG PET/CT is able to identify the epileptogenic zone by
showing either hypometabolism or hypermetabolism.
Collapse
|
3
|
Alves IS, Coutinho AMN, Vieira APF, Rocha BP, Passos UL, Gonçalves VT, Silva PDS, Zhan MX, Pinho PC, Delgado DS, Docema MFL, Lee HW, Policeni BA, Leite CC, Martin MGM, Amancio CT. Imaging Aspects of the Hippocampus. Radiographics 2022; 42:822-840. [PMID: 35213261 DOI: 10.1148/rg.210153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hippocampus is one of the most sophisticated structures in the brain, owing to its complex anatomy, intriguing functions, relationship with other structures, and relevant associated symptoms. Despite being a structure analyzed for centuries, its anatomy and physiology in the human body are still being extensively studied, as well as associated pathologic conditions and potential biomarkers. It can be affected by a broad group of diseases that can be classified as congenital, degenerative, infectious or inflammatory, neoplastic, vascular, or toxic-metabolic disease. The authors present the anatomy and close structures, function, and development of the hippocampus, as well as an original algorithm for imaging diagnosis. The algorithm includes pathologic conditions that typically affect the hippocampus and groups them into nodular (space occupying) and nonnodular pathologic conditions, serving as a guide to narrow the differential diagnosis. MRI is the imaging modality of choice for evaluation of the hippocampus, and CT and nuclear medicine also improve the analysis. The MRI differential diagnosis depends on anatomic recognition and careful characterization of associated imaging findings such as volumetric changes, diffusion restriction, cystic appearance, hyperintensity at T1-weighted imaging, enhancement, or calcification, which play a central role in diagnosis along with clinical findings. Some pathologic conditions arising from surrounding structures such as the amygdala are also important to recognize. Pathologic conditions of the hippocampus can be a challenge to diagnose because they usually manifest as similar clinical syndromes, so the imaging findings play a potential role in guiding the final diagnosis. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Isabela S Alves
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Artur M N Coutinho
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Ana P F Vieira
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Bruno P Rocha
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Ula L Passos
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Vinicius T Gonçalves
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Paulo D S Silva
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Malia X Zhan
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Paula C Pinho
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Daniel S Delgado
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Marcos F L Docema
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Hae W Lee
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Bruno A Policeni
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Claudia C Leite
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Maria G M Martin
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| | - Camila T Amancio
- From the Neuroradiology Section, Department of Radiology, Hospital Sírio-Libanês, Adma Jafet 91, Bela Vista, São Paulo SP 01308-050, Brazil (I.S.A., A.M.N.C., A.P.F.V., B.P.R., U.L.P., V.T.G., P.C.P., D.S.D., M.F.L.D., H.W.L., M.G.M.M., C.T.A.); Neuroradiology Section, Department of Radiology, University of São Paulo, Brazil (A.M.N.C., P.C.P., C.C.L., M.G.M.M.); Department of Neurology, Prevent Senior, São Paulo, Brazil (P.D.S.S.); and Neuroradiology Section, Department of Radiology, University of Iowa, Iowa City, Iowa (M.X.Z., B.A.P.)
| |
Collapse
|
4
|
Arocha Pérez JL, Morales Chacón LM, Batista García Ramo K, Galán García L. Sequential Semiology of Seizures and Brain Perfusion Patterns in Patients with Drug-Resistant Focal Epilepsies: A Perspective from Neural Networks. Behav Sci (Basel) 2022; 12:107. [PMID: 35447679 PMCID: PMC9025657 DOI: 10.3390/bs12040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Ictal semiology and brain single-photon emission computed tomography have been performed in approaching the epileptogenic zone in drug-resistant focal epilepsies. The authors aim to describe the brain structures involved in the ictal and interictal epileptogenic network from sequential semiology and brain perfusion quantitative patterns analysis. A sequential representation of seizures was performed (n = 15). A two-level analysis (individual and global) was carried out for the analysis of brain perfusion quantification and estimating network structures from the perfusion indexes. Most of the subjects started with focal seizures without impaired consciousness, followed by staring, automatisms, language impairments and evolution to a bilateral tonic-clonic seizure (temporal lobe and posterior quadrant epilepsy). Frontal lobe epilepsy seizures continued with upper limb clonus and evolution to bilateral tonic-clonic. The perfusion index of the epileptogenic zone ranged between 0.439-1.362 (mesial and lateral structures), 0.826-1.266 in dorsolateral frontal structures and 0.678-1.507 in the occipital gyrus. The interictal epileptogenic network proposed involved the brainstem and other subcortical structures. For the ictal state, it included the rectus gyrus, putamen and cuneus. The proposed methodology provides information about the brain structures in the neural networks in patients with drug-resistant focal epilepsies.
Collapse
Affiliation(s)
- Jorge L. Arocha Pérez
- International Center for Neurological Restoration, 25th Ave, No 15805, Playa, Havana 11300, Cuba; (J.L.A.P.); (K.B.G.R.)
| | - Lilia M. Morales Chacón
- International Center for Neurological Restoration, 25th Ave, No 15805, Playa, Havana 11300, Cuba; (J.L.A.P.); (K.B.G.R.)
| | - Karla Batista García Ramo
- International Center for Neurological Restoration, 25th Ave, No 15805, Playa, Havana 11300, Cuba; (J.L.A.P.); (K.B.G.R.)
| | | |
Collapse
|
5
|
Yan R, Zhang H, Wang J, Zheng Y, Luo Z, Zhang X, Xu Z. Application value of molecular imaging technology in epilepsy. IBRAIN 2021; 7:200-210. [PMID: 37786793 PMCID: PMC10528966 DOI: 10.1002/j.2769-2795.2021.tb00084.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 10/04/2023]
Abstract
Epilepsy is a common neurological disease with various seizure types, complicated etiologies, and unclear mechanisms. Its diagnosis mainly relies on clinical history, but an electroencephalogram is also a crucial auxiliary examination. Recently, brain imaging technology has gained increasing attention in the diagnosis of epilepsy, and conventional magnetic resonance imaging can detect epileptic foci in some patients with epilepsy. However, the results of brain magnetic resonance imaging are normal in some patients. New molecular imaging has gradually developed in recent years and has been applied in the diagnosis of epilepsy, leading to enhanced lesion detection rates. However, the application of these technologies in epilepsy patients with negative brain magnetic resonance must be clarified. Thus, we reviewed the relevant literature and summarized the information to improve the understanding of the molecular imaging application value of epilepsy.
Collapse
Affiliation(s)
- Rong Yan
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Hai‐Qing Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jing Wang
- Prevention and Health Care, The Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yong‐Su Zheng
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhong Luo
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xia Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zu‐Cai Xu
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
6
|
Lim HK, You N, Bae S, Kang BM, Shon YM, Kim SG, Suh M. Differential contribution of excitatory and inhibitory neurons in shaping neurovascular coupling in different epileptic neural states. J Cereb Blood Flow Metab 2021; 41:1145-1161. [PMID: 32669018 PMCID: PMC8054729 DOI: 10.1177/0271678x20934071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the neurovascular coupling (NVC) underlying hemodynamic changes in epilepsy is crucial to properly interpreting functional brain imaging signals associated with epileptic events. However, how excitatory and inhibitory neurons affect vascular responses in different epileptic states remains unknown. We conducted real-time in vivo measurements of cerebral blood flow (CBF), vessel diameter, and excitatory and inhibitory neuronal calcium signals during recurrent focal seizures. During preictal states, decreases in CBF and arteriole diameter were closely related to decreased γ-band local field potential (LFP) power, which was linked to relatively elevated excitatory and reduced inhibitory neuronal activity levels. Notably, this preictal condition was followed by a strengthened ictal event. In particular, the preictal inhibitory activity level was positively correlated with coherent oscillating activity specific to inhibitory neurons. In contrast, ictal states were characterized by elevated synchrony in excitatory neurons. Given these findings, we suggest that excitatory and inhibitory neurons differentially contribute to shaping the ictal and preictal neural states, respectively. Moreover, the preictal vascular activity, alongside with the γ-band, may reflect the relative levels of excitatory and inhibitory neuronal activity, and upcoming ictal activity. Our findings provide useful insights into how perfusion signals of different epileptic states are related in terms of NVC.
Collapse
Affiliation(s)
- Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Nayeon You
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sungjun Bae
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bok-Man Kang
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Zhang Q, Liao Y, Wang X, Zhang T, Feng J, Deng J, Shi K, Chen L, Feng L, Ma M, Xue L, Hou H, Dou X, Yu C, Ren L, Ding Y, Chen Y, Wu S, Chen Z, Zhang H, Zhuo C, Tian M. A deep learning framework for 18F-FDG PET imaging diagnosis in pediatric patients with temporal lobe epilepsy. Eur J Nucl Med Mol Imaging 2021; 48:2476-2485. [PMID: 33420912 PMCID: PMC8241642 DOI: 10.1007/s00259-020-05108-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/08/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE Epilepsy is one of the most disabling neurological disorders, which affects all age groups and often results in severe consequences. Since misdiagnoses are common, many pediatric patients fail to receive the correct treatment. Recently, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging has been used for the evaluation of pediatric epilepsy. However, the epileptic focus is very difficult to be identified by visual assessment since it may present either hypo- or hyper-metabolic abnormality with unclear boundary. This study aimed to develop a novel symmetricity-driven deep learning framework of PET imaging for the identification of epileptic foci in pediatric patients with temporal lobe epilepsy (TLE). METHODS We retrospectively included 201 pediatric patients with TLE and 24 age-matched controls who underwent 18F-FDG PET-CT studies. 18F-FDG PET images were quantitatively investigated using 386 symmetricity features, and a pair-of-cube (PoC)-based Siamese convolutional neural network (CNN) was proposed for precise localization of epileptic focus, and then metabolic abnormality level of the predicted focus was calculated automatically by asymmetric index (AI). Performances of the proposed framework were compared with visual assessment, statistical parametric mapping (SPM) software, and Jensen-Shannon divergence-based logistic regression (JS-LR) analysis. RESULTS The proposed deep learning framework could detect the epileptic foci accurately with the dice coefficient of 0.51, which was significantly higher than that of SPM (0.24, P < 0.01) and significantly (or marginally) higher than that of visual assessment (0.31-0.44, P = 0.005-0.27). The area under the curve (AUC) of the PoC classification was higher than that of the JS-LR (0.93 vs. 0.72). The metabolic level detection accuracy of the proposed method was significantly higher than that of visual assessment blinded or unblinded to clinical information (90% vs. 56% or 68%, P < 0.01). CONCLUSION The proposed deep learning framework for 18F-FDG PET imaging could identify epileptic foci accurately and efficiently, which might be applied as a computer-assisted approach for the future diagnosis of epilepsy patients. TRIAL REGISTRATION NCT04169581. Registered November 13, 2019 Public site: https://clinicaltrials.gov/ct2/show/NCT04169581.
Collapse
Affiliation(s)
- Qinming Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Liao
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawan Wang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Teng Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianing Deng
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kexin Shi
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Chen
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liu Feng
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mindi Ma
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Le Xue
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haifeng Hou
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Ren
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yao Ding
- Department of Neurology, Epilepsy Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Chen
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zexin Chen
- Center of Clinical Epidemiology & Biostatistics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China. .,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Cheng Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Kaewchur T, Chamroonrat W, Thientunyakit T, Khiewvan B, Wongsurawat N, Chotipanich C, Chinvarun Y, Bunyaratavej K, Amnuaywattakorn S, Poon-Iad N, Sontrapornpol T, Pasawang P, Tepmongkol S. Thai National Guideline for Nuclear Medicine Investigations in Epilepsy. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2021; 9:188-206. [PMID: 34250150 PMCID: PMC8255518 DOI: 10.22038/aojnmb.2021.54567.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/20/2021] [Accepted: 04/17/2021] [Indexed: 11/06/2022]
Abstract
Epilepsy is a disorder of the brain, which is characterized by recurrent epileptic seizures. These patients are generally treated with antiepileptic drugs. However, more than 30% of the patients become medically intractable and undergo a series of investigations to define candidates for epilepsy surgery. Nuclear Medicine studies using Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) radiopharmaceuticals are among the investigations used for this purpose. Since available guidelines for the investigation of surgical candidates are not up-to-date, The Nuclear Medicine Society of Thailand, The Neurological Society of Thailand, The Royal College of Neurological Surgeons of Thailand, and The Thai Medical Physicist Society has collaborated to develop this Thai national guideline for Nuclear Medicine study in epilepsy. The guideline focuses on the use of brain perfusion SPECT and F-18 fluorodeoxyglucose PET (FDG-PET), the mainly used methods in day-to-day practice. This guideline aims for effective use of Nuclear Medicine investigations by referring physicians e.g. epileptologists and neurologists, radiologists, nuclear medicine physicians, medical physicists, nuclear medicine technologists and technicians.
Collapse
Affiliation(s)
- Tawika Kaewchur
- Department of Radiology, PET/CT and Cyclotron Center, Chiang Mai University, Chiang Mai, Thailand
| | - Wichana Chamroonrat
- Division of Nuclear Medicine, Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanyaluck Thientunyakit
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Benjapa Khiewvan
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nantaporn Wongsurawat
- Division of Nuclear Medicine, Department of Radiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Yotin Chinvarun
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | | | - Sasithorn Amnuaywattakorn
- Division of Nuclear Medicine, Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nucharee Poon-Iad
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanawat Sontrapornpol
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Panya Pasawang
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Nuclear Medicine Division, Department of Radiology, Chulalongkorn University, Rama IV Rd, Pathumwan, Bangkok, Thailand
| |
Collapse
|
9
|
Lam AD, Noebels J. Night Watch on the Titanic: Detecting Early Signs of Epileptogenesis in Alzheimer Disease. Epilepsy Curr 2020; 20:369-374. [PMID: 33081517 PMCID: PMC7818196 DOI: 10.1177/1535759720964775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aberrant cortical network excitability is an inextricable feature of Alzheimer disease (AD) that can negatively impact memory and accelerate cognitive decline. Surface electroencephalogram spikes and intracranial recordings of nocturnal silent seizures in human AD, coupled with the abnormal neural synchrony that precedes development of behavioral seizures in mouse AD models, build the case for epileptogenesis as an early therapeutic target for AD. Since most individuals with AD do not develop overt seizures, leveraging functional biomarkers of epilepsy risk to stratify a heterogeneous AD patient population for treatment is research priority for successful clinical trial design. Who will benefit from antiseizure interventions, which one, and when should it begin?
Collapse
Affiliation(s)
- Alice D. Lam
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Finnema SJ, Toyonaga T, Detyniecki K, Chen MK, Dias M, Wang Q, Lin SF, Naganawa M, Gallezot JD, Lu Y, Nabulsi NB, Huang Y, Spencer DD, Carson RE. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [ 11 C]UCB-J positron emission tomography study. Epilepsia 2020; 61:2183-2193. [PMID: 32944949 DOI: 10.1111/epi.16653] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In this positron emission tomography (PET) study with [11 C]UCB-J, we evaluated synaptic vesicle glycoprotein 2A (SV2A) binding, which is decreased in resected brain tissues from epilepsy patients, in subjects with temporal lobe epilepsy (TLE) and compared the regional binding pattern to [18 F]fluorodeoxyglucose (FDG) uptake. METHODS Twelve TLE subjects and 12 control subjects were examined. Regional [11 C]UCB-J binding potential (BPND ) values were estimated using the centrum semiovale as a reference region. [18 F]FDG uptake in TLE subjects was quantified using mean radioactivity values. Asymmetry in outcome measures was assessed by comparison of ipsilateral and contralateral regions. Partial volume correction (PVC) with the iterative Yang algorithm was applied based on the FreeSurfer segmentation. RESULTS In 11 TLE subjects with medial temporal lobe sclerosis (MTS), the hippocampal volumetric asymmetry was 25 ± 11%. After PVC, [11 C]UCB-J BPND asymmetry indices were 37 ± 19% in the hippocampus, with very limited asymmetry in other brain regions. Reductions in [11 C]UCB-J BPND values were restricted to the sclerotic hippocampus when compared to control subjects. The corresponding asymmetry in hippocampal [18 F]FDG uptake was 22 ± 7% and correlated with that of [11 C]UCB-J BPND across subjects (R2 = .38). Hippocampal asymmetries in [11 C]UCB-J binding were 1.7-fold larger than those of [18 F]FDG uptake. SIGNIFICANCE [11 C]UCB-J binding is reduced in the seizure onset zone of TLE subjects with MTS. PET imaging of SV2A may be a promising biomarker approach in the presurgical selection and evaluation of TLE patients and may improve the sensitivity of molecular imaging for seizure focus detection.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Kamil Detyniecki
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Mark Dias
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Qianyu Wang
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Shu-Fei Lin
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA
| | - Dennis D Spencer
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Pawar SU, Ravat SH, Muzumdar DP, Sankhe SS, Chheda AH, Manglunia AS, Maldar AN. Does Tc-99m ECD ictal brain SPECT have incremental value in localization of epileptogenic zone and predicting postoperative seizure freedom in cases with discordant video electroencephalogram and MRI findings? Nucl Med Commun 2020; 41:858-870. [PMID: 32796473 DOI: 10.1097/mnm.0000000000001240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Localization of epileptogenic focus in drug-refractory epilepsy using Tc-99m ethylene cystine dimer (ECD) brain single photon emission computed tomography (SPECT) is less studied in patients with discordant findings on video electroencephalogram (VEEG) and MRI. The study was done to evaluate brain SPECT for epileptogenic focus localization and postoperative seizure freedom. METHODS Epilepsy patients with discordant VEEG and MRI findings underwent brain SPECT at ictal and interictal phases. Various groups unilateral/bilateral mesial temporal sclerosis (MTS), solitary and multifocal lesional, nonlesional epilepsy were studied for localization of epileptogenic focus and postoperative seizure freedom (>2 years) using Engels classification. Reasons for nonoperability was evaluated in nonoperated group. RESULTS SPECT could localize epileptogenic focus in 49/67 (73.13%) and guided surgery in 19/33 (57.57%) patients in operated group. SPECT was useful in 12 (46.12%) of unilateral (2)/bilateral (10) MTS. Postoperative seizure freedom of Engels Class I and II in 22 (66.67%), III in six (18.2%) and IV in one patient based on SPECT findings (P = 0.0086). Overall sensitivity and specificity were 79.3% and 85.7%, respectively. SPECT could localize epileptogenic focus in 23/34 (67.64%) patients in nonoperated group; 10 (29.41%) patients refused for surgery and no epileptogenic focus was localized in the rest of 14 (41.2%). CONCLUSION Ictal SPECT showed incremental value and was found necessary for epileptogenic focus localization and subsequent surgery in unilateral/bilateral MTS in this study. Seizure freedom in patients undergoing epilepsy surgery based on ictal SPECT assistance was comparable to the surgical group not requiring ictal SPECT.
Collapse
Affiliation(s)
| | | | | | - Shilpa Sushilkumar Sankhe
- Radiology, Comprehensive Epilepsy Care Centre, Seth G S Medical College and KEM Hospital, Mumbai, India
| | | | | | | |
Collapse
|
12
|
Foundations of the Diagnosis and Surgical Treatment of Epilepsy. World Neurosurg 2020; 139:750-761. [DOI: 10.1016/j.wneu.2020.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/02/2020] [Indexed: 12/29/2022]
|
13
|
Akdemir ÜÖ, Çapraz I, Gülbahar Ateş S, Şeker K, Aydos U, Kurt G, Karabacak N, Atay LÖ, Bilir E. Evaluation of brain FDG PET images in temporal lobe epilepsy for lateralization of epileptogenic focus using data mining methods. Turk J Med Sci 2020; 50:738-748. [PMID: 32151114 PMCID: PMC7379449 DOI: 10.3906/sag-1911-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/05/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim In temporal lobe epilepsy (TLE), brain positron emission tomography (PET) performed with F-18 fluorodeoxyglucose (FDG) is commonly used for lateralization of the epileptogenic temporal lobe. In this study, we aimed to evaluate the success of quantitative analysis of brain FDG PET images using data mining methods in the lateralization of the epileptogenic temporal lobe. Materials and methods Presurgical interictal brain FDG PET images of 49 adult mesial TLE patients with a minimum of 2 years of postsurgical follow-up and Engel I outcomes were retrospectively analyzed. Asymmetry indices were calculated from PET images from the mesial temporal lobe and its contiguous structures. The J48 and the logistic model tree (LMT) data mining algorithms were used to find classification rules for the lateralization of the epileptogenic temporal lobe. The classification results obtained by these rules were compared with the physicians’ visual readings and the findings of single-patient statistical parametric mapping (SPM) analyses in a test set of 18 patients. An additional 5-fold cross-validation was applied to the data to overcome the limitation of a relatively small sample size. Results In the lateralization of 18 patients in the test set, J48 and LMT methods were successful in 16 (89%) and 17 (94%) patients, respectively. The visual consensus readings were correct in all patients and SPM results were correct in 16 patients. The 5-fold cross- validation method resulted in a mean correct lateralization ratio of 96% (47/49) for the LMT algorithm. This ratio was 88% (43 / 49) for the J48 algorithm. Conclusion Lateralization of the epileptogenic temporal lobe with data mining methods using regional metabolic asymmetry values obtained from interictal brain FDG PET images in mesial TLE patients is highly accurate. The application of data mining can contribute to the reader in the process of visual evaluation of FDG PET images of the brain.
Collapse
Affiliation(s)
- Ümit Özgür Akdemir
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Irem Çapraz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Seda Gülbahar Ateş
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Kerim Şeker
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Uğuray Aydos
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gökhan Kurt
- Department of Neurosurgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Neşe Karabacak
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Lütfiye Özlem Atay
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Erhan Bilir
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
14
|
Craley J, Johnson E, Venkataraman A. A Spatio-Temporal Model of Seizure Propagation in Focal Epilepsy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1404-1418. [PMID: 31675325 DOI: 10.1109/tmi.2019.2950252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We propose a novel Coupled Hidden Markov Model (CHMM) to detect and localize epileptic seizures in clinical multichannel scalp electroencephalography (EEG) recordings. Our model captures the spatio-temporal spread of a seizure by assigning a sequence of latent states (i.e. baseline or seizure) to each EEG channel. The state evolution is coupled between neighboring and contralateral channels to mimic clinically observed spreading patterns. Since the latent state space is exponential, a structured variational algorithm is developed for approximate inference. The model is evaluated on simulated and clinical EEG from two different hospitals. One dataset contains seizure recordings of adult focal epilepsy patients at the Johns Hopkins Hospital; the other contains publicly available non-specified seizure recordings from pediatric patients at Boston Children's Hospital. Our CHMM model outperforms standard machine learning techniques in the focal dataset and achieves comparable performance to the best baseline method in the pediatric dataset. We also demonstrate the ability to track seizures, which is valuable information to localize focal onset zones.
Collapse
|
15
|
Stegmayr C, Willuweit A, Lohmann P, Langen KJ. O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Curr Radiopharm 2020; 12:201-210. [PMID: 30636621 DOI: 10.2174/1874471012666190111111046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
In recent years, PET using radiolabelled amino acids has gained considerable interest as an additional tool besides MRI to improve the diagnosis of cerebral gliomas and brain metastases. A very successful tracer in this field is O-(2-[18F]fluoroethyl)-L-tyrosine (FET) which in recent years has replaced short-lived tracers such as [11C]-methyl-L-methionine in many neuro-oncological centers in Western Europe. FET can be produced with high efficiency and distributed in a satellite concept like 2- [18F]fluoro-2-deoxy-D-glucose. Many clinical studies have demonstrated that FET PET provides important diagnostic information regarding the delineation of cerebral gliomas for therapy planning, an improved differentiation of tumor recurrence from treatment-related changes and sensitive treatment monitoring. In parallel, a considerable number of experimental studies have investigated the uptake mechanisms of FET on the cellular level and the behavior of the tracer in various benign lesions in order to clarify the specificity of FET uptake for tumor tissue. Further studies have explored the effects of treatment related tissue alterations on tracer uptake such as surgery, radiation and drug therapy. Finally, the role of blood-brain barrier integrity for FET uptake which presents an important aspect for PET tracers targeting neoplastic lesions in the brain has been investigated in several studies. Based on a literature research regarding experimental FET studies and corresponding clinical applications this article summarizes the knowledge on the uptake behavior of FET, which has been collected in more than 30 experimental studies during the last two decades and discusses the role of these results in the clinical context.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany.,Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich, Germany
| |
Collapse
|
16
|
Eissa AAN, Bahnasy WS, Salama ASAAE, Eldin EAMT, Fayed HA. Long-term EEG monitoring and positron emission tomography in evaluating patients with drug-resistant epilepsy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Du C, Wang J, Liu X, Li H, Geng D, Yu L, Chen Y, Zhang J. Construction of Pepstatin A-Conjugated ultrasmall SPIONs for targeted positive MR imaging of epilepsy-overexpressed P-glycoprotein. Biomaterials 2019; 230:119581. [PMID: 31718885 DOI: 10.1016/j.biomaterials.2019.119581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
Surgical resection of the epileptogenic region is typically regarded to be practical and efficient for complete elimination of intractable seizures, which cannot be simply controlled by anti-epileptic drugs alone. To achieve a precision removal of the epileptogenic region and even a surgical cure, molecular imaging of epilepsy markers is highly essential for non-invasive accurate detection of the epileptogenic region. In this work, a peptide-targeted nanoprobe, based on ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs), PA-USPIONs, was elaborately constructed to enable highly selective delivery and sensitive T1-weighted positive magnetic resonance (MR) imaging of the epileptogenic region. Especially, Pepstatin A (PA), a small peptide which can specifically target to P-glycoprotein (P-gp) overexpressed at the epileptogenic region in a kainic acid (KA)-induced mice model of seizures, was conjugated onto the surface of PEGylated USPIONs. It has been demonstrated that the as-constructed PA-USPIONs nanoprobes have favorable T1 contrast enhancement and high r1 relaxivity compared with the clinically used T1-MR contrast agent (Gd-DTPA) by systematic in vitro and vivo assessments. Importantly, the toxicity evaluation, especially to brains, was assessed by the histological as well as hematological examinations, demonstrating that the fabricated PA-USPIONs nanoprobes are featured with excellent biocompatibility, guaranteeing the further potential clinical application. This first report on the development of USPIONs as T1-weighted MR contrast agents for active targeting of the epileptogenic region holds the high potential for precise resection of the according lesion in order to achieve therapeutic, often curative purposes.
Collapse
Affiliation(s)
- Chengjuan Du
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jianhong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Xianping Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Huiming Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Luodan Yu
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yu Chen
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
18
|
Abstract
Purpose of review Functional neuroimaging with PET and SPECT is a commonly used tool in presurgical evaluation. The following article reviews the literature of PET and SPECT in presurgical assessment of epilepsies published in the last year. Recent findings FDG-PET adds concomitant information in temporal and extratemporal lobe epilepsy in adults and children. The pattern of hypometabolism in FDG-PET is a good additional predictor or seizure outcome in TLE with mesial temporal sclerosis or negative MRI. There is growing evidence that diagnostic value of FDG-PET increases with postprocessing. Although several methods were applied in the reviewed literature, all of them seem to outperform the visual analysis. Imaging of the epileptic focus with ictal SPECT is depending on short injection latencies. It is particularly useful in patients with nonlesional MRI and mostly of extratemporal localization. Areas of hyperperfusion remote of SOZ are reflecting the epileptic network. Combining more concordant investigations including PET and SPECT in MRI-negative evaluation adds to better presurgical stratification and therefore, better postsurgical outcome. FET-PET shows increased uptake in status epilepticus. Summary PET and SPECT are important investigations to localize the epileptic focus in temporal lobe and nonlesional extratemporal epilepsies. Postprocessing for both modalities is important to increase diagnostic value.
Collapse
|
19
|
Cai Z, Li S, Matuskey D, Nabulsi N, Huang Y. PET imaging of synaptic density: A new tool for investigation of neuropsychiatric diseases. Neurosci Lett 2019; 691:44-50. [PMID: 30075287 PMCID: PMC6339829 DOI: 10.1016/j.neulet.2018.07.038] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is expressed ubiquitously in neurons of the central nervous system, and is the binding target of the anti-epileptic drug levetiracetam. Because of the availability of positron emission tomography (PET) ligands targeting SV2A, there is increasing enthusiasm on the use of SV2A PET to study a variety of neuropsychiatric diseases. This review discusses the recent development of radioligands for PET imaging of SV2A and their potential use in the research and diagnosis of CNS diseases.
Collapse
Affiliation(s)
- Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA.
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Nabeel Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
20
|
Oldan JD, Shin HW, Khandani AH, Zamora C, Benefield T, Jewells V. Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 2018; 61:128-134. [DOI: 10.1016/j.seizure.2018.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 11/28/2022] Open
|
21
|
Challenges in managing epilepsy associated with focal cortical dysplasia in children. Epilepsy Res 2018; 145:1-17. [DOI: 10.1016/j.eplepsyres.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022]
|
22
|
Nagesh C, Kumar S, Menon R, Thomas B, Radhakrishnan A, Kesavadas C. The Imaging of Localization Related Symptomatic Epilepsies: The Value of Arterial Spin Labelling Based Magnetic Resonance Perfusion. Korean J Radiol 2018; 19:965-977. [PMID: 30174487 PMCID: PMC6082755 DOI: 10.3348/kjr.2018.19.5.965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/19/2018] [Indexed: 11/15/2022] Open
Abstract
Accurate identification of the epileptogenic zone is an important prerequisite in presurgical evaluation of refractory epilepsy since it affects seizure-free outcomes. Apart from structural magnetic resonance imaging (sMRI), delineation has been traditionally done with electroencephalography and nuclear imaging modalities. Arterial spin labelling (ASL) sequence is a non-contrast magnetic resonance perfusion technique capable of providing similar information. Similar to single-photon emission computed tomography, its utility in epilepsy is based on alterations in perfusion linked to seizure activity by neurovascular coupling. In this article, we discuss complementary value that ASL can provide in the evaluation and characterization of some basic substrates underlying epilepsy. We also discuss the role that ASL may play in sMRI negative epilepsy and acute scenarios such as status epilepticus.
Collapse
Affiliation(s)
- Chinmay Nagesh
- Department of Imaging Sciences & Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum 695011, India
| | - Savith Kumar
- Department of Imaging Sciences & Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum 695011, India
| | - Ramshekhar Menon
- Comprehensive Epilepsy Centre, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum 695011, India
| | - Bejoy Thomas
- Department of Imaging Sciences & Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum 695011, India
| | - Ashalatha Radhakrishnan
- Comprehensive Epilepsy Centre, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum 695011, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences & Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum 695011, India
| |
Collapse
|
23
|
Wu ST, Voltoline R, Loos W, Rubianes Silva JAI, Watanabe L, Amorim B, Coan A, Cendes F, L Yasuda C. Toward a Multimodal Diagnostic Exploratory Visualization of Focal Cortical Dysplasia. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2018; 38:73-89. [PMID: 29877805 DOI: 10.1109/mcg.2018.032421655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development and a common cause of pharmacoresistant epilepsy. Resective surgery of clear-cut lesions may be curative. However, the localization of the seizure focus and the evaluation of its spatial extent can be challenging in many situations. For concordance assessment, medical studies show the relevance of accurate correlation of multisource imaging sequences. to improve the sensitivity and specificity of the evaluation. In this paper, we share the process we went through to reach our simple, but effective, solution for integrating multi-volume rendering into an exploratory visualization environment for the diagnosis of FCD. We focus on fetching of multiple data assigned to a sample when they are rendered. Knowing that the major diagnostic role of multiple volumes is to complement information, we demonstrate that appropriate geometric transformations in the texture space are sufficient for accomplishing this task. This allows us to fully implement our proposal in the OpenGL rendering pipeline and to easily integrate it into the existing visual diagnostic application. Both time performance and the visual quality of our proposal were evaluated with a set of clinical data volumes for assessing the potential practical impact of our solution in routine diagnostic use.
Collapse
|
24
|
Fu P, Wei L, Zhang F, Gao J, Jing J, Wu W, Liu H. Added Value of NeuroGam Software Analysis in Single Photon Emission Computed Tomography Localization Diagnosis of Epilepsy in Interictal Stage. Med Sci Monit 2018. [PMID: 29531211 PMCID: PMC5861764 DOI: 10.12659/msm.908437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background This study aimed to investigate the added value of NeuroGam software analysis in the localization diagnosis of epileptogenic zone during interictal phase of seizures. Material/Methods The clinical data of 67 patients, clinically diagnosed as epilepsy, were analyzed retrospectively. Visual analysis and NeuroGam software analysis were used for independent analysis. The 2 methods were used to compare the efficacy indicator of the diagnosis of epileptogenic zone, and the receiver operating characteristic (ROC) curve evaluated the diagnostic efficacy. Results Through the final clinical diagnostic comprehensive localization, among 67 epilepsy patients, the epileptogenic zone in 51 cases could be located distinctly, and those in 16 cases could not be located. Compared to the visual analysis, the NeuroGam software analysis was more sensitive in the location of epileptogenic zone (χ2=4.876, P=0.027). The area under the ROC curve (AUC) and 95% confidence interval (CI) of the NeuroGam software and visual analyses was 0.760 and 0.689, (0.613, 0.908) and (0.547, 0.832), respectively. However, the consistency of the 2 methods was poor (Kappa=0.367, P=0.001). Compared to visual analysis, the NeuroGam software analysis exerted more advantages in the localization diagnosis of the epileptogenic zone (P<0.001). Conclusions In the location diagnosis of brain perfusion, single photon emission computed tomography (SPECT) epileptogenic zone was used in interictal phase of seizures, and NeuroGam software analysis exerted a distinct added value for visual analysis.
Collapse
Affiliation(s)
- Peng Fu
- Department of Nuclear Medicine, 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Lingge Wei
- Department of Nuclear Medicine, 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Fang Zhang
- Department of Nuclear Medicine, 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jianqing Gao
- Department of Nuclear Medicine, 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jianmin Jing
- Department of Nuclear Medicine, 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Weijie Wu
- Department of Nuclear Medicine, 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Huaijun Liu
- Department of Medical Imaging, 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
25
|
The Value of Regional Cerebral Blood Flow SPECT and FDG PET in Operculoinsular Epilepsy. Clin Nucl Med 2018; 43:e67-e73. [DOI: 10.1097/rlu.0000000000001949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Bankstahl M, Bankstahl JP. Recent Advances in Radiotracer Imaging Hold Potential for Future Refined Evaluation of Epilepsy in Veterinary Neurology. Front Vet Sci 2017; 4:218. [PMID: 29326952 PMCID: PMC5733338 DOI: 10.3389/fvets.2017.00218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
Non-invasive nuclear imaging by positron emission tomography and single photon emission computed tomography has significantly contributed to epileptic focus localization in human neurology for several decades now. Offering functional insight into brain alterations, it is also of particular relevance for epilepsy research. Access to these techniques for veterinary medicine is becoming more and more relevant and has already resulted in first studies in canine patients. In view of the substantial proportion of drug-refractory epileptic dogs and cats, image-guided epileptic focus localization will be a prerequisite for selection of patients for surgical focus resection. Moreover, radiotracer imaging holds potential for a better understanding of the pathophysiology of underlying epilepsy syndromes as well as to forecast disease risk after epileptogenic brain insults. Importantly, recent advances in epilepsy research demonstrate the suitability and value of several novel radiotracers for non-invasive assessment of neuroinflammation, blood–brain barrier alterations, and neurotransmitter systems. It is desirable that veterinary epilepsy patients will also benefit from these promising developments in the medium term. This paper reviews the current use of radiotracer imaging in the veterinary epilepsy patient and suggests possible future directions for the technique.
Collapse
Affiliation(s)
- Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Center of Systems Neuroscience Hannover, Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|