1
|
Li L, Lai F, Liu L, Lu X, Hu X, Liu B, Lin Z, Fan Q, Kong F, Xu Q, Xie W. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat Struct Mol Biol 2024; 31:950-963. [PMID: 38243114 DOI: 10.1038/s41594-023-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
During the first lineage segregation, a mammalian totipotent embryo differentiates into the inner cell mass (ICM) and trophectoderm (TE). However, how transcription factors (TFs) regulate this earliest cell-fate decision in vivo remains elusive, with their regulomes primarily inferred from cultured cells. Here, we investigated the TF regulomes during the first lineage specification in early mouse embryos, spanning the pre-initiation, initiation, commitment, and maintenance phases. Unexpectedly, we found that TFAP2C, a trophoblast regulator, bound and activated both early TE and inner cell mass (ICM) genes at the totipotent (two- to eight-cell) stages ('bipotency activation'). Tfap2c deficiency caused downregulation of early ICM genes, including Nanog, Nr5a2, and Tdgf1, and early TE genes, including Tfeb and Itgb5, in eight-cell embryos. Transcription defects in both ICM and TE lineages were also found in blastocysts, accompanied by increased apoptosis and reduced cell numbers in ICMs. Upon trophoblast commitment, TFAP2C left early ICM genes but acquired binding to late TE genes in blastocysts, where it co-bound with CDX2, and later to extra-embryonic ectoderm (ExE) genes, where it cooperatively co-occupied with the former ICM regulator SOX2. Finally, 'bipotency activation' in totipotent embryos also applied to a pluripotency regulator NR5A2, which similarly bound and activated both ICM and TE lineage genes at the eight-cell stage. These data reveal a unique transcription circuity of totipotency underpinned by highly adaptable lineage regulators.
Collapse
Affiliation(s)
- Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaoyu Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zili Lin
- College of Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
2
|
Identification of the Inner Cell Mass and the Trophectoderm Responses after an In Vitro Exposure to Glucose and Insulin during the Preimplantation Period in the Rabbit Embryo. Cells 2022; 11:cells11233766. [PMID: 36497026 PMCID: PMC9736044 DOI: 10.3390/cells11233766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
The prevalence of metabolic diseases is increasing, leading to more women entering pregnancy with alterations in the glucose-insulin axis. The aim of this work was to investigate the effect of a hyperglycemic and/or hyperinsulinemic environment on the development of the preimplantation embryo. In rabbit embryos developed in vitro in the presence of high insulin (HI), high glucose (HG), or both (HGI), we determined the transcriptomes of the inner cell mass (ICM) and the trophectoderm (TE). HI induced 10 differentially expressed genes (DEG) in ICM and 1 in TE. HG ICM exhibited 41 DEGs involved in oxidative phosphorylation (OXPHOS) and cell number regulation. In HG ICM, proliferation was decreased (p < 0.01) and apoptosis increased (p < 0.001). HG TE displayed 132 DEG linked to mTOR signaling and regulation of cell number. In HG TE, proliferation was increased (p < 0.001) and apoptosis decreased (p < 0.001). HGI ICM presented 39 DEG involved in OXPHOS and no differences in proliferation and apoptosis. HGI TE showed 16 DEG linked to OXPHOS and cell number regulation and exhibited increased proliferation (p < 0.001). Exposure to HG and HGI during preimplantation development results in common and specific ICM and TE responses that could compromise the development of the future individual and placenta.
Collapse
|
3
|
Contextualizing Autophagy during Gametogenesis and Preimplantation Embryonic Development. Int J Mol Sci 2021; 22:ijms22126313. [PMID: 34204653 PMCID: PMC8231133 DOI: 10.3390/ijms22126313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Mammals face environmental stressors throughout their lifespan, which may jeopardize cellular homeostasis. Hence, these organisms have acquired mechanisms to cope with stressors by sensing, repairing the damage, and reallocating resources to increase the odds of long-term survival. Autophagy is a pro-survival lysosome-mediated cytoplasm degradation pathway for organelle and macromolecule recycling. Furthermore, autophagy efflux increases, and this pathway becomes idiosyncratic depending upon developmental and environmental contexts. Mammalian germ cells and preimplantation embryos are attractive models for dissecting autophagy due to their metastable phenotypes during differentiation and exposure to varying environmental cues. The aim of this review is to explore autophagy during mammalian gametogenesis, fertilization and preimplantation embryonic development by contemplating its physiological role during development, under key stressors, and within the scope of assisted reproduction technologies.
Collapse
|
4
|
Hsu KW, Huang CY, Tam KW, Lin CY, Huang LC, Lin CL, Hsieh WS, Chi WM, Chang YJ, Wei PL, Chen ST, Lee CH. The Application of Non-Invasive Apoptosis Detection Sensor (NIADS) on Histone Deacetylation Inhibitor (HDACi)-Induced Breast Cancer Cell Death. Int J Mol Sci 2018; 19:ijms19020452. [PMID: 29393914 PMCID: PMC5855674 DOI: 10.3390/ijms19020452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women and the second leading cause of cancer death in women. Triple negative breast cancer (TNBC) subtype is a breast cancer subset without ER (estrogen receptor), PR (progesterone receptor) and HER2 (human epidermal growth factor receptor 2) expression, limiting treatment options and presenting a poorer survival rate. Thus, we investigated whether histone deacetylation inhibitor (HDACi) could be used as potential anti-cancer therapy on breast cancer cells. In this study, we found TNBC and HER2-enriched breast cancers are extremely sensitive to Panobinostat, Belinostat of HDACi via experiments of cell viability assay, apoptotic marker identification and flow cytometry measurement. On the other hand, we developed a bioluminescence-based live cell non-invasive apoptosis detection sensor (NIADS) detection system to evaluate the quantitative and kinetic analyses of apoptotic cell death by HDAC treatment on breast cancer cells. In addition, the use of HDACi may also contribute a synergic anti-cancer effect with co-treatment of chemotherapeutic agent such as doxorubicin on TNBC cells (MDA-MB-231), but not in breast normal epithelia cells (MCF-10A), providing therapeutic benefits against breast tumor in the clinic.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Biological Assay
- Cell Line, Tumor
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Indoles/pharmacology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Panobinostat
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/deficiency
- Receptors, Estrogen/genetics
- Receptors, Progesterone/deficiency
- Receptors, Progesterone/genetics
- Sulfonamides/pharmacology
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan;
- Graduate Institutes of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.H.); (K.-W.T.); (Y.-J.C.); (P.-L.W.)
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561,Taiwan
| | - Ka-Wai Tam
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.H.); (K.-W.T.); (Y.-J.C.); (P.-L.W.)
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561,Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan;
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Li-Chi Huang
- Department of Endocrinology and metabolism, Cathay General Hospital, Taipei 10630, Taiwan; (L.-C.H.); (C.-L.L.)
| | - Ching-Ling Lin
- Department of Endocrinology and metabolism, Cathay General Hospital, Taipei 10630, Taiwan; (L.-C.H.); (C.-L.L.)
| | - Wen-Shyang Hsieh
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (W.-S.H.); (W.-M.C.)
| | - Wei-Ming Chi
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (W.-S.H.); (W.-M.C.)
| | - Yu-Jia Chang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.H.); (K.-W.T.); (Y.-J.C.); (P.-L.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.H.); (K.-W.T.); (Y.-J.C.); (P.-L.W.)
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Shou-Tung Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 50006, Taiwan
- Correspondence: (S.-T.C.); (C.-H.L.); Tel.: +886-2-2736-1661 (ext. 3331) (C.-H.L.)
| | - Chia-Hwa Lee
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (W.-S.H.); (W.-M.C.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medicine Biotechnology, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (S.-T.C.); (C.-H.L.); Tel.: +886-2-2736-1661 (ext. 3331) (C.-H.L.)
| |
Collapse
|
5
|
Abstract
Diabetic embryopathy is a theoretical enigma and a clinical challenge. Both type 1 and type 2 diabetic pregnancy carry a significant risk for fetal maldevelopment, and the precise reasons for the diabetes-induced teratogenicity are not clearly identified. The experimental work in this field has revealed a partial, however complex, answer to the teratological question, and we will review some of the latest suggestions.
Collapse
Affiliation(s)
- Ulf J. Eriksson
- CONTACT Ulf J. Eriksson Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
6
|
Ghys E, Dallemagne M, De Troy D, Sauvegarde C, Errachid A, Donnay I. Female bovine blastocysts are more prone to apoptosis than male ones. Theriogenology 2016; 85:591-600. [DOI: 10.1016/j.theriogenology.2015.09.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 01/28/2023]
|
7
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
8
|
Sobek A, Zbořilová B, Procházka M, Šilhánová E, Koutná O, Klásková E, Tkadlec E, Sobek A. High incidence of monozygotic twinning after assisted reproduction is related to genetic information, but not to assisted reproduction technology itself. Fertil Steril 2015; 103:756-60. [DOI: 10.1016/j.fertnstert.2014.12.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
|
9
|
Bedzhov I, Zernicka-Goetz M. Cell death and morphogenesis during early mouse development: are they interconnected? Bioessays 2015; 37:372-8. [PMID: 25640415 PMCID: PMC4409078 DOI: 10.1002/bies.201400147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage.
Collapse
Affiliation(s)
- Ivan Bedzhov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
10
|
New insights into human pre-implantation metabolism in vivo and in vitro. J Assist Reprod Genet 2013; 30:293-303. [PMID: 23430228 DOI: 10.1007/s10815-013-9953-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/28/2013] [Indexed: 10/27/2022] Open
Abstract
The metabolism of pre-implantation embryos is far from being understood. In human embryos, the two major obstacles are the scarcity of material, for obvious ethical reasons, and complete absence of a relevant in vivo control model. Over-extrapolation from animal species to human systems adds to the complexity of the problem. Removal of some metabolites from media has been proposed, such as glucose and essential amino acids, on the basis of their pseudo "toxicity". In contrast, addition of some compounds such as growth factors has been proposed in order to decrease apoptosis, which is a natural physiologic process. These suggestions reflect the absence of global knowledge, and in consequence mask reality. Some aspects of metabolism have been ignored, such as lipid metabolism. Others are seriously underestimated, such as oxidative stress and its relationship to imprinting/methylation, of paramount importance for genetic regulation and chromosomal stability. It has become increasingly obvious that more studies are essential, especially in view of the major extension of ART activities worldwide.
Collapse
|
11
|
Giritharan G, Delle Piane L, Donjacour A, Esteban FJ, Horcajadas JA, Maltepe E, Rinaudo P. In vitro culture of mouse embryos reduces differential gene expression between inner cell mass and trophectoderm. Reprod Sci 2012; 19:243-52. [PMID: 22383776 DOI: 10.1177/1933719111428522] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Differences in gene expression and imprinting have been reported, comparing in vivo versus in vitro generated preimplantation embryos. Furthermore, mouse studies have shown that placenta development is altered following in vitro culture. However, the molecular mechanisms underlying these findings are unknown. We therefore isolated trophectoderm (TE) and inner cell mass (ICM) cells from in vivo and in vitro fertilization (IVF) embryos and evaluated their transcriptome using microarrays. We found that the transcriptomes of in vitro produced ICM and TE cells showed remarkably few differences compared to ICM and TE cells of in vivo generated embryos. In vitro fertilization embryos showed a reduced number of TE cells compared to in vivo embryos. In addition, TE of IVF embryos showed significant downregulation of solute transporter genes and of genes involved in placenta formation (Eomesodermin, Socs3) or implantation (Hbegf). In summary, IVF and embryo culture significantly affects the transcriptome of ICM and TE cells.
Collapse
Affiliation(s)
- G Giritharan
- Department of Obstetric and Gynecology, University of California, San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Cole LA, Butler S. Hyperglycosylated hCG, hCGβ and Hyperglycosylated hCGβ: interchangeable cancer promoters. Mol Cell Endocrinol 2012; 349:232-8. [PMID: 22101319 DOI: 10.1016/j.mce.2011.10.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/26/2011] [Accepted: 10/26/2011] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Several groups are researching cancers, and showing that hCGβ is a promoter of cancer growth and malignancy. Recent research shows that some hCGβ is present as Hyperglycosylated hCGβ. Other groups studied Hyperglycosylated hCG as a promoter of choriocarcinoma and germ cell malignancies. The question therefore arises, are Hyperglycosylated hCG, hCGβ and Hyperglycosylated hCGβ interrelated or interchangable promoters of cancer? METHODS The actions of Hyperglycosylated hCGβ, hCGβ and Hyperglycosylated hCG are investigated in 7 cell lines, Jar and JEG-3 choriocarcinoma cell lines, NTERA germ cell cancer line, SCaBER and T24 bladder epithelial carcinoma lines, KLE and Hec-1-a endometrial adenocarcinoma and epithelial carcinoma cell lines. Actions of promoters on cell growth are investigated. RESULTS The actions of Hyperglycosylated hCG, hCGβ and Hyperglycosylated hCGβ appear to be interchangeable in all cell lines investigated. DISCUSSION All hCG-related cancer promoters seem interrelated, working through a similar mechanism, antagonism of apoptosis through know receptors such as TGFβ receptors in all cancers studied.
Collapse
Affiliation(s)
- Laurence A Cole
- USA hCG Reference Service, Department of Obstetrics and Gynecology, Health Sciences Center MSC10-5580, 1 University of New Mexico, Albuquerque, NM 87104, USA.
| | | |
Collapse
|
13
|
Adastra KL, Chi MM, Riley JK, Moley KH. A differential autophagic response to hyperglycemia in the developing murine embryo. Reproduction 2011; 141:607-15. [PMID: 21367963 DOI: 10.1530/rep-10-0265] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagy is critical to the process of development because mouse models have shown that lack of autophagy leads to developmental arrest during the pre-implantation stage of embryogenesis. The process of autophagy is regulated through signaling pathways, which respond to the cellular environment. Therefore, any alteration in the environment may lead to the dysregulation of the autophagic process potentially resulting in cell death. Using both in vitro and in vivo models to study autophagy in the pre-implantation murine embryo, we observed that the cells respond to environmental stressors (i.e. hyperglycemic environment) by increasing activation of autophagy in a differential pattern within the embryo. This upregulation is accompanied by an increase in apoptosis, which appears to plateau at high concentrations of glucose. The activation of the autophagic pathway was further confirmed by an increase in GAPDH activity in both in vivo and in vitro hyperglycemic models, which has been linked to autophagy through the activation of the Atg12 gene. Furthermore, this increase in autophagy in response to a hyperglycemic environment was observed as early as the oocyte stage. In conclusion, in this study, we provided evidence for a differential response of elevated activation of autophagy in embryos and oocytes exposed to a hyperglycemic environment.
Collapse
Affiliation(s)
- Katie L Adastra
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8064, Saint Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The worldwide increase in the incidence of diabetes, the increase in type 2 diabetes in women at reproductive ages, and the cross-generation of the intrauterine programming of type 2 diabetes are the bases for the growing interest in the use of experimental diabetic models in order to gain insight into the mechanisms of induction of developmental alterations in maternal diabetes. In this scenario, experimental models that present the most common features of diabetes in pregnancy are highly required. Several important aspects of human diabetic pregnancies such as the increased rates of spontaneous abortions, malformations, fetoplacental impairments, and offspring diseases in later life can be approached by using the appropriate animal models. The purpose of this review is to give a practical and critical guide into the most frequently used experimental models in diabetes and pregnancy, discuss their advantages and limitations, and describe the aspects of diabetes and pregnancy for which these models are thought to be adequate. This review provides a comprehensive view and an extensive analysis of the different models and phenotypes addressed in diabetic animals throughout pregnancy. The review includes an analysis of the surgical, chemical-induced, and genetic experimental models of diabetes and an evaluation of their use to analyze early pregnancy defects, induction of congenital malformations, placental and fetal alterations, and the intrauterine programming of metabolic diseases in the offspring's later life.
Collapse
Affiliation(s)
- Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas-School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
15
|
Abstract
BACKGROUND hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. RESULTS AND DISCUSSION hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle.
Collapse
Affiliation(s)
- Laurence A Cole
- USA hCG Reference Service, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
16
|
Tauwinklova G, Gaillyova R, Travnik P, Oracova E, Vesela K, Hromadova L, Vesely J, Musilova P, Rubes J, Kadlecova J, Slamova I, Makaturova E, Vranova V. Monozygotic twins with discordant karyotypes following preimplantation genetic screening and single embryo transfer: case report. J Assist Reprod Genet 2010; 27:649-55. [PMID: 20700760 DOI: 10.1007/s10815-010-9462-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022] Open
Abstract
PURPOSE to report a case of monozygotic monochorial diamniotic twins with discordant karyotypes. METHODS AND RESULTS the pregnancy was achieved following a treatment cycle with intracytoplasmic sperm injection (ICSI) and preimplantation genetic screening (PGS) for chromosomes X, Y, 13, 16, 18, 21, 22. One embryo euploid for studied chromosomes was transferred. Prenatal ultrasonography revealed monozygotic twins. One fetus had growth retardation, multiple organ abnormalities and polyhydramnion. The other twin had normal ultrasound appearance. Delivery on week 29 of gestation resulted in the birth of two females, a stillborn twin with karyotype 45,XX,-13[12]/46,XX,r(13)[3] and a healthy twin with normal karyotype. CONCLUSIONS the discordance in the twins' karyotypes originated from a mosaic embryo. Structural chromosomal abnormality of the affected twin could not be revealed using standard PGS investigation. Embryo splitting occurred probably due to apoptotic process in an early stage of embryo development. Apoptosis represents one of the possible mechanisms which can explain the embryo twinning process globally.
Collapse
|
17
|
Abstract
Parafibromin is a predominantly nuclear protein with a tumour suppressor role in the development of hereditary and nonhereditary parathyroid carcinomas, and the hyperparathyroidism-jaw tumour syndrome, which is associated with renal and uterine tumours. Parafibromin is a component of the highly conserved PAF1 complex, which regulates transcriptional events and histone modifications. The parafibromin/PAF1 complex regulates genes involved in cell growth and survival, and via these, parafibromin plays a pivotal role in embryonic development and survival of adults.
Collapse
Affiliation(s)
- P J Newey
- The Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | |
Collapse
|
18
|
Bell CE, Larivière NMK, Watson PH, Watson AJ. Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis. Hum Reprod 2009; 24:1373-86. [PMID: 19258345 DOI: 10.1093/humrep/dep010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In order to advance the development of culture conditions and increase the potential for supporting normal preimplantation embryo development in vitro, it is critical to define the mechanisms that early embryos utilize to survive in culture. We investigated the mechanisms that embryos employ in response to culture medium osmolarity. We hypothesized that mitogen-activated protein kinase (MAPK) pathways mediate responses to hyperosmotic stress by regulating Aquaporin (AQP) 3 and 9 expression as well as embryonic apoptosis. METHODS Real-time reverse transcription and polymerase chain reaction and whole-mount immunofluorescence were used to determine the relative mRNA levels and protein localization patterns of AQP 3 and 9 after hyperosmotic medium treatment. RESULTS At 6 and 24 h, a significant increase in Aqp 3 and 9 mRNA was observed in the sucrose hyperosmotic treatment compared with standard medium and glycerol controls. Blockade of MAPK14/11 negated the increase in Aqp 3 and 9 mRNA levels, whereas culture in a MAPK8 blocker did not. Hyperosmotic sucrose treatment significantly increased embryonic apoptosis which was negated in the presence of MAPK8 blocker, but not MAPK14/11 blocker. CONCLUSIONS MAPK14/11 activation is a component of the rapid adaptive stress response mechanism that includes the effects of AQP mRNA expression and protein localization, whereas the MAPK8 pathway is a regulator of apoptosis.
Collapse
Affiliation(s)
- Christine E Bell
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
In vitro fertilization, embryo development, and cell lineage segregation after pre- and/or postnatal exposure of female mice to ambient fine particulate matter. Fertil Steril 2008; 92:1725-35. [PMID: 18950758 DOI: 10.1016/j.fertnstert.2008.08.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate effects of pre- and/or postnatal exposure to ambient fine particulate matter on fertilization, embryo development, and cell lineage segregation in preimplantation blastocysts using the IVF mouse model. DESIGN Animal model. SETTING Academic institution. ANIMAL(S) Six-week-old, superovulated mice. INTERVENTION(S) Pre- and postnatal exposure to filtered air (FA-FA), filtered-ambient air (FA-AA), or ambient air (AA-AA) in exposure chambers 24 hours a day for 9 weeks. MAIN OUTCOME MEASURE(S) Gestation length, litter size, sex ratio, ovarian response to superovulation, fertilization rate, embryo development, blastocyst and hatching rates, total cell count, and proportion of cell allocation to inner-cell mass (ICM) and trophectoderm (TE). RESULT(S) Gestation length, litter size and birth weight, live-birth index, and sex ratio were similar among exposure groups. Ovarian response was not affected by the exposure protocol. A multivariate effect for pre- and/or postnatal exposure to ambient fine particulate matter on IVF, embryo development, and blastocyst differential staining was found. Cell counts in ICM and ICM/TE ratios in blastocysts produced in the FA-FA protocol were significantly higher than in blastocysts produced in the FA-AA and AA-AA protocols. No difference in total cell count was observed among groups. CONCLUSION(S) Our study suggests that exposure to ambient fine particulate matter may negatively affect female reproductive health by disrupting the lineage specification at the blastocyst stage without interfering in early development of the mouse embryo.
Collapse
|
20
|
Glabowski W, Wiszniewska B, Kurzawa R. Protective potential of SCF for mice preimplantation embryos cultured in vitro in suboptimal conditions. J Assist Reprod Genet 2008; 25:395-402. [PMID: 18797989 PMCID: PMC2582130 DOI: 10.1007/s10815-008-9248-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To examine the effect of stem cell factor (SCF) to embryos exposed to detrimental factors. METHODS Mice embryos cultured in control medium or Exp.1. with FasL or FasL+SCF Exp.2. with hydrogen peroxide (HP) or HP+SCF; Exp.3. frozen-thawed and cultured with or without SCF. Immunohistochemistry for Fas and c-kit receptors was performed in blastocysts. Blastocyst rates, total numbers of blastocyst cells (TB) and inner cell mass cell counts (ICM) were determined. RESULTS Immunohistochemical studies revealed expression of both Fas and c-kit in blastocyst cells. Exp.1. Significantly more blastocysts were found in control when compared to FasL group and to FasL+SCF group. TB and ICM counts in control and FasL+SCF group were significantly higher comparing to FasL group. Exp.2. We found significant differences between three groups in all three evaluated parameters. The highest blastocyst rates, TB and ICM counts were found in control, lower in HP+SCF group and the worst in HP group. Exp.3. No significant differences in TB and ICM counts were found. More embryos formed blastocyst in control than in two cryopreserved groups. Blastocyst rates did not differ between two cryopreserved groups. CONCLUSION SCF may improve culture of embryos exposed to unfavorable milieu.
Collapse
Affiliation(s)
- Wojciech Glabowski
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland.
| | | | | |
Collapse
|
21
|
Torchinsky A, Toder V. TNFalpha in the pathogenesis of diabetes-induced embryopathies: functions and targets. Rev Diabet Stud 2008; 4:200-9. [PMID: 18338073 DOI: 10.1900/rds.2007.4.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hyperglycemia-induced increase in the production of reactive oxygen species (ROS) is proposed to be an initial step in the pathogenesis of diabetes-induced spontaneous abortions and structural inborn anomalies. However, the subsequent steps in this process are incompletely understood. One of the key molecules involved is tumor necrosis factor-alpha (TNFalpha): its expression is regulated by ROS and it regulates ROS production in turn. This cytokine has been the focus of many studies addressing the mechanisms of different forms of diabetes-induced embryopathies, such as early pregnancy loss, inborn anomalies, fetal growth retardation as well as some pathologies appearing during adult life. In this review, we analyze the results of these studies and discuss how TNFalpha may regulate the response of pre- and post-implantation stage embryos to diabetes-induced detrimental stimuli. The data presented in this review suggest that TNFalpha may play a dual role in the pathogenesis of diabetes-induced embryopathies. It may act both as a mediator of diabetes-induced embryotoxic stimuli leading to the death of peri-implantation stage embryos and, possibly, as a suppressor of diabetes-induced apoptosis in post-implantation stage embryos. It also appears that TNFalpha fulfills these functions via interaction with leukemia inhibitory factor (LIF) and the transcription factor NF-kappaB. These molecules are presently considered as attractive targets for the treatment of diabetes-induced complications. Therefore, further studies addressing their role in the mechanisms underlying diabetes-induced embryopathies are needed to evaluate the safety of such therapies for diabetic women of childbearing age.
Collapse
Affiliation(s)
- Arkady Torchinsky
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
22
|
Parafibromin, a component of the human PAF complex, regulates growth factors and is required for embryonic development and survival in adult mice. Mol Cell Biol 2008; 28:2930-40. [PMID: 18212049 DOI: 10.1128/mcb.00654-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parafibromin, a transcription factor associated with the PAF complex, is encoded by the HRPT2 gene, mutations of which cause the hyperparathyroidism-jaw tumor syndrome (OMIM145001). To elucidate the function of parafibromin, we generated conventional and conditional Hrpt2 knockout mice and found that Hrpt2(-/-) mice were embryonic lethal by embryonic day 6.5 (E6.5). Controlled deletion of Hrpt2 after E8.5 resulted in apoptosis and growth retardation. Deletion of Hrpt2 in adult mice led to severe cachexia and death within 20 days. To explore the mechanism underlying the embryonic lethality and death of adult mice, mouse embryonic fibroblasts (MEFs) were cultured and Hrpt2 was deleted in vitro. Hrpt2(-/-) MEFs underwent apoptosis, while Hrpt2(+/+) and Hrpt2(+/-) MEFs grew normally. To study the mechanism of this apoptosis, Hrpt2(+/+) and Hrpt2(-/-) MEFs were used in cDNA microarray, semiquantitative reverse transcription-PCR, and chromatin immunoprecipitation assays to identify genes regulated by parafibromin. These revealed that Hrpt2 expression and the parafibromin/PAF complex directly regulate genes involved in cell growth and survival, including H19, Igf1, Igf2, Igfbp4, Hmga1, Hmga2, and Hmgcs2. Thus, our results show that expression of Hrpt2 and parafibromin is pivotal in mammalian development and survival in adults and that these functions are likely mediated by the transcriptional regulation of growth factors.
Collapse
|
23
|
Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:223-90. [PMID: 18703408 DOI: 10.1016/s1937-6448(08)00807-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oocyte is a unique and highly specialized cell responsible for creating, activating, and controlling the embryonic genome, as well as supporting basic processes such as cellular homeostasis, metabolism, and cell cycle progression in the early embryo. During oogenesis, the oocyte accumulates a myriad of factors to execute these processes. Oogenesis is critically dependent upon correct oocyte-follicle cell interactions. Disruptions in oogenesis through environmental factors and changes in maternal health and physiology can compromise oocyte quality, leading to arrested development, reduced fertility, and epigenetic defects that affect long-term health of the offspring. Our expanding understanding of the molecular determinants of oocyte quality and how these determinants can be disrupted has revealed exciting new insights into the role of oocyte functions in development and evolution.
Collapse
Affiliation(s)
- Namdori R Mtango
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
24
|
Jimenez-Macedo AR, Paramio MT, Anguita B, Morato R, Romaguera R, Mogas T, Izquierdo D. Effect of ICSI and embryo biopsy on embryo development and apoptosis according to oocyte diameter in prepubertal goats. Theriogenology 2007; 67:1399-408. [PMID: 17400287 DOI: 10.1016/j.theriogenology.2007.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/21/2007] [Accepted: 03/04/2007] [Indexed: 11/19/2022]
Abstract
ICSI and embryo biopsy are routine methods used for assisted reproduction. However, their impact on embryo quality is still poor studied. Moreover, oocyte size is also a crucial factor for blastocyst production. In this study effect of oocyte size, ICSI and embryo biopsy was assessed in terms of incidence of apoptosis and blastocyst development. IVM-oocytes from prepubertal goats were fertilized by ICSI or IVF. Embryos obtained were divided depending on oocyte size, biopsied at day-4 post-insemination/injection and cultured for additional 4-5 days. Apoptotic cell number was assessed by TUNEL staining in day-4 embryos and blastocysts obtained. In each diameter group, ICSI did not affect embryo development, blastocyst cell number and embryo apoptotic grade in comparison to IVF. Embryo biopsy did not affect blastocyst rate and apoptotic cell number, but decreased blastocyst cell number (P=0.0018). Moreover, there was a negative relationship between blastocyst cell number and apoptotic grade (P<0.05). In conclusion, ICSI and embryo biopsy do not have negative effect on embryo quality and development. However, oocyte size has a positive relationship on blastocyst yield and quality.
Collapse
Affiliation(s)
- A-R Jimenez-Macedo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Clausen I, Kietz S, Fischer B. Lineage-specific effects of polychlorinated biphenyls (PCB) on gene expression in the rabbit blastocyst. Reprod Toxicol 2005; 20:47-56. [PMID: 15808785 DOI: 10.1016/j.reprotox.2004.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 10/05/2004] [Accepted: 11/12/2004] [Indexed: 11/26/2022]
Abstract
The ubiquitous toxic environmental contaminants polychlorinated biphenyls (PCBs) change gene expression in preimplantation embryos. Cell lineage-specific effects of PCB are not known. Rabbit day 6 blastocysts were exposed in vitro to low (0.1 ng/congener/mL medium) and high (1 microg) PCB levels of coplanar (PCB 77, 126, and 169) or non-coplanar PCBs (PCB 28, 52, 101, 118, 138, 153, and 180). Embryoblast (ICM) and trophoblast cells (TE) were separated and analyzed for transcriptional changes of PCB-and implantation-associated genes by semiquantitative RT-PCR. PCBs increased CYP 1A1 mRNA only in the ICM. CYP 1B1, VEGFR2, and COX-2 transcript numbers were elevated in both ICM and TE. Transcripts for HIF-1alpha were decreased in the ICM. No obvious differences in gene expression following exposure to coplanar and non-coplanar PCBs were detected. Our results show that transcriptional responses to PCBs differ between the cell lineages of the rabbit blastocyst, indicating that PCBs can influence the highly sensitive process of early mammalian development.
Collapse
Affiliation(s)
- Ina Clausen
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany
| | | | | |
Collapse
|
26
|
Pomar FJR, Teerds KJ, Kidson A, Colenbrander B, Tharasanit T, Aguilar B, Roelen BAJ. Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 2005; 63:2254-68. [PMID: 15826688 DOI: 10.1016/j.theriogenology.2004.10.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/26/2004] [Accepted: 10/07/2004] [Indexed: 11/27/2022]
Abstract
The occurrence of pregnancies and births after embryo transfer (ET) of in vivo produced embryos is generally more successful compared to that of embryos produced in vitro. This difference in ET success has been observed when embryos of morphological equal (high) quality were used. The incidence of apoptosis has been suggested as an additional criterion to morphological embryo evaluation in order to assess embryo quality and effectively predict embryo viability. In this study, equine, porcine, ovine, caprine and bovine in vivo and in vitro produced morphologically selected high quality (grade-I) blastocysts were compared for the occurrence of apoptosis in blastomeres. The total number of cells per embryo and the number of cells with damaged plasma membranes, fragmented DNA and fragmented nuclei per embryo were assessed in selected blastocysts by combining Ethidium homodimer (EthD-1), terminal dUTP nick end labeling (TUNEL) and Hoechst 33342 staining. In general, the level of blastomere apoptosis was low. A higher level of apoptosis was observed in in vitro produced equine, porcine and bovine blastocysts compared to their in vivo counterparts. Interestingly, 4 of the initially selected 29 bovine in vitro produced blastocysts exhibited extensive signs of apoptosis affecting the inner cell mass (ICM), which is not compatible with a viable conceptus. Repeated occurrence of this observation may explain the lower ET outcome of in vitro produced bovine embryos compared to in vivo produced embryos. It is concluded that, although in morphologically high quality blastocysts of several farm animal species a significant difference exists in the percentages of apoptotic cells between in vivo and in vitro produced embryos, the incidence of apoptosis at the blastocyst stage is at such a low level that it cannot reflect the substantial differences in embryo viability that have been described between in vivo and in vitro produced blastocysts following ET.
Collapse
Affiliation(s)
- F J Rubio Pomar
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Edison RJ, Muenke M. Mechanistic and epidemiologic considerations in the evaluation of adverse birth outcomes following gestational exposure to statins. Am J Med Genet A 2005; 131:287-98. [PMID: 15546153 DOI: 10.1002/ajmg.a.30386] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cholesterol-lowering "statin" drugs are contraindicated in pregnancy, but few data exist on their safety in human gestation. We reviewed case reports for patterns suggesting drug-related effects on prenatal development and considered a variety of mechanisms by which such effects, if confirmed, might occur. This uncontrolled case series included all FDA reports of statin exposures during gestation, as well as others from the literature and from manufacturers. Exposures and outcomes were reviewed and were tabulated by individual drug. Age-specific rates of exposure to each drug among women of child-bearing age were estimated. Of 214 ascertained pregnancy exposures, 70 evaluable reports remained after excluding uninformative cases. Among 31 adverse outcomes were 22 cases with structural defects, 4 cases of intrauterine growth restriction, and 5 cases of fetal demise. There were two principal categories of recurrent structural defects: cerivastatin and lovastatin were associated with four reports of severe midline CNS defects; simvastatin, lovastatin, and atorvastatin were all associated with reports of limb deficiencies, including two similar complex lower limb defects reported following simvastatin exposure. There were also two cases of VACTERL association among the limb deficiency cases. All adverse outcomes were reported following exposure to cerivastatin, simvastatin, lovastatin, or atorvastatin, which are lipophilic and equilibrate between maternal and embryonic compartments. None were reported following exposure to pravastatin, which is minimally present in the embryo. Statins reaching the embryo may down-regulate biosynthesis of cholesterol as well as many important metabolic intermediates, and may have secondary effects on sterol-dependent morphogens such as Sonic Hedgehog. The reported cases display patterns consistent with dysfunction of cholesterol biosynthesis and Sonic Hedgehog activity. Controlled studies are needed to investigate the teratogenicity of individual drugs in this class.
Collapse
Affiliation(s)
- Robin J Edison
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-3717, USA
| | | |
Collapse
|
28
|
Esfandiari N, Falcone T, Agarwal A, Attaran M, Nelson DR, Sharma RK. Protein Supplementation and the Incidence of Apoptosis and Oxidative Stress in Mouse Embryos. Obstet Gynecol 2005; 105:653-60. [PMID: 15738040 DOI: 10.1097/01.aog.0000152384.91385.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To estimate the effect of protein supplementation of culture media on reactive oxygen species production and incidence of apoptosis in preimplantation mouse embryos. METHODS A total of 72 two-cell mouse embryos were cultured in human tubal fluid (HTF) alone (HTF-alone, control) and 71 embryos in HTF with protein supplementation (10% serum substitute supplement; HTF-SSS) for 72 hours. Total cell number per embryo was determined by staining with Hoechst 33258. Allocation of inner cell mass and trophectoderm in blastocysts and incidence of apoptosis were determined by confocal microscopy. Levels of reactive oxygen species in culture media were measured by chemiluminescence assay using luminol as probe. RESULTS Blastocyst development, total cell number, and the inner cell mass/trophectoderm ratio were similar between the 2 groups. The blastocyst hatching rate was significantly higher in the HTF-SSS group than in the HTF-alone group (20% compared with 4%, P = .007). Level of reactive oxygen species was significantly higher in HTF-alone compared with HTF-SSS at 24 hours (median and interquartile range 28 [13, 43] compared with 0 [0, 1], P = .02), 48 hours (24 [21, 26] compared with 2 [1, 2], P = .02), and 72 hours (26 [9, 32] compared with 2 [2, 3], P = .03). The incidence of apoptosis in blastocysts cultured in HTF-SSS was significantly lower than those in HTF-alone group (mean +/- standard deviation 2.38 +/- 0.68 and 5.81 +/- 1.11, respectively, P = .001). CONCLUSION Protein supplementation of culture media improves the hatching rate and reduces reactive oxygen species levels and the incidence of apoptosis in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Navid Esfandiari
- Department of Obstetrics and Gynecology, Glickman Urological Institute, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
29
|
Fabian D, Koppel J, Maddox-Hyttel P. Apoptotic processes during mammalian preimplantation development. Theriogenology 2005; 64:221-31. [PMID: 15955348 DOI: 10.1016/j.theriogenology.2004.11.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 11/30/2004] [Accepted: 11/30/2004] [Indexed: 11/25/2022]
Abstract
The paper provides a review of the current state of knowledge on apoptosis during normal preimplantation development based on the literature and on the authors' own findings. Information is focused on the occurrence and the characteristics of spontaneous apoptotic processes. Reports concerning the chronology and the incidence of programmed cell death in mouse, cow, pig and human embryos in early preimplantation stages up to the blastocyst stage are summarized. In addition, specific attributes of the apoptotic process in mammalian preimplantation development are provided, including the description of both morphological and biochemical features of cell death.
Collapse
Affiliation(s)
- Dusan Fabian
- Institute of Animal Physiology, Slovak Academy of Sciences, Soltésovej 4, 04001 Kosice, Slovakia.
| | | | | |
Collapse
|
30
|
Xu JS, Lee YL, Lee KF, Kwok KL, Lee WM, Luk JM, Yeung WSB. Embryotrophic factor-3 from human oviductal cells enhances proliferation, suppresses apoptosis and stimulates the expression of the β1 subunit of sodium–potassium ATPase in mouse embryos. Hum Reprod 2004; 19:2919-26. [PMID: 15459171 DOI: 10.1093/humrep/deh497] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Embrytrophic factor-3 (ETF-3) from human oviductal cells enhanced the development of mouse preimplantation embryos. This report studied the embryotrophic mechanisms of the molecule. METHODS AND RESULTS Mouse embryos were incubated with ETF-3 for 24 h at different stages of development. ETF-3 treatment between 96 and 120 h post-HCG increased the cell count of blastocysts, whilst treatment between 72 and 96 h post-HCG enhanced the expansion and hatching of the blastocysts. ETF-3 increased the cell number of the embryos by suppressing apoptosis and increasing proliferation as determined by TUNEL and bromodeoxyuridine uptake assays, respectively. Real-time quantitative PCR showed that the in vivo developed and ETF-3-treated blastocysts had a significantly higher mRNA copy number of Na/K-ATPase-beta1, but not of hepsin, than that of blastocysts cultured in medium alone. The former gene was associated with cavitation of blastocysts while the latter was related to hatching of blastocyst. The beneficial effect of ETF-3 on blastocyst hatching was also seen when ETF-3-supplemented commercially available sequential culture medium for human embryo culture was used to culture mouse embryos. CONCLUSIONS ETF-3 improves embryo development by enhancing proliferation, suppressing apoptosis and stimulating expression of genes related to blastocyst cavitation. Supplementating human embryo culture medium with ETF-3 may improve the success rate in clinical assisted reproduction.
Collapse
Affiliation(s)
- J S Xu
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Gjørret JO, Knijn HM, Dieleman SJ, Avery B, Larsson LI, Maddox-Hyttel P. Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol Reprod 2003; 69:1193-200. [PMID: 12773422 DOI: 10.1095/biolreprod.102.013243] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The postimplantation developmental potential of embryos can be affected by various forms of cell death, such as apoptosis, at preimplantation stages. However, correct assessment of apoptosis is needed for adequate inference of the developmental significance of this process. This study is the first to investigate the independent chronological occurrence of apoptotic changes in nuclear morphology and DNA degradation (detected by the TUNEL reaction) and incidences of nuclei displaying these features at various preimplantation stages of bovine embryos produced both in vivo and in vitro. Different elements of apoptosis were observed at various developmental stages and appeared to be differentially affected by in vitro production. Nuclear condensation was observed from the 6-cell stage in vitro and the 8-cell stage in vivo, whereas the TUNEL reaction was first observed at the 6-cell stage in vitro and the 21-cell stage in vivo. Morphological signs of other forms of cell death were also observed in normally developing embryos produced both in vivo and in vitro. The onset of apoptosis seems to be developmentally regulated in a stage-specific manner, but discrete features of the apoptotic process may be differentially regulated and independently modulated by the mode of embryo production. Significant differences in indices of various apoptotic features were not evident between in vivo- and in vitro-produced embryos at the morula stage, but such differences could be observed at the blastocyst stage, where in vitro production was associated with a higher degree of apoptosis in the inner cell mass.
Collapse
Affiliation(s)
- Jakob O Gjørret
- Department of Anatomy and Physiology, Royal Veterinary and Agricultural University, 1870 Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|
32
|
Pucéat M, Travo P, Quinn MT, Fort P. A dual role of the GTPase Rac in cardiac differentiation of stem cells. Mol Biol Cell 2003; 14:2781-92. [PMID: 12857864 PMCID: PMC165676 DOI: 10.1091/mbc.e02-09-0562] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The function of the GTPase Rac1, a molecular switch transducing intracellular signals from growth factors, in differentiation of a specific cell type during early embryogenesis has not been investigated. To address the question, we used embryonic stem (ES) cells differentiated into cardiomyocytes, a model that faithfully recapitulates early stages of cardiogenesis. Overexpression in ES cells of a constitutively active Rac (RacV12) but not of an active mutant (RacL61D38), which does not activate the NADPH oxydase generating ROS, prevented MEF2C expression and severely compromised cardiac cell differentiation. This resulted in poor expression of ventricular myosin light chain 2 (MLC2v) and its lack of insertion into sarcomeres. Thus ES-derived cardiomyocytes featured impaired myofibrillogenesis and contractility. Overexpression of MEF2C or addition of catalase in the culture medium rescued the phenotype of racV12 cells. In contrast, RacV12 specifically expressed in ES-derived ventricular cells improved the propensity of cardioblasts to differentiate into beating cardiomyocytes. This was attributed to both a facilitation of myofibrillogenesis and a prolongation in their proliferation. The dominant negative mutant RacN17 early or lately expressed in ES-derived cells prevented myofibrillogenesis and in turn beating of cardiomyocytes. We thus suggest a stage-dependent function of the GTPase during early embryogenesis.
Collapse
Affiliation(s)
- Michel Pucéat
- Centre de Recherches de Biochimie Macromoléculaire, CNRS FRE 2593, IFR24, Montpellier, France.
| | | | | | | |
Collapse
|
33
|
Hanna LA, Clegg MS, Momma TY, Daston GP, Rogers JM, Keen CL. Zinc influences the in vitro development of peri-implantation mouse embryos. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2003; 67:414-20. [PMID: 12962285 DOI: 10.1002/bdra.10046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND For humans, it is estimated that over 70% of concepti are lost during early development. In culture, mouse peri-implantation embryos can mimic development from the blastocyst to the egg cylinder stage of development, a period during which implantation occurs in vivo. We describe a novel application of this model to investigate nutritional factors that may influence this stage of development. We investigated the influence of zinc (Zn) deficiency on embryonic development at the time of embryo implantation. METHODS Mouse blastocysts were cultured for 144 hr in low Zn, Zn-replete or control medium. RESULTS Embryos developed normally when they were cultured in the control and Zn-replete media. Embryos cultured in the low Zn medium were significantly impaired in forming egg cylinder morphology. This was associated with a reduction in extraembryonic endoderm as determined by immunohistochemistry for markers of visceral and parietal endoderm and correlated with an increase in TUNEL positive cells in the low Zn group. There was no change in the frequency of cells positive for phosphorylated Histone H3, a marker for S-phase, indicating that an increase in apoptosis was primarily responsible for the smaller size and reduction in extraembryonic endoderm. The increased cell death was not associated with an increase in reactive oxygen species (ROS) detected by dichlorodihydrofluorescein staining. CONCLUSIONS These data support an important role for Zn in promoting differentiation and cell survival in the early embryo and suggest that sub-optimal nutrition is an important factor that contributes to defects in primary germ layers and early embryonic loss.
Collapse
Affiliation(s)
- Lynn A Hanna
- Department of Nutrition, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kadyrov M, Schmitz C, Black S, Kaufmann P, Huppertz B. Pre-eclampsia and maternal anaemia display reduced apoptosis and opposite invasive phenotypes of extravillous trophoblast. Placenta 2003; 24:540-8. [PMID: 12744931 DOI: 10.1053/plac.2002.0946] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During pregnancy extravillous trophoblast invades maternal uterine tissues and remodels spiral arteries. Maternal anaemia and early onset pre-eclampsia are associated with perturbed trophoblast biology. We systematically compared numerical density, invasive depth and apoptosis rates of extravillous trophoblast in uterine tissues taken from hysterectomies following Caesarean section after normal pregnancies (n=4) or pregnancies complicated by pre-eclampsia (n=5) or anaemia (n=6). Full thickness sections of the placental bed were studied by immunohistochemistry using anti-active caspase 3, anti-cytokeratin 7, anti-lamin B, M30, Mib-1, anti-PARP, and by the TUNEL assay. In normal pregnancy extravillous trophoblast invaded 2.04+/-0.19 mm (mean+/-SEM ) from the endometrial-myometrial border into the myometrium; in pre-eclampsia 0.67+/-0.14 mm (P< 0.01), and in anaemia 3.84+/-0.21 mm (P< 0.001). The endometrial trophoblast density in normal pregnancy was 2.44+/-0.37 cells per 60,000 microm(3), in pre-eclampsia was 1.04+/-0.15 (P< 0.01), and in anaemia was 3.10+/-0.32. The rate of apoptotic extravillous trophoblast (M30-positive) in the endometrium in normal pregnancy was 7.17+/-1.46 per cent, in pre-eclampsia 4.4+/-0.71, and in anaemia 2.1+/-0.42 (P< 0.01). Maternal anaemia leads to general tissue hypoxia throughout gestation. Increased invasive depth could be explained by hypoxia-stimulated mitosis and decreased apoptosis of extravillous trophoblast. Reduced trophoblast invasion in pre-eclampsia cannot be explained by higher rates of apoptosis.
Collapse
Affiliation(s)
- M Kadyrov
- Department of Anatomy, University Hospital, Aachen, Germany
| | | | | | | | | |
Collapse
|
35
|
Hinck L, Thissen JP, Pampfer S, De Hertogh R. Effect of high concentrations of glucose on differentiation of rat trophoblast cells in vitro. Diabetologia 2003; 46:276-83. [PMID: 12627327 DOI: 10.1007/s00125-002-1016-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 08/08/2002] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Previous studies have shown that diabetic placentas are characterized by structural and biochemical anomalies, including defects in the differentiation of trophoblasts. In this study, the Rcho-1 cell line was used to investigate the impact of high glucose concentrations on different markers of differentiation of rat trophoblast cells in giant cells (endoreduplication, invasive phenotype and endocrine phenotype). MATERIALS Rcho-1 cells were incubated for 12 days in medium supplemented with different concentrations of glucose and 10% horse serum to optimize differentiation. The cells were examined for the proportion of nuclei showing signs of apoptosis. The effect of high glucose was investigated on the endoreduplication process, on invasive phenotype (secretion of gelatinase B) and on endocrine phenotype (expression of placental lactogen I (PL-I) and II (PL-II) and progesterone secretion). RESULTS Apoptosis was not induced by high glucose in Rcho-1. The number of cells was higher in the cultures exposed to high glucose (p<0.05) and their nuclei contained more DNA compared with control cells (p<0.001), while their nuclear size was smaller (p<0.001). Gelatinase B secretion increased during differentiation but no difference was found when gelatinase B secretion from trophoblasts exposed to high glucose was compared with the control cells. Rcho-1 cell cultures showed an increase in PL-I and PL-II mRNA expressions during differentiation and which was not affected by high glucose. Progesterone secretion increased during differentiation in control cultures. However, this increase was abolished when trophoblasts were cultured in high glucose. CONCLUSIONS/INTERPRETATION Our data suggest that high glucose influences the endoreduplication process and the steroidogenesis during differentiation of rattrophoblasts.
Collapse
Affiliation(s)
- L Hinck
- Physiology of Human Reproduction Research Unit, Catholic University of Louvain Medical School, Avenue Hippocrate 54, 1200 Brussels, Belgium
| | | | | | | |
Collapse
|
36
|
Toder V, Fein A, Carp H, Torchinsky A. TNF-alpha in pregnancy loss and embryo maldevelopment: a mediator of detrimental stimuli or a protector of the fetoplacental unit? J Assist Reprod Genet 2003; 20:73-81. [PMID: 12688591 PMCID: PMC3455795 DOI: 10.1023/a:1021740108284] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Tumor necrosis factor alpha (TNF-alpha), a multifunctional cytokine, has been identified in the ovary, oviduct, uterus, and placenta, and is expressed in embryonic tissues. For many years TNF-alpha was mainly considered to be a cytokine involved in triggering immunological pregnancy loss and as a mediator of various embryopathic stresses. However, data collected during the last decade has characterized TNF-alpha not only as a powerful activator of apoptotic, but also antiapoptotic signaling cascades, as well as revealed its regulatory role in cell proliferation. This review summarizes and conceptualizes the studies addressing TNF-alpha-activated intracellular signaling and the possible functional role of TNF-alpha in embryonic development. METHODS Studies addressing the role of TNF-alpha in intercellular signaling, in vivo studies addressing the functional role TNF-alpha in spontaneous and induced pregnancy loss, and studies addressing the role of TNF-alpha in fetal malformations were reviewed. Comparative studies in TNF-alpha knockout and TNF-alpha positive mice were performed to evaluate embryonic death, structural anomalies in fetuses, the degree of apoptosis and cell proliferation, and the activity of molecules such as caspases 3 and 8, the NF-kappaB, (RelA), IkappaBalpha in some target embryonic organs shortly after exposure to embryopathic stresses. RESULTS It is proposed that the possible essential function of TNF-alpha may be to prevent the birth of offspring with structural anomalies. CONCLUSIONS TNF-alpha will boost death signaling to kill the embryo if initial events (damages) triggered by detrimental stimuli may culminate in structural anomalies, and stimulate protective mechanisms if the repair of these damages may prevent maldevelopment.
Collapse
Affiliation(s)
- V Toder
- Department of Embryology & Teratology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
37
|
Toder V, Carp H, Fein A, Torchinsky A. The role of pro- and anti-apoptotic molecular interactions in embryonic maldevelopment. Am J Reprod Immunol 2002; 48:235-44. [PMID: 12516634 DOI: 10.1034/j.1600-0897.2002.01130.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM Pregnancy loss and the occurrence of inborn structural anomalies are often preceded by excessive apoptosis in targeted embryonic and extraembryonic tissues. Apoptogenic stimuli activate both death and survival, signaling cascades consisting of molecules acting as activators and effectors, or negative regulators of apoptosis. The interplay between these cascades determines whether the cell which is exposed to an apoptogenic stimulus dies or survives. This review summarizes the functioning of pro- and anti-apoptotic molecules in embryos responding to various teratogens. The effect of potentiation of the maternal immune system on these molecules is also discussed. METHODS OF STUDY The data on the functioning of various pro- and anti-apoptotic molecules in embryos exposed to various developmental toxicants, and embryos developing in a diabetic environment are reviewed. Techniques such as the TUNEL method, DNA fragmentation assay, electromobility shift assay (EMSA), fluorometric assay, immunohistochemistry, Western blot, In situ hybridization, have been used in our studies to detect apoptosis, and evaluate the functioning of molecules such as TNFalpha, caspases, NF-kappaB and IkappaB, p53, and bcl-2 in different embryonic and extraembryonic tissues. RESULTS Our and other data summarized in this review have demonstrated that the doses of developmental toxicants required to induce pregnancy loss and gross structural anomalies induce excessive apoptosis shortly after treatment. Depending on the intensity and type of targeted tissues, this apoptosis was accompanied by alterations in the activity of the molecules which act as activators and effectors (e.g. caspase 3, caspase 8, caspase 2, p53) or negative regulators (bcl-2, NF-kappaB) of apoptosis. Maternal immunopotentiation, which decreases the level of induced and spontaneous pregnancy loss and the incidence and severity of teratogen-induced structural anomalies has been shown to modulate the expression of these molecules both in embryonic tissues and at the feto-maternal interface. CONCLUSIONS The data presented in this review suggest that molecules such as TNFalpha, caspase 3, caspase 8, NF-kappaB, p53 and bcl-2, which are involved in the regulation of apoptosis, may also be involved in determining the sensitivity of the embryo to developmental toxicants. Maternal immunopotentiation may modulate the functioning of these molecules.
Collapse
Affiliation(s)
- V Toder
- Department of Embryology and Teratology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
38
|
Abstract
Evolution through natural selection can be described as driven by a perpetual conflict of individuals competing for limited resources. Recently, I postulated that the shortage of resources godfathered the evolutionary achievements of the differentiation-apoptosis programming [Rev. Neurosci. 12 (2001) 217]. Unicellular deprivation-induced differentiation into germ cell-like spores can be regarded as the archaic reproduction events which were fueled by the remains of the fratricided cells of the apoptotic fruiting body. Evidence has been accumulated suggesting that conserved through the ages as the evolutionary legacy of the germ-soma conflict, the somatic loss of immortality during the ontogenetic segregation of primordial germ cells recapitulates the archaic fate of the fruiting body. In this heritage, somatic death is a germ cell-triggered event and has been established as evolutionary-fixed default state following asymmetric reproduction in a world of finite resources. Aging, on the other hand, is the stress resistance-dependent phenotype of the somatic resilience that counteracts the germ cell-inflicted death pathway. Thus, aging is a survival response and, in contrast to current beliefs, is antagonistically linked to death that is not imposed by group selection but enforced upon the soma by the selfish genes of the "enemy within". Environmental conditions shape the trade-off solutions as compromise between the conflicting germ-soma interests. Mechanistically, the neuroendocrine system, particularly those components that control energy balance, reproduction and stress responses, orchestrate these events. The reproductive phase is a self-limited process that moulds onset and progress of senescence with germ cell-dependent factors, e.g. gonadal hormones. These degenerate the regulatory pacemakers of the pineal-hypothalamic-pituitary network and its peripheral, e.g. thymic, gonadal and adrenal targets thereby eroding the trophic milieu. The ensuing cellular metabolic stress engenders adaptive adjustments of the glucose-fatty acid cycle, responses that are adequate and thus fitness-boosting under fuel shortage (e.g. during caloric restriction) but become detrimental under fuel abundance. In a Janus-faced capacity, the cellular stress response apparatus expresses both tolerogenic and mutagenic features of the social and asocial deprivation responses [Rev. Neurosci. 12 (2001) 217]. Mediated by the derangement of the energy-Ca(2+)-redox homeostatic triangle, a mosaic of dedifferentiation/apoptosis and mutagenic responses actuates the gradual exhaustion of functional reserves and eventually results in a multitude of aging-related diseases. This scenario reconciles programmed and stochastic features of aging and resolves the major inconsistencies of current theories by linking ultimate and proximate causes of aging. Reproduction, differentiation, apoptosis, stress response and metabolism are merged into a coherent regulatory network that stages aging as a naturally selected, germ cell-triggered and reproductive phase-modulated deprivation response.
Collapse
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine Universität, Düsseldorf, Germany.
| |
Collapse
|
39
|
Abstract
It is obvious that the first prerequisite is to define for what purpose a model is needed for humans. There are huge differences in reproductive physiology between the mouse, human and cow. As far as maturation is concerned, the plasticity of the mouse model is not the same in cows and humans. The final stages of oocyte maturation seem to be more finely regulated in cows and humans, where a minimum size of follicle is necessary to complete maturation in vitro. Bovine and human preimplantation embryos seem to be more similar in terms of biochemical and intrinsic paternal and maternal regulatory processes. Once again, interactions between the embryo and the corpus luteum are similar in cows and humans, but mouse and human embryo implantations are closer. Mouse oocytes and embryos should not be overlooked, but excessive generalization between mammalian species must be avoided.
Collapse
Affiliation(s)
- Yves J R Ménézo
- Laboratoire Marcel Mérieux, 1 Rue Laborde, 69500 BRON, France.
| | | |
Collapse
|
40
|
Huppertz B, Tews DS, Kaufmann P. Apoptosis and syncytial fusion in human placental trophoblast and skeletal muscle. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:215-53. [PMID: 11336392 DOI: 10.1016/s0074-7696(01)05005-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle fibers and placental villous trophoblast are the main representatives of syncytia in the human. Both syncytia are derived from fusion of mononucleated stem cells, show a high degree of differentiation, and have lost their generative potency. Consequently, for their growth both depend on fusion of additional stem cells. There is evidence that syncytial fusion is directly or indirectly related to apoptotic events: As early as in the differentiated stages of the mononucleated stem cells, initiation stages of the apoptosis cascade have been observed. After syncytial fusion progression of the cascade is retarded or blocked by a variety of mechanisms. In this review we emphasize the links between apoptosis cascade, differentiation pathways and syncytial fusion. It needs to be elucidated whether these processes simply take place in parallel, both temporally and spatially, or whether there are causal connections between apoptosis cascade and syncytial fusion. Based on recent data obtained for placental villous trophoblast, it is tempting to speculate that early molecular mechanisms of the apoptosis cascade are involved in differentiation and syncytial fusion. Data obtained in skeletal muscles support this assumption and reveal a considerable degree of homology in genesis, maintenance and turnover of both tissues.
Collapse
Affiliation(s)
- B Huppertz
- Department of Anatomy, University Hospital, Aachen, Germany
| | | | | |
Collapse
|
41
|
Pampfer S, Cordi S, Vanderheyden I, Van Der Smissen P, Courtoy PJ, Van Cauwenberge A, Alexandre H, Donnay I, De Hertogh R. Expression and role of Bcl-2 in rat blastocysts exposed to high D-glucose. Diabetes 2001; 50:143-9. [PMID: 11147780 DOI: 10.2337/diabetes.50.1.143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bcl-2 mRNA expression was detected in rat blastocysts by in situ hybridization. The distribution of mRNA expression was rather heterogenous, with approximately 2% of high-expressing cells. In vitro exposure to 28 mmol/l D-glucose for 24 h resulted in a significant increase in the proportion of these cells compared with control embryos in either 6 mmol/l D-glucose or 28 mmol/l D+L-glucose. Heterogeneity in the expression of Bcl-2 was also observed at the protein level by immunocytochemistry. Exposure to 28 mmol/l D-glucose significantly increased the incidence of chromatin degradation (karyolysis) and nuclear fragmentation (karyorhexis), two nuclear markers of apoptosis in rat blastocysts. When two different antisense oligodeoxynucleotides designed to block Bcl-2 expression were added to 28 mmol/1 D-glucose, the incidence of karyolysis (but not karyorhexis) was increased compared with embryos in 28 mmol/l D-glucose alone. These data suggest that Bcl-2 is involved in the protective response against the induction of karyolysis in blastocysts on their exposure to high concentrations of D-glucose in vitro, whereas karyorhexis appears to result from the activation of an intracellular pathway that is independent of Bcl-2.
Collapse
Affiliation(s)
- S Pampfer
- Physiology of Human Reproduction Research Unit, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|