1
|
Cheng GS, Crothers K, Aliberti S, Bergeron A, Boeckh M, Chien JW, Cilloniz C, Cohen K, Dean N, Dela Cruz CS, Dickson RP, Greninger AL, Hage CA, Hohl TM, Holland SM, Jones BE, Keane J, Metersky M, Miller R, Puel A, Ramirez J, Restrepo MI, Sheshadri A, Staitieh B, Tarrand J, Winthrop KL, Wunderink RG, Evans SE. Immunocompromised Host Pneumonia: Definitions and Diagnostic Criteria: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2023; 20:341-353. [PMID: 36856712 PMCID: PMC9993146 DOI: 10.1513/annalsats.202212-1019st] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Pneumonia imposes a significant clinical burden on people with immunocompromising conditions. Millions of individuals live with compromised immunity because of cytotoxic cancer treatments, biological therapies, organ transplants, inherited and acquired immunodeficiencies, and other immune disorders. Despite broad awareness among clinicians that these patients are at increased risk for developing infectious pneumonia, immunocompromised people are often excluded from pneumonia clinical guidelines and treatment trials. The absence of a widely accepted definition for immunocompromised host pneumonia is a significant knowledge gap that hampers consistent clinical care and research for infectious pneumonia in these vulnerable populations. To address this gap, the American Thoracic Society convened a workshop whose participants had expertise in pulmonary disease, infectious diseases, immunology, genetics, and laboratory medicine, with the goal of defining the entity of immunocompromised host pneumonia and its diagnostic criteria.
Collapse
|
2
|
Palakeel JJ, Ali M, Chaduvula P, Chhabra S, Lamsal Lamichhane S, Ramesh V, Opara CO, Khan FY, Kabiraj G, Kauser H, Mostafa JA. An Outlook on the Etiopathogenesis of Pulmonary Hypertension in HIV. Cureus 2022; 14:e27390. [PMID: 36046315 PMCID: PMC9418639 DOI: 10.7759/cureus.27390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Although overall survival rates of patients infected with human immunodeficiency virus (HIV) have been significantly improved by antiretroviral therapy (ART), chronic comorbidities associated with HIV result in a worsening quality of life. Pulmonary arterial hypertension (PAH) is the most prevalent comorbidity associated with HIV infection. Despite low viremia and a non-replicative state maintained by ART, few people develop PAH. Previous data from animal models and human pulmonary microvascular endothelial cells (HPMVECs) suggests a constellation of events occurring during the propagation of HIV-associated PAH (HIV-PAH). However, these studies have not successfully isolated HIV virions, HIV-DNA, protein 24 antigen (p24), or HIV-RNA from the pulmonary endothelial cells (ECs). It provides an insight into an ongoing inflammatory process that could be attributed to viral proteins. Several studies have demonstrated the role of viral proteins on vascular remodeling. A composite of chronic inflammatory changes mediated by cytokines and growth factors along with several inciting risk factors such as Hepatitis C virus (HCV) co-infection, genetic factors, male predominance, illegal drug usage, and duration of HIV infection have led to molecular changes that result in an initial phase of apoptosis followed by the formation of apoptotic resistant hyperproliferative ECs with altered phenotype. This study aims to identify the risk factors and mechanisms behind HIV-PAH pathobiology at the host-pathogen interface at the intracellular level.
Collapse
|
3
|
Das S, Kar SS, Samanta S, Banerjee J, Giri B, Dash SK. Immunogenic and reactogenic efficacy of Covaxin and Covishield: a comparative review. Immunol Res 2022; 70:289-315. [PMID: 35192185 PMCID: PMC8861611 DOI: 10.1007/s12026-022-09265-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is an RNA virus that was identified for the first time in December 2019 in Wuhan, China. The World Health Organization (WHO) labeled the novel coronavirus (COVID-19) outbreak a worldwide pandemic on March 11, 2020, due to its widespread infectivity pattern. Because of the catastrophic COVID-19 outbreak, the development of safe and efficient vaccinations has become a key priority in every health sector throughout the globe. On the 13th of January 2021, the vaccination campaign against SARS-CoV-2 was launched in India and started the administration of two types of vaccines known as Covaxin and Covishield. Covishield is an adenovirus vector-based vaccine, and Covaxin was developed by a traditional method of vaccine formulation, which is composed of adjuvanted inactivated viral particles. Each vaccine's utility or efficiency is determined by its formulation, adjuvants, and mode of action. The efficacy of the vaccination depends on numeral properties like generation antibodies, memory cells, and cell-mediated immunity. According to the third-phase experiment, Covishield showed effectiveness of nearly 90%, whereas Covaxin has an effectiveness of about 80%. Both vaccination formulations in India have so far demonstrated satisfactory efficacy against numerous mutant variants of SARS-CoV-2. The efficacy of Covishield may be diminished if the structure of spike (S) protein changes dramatically in the future. In this situation, Covaxin might be still effective for such variants owing to its ability to produce multiple antibodies against various epitopes. This study reviews the comparative immunogenic and therapeutic efficacy of Covaxin and Covishield and also discussed the probable vaccination challenges in upcoming days.
Collapse
Affiliation(s)
- Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Suvrendu Sankar Kar
- Department of Medicine, R.G.Kar Medical College, Kolkata, 700004, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
4
|
Impaired differentiation of small airway basal stem/progenitor cells in people living with HIV. Sci Rep 2022; 12:2966. [PMID: 35194053 PMCID: PMC8864005 DOI: 10.1038/s41598-022-06373-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With highly active anti-retroviral therapy (HAART), higher incidence of airway abnormalities is common in the HIV population consistent with the concept of accelerated lung "aging". Our previous findings demonstrated that HIV induces human airway basal cells (BC) into destructive and inflammatory phenotypes. Since BC function as stem/progenitor cells of the small airway epithelium (SAE), responsible for self-renewal and differentiation of SAE, we hypothesized that BC from people living with HIV (PLWH) may have altered differentiation capacity that contribute to premature aging. The data demonstrates that BC from PLWH have impaired capacity to differentiate in vitro and senescent phenotypes including shortened telomeres, increased expression of β-galactosidase and cell cycle inhibitors, and mitochondrial dysfunction. In vitro studies demonstrated that BC senescence is partly due to adverse effects of HAART on BC. These findings provide an explanation for higher incidence of airway dysfunction and accelerated lung aging observed in PLWH.
Collapse
|
5
|
Chung NPY, Khan KMF, Kaner RJ, O'Beirne SL, Crystal RG. HIV induces airway basal progenitor cells to adopt an inflammatory phenotype. Sci Rep 2021; 11:3988. [PMID: 33597552 PMCID: PMC7889866 DOI: 10.1038/s41598-021-82143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of anti-retroviral therapy, chronic HIV infection is associated with an increased incidence of other comorbidities such as COPD. Based on the knowledge that binding of HIV to human airway basal stem/progenitor cells (BC) induces a destructive phenotype by increased MMP-9 expression through MAPK signaling pathways, we hypothesized that HIV induces the BC to express inflammatory mediators that contribute to the pathogenesis of emphysema. Our data demonstrate that airway BC isolated from HAART-treated HIV+ nonsmokers spontaneously release inflammatory mediators IL-8, IL-1β, ICAM-1 and GM-CSF. Similarly, exposure of normal BC to HIV in vitro up-regulates expression of the same inflammatory mediators. These HIV-BC derived mediators induce migration of alveolar macrophages (AM) and neutrophils and stimulate AM proliferation. This HIV-induced inflammatory phenotype likely contributes to lung inflammation in HIV+ individuals and provides explanation for the increased incidence of COPD in HIV+ individuals.
Collapse
Affiliation(s)
- Nancy P Y Chung
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - K M Faisal Khan
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sarah L O'Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Schiff AE, Linder AH, Luhembo SN, Banning S, Deymier MJ, Diefenbach TJ, Dickey AK, Tsibris AM, Balazs AB, Cho JL, Medoff BD, Walzl G, Wilkinson RJ, Burgers WA, Corleis B, Kwon DS. T cell-tropic HIV efficiently infects alveolar macrophages through contact with infected CD4+ T cells. Sci Rep 2021; 11:3890. [PMID: 33594125 PMCID: PMC7886866 DOI: 10.1038/s41598-021-82066-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alveolar macrophages (AMs) are critical for defense against airborne pathogens and AM dysfunction is thought to contribute to the increased burden of pulmonary infections observed in individuals living with HIV-1 (HIV). While HIV nucleic acids have been detected in AMs early in infection, circulating HIV during acute and chronic infection is usually CCR5 T cell-tropic (T-tropic) and enters macrophages inefficiently in vitro. The mechanism by which T-tropic viruses infect AMs remains unknown. We collected AMs by bronchoscopy performed in HIV-infected, antiretroviral therapy (ART)-naive and uninfected subjects. We found that viral constructs made with primary HIV envelope sequences isolated from both AMs and plasma were T-tropic and inefficiently infected macrophages. However, these isolates productively infected macrophages when co-cultured with HIV-infected CD4+ T cells. In addition, we provide evidence that T-tropic HIV is transmitted from infected CD4+ T cells to the AM cytosol. We conclude that AM-derived HIV isolates are T-tropic and can enter macrophages through contact with an infected CD4+ T cell, which results in productive infection of AMs. CD4+ T cell-dependent entry of HIV into AMs helps explain the presence of HIV in AMs despite inefficient cell-free infection, and may contribute to AM dysfunction in people living with HIV.
Collapse
Affiliation(s)
- Abigail E Schiff
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alice H Linder
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Shillah N Luhembo
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Stephanie Banning
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin J Deymier
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Thomas J Diefenbach
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Amy K Dickey
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Athe M Tsibris
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandro B Balazs
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Josalyn L Cho
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA, USA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gerhard Walzl
- DST-NRF Center of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Department of Infectious Disease, Imperial College London, London, W12 ONN, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 AT, UK
| | - Wendy A Burgers
- Wellcome Center for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Republic of South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, Republic of South Africa
| | - Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA.
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Isle of Riems, Germany.
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Abstract
Objective: HIV disrupts host defense mechanisms and maintains chronic inflammation in the lung. Nitric oxide is a marker of lung inflammation and can be measured in the exhaled air. We investigated the relationship between exhaled nitric oxide (eNO), HIV status and airway abnormalities in perinatally HIV-infected children aged 6–19 years. Design: A cross-sectional study. Methods: HIV-infected individuals on antiretroviral therapy and HIV-uninfected children with no active tuberculosis (TB) or acute respiratory tract infection were recruited from a public hospital in Harare, Zimbabwe. Clinical history was collected and eNO testing and spirometry was performed. The association between eNO and explanatory variables (HIV, FEV1 z-score, CD4+ cell count, viral load, history of TB) was investigated using linear regression analysis adjusted for age, sex and time of eNO testing. Results: In total, 222 HIV-infected and 97 HIV-uninfected participants were included. Among HIV-infected participants, 57 (25.7%) had a history of past TB; 56 (25.2%) had airway obstruction, but no prior TB. HIV status was associated with lower eNO level [mean ratio 0.79 (95% confidence interval, 95% CI 0.65–0.97), P = 0.03]. Within the HIV-infected group, history of past TB was associated with lower eNO levels after controlling for age, sex and time of eNO testing [0.79 (95% CI 0.67–0.94), P = 0.007]. Conclusion: HIV infection and history of TB were associated with lower eNO levels. eNO levels may be a marker of HIV and TB-induced alteration in pulmonary physiology; further studies focused on potential causes for lower eNO levels in HIV and TB are warranted.
Collapse
|
8
|
Souriant S, Balboa L, Dupont M, Pingris K, Kviatcovsky D, Cougoule C, Lastrucci C, Bah A, Gasser R, Poincloux R, Raynaud-Messina B, Al Saati T, Inwentarz S, Poggi S, Moraña EJ, González-Montaner P, Corti M, Lagane B, Vergne I, Allers C, Kaushal D, Kuroda MJ, Sasiain MDC, Neyrolles O, Maridonneau-Parini I, Lugo-Villarino G, Vérollet C. Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Rep 2019; 26:3586-3599.e7. [PMID: 30917314 PMCID: PMC6733268 DOI: 10.1016/j.celrep.2019.02.091] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
Collapse
Affiliation(s)
- Shanti Souriant
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Luciana Balboa
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Maeva Dupont
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Karine Pingris
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denise Kviatcovsky
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Claire Lastrucci
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; Centre for Genomic Regulation, Barcelona, Spain
| | - Aicha Bah
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Romain Gasser
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Talal Al Saati
- INSERM/UPS/ENVT-US006/CREFRE, Service d'Histopathologie, CHU Purpan, 31024 Toulouse, France
| | - Sandra Inwentarz
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | - Susana Poggi
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | - Eduardo Jose Moraña
- Instituto de Tisioneumonologia "Raúl F. Vaccarezza," Universitad de Buenos Aires, Argentina
| | | | - Marcelo Corti
- Division de SIDA, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Bernard Lagane
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Isabelle Vergne
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carolina Allers
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marcelo J Kuroda
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Maria Del Carmen Sasiain
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina; Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina.
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France, and Buenos Aires, Argentina.
| |
Collapse
|
9
|
Severe Cytomegalovirus Reactivation in Patient with Low-Grade Non-Hodgkin's Lymphoma after Standard Chemotherapy. Case Rep Hematol 2017; 2017:5762525. [PMID: 29201472 PMCID: PMC5671693 DOI: 10.1155/2017/5762525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
Clinically significant cytomegalovirus (CMV) reactivation is not uncommon in patients with severe immunodeficiency secondary to underlying medical disorders or following aggressive immunosuppressive therapy. However, it is less frequently found in patients with low-grade haematological malignancies after nonintensive chemotherapy. We treated a patient at our centre for stage IVB follicular lymphoma with standard chemotherapy who successively developed CMV colitis associated with a CMV viral load of >3 million copies/ml. Four lines of antiviral treatment were necessary to obtain biochemical remission with undetectable CMV levels, with an initially insufficient response to valganciclovir despite therapeutic pre- and posttreatment levels. Subsequently, our patient also developed an infection with Pneumocystis jirovecii pneumonia (PJP) as further evidence of severe immune compromise. This case report demonstrates the importance of including investigations for less common sources of infection when confronted with a patient with a low-grade haematological malignancy and a pyrexia of unknown origin.
Collapse
|
10
|
Parrott G, Nebeya D, Kinjo T, Miyagi K, Haranaga S, Higa F, Tateyama M, Fujita J. Etiological analysis and epidemiological comparison among adult CAP and NHCAP patients in Okinawa, Japan. J Infect Chemother 2017; 23:452-458. [PMID: 28431934 DOI: 10.1016/j.jiac.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Etiological epidemiology and diagnosis are important issues for CAP and NHCAP. Despite the availability of effective therapies, significant morbidity and mortality ensues. METHODS We retrospectively analyzed the etiology of 200 pneumonia patients at the University of the Ryukyus Hospital. Patients were categorized into CAP (n = 97) or NHCAP (n = 103), according to the Japanese Respiratory Society guidelines. Diagnoses were made using clinical tests including, Gram stain, bacterial culture, serum and urinary tests. RESULTS Pathogens were detected in 71% of patients, and identified as the source of infection in 52% (104/200). The majority of patients suffered from Streptococcus pneumoniae (32/200), Haemophilus influenzae (22/200), and Moraxella catarrhalis (16/200). Gram stain guided pathogen-oriented therapy decisions for 38 of 96 patients with unknown pathogens. Atypical pathogens were only diagnosed in CAP patients (n = 5). Severity of pneumonia was related to male sex (p = 0.006), and preexisting conditions, such as chronic heart failure (p < 0.001) and COPD (p < 0.001). Risk factors associated with increased length of stay included chronic heart failure, chronic renal failure, other pulmonary diseases and diabetes. Mortality for NHCAP patients was associated with lung cancer and bronchiectasis. CAP patients were more frequently admitted during winter months, while NHCAP patients were admitted during all other seasons. Seasonal patterns for individual pathogens could not be determined. CONCLUSION Gram staining remains useful to guiding diagnostics. Pathogens affecting CAP and NHCAP patients were not significantly different; as such, attention should be focused on the management of underlying conditions. Clinical outcomes were not affected by guideline discordant therapy.
Collapse
Affiliation(s)
- Gretchen Parrott
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Japan.
| | - Daijiro Nebeya
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Takeshi Kinjo
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Kazuya Miyagi
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Shusaku Haranaga
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Futoshi Higa
- Department of Respiratory Medicine, National Hospital Organization Okinawa National Hospital, Japan
| | - Masao Tateyama
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Jiro Fujita
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
11
|
HIV-related proteins prolong macrophage survival through induction of Triggering receptor expressed on myeloid cells-1. Sci Rep 2017; 7:42028. [PMID: 28181540 PMCID: PMC5299418 DOI: 10.1038/srep42028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1(TREM-1) is a member of the superimmunoglobulin receptor family. We have previously shown that TREM-1 prolongs survival of macrophages treated with lipoolysaccharide through Egr2-Bcl2 signaling. Recent studies suggest a role for TREM-1 in viral immunity. Human immunodeficiency virus-1 (HIV) targets the monocyte/macrophage lineage at varying stages of infection. Emerging data suggest that macrophages are key reservoirs for latent HIV even in individuals on antiretroviral therapy. Here, we investigated the potential role of TREM-1 in HIV latency in macrophages. Our data show that human macrophages infected with HIV show an increased expression of TREM-1. In parallel, direct exposure to the HIV-related proteins Tat or gp120 induces TREM-1 expression in macrophages and confers anti-apoptotic attributes.NF-κB p65 silencing identified that these proteins induce TREM-1 in p65-dependent manner. TREM-1 silencing in macrophages exposed to HIV-related proteins led to increased caspase 3 activation and reduced Bcl-2 expression, rendering them susceptible to apotosis. These novel data reveal that TREM-1 may play a critical role in establishing HIV reservoir in macrophages by inhibiting apoptosis. Therefore, targeting TREM-1 could be a novel therapeutic approach to enhance clearance of the HIV reservoir, at least within the macrophage pools.
Collapse
|