1
|
Zhang Y, Tan J, Zhao Y, Guan L, Li S. By activating endothelium histone H4 mediates oleic acid-induced acute respiratory distress syndrome. BMC Pulm Med 2025; 25:3. [PMID: 39757148 DOI: 10.1186/s12890-024-03334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/08/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE This study investigated pathogenic role and mechanism of extracellular histone H4 during oleic acid (OA)-induced acute respiratory distress syndrome (ARDS). METHODS ARDS was induced by intravenous injection of OA in mice, and evaluated by blood gas, pathological analysis, lung edema, and survival rate. Heparan sulfate (HS) degradation was evaluated using immunofluorescence and flow cytometry. The released von Willebrand factor (vWF) was measured using ELISA. P-selectin translocation and neutrophil infiltration were measured via immunohistochemical analysis. Changes in VE-cadherin were measured by western blot. Blocking antibodies against TLRs were used to investigate the signaling pathway. RESULTS Histone H4 in plasma and BALF increased significantly after OA injection. Histone H4 was closely correlated with the OA dose, which determined the ARDS severity. Pretreatment with histone H4 further aggravated pulmonary edema and death rate, while anti-H4 antibody exerted obvious protective effects. Histone H4 directly activated the endothelia. Endothelial activation was evidently manifested as HS degradation, release of vWF, P-selectin translocation, and VE-Cadherin reduction. The synergistic stimulus of activated endothelia was required for effective neutrophil activation by histone H4. Both TLRs and calcium mediated histone H4-induced endothelial activation. CONCLUSIONS Histone H4 is a pro-inflammatory and pro-thrombotic molecule in OA-induced ARDS in mice.
Collapse
Affiliation(s)
- Yanlin Zhang
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Jingjin Tan
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yiran Zhao
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Li Guan
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Shuqiang Li
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Lu Z, Fang P, Li S, Xia D, Zhang J, Wu X, Pan J, Cai H, Fu L, Sun G, You Q. Lactylation of Histone H3k18 and Egr1 Promotes Endothelial Glycocalyx Degradation in Sepsis-Induced Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407064. [PMID: 39721014 DOI: 10.1002/advs.202407064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Circulating lactate is a critical biomarker for sepsis-induced acute lung injury (S-ALI) and is strongly associated with poor prognosis. However, whether elevated lactate directly promotes S-ALI and the specific mechanism involved remain unclear. Here, this work shows that lactate causes pulmonary endothelial glycocalyx degradation and worsens ALI during sepsis. Mechanistically, lactate increases the lactylation of K18 of histone H3, which is enriched at the promoter of EGR1 and promotes its transcription, leading to upregulation of heparanase in pulmonary microvascular endothelial cells. In addition, multiple lactylation sites are identified in EGR1, and lactylation is confirmed to occur mainly at K364. K364 lactylation of EGR1 facilitates its interaction with importin-α, in turn promoting its nuclear localization. Importantly, this work identifies KAT2B as a novel lactyltransferase whose GNAT domain directly mediates the lactylation of EGR1 during S-ALI. In vivo, suppression of lactate production or genetic knockout of EGR1 mitigated glycocalyx degradation and ALI and improved survival outcomes in mice with polymicrobial sepsis. Therefore, this study reveals that the crosstalk between metabolic reprogramming in endothelial cells and epigenetic modifications plays a critical role in the pathological processes of S-ALI.
Collapse
Affiliation(s)
- Zongqing Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Pu Fang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shuai Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dunling Xia
- Department of Emergency Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jingjing Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xianghui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jingjing Pan
- Department of Respiratory Intensive Care Unit, Anhui Chest Hospital, Hefei, 230022, China
| | - Haijian Cai
- Center for Scientific Research, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qinghai You
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
3
|
Favaloro EJ. New STH 2023 Impact Factor, Most Highly Cited Papers, and Other Journal Metrics. Semin Thromb Hemost 2024; 50:1058-1066. [PMID: 39029517 DOI: 10.1055/s-0044-1788566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Li J, Wang K, Starodubtseva MN, Nadyrov E, Kapron CM, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. MEDICAL REVIEW (2021) 2024; 4:452-466. [PMID: 39444793 PMCID: PMC11495524 DOI: 10.1515/mr-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 10/25/2024]
Abstract
Angiogenesis, the process of formation of new capillaries from existing blood vessels, is required for multiple physiological and pathological processes. Complement factor H (CFH) is a plasma protein that inhibits the alternative pathway of the complement system. Loss of CFH enhances the alternative pathway and increases complement activation fragments with pro-angiogenic capacity, including complement 3a, complement 5a, and membrane attack complex. CFH protein contains binding sites for C-reactive protein, malondialdehyde, and endothelial heparan sulfates. Dysfunction of CFH prevents its interaction with these molecules and initiates pro-angiogenic events. Mutations in the CFH gene have been found in patients with age-related macular degeneration characterized by choroidal neovascularization. The Cfh-deficient mice show an increase in angiogenesis, which is decreased by administration of recombinant CFH protein. In this review, we summarize the molecular mechanisms of the anti-angiogenic effects of CFH and the regulatory mechanisms of CFH expression. The therapeutic potential of recombinant CFH protein in angiogenesis-related diseases has also been discussed.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Kaili Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | | | - Josephine Hoh
- Department of Ophthalmology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Gomel State Medical University, Gomel, Belarus
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Swart M, Redpath AN, Ogbechi J, Cardenas R, Topping L, Compeer EB, Goddard M, Chanalaris A, Williams R, Brewer DS, Smart N, Monaco C, Troeberg L. The extracellular heparan sulfatase SULF2 limits myeloid IFNβ signaling and Th17 responses in inflammatory arthritis. Cell Mol Life Sci 2024; 81:350. [PMID: 39141086 PMCID: PMC11335274 DOI: 10.1007/s00018-024-05333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Heparan sulfate (HS) proteoglycans are important regulators of cellular responses to soluble mediators such as chemokines, cytokines and growth factors. We profiled changes in expression of genes encoding HS core proteins, biosynthesis enzymes and modifiers during macrophage polarisation, and found that the most highly regulated gene was Sulf2, an extracellular HS 6-O-sulfatase that was markedly downregulated in response to pro-inflammatory stimuli. We then generated Sulf2+/- bone marrow chimeric mice and examined inflammatory responses in antigen-induced arthritis, as a model of rheumatoid arthritis. Resolution of inflammation was impaired in myeloid Sulf2+/- chimeras, with elevated joint swelling and increased abundance of pro-arthritic Th17 cells in synovial tissue. Transcriptomic and in vitro analyses indicated that Sulf2 deficiency increased type I interferon signaling in bone marrow-derived macrophages, leading to elevated expression of the Th17-inducing cytokine IL6. This establishes that dynamic remodeling of HS by Sulf2 limits type I interferon signaling in macrophages, and so protects against Th17-driven pathology.
Collapse
Affiliation(s)
- Maarten Swart
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Andia N Redpath
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, OX1 3PT, UK
| | - Joy Ogbechi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Ryan Cardenas
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Louise Topping
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Ewoud B Compeer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Michael Goddard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Anastasios Chanalaris
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Richard Williams
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Daniel S Brewer
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, OX1 3PT, UK
| | - Claudia Monaco
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Linda Troeberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, UK.
| |
Collapse
|
7
|
Xie J, Ma Y, Huang Y, Wang Q, Xu Y, Zhang Q, Yang J, Yin W. Knockdown of SDC-1 Gene Alleviates the Metabolic Pathway for the Development of MODS. Mol Biotechnol 2024; 66:1961-1969. [PMID: 37515659 PMCID: PMC11281952 DOI: 10.1007/s12033-023-00809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023]
Abstract
This study aims to reveal the metabolic differences between SDC-1 knockout mice and wild-type mice and the metabolic differences caused by shock in SDC-1 knockout mice by integrating transcriptomics and metabolomics. A total of 1009 differential metabolites were differentially expressed based on untargeted metabolomics and high-resolution mass spectrometry detection techniques. According to Kyoto Encyclopedia of Genes and Genomes enrichment, SDC-1 knockout significantly altered fat digestion and absorption, GnRH signaling pathway, fructose and mannose metabolism, and some other amino-related metabolic pathways and significantly modulated positively regulated longevity regulatory pathways, longevity regulatory pathways-worm, nicotinamide and niacinamide metabolism, and vitamin digestion and absorption pathways after its shock. Our findings indicate that SDC-1 knockout may have potential therapeutic effects in hemorrhagic shock by increasing nicotinamide metabolism.
Collapse
Affiliation(s)
- Jiangang Xie
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuexiang Ma
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Huang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yunyun Xu
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Qi Zhang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Yang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
8
|
Margaret MS, Melrose J. Impaired instructive and protective barrier functions of the endothelial cell glycocalyx pericellular matrix is impacted in COVID-19 disease. J Cell Mol Med 2024; 28:e70033. [PMID: 39180511 PMCID: PMC11344469 DOI: 10.1111/jcmm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 08/26/2024] Open
Abstract
The aim of this study was to review the roles of endothelial cells in normal tissue function and to show how COVID-19 disease impacts on endothelial cell properties that lead to much of its associated symptomatology. This places the endothelial cell as a prominent cell type to target therapeutically in the treatment of this disorder. Advances in glycosaminoglycan analytical techniques and functional glycomics have improved glycosaminoglycan mimetics development, providing agents that can more appropriately target various aspects of the behaviour of the endothelial cell in-situ and have also provided polymers with potential to prevent viral infection. Thus, promising approaches are being developed to combat COVID-19 disease and the plethora of symptoms this disease produces. Glycosaminoglycan mimetics that improve endothelial glycocalyx boundary functions have promising properties in the prevention of viral infection, improve endothelial cell function and have disease-modifying potential. Endothelial cell integrity, forming tight junctions in cerebral cell populations in the blood-brain barrier, prevents the exposure of the central nervous system to circulating toxins and harmful chemicals, which may contribute to the troublesome brain fogging phenomena reported in cognitive processing in long COVID disease.
Collapse
Affiliation(s)
- M. Smith Margaret
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Arthropharm Australia Pharmaceuticals Pty LtdBondi JunctionSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical SchoolNorthern, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| |
Collapse
|
9
|
Li J, Qi Z, Sun C, Zhang Y, Gong L, Li Y, Dong H, Jia W, Zhong L, Yang J. Circulating glycocalyx shedding products as biomarkers for evaluating prognosis of patients with out-of-hospital cardiac arrest after return of spontaneous circulation. Sci Rep 2024; 14:17582. [PMID: 39079959 PMCID: PMC11289441 DOI: 10.1038/s41598-024-68738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is damaged in postcardiac arrest syndrome (PCAS), but the prognostic value is unknown. We aimed to observe the expression and prognostic value of glycocalyx shedding products, including syndecan-1 (SDC-1), hyaluronan (HA), and heparan sulfate (HS) in PCAS. Data on clinical and 28-day outcomes of seventy-one consecutive patients with out-of-hospital cardiac arrest (OHCA) after the return of spontaneous circulation (ROSC) were collected. SDC-1, HA, and HS were measured on days 0, 1, and 3 after ROSC. Thirty healthy individuals were controls. Glycocalyx shedding was observed in human umbilical vein endothelial cells (HUVECs) stimulated during hypoxia and reoxygenation in vitro. Within 4 h of ROSC, SDC-1 and HA levels, significantly increased. In the 28-day non-survivors, HA levels showed a gradual upward trend, SDC-1 remained at a high level, and HS levels first increased, then decreased. Kaplan-Meier curves and binary logistic regression analysis showed the prognostic value of SDC-1 levels on days 0, 1, and 3, HA levels on days 1 and 3, and HS levels on day 1. Only HS levels on day 1 showed a prognostic value for 28-day neurological outcomes. SDC-1 and HA levels were positively correlated with the no-flow time. In vitro, HUVECs showed shedding of SDC-1 and HS during a prolonged duration of hypoxia. After ROSC, SDC-1, HA, and HS levels may predict the 28-day survival after PCAS, and HS levels are associated with functional outcomes.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, China
| | - Zhijiang Qi
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Binzhou Medical University, Yantai, Shandong Province, China
| | - Changan Sun
- Intensive Care Unit, Yantai Affiliated Hospital of Binzhou Medical University, Binzhou Medical University, Yantai, Shandong Province, China
| | - Yi Zhang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, China
| | - Yang Li
- Department of Emergency Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Binzhou Medical University, Yantai, Shandong Province, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, China.
| |
Collapse
|
10
|
Wang G, Lian H, Guo Q, Zhang H, Wang X. A Prospective Study of the Association of IL6 with the Critical Unit and Their Effect on in-Hospital Mortality in Critically Ill Patients. Int J Gen Med 2024; 17:3257-3268. [PMID: 39070225 PMCID: PMC11283831 DOI: 10.2147/ijgm.s474250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose We previously proposed a new concept, the "critical unit", which covers the structural integrity and function of mitochondria and endothelium. Injury of the critical unit plays a key role in the development of critical illnesses. High levels of inflammation may lead to abnormalities of the critical unit, which is an important mechanism for critical illnesses, and both inflammation and critical unit dysfunction may affect patient prognosis. Here we evaluated the correlation between interleukin-6 (IL6) and the critical unit biomarkers in critically ill patients and the impact of both on prognosis. Patients and Methods This study included adult patients admitted to the intensive care unit for various reasons from January 1st to May 31st, 2023. Baseline characteristics, intensive care unit parameters, and laboratory test and outcome data were obtained from the electronic medical records system. Critical unit parameters were measured using polymerase chain reaction and enzyme-linked immunosorbent assay methods. Correlations were examined between IL6, critical unit parameters, and various outcomes. Results In critically ill patients, IL6 was closely associated with all the critical unit biomarkers (activated partial thromboplastin time, sphingosine 1-phosphate, mitochondrial DNA, mitochondrial fission 1, and Parkin) and the prognoses of patients. A nomogram was constructed using the critical unit biomarkers to predict the in-hospital mortality of critically ill patients. The area under the curve for the mortality prediction model was 0.708. In sensitivity analyses, the predictive effect was better in the non-surgery and tumor groups compared with the surgery and non-tumor groups, with area under the curve values of 0.885 and 0.891, respectively. Conclusion Our study innovatively integrated mitochondrial and endothelial markers in the critical unit to comprehensively evaluate patient prognosis, which may be a trend in the future assessment of critically ill patients. There are few such studies, and ours may promote the progress of related research.
Collapse
Affiliation(s)
- Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qirui Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Yu X, Duan G, Pei P, Chen L, Gu R, Hu W, Zhang H, Wang YD, Gong L, Liu L, Chu TT, Li JP, Luo SZ. Heparan sulfate-dependent phase separation of CCL5 and its chemotactic activity. eLife 2024; 13:RP93871. [PMID: 38949655 PMCID: PMC11216747 DOI: 10.7554/elife.93871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.
Collapse
Affiliation(s)
- Xiaolin Yu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Guangfei Duan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Pengfei Pei
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Long Chen
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Renji Gu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Wenrui Hu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Hongli Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Lili Gong
- Institute of Medical Science, China-Japan Friendship HospitalBeijingChina
| | - Lihong Liu
- Institute of Medical Science, China-Japan Friendship HospitalBeijingChina
| | - Ting-Ting Chu
- Greater Bay Biomedical InnoCenter, Shenzhen Bay LaboratoryShenzhenChina
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical TechnologyBeijingChina
- Department of Medical Biochemistry and Microbiology, University of UppsalaUppsalaSweden
| | - Shi-Zhong Luo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
12
|
Kamenshchikov NO, Diakova ML, Podoksenov YK, Churilina EA, Rebrova TY, Akhmedov SD, Maslov LN, Mukhomedzyanov AV, Kim EB, Tokareva ES, Kravchenko IV, Boiko AM, Kozulin MS, Kozlov BN. Potential Mechanisms for Organoprotective Effects of Exogenous Nitric Oxide in an Experimental Study. Biomedicines 2024; 12:719. [PMID: 38672075 PMCID: PMC11048067 DOI: 10.3390/biomedicines12040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Performing cardiac surgery under cardiopulmonary bypass (CPB) and circulatory arrest (CA) provokes the development of complications caused by tissue metabolism, microcirculatory disorders, and endogenous nitric oxide (NO) deficiency. This study aimed to investigate the potential mechanisms for systemic organoprotective effects of exogenous NO during CPB and CA based on the assessment of dynamic changes in glycocalyx degradation markers, deformation properties of erythrocytes, and tissue metabolism in the experiment. A single-center prospective randomized controlled study was conducted on sheep, n = 24, comprising four groups of six in each. In two groups, NO was delivered at a dose of 80 ppm during CPB ("CPB + NO" group) or CPB and CA ("CPB + CA + NO"). In the "CPB" and "CPB + CA" groups, NO supply was not carried out. NO therapy prevented the deterioration of erythrocyte deformability. It was associated with improved tissue metabolism, lower lactate levels, and higher ATP levels in myocardial and lung tissues. The degree of glycocalyx degradation and endothelial dysfunction, assessed by the concentration of heparan sulfate proteoglycan and asymmetric dimethylarginine, did not change when exogenous NO was supplied. Intraoperative delivery of NO provides systemic organoprotection, which results in reducing the damaging effects of CPB on erythrocyte deformability and maintaining normal functioning of tissue metabolism.
Collapse
Affiliation(s)
| | - Mariia L. Diakova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (N.O.K.); (Y.K.P.); (E.A.C.); (T.Y.R.); (S.D.A.); (L.N.M.); (A.V.M.); (E.B.K.); (E.S.T.); (I.V.K.); (A.M.B.); (M.S.K.); (B.N.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Marongiu F, Ruberto MF, Marongiu S, Matucci Cerinic M, Barcellona D. A journey to vasculopathy in systemic sclerosis: focus on haemostasis and thrombosis. Clin Exp Med 2023; 23:4057-4064. [PMID: 37914967 DOI: 10.1007/s10238-023-01222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Systemic sclerosis is a multisystem connective tissue disease, characterized by endothelial autoimmune activation, along with tissue and vascular fibrosis leading to vasculopathy and to a progressive loss of angiogenesis. This condition further deranges the endothelial barrier favouring the opening of the endothelial junctions allowing the vascular leak in the surrounding tissues: this process may induce cell detachment which allows the contact between platelets and collagen present in the exposed subendothelial layer. Platelets first adhere to collagen via glycoprotein VI and then, immediately aggregate because of the release of von Willebrand factor which is a strong activator of platelet aggregation. Activated platelets exert their procoagulant activity, exposing on their membrane phospholipids and phosphatidylserine, enabling the adsorption of clotting factors ready to form thrombin which in turn drives the amplification of the coagulative cascade. An essential role in the activation of blood coagulation is the tissue factor (TF), which triggers blood coagulation. The TF is found abundantly in the subendothelial collagen and is also expressed by fibroblasts providing a haemostatic covering layer ready to activate coagulation when the endothelial injury occurs. The aim of this review is to focus the attention on the underlying mechanisms related to haemostasis and thrombosis pathophysiology which may have a relevant role in SSc as well as on a possible role of anticoagulation in this disease.
Collapse
Affiliation(s)
- Francesco Marongiu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Thrombosis and Haemostasis Unit, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Maria Filomena Ruberto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvia Marongiu
- Internal Medicine Unit, SS Trinità Hospital of Cagliari, Cagliari, Italy
| | - Marco Matucci Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Doris Barcellona
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
- Thrombosis and Haemostasis Unit, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy.
| |
Collapse
|
14
|
Douin DJ, Fernandez-Bustamante A. Early Fibrinogen Replacement to Treat the Endotheliopathy of Trauma: Novel Resuscitation Strategies in Severe Trauma. Anesthesiology 2023; 139:675-683. [PMID: 37815472 PMCID: PMC10575674 DOI: 10.1097/aln.0000000000004711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The authors provide a comprehensive review of the endothelial glycocalyx, the components that may be targeted to improve clinical outcomes, and the next steps for evaluation in human subjects.
Collapse
Affiliation(s)
- David J Douin
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
15
|
van den Brink DP, Kleinveld DJB, Bongers A, Vos J, Roelofs JTH, Weber NC, van Buul JD, Juffermans NP. The Effects of Heparan Sulfate Infusion on Endothelial and Organ Injury in a Rat Pneumosepsis Model. J Clin Med 2023; 12:6438. [PMID: 37892576 PMCID: PMC10607557 DOI: 10.3390/jcm12206438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Septic shock is characterized by endothelial dysfunction, leading to tissue edema and organ failure. Heparan sulfate (HS) is essential for vascular barrier integrity, possibly via albumin as a carrier. We hypothesized that supplementing fluid resuscitation with HS would improve endothelial barrier function, thereby reducing organ edema and injury in a rat pneumosepsis model. Following intratracheal inoculation with Streptococcus pneumoniae, Sprague Dawley rats were randomized to resuscitation with a fixed volume of either Ringer's Lactate (RL, standard of care), RL supplemented with 7 mg/kg HS, 5% human albumin, or 5% human albumin supplemented with 7 mg/kg HS (n = 11 per group). Controls were sham inoculated animals. Five hours after the start of resuscitation, animals were sacrificed. To assess endothelial permeability, 70 kD FITC-labelled dextran was administered before sacrifice. Blood samples were taken to assess markers of endothelial and organ injury. Organs were harvested to quantify pulmonary FITC-dextran leakage, organ edema, and for histology. Inoculation resulted in sepsis, with increased lactate levels, pulmonary FITC-dextran leakage, pulmonary edema, and pulmonary histologic injury scores compared to healthy controls. RL supplemented with HS did not reduce median pulmonary FITC-dextran leakage compared to RL alone (95.1 CI [62.0-105.3] vs. 87.1 CI [68.9-139.3] µg/mL, p = 0.76). Similarly, albumin supplemented with HS did not reduce pulmonary FITC-dextran leakage compared to albumin (120.0 [93.8-141.2] vs. 116.2 [61.7 vs. 160.8] µg/mL, p = 0.86). No differences were found in organ injury between groups. Heparan sulfate, as an add-on therapy to RL or albumin resuscitation, did not reduce organ or endothelial injury in a rat pneumosepsis model. Higher doses of heparan sulfate may decrease organ and endothelial injury induced by shock.
Collapse
Affiliation(s)
- Daan P. van den Brink
- Amsterdam UMC, Department of Intensive Care Medicine, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Derek J. B. Kleinveld
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Erasmus MC, Department Anesthesiology, Erasmus University of Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Annabel Bongers
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Jaël Vos
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Joris T. H. Roelofs
- Amsterdam UMC, Department of Pathology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam UMC, Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Nina C. Weber
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Amsterdam UMC, Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Jaap D. van Buul
- Sanquin Research and Landsteiner Laboratory, Molecular Cell Biology Laboratory, Department Molecular Hematology, 1066 CX Amsterdam, The Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Nicole P. Juffermans
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Erasmus MC, Department of Intensive Care, Erasmus University of Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
16
|
Hogwood J, Gray E, Mulloy B. Heparin, Heparan Sulphate and Sepsis: Potential New Options for Treatment. Pharmaceuticals (Basel) 2023; 16:271. [PMID: 37259415 PMCID: PMC9959362 DOI: 10.3390/ph16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 08/31/2023] Open
Abstract
Sepsis is a life-threatening hyperreaction to infection in which excessive inflammatory and immune responses cause damage to host tissues and organs. The glycosaminoglycan heparan sulphate (HS) is a major component of the cell surface glycocalyx. Cell surface HS modulates several of the mechanisms involved in sepsis such as pathogen interactions with the host cell and neutrophil recruitment and is a target for the pro-inflammatory enzyme heparanase. Heparin, a close structural relative of HS, is used in medicine as a powerful anticoagulant and antithrombotic. Many studies have shown that heparin can influence the course of sepsis-related processes as a result of its structural similarity to HS, including its strong negative charge. The anticoagulant activity of heparin, however, limits its potential in treatment of inflammatory conditions by introducing the risk of bleeding and other adverse side-effects. As the anticoagulant potency of heparin is largely determined by a single well-defined structural feature, it has been possible to develop heparin derivatives and mimetic compounds with reduced anticoagulant activity. Such heparin mimetics may have potential for use as therapeutic agents in the context of sepsis.
Collapse
Affiliation(s)
- John Hogwood
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms EN6 3QG, UK
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| |
Collapse
|
17
|
Du H, Hu H, Li J, Wang X, Jiang H, Lian J, Zhang Y, Wang P. High levels of exfoliated fragments following glycocalyx destruction in hemorrhagic fever with the renal syndrome are associated with mortality risk. Front Med (Lausanne) 2023; 10:1096353. [PMID: 37138736 PMCID: PMC10149802 DOI: 10.3389/fmed.2023.1096353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Background The glycocalyx is a gel-like structure that covers the luminal side of vascular endothelial cells. It plays an important role in maintaining the integrity of the vascular endothelial barrier structure. However, the presence or absence of glycocalyx destruction in hemorrhagic fever with renal syndrome (HFRS) and its specific mechanism and role is still unclear. Methods In this study, we detected the levels of exfoliated glycocalyx fragments, namely, heparan sulfate (HS), hyaluronic acid (HA), and chondroitin sulfate (CS), in HFRS patients and investigated their clinical application value on the evaluation of disease severity and prognosis prediction. Results The expression of exfoliated glycocalyx fragments in plasma was significantly increased during the acute stage of HFRS. The levels of HS, HA, and CS in HFRS patients during the acute stage were significantly higher than in healthy controls and convalescent stages of the same type. HS and CS during the acute stage gradually increased with the aggravation of HFRS, and both fragments showed a significant association with disease severity. In addition, exfoliated glycocalyx fragments (especially HS and CS) showed a significant correlation with conventional laboratory parameters and hospitalization days. High levels of HS and CS during the acute phase were significantly associated with patient mortality and demonstrated an obvious predictive value for the mortality risk of HFRS. Conclusion Glycocalyx destruction and shedding may be closely associated with endothelial hyperpermeability and microvascular leakage in HFRS. The dynamic detection of the exfoliated glycocalyx fragments may be beneficial for the evaluation of disease severity and prognosis prediction in HFRS.
Collapse
|
18
|
Quaranta DV, Weaver RR, Baumann KK, Fujimoto T, Williams LM, Kim HC, Logsdon AF, Omer M, Reed MJ, Banks WA, Erickson MA. Transport of the Proinflammatory Chemokines C-C Motif Chemokine Ligand 2 (MCP-1) and C-C Motif Chemokine Ligand 5 (RANTES) across the Intact Mouse Blood-Brain Barrier Is Inhibited by Heparin and Eprodisate and Increased with Systemic Inflammation. J Pharmacol Exp Ther 2023; 384:205-223. [PMID: 36310035 PMCID: PMC9827507 DOI: 10.1124/jpet.122.001380] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 01/12/2023] Open
Abstract
One important function of the vascular blood-brain barrier (BBB) is to facilitate neuroimmune communication. The BBB fulfills this function, in part, through its ability to transport cytokines and chemokines. C-C motif chemokine receptor 2 (CCL2) (MCP-1) and C-C motif chemokine receptor 5 (CCL5) (RANTES) are proinflammatory chemokines that mediate neuroimmune responses to acute insults and aspects of brain injury and neurodegenerative diseases; however, a blood-to-brain transport system has not been evaluated for either chemokine in vivo. Therefore, we determined whether CCL2 and CCL5 in blood can cross the intact BBB and enter the brain. Using CD-1 mice, we found that 125I-labeled CCL2 and CCL5 crossed the BBB and entered the brain parenchyma. We next aimed to identify the mechanisms of 125I-CCL2 and 125I-CCL5 transport in an in situ brain perfusion model. We found that both heparin and eprodisate inhibited brain uptake of 125I-CCL2 and 125I-CCL5 in situ, whereas antagonists of their receptors, CCR2 or CCR5, respectively, did not, suggesting that heparan sulfates at the endothelial surface mediate BBB transport. Finally, we showed that CCL2 and CCL5 transport across the BBB increased following a single injection of 0.3 mg/kg lipopolysaccharide. These data demonstrate that CCL2 and CCL5 in the brain can derive, in part, from the circulation, especially during systemic inflammation. Further, binding to the BBB-associated heparan sulfate is a mechanism by which both chemokines can cross the intact BBB, highlighting a novel therapeutic target for treating neuroinflammation. SIGNIFICANCE STATEMENT: Our work demonstrates that C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 5 (CCL5) can cross the intact blood-brain barrier and that transport is robustly increased during inflammation. These data suggest that circulating CCL2 and CCL5 can contribute to brain levels of each chemokine. We further show that the transport of both chemokines is inhibited by heparin and eprodisate, suggesting that CCL2/CCL5-heparan sulfate interactions could be therapeutically targeted to limit accumulation of these chemokines in the brain.
Collapse
Affiliation(s)
- Daniel V Quaranta
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Riley R Weaver
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Kristen K Baumann
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Takashi Fujimoto
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Lindsey M Williams
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Hyung Chan Kim
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Aric F Logsdon
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Mohamed Omer
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - May J Reed
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| |
Collapse
|
19
|
Richter RP, Ashtekar AR, Zheng L, Pretorius D, Kaushlendra T, Sanderson RD, Gaggar A, Richter JR. Glycocalyx heparan sulfate cleavage promotes endothelial cell angiopoietin-2 expression by impairing shear stress-related AMPK/FoxO1 signaling. JCI Insight 2022; 7:155010. [PMID: 35763350 PMCID: PMC9462499 DOI: 10.1172/jci.insight.155010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Angiopoietin-2 (Ang-2) is a key mediator of vascular disease during sepsis, and elevated plasma levels of Ang-2 are associated with organ injury scores and poor clinical outcomes. We have previously observed that biomarkers of endothelial glycocalyx (EG) damage correlate with plasma Ang-2 levels, suggesting a potential mechanistic linkage between EG injury and Ang-2 expression during states of systemic inflammation. However, the cell signaling mechanisms regulating Ang-2 expression following EG damage are unknown. In the current study, we determined the temporal associations between plasma heparan sulfate (HS) levels as a marker of EG erosion and plasma Ang-2 levels in children with sepsis and in mouse models of sepsis. Secondly, we evaluated the role of shear stress-mediated 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling in Ang-2 expression following enzymatic HS cleavage from the surface of human primary lung microvascular endothelial cells (HLMVEC). We found that plasma HS levels peak prior to plasma Ang-2 levels in children and mice with sepsis. Further, we discovered that impaired AMPK signaling contributes to increased Ang-2 expression following HS cleavage from flow conditioned HLMVECs, establishing a novel paradigm by which Ang-2 may be upregulated during sepsis.
Collapse
Affiliation(s)
- Robert P Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Amit R Ashtekar
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Lei Zheng
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Danielle Pretorius
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| | - Tripathi Kaushlendra
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, United States of America
| | - Jillian R Richter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| |
Collapse
|
20
|
Shukla SD, Valyi-Nagy T. Host Molecules That Promote Pathophysiology of Ocular Herpes. Front Microbiol 2022; 13:818658. [PMID: 35145504 PMCID: PMC8822155 DOI: 10.3389/fmicb.2022.818658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) is a human virus that causes lifelong infections in a large population worldwide. Recurrence of HSV-1 from latency in trigeminal ganglion (TG) is the trigger of the morbidities seen with this virus. In addition to causing fever blisters and cold sores, occasionally the virus can also cause corneal lesions resulting in blindness in untreated individuals. Several host cell proteins play important roles in HSV-1 infection of the eye. HSV-1 enters into the corneal epithelial cells via its interactions with cell surface receptors. In parallel, the Toll-like receptors sense viral invasion and activate defense mechanisms to fight the infection. New data shows that Optineurin, a host autophagy receptor is also activated to degrade viral particles. In contrast, activation of heparanase, a host enzyme, induces an immune-inflammatory response, which triggers pro-inflammatory and pro-angiogenic environment and ultimately results in many of the clinical features seen with HSV-1 infection of the cornea. Rarely, HSV-1 can also spread to the central nervous system causing serious diseases. In this review, we summarize the latest knowledge on host molecules that promote pathophysiological aspects of ocular herpes.
Collapse
Affiliation(s)
- Sajal Deea Shukla
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Illinois Mathematics and Science Academy, Aurora, IL, United States
| | - Tibor Valyi-Nagy
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Tibor Valyi-Nagy,
| |
Collapse
|
21
|
Kinoshita T, Tomita H, Okada H, Niwa A, Hyodo F, Kanayama T, Matsuo M, Imaizumi Y, Kuroda T, Hatano Y, Miyai M, Egashira Y, Enomoto Y, Nakayama N, Sugie S, Matsumoto K, Yamaguchi Y, Matsuo M, Hara H, Iwama T, Hara A. Endothelial cell-specific reduction of heparan sulfate suppresses glioma growth in mice. Discov Oncol 2021; 12:50. [PMID: 34790962 PMCID: PMC8585801 DOI: 10.1007/s12672-021-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Heparan sulfate (HS) is one of the factors that has been suggested to be associated with angiogenesis and invasion of glioblastoma (GBM), an aggressive and fast-growing brain tumor. However, it remains unclear how HS of endothelial cells is involved in angiogenesis in glioblastoma and its prognosis. Thus, we investigated the effect of endothelial cell HS on GBM development. METHODS We generated endothelial cell-specific knockout of Ext1, a gene encoding a glycosyltransferase and essential for HS synthesis, and murine GL261 glioblastoma cells were orthotopically transplanted. Two weeks after transplantation, we examined the tumor progression and underlying mechanisms. RESULTS The endothelial cell-specific Ext1 knockout (Ext1 CKO ) mice exhibited reduced HS expression specifically in the vascular endothelium of the brain capillaries compared with the control wild-type (WT) mice. GBM growth was significantly suppressed in Ext1 CKO mice compared with that in WT mice. After GBM transplantation, the survival rate was significantly higher in Ext1 CKO mice than in WT mice. We investigated how the effect of fibroblast growth factor 2 (FGF2), which is known as an angiogenesis-promoting factor, differs between Ext1 CKO and WT mice by using an in vivo Matrigel assay and demonstrated that endothelial cell-specific HS reduction attenuated the effect of FGF2 on angiogenesis. CONCLUSIONS HS reduction in the vascular endothelium of the brain suppressed GBM growth and neovascularization in mice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12672-021-00444-3.
Collapse
Affiliation(s)
- Takamasa Kinoshita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Takahiro Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Masafumi Miyai
- Department of Neurosurgery, Ogaki Tokusyukai Hospital, Ogaki, Gifu 503-0015 Japan
| | - Yusuke Egashira
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, 500-8523 Japan
| | - Kazu Matsumoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, CA USA
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196 Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| |
Collapse
|
22
|
Nadir Y, Lisman T. Hemostatic and Nonhemostatic Effects of Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:238-239. [PMID: 33794548 DOI: 10.1055/s-0041-1724119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ton Lisman
- Department of Surgery, Surgical Research Laboratory, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|