1
|
Ambrose A, McCabe M, Hung C, Sosova I, Seres P, Mercimek-Andrews S. Outcome of creatine supplementation therapy in phosphoglucomutase-1 deficiency associated congenital disorders of glycosylation: Novel insights. Mol Genet Metab Rep 2025; 43:101212. [PMID: 40242152 PMCID: PMC12002938 DOI: 10.1016/j.ymgmr.2025.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Background Biallelic pathogenic variants in PGM1 result in phosphoglucomutase 1 (PGM1) deficiency that is one of the congenital disorders of glycosylation (CDG) (PGM1-CDG). Phenotypic spectrum includes congenital malformations, and muscular, cardiac, hepatic, endocrine and hematologic phenotypes. Current treatment consists of D-galactose therapy that results in clinical and biochemical improvements. To improve fatigue, and exercise intolerance, we started creatine supplementation therapy. Material and methods We reviewed electronic patient chart. We applied Nijmegen Pediatric CDG Rating Scale (NPCRS) and The Functional Assessment of Chronic Illness Therapy Fatigue scale (FACIT-F). We measured creatine metabolism biomarkers. Results This is a 29-year-old female with PGM1-CDG, confirmed diagnosis by clinical exome sequencing. She has been treated with D-galactose therapy which did not improve her fatigue and exercise intolerance. She was started on creatine supplementation therapy at the age of 27 years which led to decreased daytime sleeping, increased exercise capacity and improvements in her NPCRS, and FACIT-F. Her plasma guanidinoacetate was low. She had elevated urine galactitol on D-galactose therapy. Discussion PGM1-CDG associated myopathy is likely due to combination of several factors including abnormal muscle carbohydrate metabolism, abnormal N-glycosylation of proteins involved in the muscle functions and creatine transport and altered muscle energy homeostasis. It was previously shown that creatine supplementation therapy improves myopathy in patients with mitochondrial cytopathies. We think that the use of creatine supplementation therapy coincided with improvements in fatigue and exercise intolerance subjectively and objectively in our patient.
Collapse
Affiliation(s)
- Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Morganne McCabe
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Iveta Sosova
- Alberta Newborn Screening and Biochemical Genetics Laboratory, University of Alberta Hospital, Alberta Precision Laboratories, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Alberta Health Services, Edmonton Zone, Alberta, Canada
| |
Collapse
|
2
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Benbrahim FZ, El Haddad S, Allali N, Chat L. Moyamoya syndrome secondary to MELAS syndrome in a child: A case report and literature revue. Radiol Case Rep 2024; 19:6347-6353. [PMID: 39387012 PMCID: PMC11461959 DOI: 10.1016/j.radcr.2024.08.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Mitochondrial myopathy with lactic acidosis and stroke-like episodes is a rare mitochondrial disorder, most often revealed by symptoms and signs that typically include mitochondrial myopathy, encephalopathy with stroke-like episodes, seizures and/or dementia, and lactic acidosis. Imaging findings, although diverse, usually present characteristic features that help differentiate these disorders from vascular syndromes. We present a case of a 2-year and 4-month-old girl with recurrent ischemic strokes associated with nonterritorial cortico-subcortical foci on brain imaging, along with stenosis of the terminal portion of the internal carotid arteries associated with a neovascular network. An elevated serum lactate level was found in the biological assessment. This article provides an overview of the various neuroimaging modalities available and the advent of new imaging techniques used in these disorders. It highlights the importance of considering a diagnosis of hereditary mitochondrial disorder in the presence of recurrent atypical stroke-like episodes when neuroimaging is inconsistent with ischemic infarction and reports an exceptional association with Moyamoya syndrome.
Collapse
Affiliation(s)
- Fatima Zohra Benbrahim
- Department of Radiology, Children Hospital of Rabat, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| | - Siham El Haddad
- Department of Radiology, Children Hospital of Rabat, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| | - Nazik Allali
- Department of Radiology, Children Hospital of Rabat, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| | - Latifa Chat
- Department of Radiology, Children Hospital of Rabat, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| |
Collapse
|
4
|
Yazdani M. Cellular and Molecular Responses to Mitochondrial DNA Deletions in Kearns-Sayre Syndrome: Some Underlying Mechanisms. Mol Neurobiol 2024; 61:5665-5679. [PMID: 38224444 DOI: 10.1007/s12035-024-03938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Kearns-Sayre syndrome (KSS) is a rare multisystem mitochondrial disorder. It is caused by mitochondrial DNA (mtDNA) rearrangements, mostly large-scale deletions of 1.1-10 kb. These deletions primarily affect energy supply through impaired oxidative phosphorylation and reduced ATP production. This impairment gives rise to dysfunction of several tissues, in particular those with high energy demand like brain and muscles. Over the past decades, changes in respiratory chain complexes and energy metabolism have been emphasized, whereas little attention has been paid to other reports on ROS overproduction, protein synthesis inhibition, myelin vacuolation, demyelination, autophagy, apoptosis, and involvement of lipid raft and oligodendrocytes in KSS. Therefore, this paper draws attention towards these relatively underemphasized findings that might further clarify the pathologic cascades following deletions in the mtDNA.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway.
| |
Collapse
|
5
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
6
|
Man JHK, van Gelder CAGH, Breur M, Okkes D, Molenaar D, van der Sluis S, Abbink T, Altelaar M, van der Knaap MS, Bugiani M. Cortical Pathology in Vanishing White Matter. Cells 2022; 11:cells11223581. [PMID: 36429009 PMCID: PMC9688115 DOI: 10.3390/cells11223581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/24/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies.
Collapse
Affiliation(s)
- Jodie H. K. Man
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Charlotte A. G. H. van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CS Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CS Utrecht, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Daniel Okkes
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Douwe Molenaar
- Department of Systems Bioinformatics, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Department of Child and Adolescent Psychology and Psychiatry, Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Truus Abbink
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CS Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CS Utrecht, The Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marianna Bugiani
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-6-48517239
| |
Collapse
|
7
|
Therapeutical Management and Drug Safety in Mitochondrial Diseases-Update 2020. J Clin Med 2020; 10:jcm10010094. [PMID: 33383961 PMCID: PMC7794679 DOI: 10.3390/jcm10010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial diseases (MDs) are a group of genetic disorders that may manifest with vast clinical heterogeneity in childhood or adulthood. These diseases are characterized by dysfunctional mitochondria and oxidative phosphorylation deficiency. Patients are usually treated with supportive and symptomatic therapies due to the absence of a specific disease-modifying therapy. Management of patients with MDs is based on different therapeutical strategies, particularly the early treatment of organ-specific complications and the avoidance of catabolic stressors or toxic medication. In this review, we discuss the therapeutic management of MDs, supported by a revision of the literature, and provide an overview of the drugs that should be either avoided or carefully used both for the specific treatment of MDs and for the management of comorbidities these subjects may manifest. We finally discuss the latest therapies approved for the management of MDs and some ongoing clinical trials.
Collapse
|
8
|
Zhang L, Zhang Z, Khan A, Zheng H, Yuan C, Jiang H. Advances in drug therapy for mitochondrial diseases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:17. [PMID: 32055608 PMCID: PMC6995731 DOI: 10.21037/atm.2019.10.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022]
Abstract
Mitochondrial diseases are a group of clinically and genetically heterogeneous disorders driven by oxidative phosphorylation dysfunction of the mitochondrial respiratory chain which due to pathogenic mutations of mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). Recent progress in molecular genetics and biochemical methodologies has provided a better understanding of the etiology and pathogenesis of mitochondrial diseases, and this has expanded the clinical spectrum of this conditions. But the treatment of mitochondrial diseases is largely symptomatic and thus does not significantly change the course of the disease. Few clinical trials have led to the design of drugs aiming at enhancing mitochondrial function or reversing the consequences of mitochondrial dysfunction which are now used in the clinical treatment of mitochondrial diseases. Several other drugs are currently being evaluated for clinical management of patients with mitochondrial diseases. In this review, the current status of treatments for mitochondrial diseases is described systematically, and newer potential treatment strategies for mitochondrial diseases are also discussed.
Collapse
Affiliation(s)
- Lufei Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoyong Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aisha Khan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hui Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Marelli C, Salsano E, Politi LS, Labauge P. Spinal cord involvement in adult-onset metabolic and genetic diseases. J Neurol Neurosurg Psychiatry 2019; 90:211-218. [PMID: 30150321 DOI: 10.1136/jnnp-2018-318666] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
In adulthood, spinal cord MRI abnormalities such as T2-weighted hyperintensities and atrophy are commonly associated with a large variety of causes (inflammation, infections, neoplasms, vascular and spondylotic diseases). Occasionally, they can be due to rare metabolic or genetic diseases, in which the spinal cord involvement can be a prominent or even predominant feature, or a secondary one. This review focuses on these rare diseases and associated spinal cord abnormalities, which can provide important but over-ridden clues for the diagnosis. The review was based on a PubMed search (search terms: 'spinal cord' AND 'leukoencephalopathy' OR 'leukodystrophy'; 'spinal cord' AND 'vitamin'), further integrated according to the authors' personal experience and knowledge. The genetic and metabolic diseases of adulthood causing spinal cord signal alterations were identified and classified into four groups: (1) leukodystrophies; (2) deficiency-related metabolic diseases; (3) genetic and acquired toxic/metabolic causes; and (4) mitochondrial diseases. A number of genetic and metabolic diseases of adulthood causing spinal cord atrophy without signal alterations were also identified. Finally, a classification based on spinal MRI findings is presented, as well as indications about the diagnostic work-up and differential diagnosis. Some of these diseases are potentially treatable (especially if promptly recognised), while others are inherited as autosomal dominant trait. Therefore, a timely diagnosis is needed for a timely therapy and genetic counselling. In addition, spinal cord may be the main site of pathology in many of these diseases, suggesting a tempting role for spinal cord abnormalities as surrogate MRI biomarkers.
Collapse
Affiliation(s)
- Cecilia Marelli
- Department of Neurology, Gui de Chauliac University Hospital, Montpellier, France .,Expert Center for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, Gui de Chauliac University Hospital, Montpellier, France.,EA7402 Institut Universitaire de Recherche Clinique and Laboratoire de Genetique Moleculaire, Gui de Chauliac University Hospital, Montpellier, France.,MMDN, Université de Montpellier, EPHE, Inserm UMR-S1198, Montpellier, France
| | - Ettore Salsano
- Unit of Neurodegenerative and Neurometabolic Rare Diseases, RCCS Foundation 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Letterio S Politi
- Advanced MRI Centre, University of Massachusetts Medical School, Worcester, USA.,Neuroimaging Research, Boston Children's Hospital, Boston, MA, USA
| | - Pierre Labauge
- Department of Neurology, Gui de Chauliac University Hospital, Montpellier, France.,Reference Centre for Adult Leukodystrophies, Gui de Chauliac University Hospital, Montpellier, France
| |
Collapse
|
10
|
Abstract
Mitochondrial diseases are a clinically and genetically heterogeneous group of disorders. The underlying dysfunction of the mitochondrial electron transport chain and oxidative phosphorylation is caused by variants of genes encoding mitochondrial proteins. Despite substantial advances in the understanding of the mechanism of these diseases, there are still no satisfactory therapies available. Therapeutic strategies include the use of antioxidants, inducers of mitochondrial biogenesis, enhancers of electron transfer chain function, energy buffers, amino acids restoring NO production, nucleotide bypass therapy, liver transplantation, and gene therapy. Although there are some promising projects underway, to date satisfactory therapies are missing.
Collapse
Affiliation(s)
- Florian B Lagler
- Institute for Inborn Errors of Metabolism and Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
11
|
Abstract
OBJECTIVES Because the central nervous system (CNS) is the second most frequently affected organ in mitochondrial disorders (MIDs) and since paediatric MIDs are increasingly recognised, it is important to know about the morphological CNS abnormalities on imaging in these patients. This review aims at summarising and discussing current knowledge and recent advances concerning CNS imaging abnormalities in paediatric MIDs. METHODS A systematic literature review was conducted. RESULTS The most relevant CNS abnormalities in paediatric MIDs on imaging include white and grey matter lesions, stroke-like lesions as the morphological equivalent of stroke-like episodes, cerebral atrophy, calcifications, optic atrophy, and lactacidosis. Because these CNS lesions may be seen with or without clinical manifestations, it is important to screen all MID patients for cerebral involvement. Some of these lesions may remain unchanged for years whereas others may be dynamic, either in the sense of progression or regression. Typical dynamic lesions are stroke-like lesions and grey matter lesions. Clinically relevant imaging techniques for visualisation of CNS abnormalities in paediatric MIDs are computed tomography, magnetic resonance (MR) imaging, MR spectroscopy, single-photon emission computed tomography, positron-emission tomography, and angiography. CONCLUSIONS CNS imaging in paediatric MIDs is important for diagnosing and monitoring CNS involvement. It also contributes to the understanding of the underlying pathomechanisms that lead to CNS involvement in MIDs.
Collapse
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis, El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
12
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab 2017; 122:1-9. [PMID: 28943110 PMCID: PMC5773113 DOI: 10.1016/j.ymgme.2017.09.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/10/2023]
Abstract
Mitochondrial diseases are a clinically and genetically heterogeneous group of disorders that result from dysfunction of the mitochondrial oxidative phosphorylation due to molecular defects in genes encoding mitochondrial proteins. Despite the advances in molecular and biochemical methodologies leading to better understanding of the etiology and mechanism of these diseases, there are still no satisfactory therapies available for mitochondrial disorders. Treatment for mitochondrial diseases remains largely symptomatic and does not significantly alter the course of the disease. Based on limited number of clinical trials, several agents aiming at enhancing mitochondrial function or treating the consequences of mitochondrial dysfunction have been used. Several agents are currently being evaluated for mitochondrial diseases. Therapeutic strategies for mitochondrial diseases include the use of agents enhancing electron transfer chain function (coenzyme Q10, idebenone, riboflavin, dichloroacetate, and thiamine), agents acting as energy buffer (creatine), antioxidants (vitamin C, vitamin E, lipoic acid, cysteine donors, and EPI-743), amino acids restoring nitric oxide production (arginine and citrulline), cardiolipin protector (elamipretide), agents enhancing mitochondrial biogenesis (bezafibrate, epicatechin, and RTA 408), nucleotide bypass therapy, liver transplantation, and gene therapy. Although, there is a lack of curative therapies for mitochondrial disorders at the current time, the increased number of clinical research evaluating agents that target different aspects of mitochondrial dysfunction is promising and is expected to generate more therapeutic options for these diseases in the future.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | | | - Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
14
|
|
15
|
Iida Y, Fujii K, Mizuochi H, Suwabe SI, Wakui A, Uchikawa H, Shimojo N. Rostral brain lesions of Leigh syndrome associated with the mitochondrial DNA 8993T>G mutation. J Neurol Sci 2016; 363:77-9. [PMID: 27000225 DOI: 10.1016/j.jns.2016.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Yukiko Iida
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Pediatrics, Kimitsu Chuo Hospital, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Hiromi Mizuochi
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Pediatrics, Kimitsu Chuo Hospital, Chiba, Japan
| | | | - Atsuko Wakui
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Uchikawa
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
16
|
Abstract
Up to 14% of patients with congenital metabolic disease may show structural brain abnormalities from perturbation of cell proliferation, migration, and/or organization. Most inborn errors of metabolism have a postnatal onset. Abnormalities from genetic disease processes have a prenatal onset. Energy impairment, substrate insufficiency, cell membrane receptor and cell signaling abnormalities, and toxic byproduct accumulation are associations between genetic disorders and structural brain anomalies. Collective imaging patterns of brain abnormalities can provide clues to the underlying etiology. We review selected metabolic diseases associated with brain malformations and highlight characteristic clinical and imaging manifestations that help narrow the differential diagnosis.
Collapse
Affiliation(s)
- Matthew T Whitehead
- Department of Radiology, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA.
| | - Stanley T Fricke
- Department of Radiology, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Andrea L Gropman
- Department of Neurology, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| |
Collapse
|
17
|
Nakayama T, Al-Maawali A, El-Quessny M, Rajab A, Khalil S, Stoler JM, Tan WH, Nasir R, Schmitz-Abe K, Hill RS, Partlow JN, Al-Saffar M, Servattalab S, LaCoursiere CM, Tambunan DE, Coulter ME, Elhosary PC, Gorski G, Barkovich AJ, Markianos K, Poduri A, Mochida GH. Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination. Am J Hum Genet 2015; 96:709-19. [PMID: 25865492 PMCID: PMC4570282 DOI: 10.1016/j.ajhg.2015.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
Despite recent advances in understanding the genetic bases of microcephaly, a large number of cases of microcephaly remain unexplained, suggesting that many microcephaly syndromes and associated genes have yet to be identified. Here, we report mutations in PYCR2, which encodes an enzyme in the proline biosynthesis pathway, as the cause of a unique syndrome characterized by postnatal microcephaly, hypomyelination, and reduced cerebral white-matter volume. Linkage mapping and whole-exome sequencing identified homozygous mutations (c.355C>T [p.Arg119Cys] and c.751C>T [p.Arg251Cys]) in PYCR2 in the affected individuals of two consanguineous families. A lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of PYCR2. When mutant cDNAs were transfected into HEK293FT cells, both variant proteins retained normal mitochondrial localization but had lower amounts than the wild-type protein, suggesting that the variant proteins were less stable. A PYCR2-deficient HEK293FT cell line generated by genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that PYCR2 loss of function led to decreased mitochondrial membrane potential and increased susceptibility to apoptosis under oxidative stress. Morpholino-based knockdown of a zebrafish PYCR2 ortholog, pycr1b, recapitulated the human microcephaly phenotype, which was rescued by wild-type human PYCR2 mRNA, but not by mutant mRNAs, further supporting the pathogenicity of the identified variants. Hypomyelination and the absence of lax, wrinkly skin distinguishes this condition from that caused by previously reported mutations in the gene encoding PYCR2's isozyme, PYCR1, suggesting a unique and indispensable role for PYCR2 in the human CNS during development.
Collapse
Affiliation(s)
- Tojo Nakayama
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Almundher Al-Maawali
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, College of Medicine and Health Science, Sultan Qaboos University, Muscat 123, Oman
| | - Malak El-Quessny
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anna Rajab
- National Genetics Center, Directorate General of Health Affairs, Ministry of Health, Muscat 113, Oman
| | - Samir Khalil
- Department of Pediatrics, Al-Makassed Islamic Charitable Society Hospital, Jerusalem 91220; Faculty of Medicine, Al-Quds University, Jerusalem 90612
| | - Joan M Stoler
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ramzi Nasir
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Klaus Schmitz-Abe
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - R Sean Hill
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Muna Al-Saffar
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al-Ain, United Arab Emirates
| | - Sarah Servattalab
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Dimira E Tambunan
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael E Coulter
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Princess C Elhosary
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Grzegorz Gorski
- Cellular Neuroscience Core, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyriacos Markianos
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Abstract
Imaging of central-nervous-system (CNS) abnormalities is important in patients with mitochondrial disorders (MCDs) since the CNS is the organ second most frequently affected in MCDs and some of them are potentially treatable. Clinically relevant imaging techniques for visualization of CNS abnormalities in MCDs are computed tomography, magnetic resonance imaging, and MR-spectroscopy. The CNS abnormalities in MCDs visualized by imaging techniques include stroke-like lesions with cytotoxic or vasogenic edema, laminar cortical necrosis, basal ganglia necrosis, focal or diffuse white matter lesions, focal or diffuse atrophy, intra-cerebral calcifications, cysts, lacunas, hypometabolisation, lactacidosis, hemorrhages, cerebral hypo- or hyperperfusion, intra-cerebral artery stenoses, or moyamoya syndrome. The CNS lesions may proceed with or without clinical manifestations, why neuroimaging should be routinely carried out in all MCDs to assess the degree of CNS involvement. Some of these lesions may remain unchanged for years, some may show contiguous spread and progression, but some may even disappear, spontaneously or in response to medication. Dynamics of Stroke-like lesions may be positively influenced by L-arginine, dichloracetate, steroids, edavarone, or antiepileptics. Symptomatic treatment of CNS abnormalities in MCD patients may positively influence their outcome.
Collapse
|
19
|
Inborn errors of metabolism: combining clinical and radiologic clues to solve the mystery. AJR Am J Roentgenol 2014; 203:W315-27. [PMID: 25148190 DOI: 10.2214/ajr.13.11154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Inborn errors of metabolism in children can be challenging to interpret because of the similarity of their appearances on imaging. There are important clues to the diagnosis based on clinical history, head circumference (e.g., macrocephaly), geographic distribution of lesions (e.g., subcortical vs deep white matter or frontal vs parietooccipital), and other imaging features (e.g., contrast enhancement, calcification, cysts, and cortical dysplasia). CONCLUSION In this article, we present an algorithm-based approach to diagnosing pediatric metabolic disease with a discussion of key imaging features.
Collapse
|
20
|
Melchionda L, Haack TB, Hardy S, Abbink TEM, Fernandez-Vizarra E, Lamantea E, Marchet S, Morandi L, Moggio M, Carrozzo R, Torraco A, Diodato D, Strom TM, Meitinger T, Tekturk P, Yapici Z, Al-Murshedi F, Stevens R, Rodenburg RJ, Lamperti C, Ardissone A, Moroni I, Uziel G, Prokisch H, Taylor RW, Bertini E, van der Knaap MS, Ghezzi D, Zeviani M. Mutations in APOPT1, encoding a mitochondrial protein, cause cavitating leukoencephalopathy with cytochrome c oxidase deficiency. Am J Hum Genet 2014; 95:315-25. [PMID: 25175347 PMCID: PMC4157140 DOI: 10.1016/j.ajhg.2014.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/08/2014] [Indexed: 11/17/2022] Open
Abstract
Cytochrome c oxidase (COX) deficiency is a frequent biochemical abnormality in mitochondrial disorders, but a large fraction of cases remains genetically undetermined. Whole-exome sequencing led to the identification of APOPT1 mutations in two Italian sisters and in a third Turkish individual presenting severe COX deficiency. All three subjects presented a distinctive brain MRI pattern characterized by cavitating leukodystrophy, predominantly in the posterior region of the cerebral hemispheres. We then found APOPT1 mutations in three additional unrelated children, selected on the basis of these particular MRI features. All identified mutations predicted the synthesis of severely damaged protein variants. The clinical features of the six subjects varied widely from acute neurometabolic decompensation in late infancy to subtle neurological signs, which appeared in adolescence; all presented a chronic, long-surviving clinical course. We showed that APOPT1 is targeted to and localized within mitochondria by an N-terminal mitochondrial targeting sequence that is eventually cleaved off from the mature protein. We then showed that APOPT1 is virtually absent in fibroblasts cultured in standard conditions, but its levels increase by inhibiting the proteasome or after oxidative challenge. Mutant fibroblasts showed reduced amount of COX holocomplex and higher levels of reactive oxygen species, which both shifted toward control values by expressing a recombinant, wild-type APOPT1 cDNA. The shRNA-mediated knockdown of APOPT1 in myoblasts and fibroblasts caused dramatic decrease in cell viability. APOPT1 mutations are responsible for infantile or childhood-onset mitochondrial disease, hallmarked by the combination of profound COX deficiency with a distinctive neuroimaging presentation.
Collapse
Affiliation(s)
- Laura Melchionda
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Steven Hardy
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Truus E M Abbink
- Departments of Child Neurology and Functional Genomics, Neuroscience Campus Amsterdam, VU University and VU University Medical Center, Amsterdam 1081 HV, the Netherlands
| | | | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy
| | - Silvia Marchet
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Institute of Neurology Besta, 20133 Milan, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Department of Neurology, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Rosalba Carrozzo
- Unit of Neuromuscular Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, 00165 Rome, Italy
| | - Alessandra Torraco
- Unit of Neuromuscular Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, 00165 Rome, Italy
| | - Daria Diodato
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy; Unit of Neuromuscular Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, 00165 Rome, Italy
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Pinar Tekturk
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Zuhal Yapici
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - René Stevens
- Department of Paediatrics, CHC Clinique de l'Espérance at Liège, Liège 4000, Belgium
| | - Richard J Rodenburg
- Nijmegen Center for Mitochondrial Disorders, Laboratory for Genetic, Endocrine, and Metabolic Disorders, Department of Pediatrics, Radboud University Medical Center, 9101 Nijmegen, the Netherlands
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy
| | - Anna Ardissone
- Department of Child Neurology, Foundation IRCCS Institute of Neurology Besta, 20133 Milan, Italy
| | - Isabella Moroni
- Department of Child Neurology, Foundation IRCCS Institute of Neurology Besta, 20133 Milan, Italy
| | - Graziella Uziel
- Department of Child Neurology, Foundation IRCCS Institute of Neurology Besta, 20133 Milan, Italy
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, 00165 Rome, Italy
| | - Marjo S van der Knaap
- Departments of Child Neurology and Functional Genomics, Neuroscience Campus Amsterdam, VU University and VU University Medical Center, Amsterdam 1081 HV, the Netherlands
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy.
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy; MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| |
Collapse
|
21
|
Tenney JR, Prada CE, Hopkin RJ, Hallinan BE. Early spinal cord and brainstem involvement in infantile Leigh syndrome possibly caused by a novel variant. J Child Neurol 2013; 28:1681-5. [PMID: 23143729 DOI: 10.1177/0883073812464273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leigh syndrome, due to a dysfunction of mitochondrial energy metabolism, is a genetically heterogeneous and progressive neurologic disorder that usually occurs in infancy and childhood. Its clinical presentation and neuroimaging findings can be variable, especially early in the course of the disease. This report presents a patient with infantile Leigh syndrome who had atypical radiologic findings on serial neuroimaging studies with early and severe involvement of the cervical spinal cord and brainstem and injury to the thalami and basal ganglia occurring only late in the clinical course. Postmortem microscopic examination supported this timing of injury within the central nervous system. In addition, mitochondrial deoxyribonucleic acid sequencing showed a novel homoplasmic variant that could be responsible for this unique lethal form of Leigh syndrome.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- 1Department of Pediatrics, Division of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Fetal magnetic resonance imaging (MRI) is used with increasing frequency as a complementary imaging modality to ultrasound (US) in prenatal diagnosis. Fetal MRI displays the fetal, uterine, and extrauterine anatomy in ways that allow confirmation of normal anatomy and the diagnosis of pathological entities that were formerly very difficult to detect prenatally. Comparison of US views with standard orthogonal plane MR images reinforces the understanding of fetal anatomy as visualized with US. Technological advances in US equipment have allowed the recent description of subtle fetal anatomical structures. Similarly, knowledge of the MRI appearances of pathological conditions has opened opportunities for the sonographic diagnosis of entities such as brainstem malformations and alterations in the normal transient laminar pattern that occur during development of the fetal cerebrum. Fetal MRI can confirm suspicious US findings and thus add confidence in a particular prenatal diagnosis before performing invasive and interventional procedures. Specific MRI sequences can be used to add information about the chemical composition of fetal structures, such as fat, blood, and meconium. Dynamic MRI sequences have increased understanding of gestational age-dependent behavior, and assist the sonographer in assessment of fetal structural anomalies that cause abnormal movement and behavior. The technological ability of US to demonstrate very small structures complements the lower resolution of fetal MR images, whereas the ability of MR to visualize the whole fetus improves the limited views necessitated by US. Therefore, both US and fetal MRI have complementary strengths and weaknesses that can be used to full advantage in prenatal diagnosis.
Collapse
|
23
|
Salsano E, Farina L, Lamperti C, Piscosquito G, Salerno F, Morandi L, Carrara F, Lamantea E, Zeviani M, Uziel G, Savoiardo M, Pareyson D. Adult-onset leukodystrophies from respiratory chain disorders: do they exist? J Neurol 2013; 260:1617-23. [PMID: 23358625 DOI: 10.1007/s00415-013-6844-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Respiratory chain disorders (RCDs) have been included in the differential diagnosis of adult-onset leukodystrophies. Here, we first report a 32-year-old female with an atypical, adult-onset, non-syndromic RCD due to a mitochondrial DNA deletion and manifesting as complicated ataxia. A 'leukodystrophic' pattern was found on brain MRI, but it was neither isolated nor predominant because of the presence of overt basal ganglia and infratentorial lesions, which led us to the proper diagnosis. Subsequently, we evaluated our series of patients with RCDs in order to verify whether a 'leukodystrophic' pattern with little or no involvement of deep grey structures and brainstem may be found in adult-onset RCDs, as reported in children. Among 52 patients with adult-onset RCDs, no case with a 'leukodystrophic' pattern was found, apart from three cases with a classical phenotype of mitochondrial neurogastrointestinal encephalopathy. In addition, no case of RCDs was found among six cases of adult-onset leukodystrophy of unknown origin and at least one feature suggestive of mitochondrial disease. The review of the literature was in agreement with these findings. Thus, we provide evidence that, unlike in children, RCDs should not be included in the differential diagnosis of adult-onset leukodystrophies, except when there are additional MRI findings or clinical features which unequivocally point towards a mitochondrial disorder.
Collapse
Affiliation(s)
- Ettore Salsano
- Unit of Neurology VIII, Fondazione IRCCS Istituto Neurologico C. Besta, via Celoria 11, 20133, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B, Raiman J. Complex II deficiency--a case report and review of the literature. Am J Med Genet A 2013; 161A:285-94. [PMID: 23322652 DOI: 10.1002/ajmg.a.35714] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 09/15/2012] [Indexed: 11/07/2022]
Abstract
Complex II deficiency is a rare cause of mitochondrial respiratory chain defects with a prevalence of 2-23%. It is exclusively nuclear encoded and functions in the citric acid cycle by oxidizing succinate to fumarate and in the mitochondrial electron transport chain (ETC) by transferring electrons to ubiquinone. Of the four subunits, SDHA and SDHB are catalytic and SDHC and SDHD are anchoring. Mutations in SDHA and SDHAF1 (assembly factor) have been found in patients with CII deficiency and a mitochondrial phenotype. We present a patient with CII deficiency with a previously undescribed phenotype of dilated cardiomyopathy, left ventricular noncompaction, failure to thrive, hypotonia, and developmental delay. Also, a comprehensive review of 36 cases published in the literature was undertaken. The results show that CII deficiency has a variable phenotype with no correlation with residual complex activity in muscle although the phenotype and enzyme activities are comparable within a family. For some, the condition was fatal in infancy, others had multisystem involvement and some had onset in adulthood with mild symptoms and normal cognition. Neurological involvement is most commonly observed and brain imaging commonly shows leukoencephalopathy, Leigh syndrome, or cerebellar atrophy. Mutations in SDHAF1 are associated with leukoencephalopathy. Other organ systems like heart, muscle, and eyes are only involved in about 50% of the cases but cardiomyopathy is associated with high mortality and morbidity. In some patients, riboflavin has provided clinical improvement.
Collapse
Affiliation(s)
- Shailly Jain-Ghai
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
Sharma R, Sharrard MJ, Connolly DJ, Mordekar SR. Unilateral periventricular leukomalacia in association with pyruvate dehydrogenase deficiency. Dev Med Child Neurol 2012; 54:469-71. [PMID: 21895644 DOI: 10.1111/j.1469-8749.2011.04108.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyruvate dehydrogenase (PDH) deficiency is a major cause of primary lactic acidosis and neurological dysfunction in infancy and early childhood. A deficiency of PDH E1 alpha, a subunit of the PDH complex, is a prominent cause of congenital lactic acidosis. We describe a female infant born at term and delivered by emergency Caesarean section because of fetal distress. There was no parental consanguinity. She presented at 5 months of age with failure to thrive, microcephaly, hypertonia, and developmental impairment. Her plasma and cerebrospinal fluid lactate were raised. She had raised plasma pyruvate with a normal lactate-pyruvate ratio. Magnetic resonance imaging of the brain showed a focal dilatation of the right lateral ventricle with unilateral periventricular leukomalacia (PVL) with subependymal cyst. Skin fibroblast culture assay revealed PDH deficiency, confirmed by mutation analysis of the E1 alpha subunit. At 18 months of age, she has hypertonia and global impairment and is making slow progress. Denver II assessment showed delay in gross motor, fine motor, adaptive, personal, social, and language categories. She has been treated with dichloroacetate and a ketogenic diet since the age of 10 and 13 months respectively, without any side effects. To our knowledge, unilateral PVL as a neuroradiological feature has not been described in children with PDH deficiency. PDH deficiency should be considered as a differential diagnosis if PVL is unilateral and if the perinatal history is not typical of PVL.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Paediatric Neurology, Sheffield Children's Hospital, Sheffield, UK
| | | | | | | |
Collapse
|
26
|
Blum KS, Hagel C, Neuen-Jacob E, Herkenrath P, Fiehler J, Kohlschütter A, Lanfermann H, Ding XQ. Long-term diffusion impairment of cerebral white matter in a degenerative disease of the central and peripheral nervous system: reflection of chronic excitotoxicity? J Child Neurol 2012; 27:229-33. [PMID: 21968981 DOI: 10.1177/0883073811419257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors report an abnormal prolonged restricted magnetic resonance imaging (MRI) proton diffusion that persisted for more than 2 years in a 6.5-year-old boy with a progressive neurological disease characterized by developmental retardation, peripheral polyneuropathy, and bilateral optical nerve atrophy. The long-term restricted magnetic resonance imaging proton diffusion observed in diffusion-weighted magnetic resonance images indicates chronic metabolic tissue impairment in the affected white matter, whereas measurable lactate accumulation in proton magnetic resonance spectroscopy was absent, and no respiratory complex abnormality was found in muscle tissue. These findings are suggestive of a chronically disturbed regulation of energy supply triggering a "slow onset" excitotoxicity, causing chronic hypoxia and leading to slow cell death as has been postulated in certain neurodegenerative processes.
Collapse
Affiliation(s)
- Katrin Sabine Blum
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R, Medicine Society TM. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol 2011; 11:414-30. [PMID: 19891905 DOI: 10.1007/s11940-009-0046-0] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of mitochondrial disease varies considerably. Most experts use a combination of vitamins, optimize patients' nutrition and general health, and prevent worsening of symptoms during times of illness and physiologic stress. We agree with this approach, and we agree that therapies using vitamins and cofactors have value, though there is debate about the choice of these agents and the doses prescribed. Despite the paucity of high-quality scientific evidence, these therapies are relatively harmless, may alleviate select clinical symptoms, and theoretically may offer a means of staving off disease progression. Like many other mitochondrial medicine physicians, we have observed significant (and at times life-altering) clinical responses to such pharmacologic interventions. However, it is not yet proven that these therapies truly alter the course of the disease, and some experts may choose not to use these medications at all. At present, the evidence of their effectiveness does not rise to the level required for universal use. Based on our clinical experience and judgment, however, we agree that a therapeutic trial of coenzyme Q10, along with other antioxidants, should be attempted. Although individual specialists differ as to the exact drug cocktail, a common approach involves combinations of antioxidants that may have a synergistic effect. Because almost all relevant therapies are classified as medical foods or over-the-counter supplements, most physicians also attempt to balance the apparent clinical benefit of mitochondrial cocktails with the cost burden that these supplements pose for the family.
Collapse
Affiliation(s)
- Sumit Parikh
- Sumit Parikh, MD Neurometabolism & Neurogenetics, Cleveland Clinic, 9500 Euclid Avenue, S71, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chi CS, Lee HF, Tsai CR, Chen CCC, Tung JN. Cranial magnetic resonance imaging findings in children with nonsyndromic mitochondrial diseases. Pediatr Neurol 2011; 44:171-6. [PMID: 21310331 DOI: 10.1016/j.pediatrneurol.2010.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/18/2010] [Accepted: 09/22/2010] [Indexed: 11/29/2022]
Abstract
Cranial magnetic resonance imaging findings suggestive of specific mitochondrial syndromes are reported. However, cranial magnetic resonance imaging features in children with nonsyndromic mitochondrial diseases are rarely described. From January 1992-September 2009, data from 33 patients with nonsyndromic mitochondrial diseases were collected. We investigated cranial magnetic resonance imaging features in children with nonsyndromic mitochondrial diseases, and identified potential diagnostic characteristics. Eleven of 33 patients (33.3%) demonstrated normal findings, and 22 (66.7%) demonstrated abnormal findings. The most common abnormal finding was cerebral atrophy, with or without other lesion sites (15/33; 45.5%). The second most common was bilateral basal ganglia involvement (6/33; 18.2%). Follow-up imaging was performed in 20 patients. Ten of these 20 (50.0%) demonstrated evolutionary changes, in which progressive global brain atrophy was evident. Three patients with normal results and one patient with cerebral atrophy on initial imaging demonstrated prominent signal changes over the basal ganglia, brainstem, gray matter, white matter, and bilateral cerebellar hemispheres on follow-up imaging. Imaging in children with nonsyndromic mitochondrial diseases may produce variable findings. Normal results and cerebral atrophy on the initial cranial magnetic resonance imaging are commonly evident in this patient group.
Collapse
Affiliation(s)
- Ching-Shiang Chi
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Diogo L, Cordeiro M, Garcia P, Fineza I, Moura C, Oliveira CR, Veiga M, Garcia T, Grazina M. Value of brain magnetic resonance imaging in mitochondrial respiratory chain disorders. Pediatr Neurol 2010; 42:196-200. [PMID: 20159429 DOI: 10.1016/j.pediatrneurol.2009.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/20/2009] [Accepted: 09/23/2009] [Indexed: 02/02/2023]
Abstract
Mitochondrial respiratory chain (MRC) disorders have variable clinical manifestations which are mainly neurologic. Diagnosis in children is more complex than in adults because the classic phenotype, ragged red fibers, and mtDNA mutations are rarely seen in children. Moreover, clinical manifestations of disease in developing brains are less explicit. Although not specific, neuroimaging may be contributory to the diagnosis of these disorders in pediatric patients. Brain magnetic resonance images were reviewed for 133 pediatric patients investigated for a MRC disorder at a single center over a period of 10 years (1997-2006), in an attempt to identify distinctive neuroimaging features of MRC defects. Patients fit into four groups, according to the Bernier criteria: definite (63 cases), probable (53 cases), possible (7 cases) and unlikely diagnosis (10 cases). Brain atrophy (41 cases), supratentorial white matter lesions (14 cases), basal ganglia involvement (9 cases), and delayed myelination (9 cases) were the most frequent anomalies in the definite group, and 8 patients presented Leigh syndrome. Neuroimaging findings of the 63 children in the definite group were compared with the remainder and with those in the possible and unlikely groups. There were no significant differences in brain images between the groups analyzed, and therefore no distinctive brain imaging features were identified specific for MRC disorders.
Collapse
Affiliation(s)
- Luísa Diogo
- Metabolic Diseases Unit, Luís Borges Center for Child Development, Pediatric Hospital of Coimbra-CHC EPE, Coimbra, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shuk-kuen Chau C, Kwok KL, Ng DK, Lam CW, Tong SF, Chan YW, Siu WK, Yuen YP. Maternally inherited Leigh syndrome: an unusual cause of infantile apnea. Sleep Breath 2009; 14:161-5. [PMID: 19669818 DOI: 10.1007/s11325-009-0288-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Leigh Syndrome is an uncommon cause of infantile apnea. CASE SUMMARY We report a 5-month-old girl with sudden respiratory arrest followed by episodic hyper- and hypo-ventilation, encephalopathy, and persistent lactic acidosis. Computed tomography of the brain revealed symmetric low densities over the basal ganglia, internal capsule, thalami, and midbrain. Cardiac echocardiogram was suggestive of hypertrophic cardiomyopathy. DISCUSSION Diagnosis of Leigh syndrome due to T8993G mutation was confirmed with polymerase chain reaction and direct DNA sequencing of mitochondrial genome. To our knowledge, this is the first report of proven maternally inherited Leigh syndrome in Hong Kong.
Collapse
Affiliation(s)
- Christy Shuk-kuen Chau
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Finsterer J. CT und MRT des Zerebrums bei mitochondrialen Erkrankungen. DER NERVENARZT 2009; 80:700-7. [DOI: 10.1007/s00115-009-2678-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Miles L, DeGrauw TJ, Dinopoulos A, Cecil KM, van der Knaap MS, Bove KE. Megalencephalic leukoencephalopathy with subcortical cysts: a third confirmed case with literature review. Pediatr Dev Pathol 2009; 12:180-6. [PMID: 18821826 DOI: 10.2350/08-06-0481.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/08/2008] [Indexed: 11/20/2022]
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) causes early-onset, slowly progressive central nervous system white matter disease, macrocephaly, and later cognitive and motor decline. We describe brain structure in a patient with MLC and proven MLC1 mutations. A male, normal at birth, had macrocephaly at 6 months followed by developmental delay. Magnetic resonance imaging showed extensive signal abnormality in cerebral white matter and subcortical progressive cystic changes in the bilateral temporal and right frontal areas. Biopsy of frontal gyrus at age 15 months showed normal gray matter. The subcortical white matter was pale due to prominent fine uniform 2- to 4-mu-thick vacuoles with a few interspersed myelinated axons and rare microglia. The vacuoles had a single-, double-, or, rarely, triple-unit membrane (resembling myelin) and contained occasional organelles but no intermediate filaments. Both normal myelinated and thinly myelinated axons were observed. The outer and occasionally the inner layers of myelin surrounding intact axons formed blebs that may represent a source for vacuoles. Genetic analysis identified 2 heterozygous mutations of intron 3 (c.322-1 G>A) and intron 7 (c.597+1G>A), the 1st leading to deletion of amino acids 60 to 89 and the 2nd to deletion of amino acids 194 to 199. Fine uniform vacuolation of white matter with wide separation of myelinated axons is the hallmark of MLC in early childhood.
Collapse
Affiliation(s)
- Lili Miles
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
33
|
Pugash D, Brugger PC, Bettelheim D, Prayer D. Prenatal ultrasound and fetal MRI: the comparative value of each modality in prenatal diagnosis. Eur J Radiol 2008; 68:214-26. [PMID: 18790583 DOI: 10.1016/j.ejrad.2008.06.031] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 11/24/2022]
Abstract
Fetal MRI is used with increasing frequency as an adjunct to ultrasound (US) in prenatal diagnosis. In this review, we discuss the relative value of both prenatal US and MRI in evaluating fetal and extra-fetal structures for a variety of clinical indications. Advantages and disadvantages of each imaging modality are addressed. In summary, MRI has advantages in demonstrating pathology of the brain, lungs, complex syndromes, and conditions associated with reduction of amniotic fluid. At present, US is the imaging method of choice during the first trimester, and in the diagnosis of cardiovascular abnormalities, as well as for screening. In some conditions, such as late gestational age, increased maternal body mass index, skeletal dysplasia, and metabolic disease, neither imaging method may provide sufficient diagnostic information.
Collapse
Affiliation(s)
- Denise Pugash
- Department of Radiology, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
34
|
Bizzi A, Castelli G, Bugiani M, Barker PB, Herskovits EH, Danesi U, Erbetta A, Moroni I, Farina L, Uziel G. Classification of childhood white matter disorders using proton MR spectroscopic imaging. AJNR Am J Neuroradiol 2008; 29:1270-5. [PMID: 18483189 DOI: 10.3174/ajnr.a1106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Childhood white matter disorders often show similar MR imaging signal-intensity changes, despite different underlying pathophysiologies. The purpose of this study was to determine if proton MR spectroscopic imaging ((1)H-MRSI) may help identify tissue pathophysiology in patients with leukoencephalopathies. MATERIALS AND METHODS Seventy patients (mean age, 6; range, 0.66-17 years) were prospectively examined by (1)H-MRSI; a diagnosis of leukoencephalopathy due to known genetic defects leading to lack of formation, breakdown of myelin, or loss of white matter tissue attenuation (rarefaction) was made in 47 patients. The diagnosis remained undefined (UL) in 23 patients. Patients with definite diagnoses were assigned (on the basis of known pathophysiology) to 3 groups corresponding to hypomyelination, white matter rarefaction, and demyelination. Choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) signals from 6 white matter regions and their intra- and intervoxel (relative to gray matter) ratios were measured. Analysis of variance was performed by diagnosis and by pathophysiology group. Stepwise linear discriminant analysis was performed to construct a model to predict pathophysiology on the basis of (1)H-MRSI, and was applied to the UL group. RESULTS Analysis of variance by diagnosis showed 3 main metabolic patterns. Analysis of variance by pathophysiology showed significant differences for Cho/NAA (P < .001), Cho/Cr (P < .004), and NAA/Cr (P < .002). Accuracy of the linear discriminant analysis model was 75%, with Cho/Cr and NAA/Cr being the best parameters for classification. On the basis of the linear discriminant analysis model, 61% of the subjects in the UL group were classified as hypomyelinating. CONCLUSION (1)H-MRSI provides information on tissue pathophysiology and may, therefore, be a valuable tool in the evaluation of patients with leukoencephalopathies.
Collapse
Affiliation(s)
- A Bizzi
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Saneto RP, Friedman SD, Shaw DWW. Neuroimaging of mitochondrial disease. Mitochondrion 2008; 8:396-413. [PMID: 18590986 DOI: 10.1016/j.mito.2008.05.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/11/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
Abstract
Mitochondrial disease represents a heterogeneous group of genetic disorders that require a variety of diagnostic tests for proper determination. Neuroimaging may play a significant role in diagnosis. The various modalities of nuclear magnetic resonance imaging (MRI) allow for multiple independent detection procedures that can give important anatomical and metabolic clues for diagnosis. The non-invasive nature of neuroimaging also allows for longitudinal studies. To date, no pathonmonic correlation between specific genetic defect and neuroimaging findings have been described. However, certain neuroimaging results can give important clues that a patient may have a mitochondrial disease. Conventional MRI may show deep gray structural abnormalities or stroke-like lesions that do not respect vascular territories. Chemical techniques such as proton magnetic resonance spectroscopy (MRS) may demonstrate high levels of lactate or succinate. When found, these results are suggestive of a mitochondrial disease. MRI and MRS studies may also show non-specific findings such as delayed myelination or non-specific leukodystrophy picture. However, in the context of other biochemical, structural, and clinical findings, even non-specific findings may support further diagnostic testing for potential mitochondrial disease. Once a diagnosis has been established, these non-invasive tools can also aid in following disease progression and evaluate the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Russell P Saneto
- Division of Pediatric Neurology, Children's Hospital and Regional Medical Center/University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| | | | | |
Collapse
|
36
|
Bianchi MC, Sgandurra G, Tosetti M, Battini R, Cioni G. Brain Magnetic Resonance in the Diagnostic Evaluation of Mitochondrial Encephalopathies. Biosci Rep 2007; 27:69-85. [PMID: 17510789 DOI: 10.1007/s10540-007-9046-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Brain MR imaging techniques are important ancillary tests in the diagnosis of a suspected mitochondrial encephalopathy since they provide details on brain structural and metabolic abnormalities. This is particularly true in children where non-specific neurologic symptoms are common, biochemical findings can be marginal and genetic defects may be not discovered. MR imaging modalities include conventional, or structural, imaging (MRI) and functional, or ultrastructural, imaging (spectroscopy, MRS; diffusion, DWI-ADC; perfusion, DSCI—ASL). Among them MRI and MRS are the main tools for diagnosis and work up of MD, and this review will focus mainly on them. The MRI findings of MD are very heterogeneous, as they depend on the metabolic brain defects, age of the patient, stage and severity of the disease. No correlation has been found between genetic defects and neuroimaging picture; however, some relationships between MR findings and clinical phenotypes may be identified. Different combinations of MRI signal abnormalities are often encountered but the most common findings may be summarized into three main MR patterns: (i) non-specific; (ii) specific; (iii) leukodystrophic-like. Regarding the functional MR techniques, only proton MRS plays an important role in demonstrating an oxidative metabolism impairment in the brain since it can show the accumulation of lactate, present as a doublet peak at 1.33 ppm. Assessment of lactate should be always performed on brain tissue and on the ventricular cerebral spinal fluid. As for MRI, metabolic MRS abnormalities can be of different types, and two distinct patterns can be recognized: non-specific and specific. The specific metabolic profiles, although not frequent to find, are highly pathognomonic of MD. The un-specific metabolic profiles add value to structural images in allowing to define the lesion load and to monitor the response to therapy trials.
Collapse
|
37
|
Pereira C, Nogueira C, Barbot C, Tessa A, Soares C, Fattori F, Guimarães A, Santorelli FM, Vilarinho L. Identification of a new mtDNA mutation (14724G>A) associated with mitochondrial leukoencephalopathy. Biochem Biophys Res Commun 2007; 354:937-41. [PMID: 17266923 DOI: 10.1016/j.bbrc.2007.01.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
We report a novel 14724G>A mutation in the mitochondrial tRNA glutamic acid gene in a 4-year-old boy with myopathy and leukoencephalopathy. A muscle biopsy showed cytochrome c oxidase-negative ragged-red fibers and biochemical analysis of the respiratory chain enzymes in muscle homogenate revealed partial complex I and complex IV deficiencies. The mutation, which affects the dihydrouridine arm at a conserved site, was nearly homoplasmic in muscle and heteroplasmic in blood DNA of the proband, but it was absent in peripheral leukocytes from the asymptomatic mother, sister, and two maternal aunts, suggesting that it arose de novo. This report proposes to look for variants in the mitochondrial genome when dealing with otherwise undetermined leukodystrophies of childhood.
Collapse
Affiliation(s)
- Cristina Pereira
- Instituto de Genética Médica Jacinto de Magalhães, Praça Pedro Nunes, 88, 4099-028 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The central nervous system (CNS) is, after the peripheral nervous system, the second most frequently affected organ in mitochondrial disorders (MCDs). CNS involvement in MCDs is clinically heterogeneous, manifesting as epilepsy, stroke-like episodes, migraine, ataxia, spasticity, extrapyramidal abnormalities, bulbar dysfunction, psychiatric abnormalities, neuropsychological deficits, or hypophysial abnormalities. CNS involvement is found in syndromic and non-syndromic MCDs. Syndromic MCDs with CNS involvement include mitochondrial encephalomyopathy, lactacidosis, stroke-like episodes syndrome, myoclonic epilepsy and ragged red fibers syndrome, mitochondrial neuro-gastrointestinal encephalomyopathy syndrome, neurogenic muscle weakness, ataxia, and retinitis pigmentosa syndrome, mitochondrial depletion syndrome, Kearns-Sayre syndrome, and Leigh syndrome, Leber's hereditary optic neuropathy, Friedreich's ataxia, and multiple systemic lipomatosis. As CNS involvement is often subclinical, the CNS including the spinal cord should be investigated even in the absence of overt clinical CNS manifestations. CNS investigations comprise the history, clinical neurological examination, neuropsychological tests, electroencephalogram, cerebral computed tomography scan, and magnetic resonance imaging. A spinal tap is indicated if there is episodic or permanent impaired consciousness or in case of cognitive decline. More sophisticated methods are required if the CNS is solely affected. Treatment of CNS manifestations in MCDs is symptomatic and focused on epilepsy, headache, lactacidosis, impaired consciousness, confusion, spasticity, extrapyramidal abnormalities, or depression. Valproate, carbamazepine, corticosteroids, acetyl salicylic acid, local and volatile anesthetics should be applied with caution. Avoiding certain drugs is often more beneficial than application of established, apparently indicated drugs.
Collapse
Affiliation(s)
- J Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Austria.
| |
Collapse
|
39
|
Bugiani M, Lamantea E, Invernizzi F, Moroni I, Bizzi A, Zeviani M, Uziel G. Effects of riboflavin in children with complex II deficiency. Brain Dev 2006; 28:576-81. [PMID: 16737791 DOI: 10.1016/j.braindev.2006.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 03/21/2006] [Accepted: 04/08/2006] [Indexed: 11/19/2022]
Abstract
Isolated complex II deficiency is a rare cause of mitochondrial disease in infancy and childhood. No satisfactory treatment is currently available, and affected patients undergo a relentlessly progressive motor and mental deterioration. We report on three complex II-deficient children treated with riboflavin per os, who were followed-up for a mean period of 4.5 years. In two patients with early-onset leukoencephalopathy, neurological condition remained stable or even moderately improved. In the third child, presenting in the first year of life with poor somatic growth and severe hyperlactacidemia, plasma lactate decreased to near-normal levels, and he did not develop signs of neurological involvement. Riboflavin supplementation to the growth medium of cultured fibroblasts resulted in a 2-fold increase of complex II activity in patients, but not in controls.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of Child Neurology, Istituto Nazionale Neurologico C. Besta, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rojo A, Campos Y, Sánchez JM, Bonaventura I, Aguilar M, García A, González L, Rey MJ, Arenas J, Olivé M, Ferrer I. NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 2006; 111:610-6. [PMID: 16525806 DOI: 10.1007/s00401-006-0040-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 12/01/2022]
Abstract
The 8993 T>G mutation in mitochondrial DNA has been associated with variable syndromes of differing severity ranging from maternally inherited Leigh's syndrome (MILS) to neuropathy, ataxia, retinitis pigmentosa (NARP), depending on the mutation loads in affected patients. We report a kindred with several members in the same generation suffering NARP or Leigh's syndrome due to a 8993 T>G mutation. Post-mortem studies of the brain in one affected member clinically presenting with a neurological disorder intermediate between adult Leigh's syndrome and NARP showed symmetrical lesions of the basal ganglia and brainstem closely resembling those usually described in typical Leigh's syndrome. Analysis of mtDNA in different tissues showed a high proportion of mutant genome in brainstem, cerebral cortex, putamen, cerebellum and thalamus. These observations illustrate the continuum of clinical and neuropathological manifestations associated with the 8993 T>G mutation of the mtDNA.
Collapse
Affiliation(s)
- A Rojo
- Neurology Services, Hospital Mútua de Terrassa, and University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Bugiani M, Invernizzi F, Alberio S, Briem E, Lamantea E, Carrara F, Moroni I, Farina L, Spada M, Donati MA, Uziel G, Zeviani M. Clinical and molecular findings in children with complex I deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1659:136-47. [PMID: 15576045 DOI: 10.1016/j.bbabio.2004.09.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/11/2004] [Accepted: 09/13/2004] [Indexed: 12/22/2022]
Abstract
Isolated complex I deficiency, the most frequent OXPHOS disorder in infants and children, is genetically heterogeneous. Mutations have been found in seven mitochondrial DNA (mtDNA) and eight nuclear DNA encoded subunits, respectively, but in most of the cases the genetic basis of the biochemical defect is unknown. We analyzed the entire mtDNA and 11 nuclear encoded complex I subunits in 23 isolated complex I-deficient children, classified into five clinical groups: Leigh syndrome, progressive leukoencephalopathy, neonatal cardiomyopathy, severe infantile lactic acidosis, and a miscellaneous group of unspecified encephalomyopathies. A genetic definition was reached in eight patients (35%). Mutations in mtDNA were found in six out of eight children with Leigh syndrome, indicating a prevalent association between this phenotype and abnormalities in ND genes. In two patients with leukoencephalopathy, homozygous mutations were detected in two different nuclear-encoded complex I genes, including a novel transition in NDUFS1 subunit. In addition to these, a child affected by mitochondrial encephalomyopathy had heterozygous mutations in NDUFA8 and NDUFS2 genes, while another child with neonatal cardiomyopathy had a complex rearrangement in a single NDUFS7 allele. The latter cases suggest the possibility of unconventional patterns of inheritance in complex I defects.
Collapse
Affiliation(s)
- M Bugiani
- Department of Child Neurology, National Institute of Neurology C. Besta, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lerman-Sagie T, Leshinsky-Silver E, Watemberg N, Luckman Y, Lev D. White matter involvement in mitochondrial diseases. Mol Genet Metab 2005; 84:127-36. [PMID: 15670718 DOI: 10.1016/j.ymgme.2004.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Revised: 09/20/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
White matter involvement is recently being realized as a common finding in mitochondrial disorders. It is considered an inherent part of the classical mitochondrial syndromes which are usually associated with alterations in the mitochondrial DNA such as: Leigh disease, Kearns-Sayre syndrome, mitochondrial encephalomyopathy lactic acidosis, and stroke like episodes, mitochondrial neuro-gastro-intestinal encephalomyopathy and Leber's hereditary optic neuropathy. White matter involvement is also described in mitochondrial disorders due to mutations in the nuclear DNA which are transmitted in an autosomal pattern. MRI findings suggestive of a mitochondrial disease are: small cyst-like lesions in abnormal white matter, involvement of both cerebral and cerebellar white matter, and a combination of a leukoencephalopathy with bilateral basal ganglia lesions. The clinical manifestations may be disproportionate to the extent of white matter involvement. Other organs may frequently be involved. The onset is often in infancy with a neurodegenerative course. The finding of a leukoencephalopathy in a patient with a complex neurologic picture and multisystem involvement should prompt a thorough mitochondrial evaluation.
Collapse
Affiliation(s)
- Tally Lerman-Sagie
- The Mitochondrial Disease Clinic, Metabolic-Neurogenetic Service, Wolfson Medical Center, Pediatric Neurology Unit, Holon, Israel.
| | | | | | | | | |
Collapse
|
44
|
Di Rocco M, Biancheri R, Rossi A, Filocamo M, Tortori-Donati P. Genetic disorders affecting white matter in the pediatric age. Am J Med Genet B Neuropsychiatr Genet 2004; 129B:85-93. [PMID: 15274047 DOI: 10.1002/ajmg.b.30029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pediatric white matter disorders can be distinguished into well-defined leukoencephalopathies, and undefined leukoencephalopathies. The first category may be subdivided into: (a) hypomyelinating disorders; (b) dysmyelinating disorders; (c) leukodystrophies; (d) disorders related to cystic degeneration of myelin; and (e) disorders secondary to axonal damage. The second category, representing up to 50% of leukoencephalopathies in childhood, requires a multidisciplinar approach in order to define novel homogeneous subgroups of patients, possibly representing "new genetic disorders" (such as megalencephalic leukoencepahlopathy with subcortical cysts and vanishing white matter disease that have recently been identified). In the majority of cases, pediatric white matter disorders are inherited diseases. An integrated description of the clinical, neuroimaging and pathophysiological features is crucial for categorizing myelin disorders and better understanding their genetic basis. A review of the genetic disorders affecting white matter in the pediatric age, including some novel entities, is provided.
Collapse
Affiliation(s)
- Maja Di Rocco
- Second Unit of Pediatrics, Istituto G. Gaslini, Genova, Italy.
| | | | | | | | | |
Collapse
|
45
|
Abstract
The application of techniques based on in vivo magnetic resonance to the study of leukodystrophies is evaluated. Magnetic resonance imaging (MRI), the most important neuroimaging modality for patients with leukodystrophies, has proven invaluable for the detection of the extent and etiology of white-matter involvement, diagnosis, and monitoring of disease progression. Proton magnetic resonance spectroscopy, which can detect several brain metabolites, including those related to axonal function and myelination, can provide additional diagnostic and prognostic information and, in some cases, allows a rare insight into the biochemical pathology of leukodystrophies. The potential of other advanced magnetic resonance techniques, including diffusion tensor imaging, magnetization transfer contrast, and molecular imaging, is also discussed. In the future, anatomic and physiologic magnetic resonance techniques are expected to be integrated into a single examination that will provide a detailed characterization of white-matter diseases in children.
Collapse
Affiliation(s)
- Peter B Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|