1
|
Iskusnykh IY, Zakharova AA, Kryl’skii ED, Popova TN. Aging, Neurodegenerative Disorders, and Cerebellum. Int J Mol Sci 2024; 25:1018. [PMID: 38256091 PMCID: PMC10815822 DOI: 10.3390/ijms25021018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
An important part of the central nervous system (CNS), the cerebellum is involved in motor control, learning, reflex adaptation, and cognition. Diminished cerebellar function results in the motor and cognitive impairment observed in patients with neurodegenerative disorders such as Alzheimer's disease (AD), vascular dementia (VD), Parkinson's disease (PD), Huntington's disease (HD), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), Friedreich's ataxia (FRDA), and multiple sclerosis (MS), and even during the normal aging process. In most neurodegenerative disorders, impairment mainly occurs as a result of morphological changes over time, although during the early stages of some disorders such as AD, the cerebellum also serves a compensatory function. Biological aging is accompanied by changes in cerebellar circuits, which are predominantly involved in motor control. Despite decades of research, the functional contributions of the cerebellum and the underlying molecular mechanisms in aging and neurodegenerative disorders remain largely unknown. Therefore, this review will highlight the molecular and cellular events in the cerebellum that are disrupted during the process of aging and the development of neurodegenerative disorders. We believe that deeper insights into the pathophysiological mechanisms of the cerebellum during aging and the development of neurodegenerative disorders will be essential for the design of new effective strategies for neuroprotection and the alleviation of some neurodegenerative disorders.
Collapse
Affiliation(s)
- Igor Y. Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anastasia A. Zakharova
- Department of Medical Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov St. 1, Moscow 117997, Russia
| | - Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| |
Collapse
|
2
|
Soldati C, Lopez‐Fabuel I, Wanderlingh LG, Garcia‐Macia M, Monfregola J, Esposito A, Napolitano G, Guevara‐Ferrer M, Scotto Rosato A, Krogsaeter EK, Paquet D, Grimm CM, Montefusco S, Braulke T, Storch S, Mole SE, De Matteis MA, Ballabio A, Sampaio JL, McKay T, Johannes L, Bolaños JP, Medina DL. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med 2021; 13:e13742. [PMID: 34411438 PMCID: PMC8495452 DOI: 10.15252/emmm.202013742] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.
Collapse
Affiliation(s)
- Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Irene Lopez‐Fabuel
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Luca G Wanderlingh
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Marina Garcia‐Macia
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | | | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | - Anna Scotto Rosato
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Einar K Krogsaeter
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD)University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Christian M Grimm
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Thomas Braulke
- Department Osteology & BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stephan Storch
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sara E Mole
- Medical Research Council Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Maria A De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Napoli Federico IINaplesItaly
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
- Baylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTXUSA
| | - Julio L Sampaio
- Cellular and Chemical Biology DepartmentInstitut Curie, U1143 INSERM, UMR3666 CNRSPSL Research UniversityParisFrance
| | - Tristan McKay
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterUK
| | - Ludger Johannes
- Cellular and Chemical Biology DepartmentInstitut Curie, U1143 INSERM, UMR3666 CNRSPSL Research UniversityParisFrance
| | - Juan P Bolaños
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
| |
Collapse
|
3
|
Seifert C, Storch S, Bähring R. Modulation of Kv4.2/KChIP3 interaction by the ceroid lipofuscinosis neuronal 3 protein CLN3. J Biol Chem 2020; 295:12099-12110. [PMID: 32641494 PMCID: PMC7443505 DOI: 10.1074/jbc.ra120.013828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated potassium (Kv) channels of the Kv4 subfamily associate with Kv channel-interacting proteins (KChIPs), which leads to enhanced surface expression and shapes the inactivation gating of these channels. KChIP3 has been reported to also interact with the late endosomal/lysosomal membrane glycoprotein CLN3 (ceroid lipofuscinosis neuronal 3), which is modified because of gene mutation in juvenile neuronal ceroid lipofuscinosis (JNCL). The present study was undertaken to find out whether and how CLN3, by its interaction with KChIP3, may indirectly modulate Kv4.2 channel expression and function. To this end, we expressed KChIP3 and CLN3, either individually or simultaneously, together with Kv4.2 in HEK 293 cells. We performed co-immunoprecipitation experiments and found a lower amount of KChIP3 bound to Kv4.2 in the presence of CLN3. In whole-cell patch-clamp experiments, we examined the effects of CLN3 co-expression on the KChIP3-mediated modulation of Kv4.2 channels. Simultaneous co-expression of CLN3 and KChIP3 with Kv4.2 resulted in a suppression of the typical KChIP3-mediated modulation; i.e. we observed less increase in current density, less slowing of macroscopic current decay, less acceleration of recovery from inactivation, and a less positively shifted voltage dependence of steady-state inactivation. The suppression of the KChIP3-mediated modulation of Kv4.2 channels was weaker for the JNCL-related missense mutant CLN3R334C and for a JNCL-related C-terminal deletion mutant (CLN3ΔC). Our data support the notion that CLN3 is involved in Kv4.2/KChIP3 somatodendritic A-type channel formation, trafficking, and function, a feature that may be lost in JNCL.
Collapse
Affiliation(s)
- Carolin Seifert
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Storch
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Pädiatrische Forschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Studniarczyk D, Needham EL, Mitchison HM, Farrant M, Cull-Candy SG. Altered Cerebellar Short-Term Plasticity but No Change in Postsynaptic AMPA-Type Glutamate Receptors in a Mouse Model of Juvenile Batten Disease. eNeuro 2018; 5:ENEURO.0387-17.2018. [PMID: 29780879 PMCID: PMC5956745 DOI: 10.1523/eneuro.0387-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs) contribute to the cerebellar dysfunction. In this study, we compared AMPAR properties and synaptic transmission in cerebellar granule cells from wild-type and Cln3 knock-out mice. In Cln3Δex1-6 cells, the amplitude of AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance. We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced number of quantal events following mossy-fiber stimulation in Sr2+, altered short-term plasticity in conditions of reduced extracellular Ca2+, and reduced mossy fiber vesicle number. Thus, while our results suggest early presynaptic changes in the Cln3Δex1-6 mouse model of juvenile Batten disease, they reveal no evidence for altered postsynaptic AMPARs.
Collapse
Affiliation(s)
- Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Elizabeth L. Needham
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Hannah M. Mitchison
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Stuart G. Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Weimer JM, Benedict JW, Getty AL, Pontikis CC, Lim MJ, Cooper JD, Pearce DA. Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis. Brain Res 2009; 1266:93-107. [PMID: 19230832 DOI: 10.1016/j.brainres.2009.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 12/26/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, is a neurodegenerative disease resulting from a mutation in CLN3, which presents clinically with visual deterioration, seizures, motor impairments, cognitive decline, hallucinations, loss of circadian rhythm, and premature death in the late-twenties to early-thirties. Using a Cln3 null (Cln3(-/-)) mouse, we report here several deficits in the cerebellum in the absence of Cln3, including cell loss and early onset motor deficits. Surprisingly, early onset glial activation and selective neuronal loss within the mature fastigial pathway of the deep cerebellar nuclei (DCN), a region critical for balance and coordination, are seen in many regions of the Cln3(-/-) cerebellum. Additionally, there is a loss of Purkinje cells (PC) in regions of robust Bergmann glia activation in Cln3(-/-) mice and human JNCL post-mortem cerebellum. Moreover, the Cln3(-/-) cerebellum had a mis-regulation in granule cell proliferation and maintenance of PC dendritic arborization and spine density. Overall, this study defines a novel multi-faceted, early-onset cerebellar disruption in the Cln3 null brain, including glial activation, cell loss, and aberrant cell proliferation and differentiation. These early alterations in the maturation of the cerebellum could underlie some of the motor deficits and pathological changes seen in JNCL patients.
Collapse
Affiliation(s)
- Jill M Weimer
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, NY 14607, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Osório NS, Sampaio-Marques B, Chan CH, Oliveira P, Pearce DA, Sousa N, Rodrigues F. Neurodevelopmental delay in the Cln3Deltaex7/8 mouse model for Batten disease. GENES BRAIN AND BEHAVIOR 2009; 8:337-45. [PMID: 19243453 DOI: 10.1111/j.1601-183x.2009.00478.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL), also known as Batten disease, is a fatal inherited neurodegenerative disorder. The major clinical features of this disease are vision loss, seizures and progressive cognitive and motor decline starting in childhood. Mutations in CLN3 are known to cause the disease, allowing the generation of mouse models that are powerful tools for JNCL research. In this study, we applied behavioural phenotyping protocols to test for early behavioural alterations in Cln3(Deltaex7/8) knock-in mice, a genetic model that harbours the most common disease-causing CLN3 mutation. We found delayed acquisition of developmental milestones, including negative geotaxis, grasping, wire suspension time and postural reflex in both homozygous and heterozygous Cln3(Deltaex7/8) preweaning pups. To further investigate the consequences of this neurodevelopmental delay, we studied the behaviour of juvenile mice and found that homozygous and heterozygous Cln3(Deltaex7/8) knock-in mice also exhibit deficits in exploratory activity. Moreover, when analysing motor behaviour, we observed severe motor deficits in Cln3(Deltaex7/8) homozygous mice, but only a mild impairment in motor co-ordination and ambulatory gait in Cln3(Deltaex7/8) heterozygous animals. This study reveals previously overlooked behaviour deficits in neonate and young adult Cln3(Deltaex7/8) mice indicating neurodevelopmental delay as a putative novel component of JNCL.
Collapse
Affiliation(s)
- N S Osório
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
7
|
Kovács AD, Weimer JM, Pearce DA. Selectively increased sensitivity of cerebellar granule cells to AMPA receptor-mediated excitotoxicity in a mouse model of Batten disease. Neurobiol Dis 2006; 22:575-85. [PMID: 16483786 DOI: 10.1016/j.nbd.2005.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/15/2005] [Accepted: 12/29/2005] [Indexed: 11/15/2022] Open
Abstract
Batten disease, a lysosomal storage disorder, is caused by mutations in the CLN3 gene. The Cln3-knockout (Cln3-/-) mouse model of the disease exhibits many characteristic pathological features of the human disorder. Here, we show that Cln3-/- mice, similarly to Batten disease patients, have a deficit in cerebellar motor coordination. To explore the possible cellular cause of this functional impairment, we compared the vulnerability of wild type (WT) and Cln3-/- cerebellar granule cell cultures to different toxic insults. We have found that cultured Cln3-/- cerebellar granule cells are selectively more vulnerable to AMPA-type glutamate receptor-mediated toxicity than their WT counterparts. This selective sensitivity was also observed in organotypic cerebellar slice cultures. Our results suggest that lack of the CLN3 protein has a significant influence on the function of AMPA receptors in cerebellar granule neurons, and that AMPA receptor dysregulation may be a major contributor to the cerebellar dysfunction in Batten disease.
Collapse
Affiliation(s)
- Attila D Kovács
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
8
|
Affiliation(s)
- Jaana Tyynelä
- Institute of Biomedicine/Biochemistry, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
9
|
Larsen A, Sainio K, Aberg L, Santavuori P. Electroencephalography in juvenile neuronal ceroid lipofuscinosis: visual and quantitative analysis. Eur J Paediatr Neurol 2001; 5 Suppl A:179-83. [PMID: 11588993 DOI: 10.1053/ejpn.2000.0458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fourteen patients with a confirmed diagnosis of juvenile neuronal ceroid lipofuscinosis (JNCL) (aged 6-12.5 years at the beginning of the study) were prospectively followed for 5 years. An electroencephalogram (EEG) was recorded and analysed both visually and quantitatively and a neuropsychological examination was performed once a year. In addition, a cross-sectional EEG study of 32 patients aged 5-27 years was performed. The EEG was often normal before the age of 9 years, and thereafter a progressive background abnormality and increase in paroxysmal activity took place. The EEGs were significantly slower than those of the controls, and the speed of slowing of EEG correlated to the decrease in intelligence quotients (IQ). Quantitative analysis was superior to visual analysis in detecting the deterioration of the background activity. The best parameter describing this was the fast/slow ratio. Peak frequency, percentage of theta and the fast/slow ratio correlated with IQ.
Collapse
Affiliation(s)
- A Larsen
- Department of Clinical Neurophysiology, University of Helsinki, PO Box 280, FIN-00029 HUS, Finland.
| | | | | | | |
Collapse
|
10
|
Greene ND, Lythgoe MF, Thomas DL, Nussbaum RL, Bernard DJ, Mitchison HM. High resolution MRI reveals global changes in brains of Cln3 mutant mice. Eur J Paediatr Neurol 2001; 5 Suppl A:103-7. [PMID: 11588978 DOI: 10.1053/ejpn.2000.0444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Batten disease, the juvenile-onset form of neuronal ceroid lipofuscinosis (NCL), is a progressive neurodegenerative disorder of childhood with an age of onset of 5-10 years of age. JNCL is caused by mutations in the CLN3 gene which encodes a membrane protein of unknown function. Magnetic resonance imaging of the brain of juvenile NCL patients has revealed changes in signal intensity and tissue atrophy, predominantly in the cortex and cerebellum. A mouse model for Batten disease was created by targeted disruption of the murine Cln3 gene in order to further understanding of the pathophysiology of Batten disease and to evaluate potential therapeutic approaches. Several features of the disease are displayed by Cln3 mice including accumulation of characteristic storage material in neurons. The aim of this work was to investigate neurodegeneration in the Cln3 mouse model using high resolution magnetic resonance imaging to measure signal intensity ratios in selected regions of interest. Global changes were observed in the brains of 12-month-old mutant mice that mirror those seen in juvenile NCL patients. There is a decrease in signal intensity ratio in grey matter regions including cortex, hippocampus and cerebellum, tissues where neuronal storage accumulation and cell loss have been seen in the mouse model. The alterations seen in Cln3 mutant mice support the validity of further imaging studies and suggest that this method will have application in assessment of therapeutic approaches in the study of mutant mouse models of NCL including the Cln3 mouse.
Collapse
Affiliation(s)
- N D Greene
- Department of Paediatrics, Royal Free and University College Medical School, London, UK
| | | | | | | | | | | |
Collapse
|
11
|
Zhong N, Moroziewicz DN, Ju W, Jurkiewicz A, Johnston L, Wisniewski KE, Brown WT. Heterogeneity of late-infantile neuronal ceroid lipofuscinosis. Genet Med 2000; 2:312-8. [PMID: 11339651 DOI: 10.1097/00125817-200011000-00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Late-infantile neuronal ceroid lipofuscinosis (LINCL), an autosomal recessively inherited lysosomal storage disorder characterized by autofluorescent inclusions and rapid progression of neurodegeneration, is due to CLN2 gene mutations. However, CLN2 mutation analysis has failed to identify some clinically diagnosed "late-infantile" NCL cases. This study was conducted to further characterize genetic heterogeneity in families affected by LINCL. METHODS DNA mutations in the CLN1, CLN2, and CLN3 genes that underlie INCL (infantile NCL), LINCL, and JNCL (juvenile NCL), respectively, were studied with molecular analyses. RESULTS A total of 252 families affected by childhood NCL were studied. Of 109 families clinically diagnosed as having LINCL, 3 were determined to have either INCL or JNCL by identification of mutation(s) in CLN1 or CLN3. Six families diagnosed initially as having JNCL were found to have LINCL based on the finding of mutations in the CLN2 gene. In addition, several novel mutations were identified. CONCLUSIONS Clinical and genetic heterogeneity of LINCL was demonstrated in nine LINCL families studied.
Collapse
Affiliation(s)
- N Zhong
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs) consist of eight autosomal recessively inherited storage disorders characterized by lysosomal inclusions of autofluorescent lipofuscins and rapid neurodegenerative progression. The NCLs include eight forms that result from genetic deficiency on genes CLN(1) to CLN(8), respectively: four classic forms with clinical onset at varying ages-infantile (INCL), late-infantile (LINCL), juvenile (JNCL), and adult (ANCL)-and four variants of late-infantile onset-the Finnish variant LINCL (fLINCL), Portuguese variant LINCL (pLINCL), Turkish variant LINCL (tLINCL), and progressive epilepsy with mental retardation (EPMR). The genes CLN(1) and CLN(2) have been characterized to encode lysosomal hydrolytic enzymes, but CLN(3), CLN(5), and CLN(8) encode transmembranous proteins with unknown function. Although clinical and pathological abnormalities have been recognized to be similar in all eight forms, the molecular mechanism explaining NCL pathogenesis remains unclear. In this review, the molecular basis for NCLs and a possible pathogenic mechanism are discussed.
Collapse
Affiliation(s)
- N Zhong
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA.
| |
Collapse
|
13
|
Kirveskari E, Partinen M, Salmi T, Sainio K, Telakivi T, Hämäläinen M, Larsen A, Santavuori P. Sleep alterations in juvenile neuronal ceroid-lipofuscinosis. Pediatr Neurol 2000; 22:347-54. [PMID: 10913725 DOI: 10.1016/s0887-8994(00)00138-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In juvenile neuronal ceroid-lipofuscinosis (JNCL), sleep disorders are common. The purpose of this study was to investigate the sleep structure of 28 patients with JNCL compared with healthy controls subjects and to clarify the pathophysiology underlying the sleep disturbances in these patients. Each of 28 patients with JNCL (age range = 6-27 years), with or without sleep complaints, underwent one night of polysomnography. Electroencephalographic, electro-oculographic, electromyographic, and electrocardiographic findings were recorded. Sleep was scored and analyzed visually. The sleep parameters of the patients were compared with those of healthy control subjects. In most of the patients, the total sleep time, sleep efficiency, and percentages of rapid eye movement (REM) and non-REM (NREM) stage 2 sleep were significantly decreased, and the percentages of NREM stage 1 and slow-wave sleep and the number of nocturnal awakenings significantly increased. The percentage of NREM stage 1 and the number of awakenings increased with age and clinical stage. Paroxysmal epileptiform activity during light sleep (NREM stages 1-2) and high-amplitude delta-wave activity with intermingled sharp waves during slow-wave sleep were characteristic of the recordings. The present study revealed that in patients with JNCL, sleep is consistently altered.
Collapse
Affiliation(s)
- E Kirveskari
- Department of Pediatric Neurology; Hospital for Children and Adolescents, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chapter 11 The Neuronal Ceroid-lipofuscinoses (Batten Disease). ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1566-3124(08)60031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Petersen B, Handwerker M, Huppertz HI. Neuroradiological findings in classical late infantile neuronal ceroid-lipofuscinosis. Pediatr Neurol 1996; 15:344-7. [PMID: 8972537 DOI: 10.1016/s0887-8994(96)00224-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe a girl aged 5 years, 6 months who began to have seizures at the age of 3 years, 9 months. A cranial CT scan revealed mild, generalized cerebral atrophy. During the next year, she gradually developed ataxia, myoclonic jerks, and bilateral optic nerve atrophy and lost motor skills. A second CT scan performed 12 months after the onset of first symptoms revealed marked progression of cerebral atrophy, especially in the infratentorial area. MRI demonstrated bilateral, periventricular hyperintensities in the T2-weighted images but no changes in the basal ganglia. Electron microscopic investigations of skin biopsies demonstrated curvilinear bodies, confirming the suspected diagnosis of late infantile neuronal ceroid-lipofuscinosis (LINCL). Predominance of cerebral atrophy in the infratentorial area is typical of LINCL. Periventricular white matter lesions may be evident on MRI scans of patients with classical and LINCL-variant disease. In contrast to neuroradiological findings in patients with LINCL-variant disease, findings in patients with classical LINCL revealed no changes in the basal ganglia.
Collapse
|
16
|
Autti T, Raininko R, Vanhanen SL, Santavuori P. MRI of neuronal ceroid lipofuscinosis. I. Cranial MRI of 30 patients with juvenile neuronal ceroid lipofuscinosis. Neuroradiology 1996; 38:476-82. [PMID: 8837098 DOI: 10.1007/bf00607283] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied 30 patients with juvenile neuronal ceroid lipofuscinosis (JNCL). The patients (aged 6-25 years) and 43 age-matched healthy volunteers underwent MRI. After visual assessment, the signal intensity was measured on T2-weighted images in numerous locations. The thickness of the cortex and corpus callosum and the dimensions of the brain stem were measured. Mild to moderate cerebral atrophy was found in 14 of 30 patients, most of them over 14 years of age; 5 older patients had mild to moderate cerebellar atrophy. There was reduction in the size of the corpus callosum and brain stem. The thalamus, caudate nucleus and putamen appeared to give low signal in patients from the ages of 7, 11 and 11 years, respectively. In contrast, the signal intensity measured from the thalamus in these patients showed only a slight (insignificant) decrease compared with controls. The most significant alteration, an increase in measured signal intensity, was found in the white matter (P < 0.0001), even in the youngest patients. The MRI findings correlated significantly with decreased intelligence, speech disturbances and motor problems. Although MRI findings in JNCL do not appear very specific and the visual changes develop relatively late, the absence of pathological MRI findings in the very early stage of the disease may play a part in differential diagnosis of the different types of NCL. Furthermore, the MRI findings may be used in assessing severity and prognosis, particularly in young patients.
Collapse
Affiliation(s)
- T Autti
- Department of Pediatric Neurology, Children's Hospital, Helsinki University, Finland
| | | | | | | |
Collapse
|
17
|
Abstract
The neuronal ceroid-lipofuscinoses, a group of progressive neurodegenerative diseases in children and in adults, have now been recognized for some 90 years, and the childhood forms represent one of the largest groups of progressive neurodegenerative diseases in children. Apart from a core group of major clinical forms-the infantile, the late-infantile, the juvenile, and the adult forms--numerous atypical patients afflicted with neuronal ceroid-lipofuscinosis have now been identified, constituting 10% to 20% of all patients with neuronal ceroid-lipofuscinosis. These "atypical" patients have, over the past 10 years, prompted the suggestion of 15 atypical variants or minor syndromes, many of them displaying the lipopigments of classic curvilinear and fingerprint ultrastructure, but others displaying granular osmiophilic deposits. The former lipopigments contain the subunit C of the mitochondrial adenosine triphosphate synthase, but lipopigments of the granular osmiophilic deposits including the classic infantile type Santavuori-Haltia, apparently do not, the latter type exhibiting sphingolipid activator proteins. The nosologic significance of both the subunit C of the adenosine triphosphate synthase and the sphingolipid activator proteins, although they make up a considerable amount of the crude auto-fluorescent lipopigments in neuronal ceroid-lipofuscinosis, is still unclear. In spite of numerous pathogenetic principles invoked, such as a defect in lipid peroxidation, abnormalities of dolichols and dolichol phosphates, and defects in protease inhibitors, precise pathogenesis and etiology of the neuronal ceroid-lipofuscinoses remain elusive. Recent promising molecular genetic studies have, however, revealed the gene for infantile neuronal ceroid-lipofuscinosis, CLN1, on chromosome 1p32; the gene for juvenile neuronal ceroid-lipofuscinosis, CLN3, on chromosome 16p12.1-11.2; and the gene for a Finnish variant of late-infantile neuronal ceroid-lipofuscinosis, CLN5, on chromosome 13q31-32. The genes for classic late-infantile neuronal ceroid-lipofuscinosis, CLN2, and for adult neuronal ceroid-lipofuscinosis, CLN4, have not been located, the former having been excluded from chromosomes 1 and 16. However, the gene products of the normal allelic forms have not yet been identified. A considerable number of sporadic animal models is now available, largely equivalent to the juvenile and infantile forms of neuronal ceroid-lipofuscinosis, with those of the English setter and the South Hampshire sheep evaluated best. Recently, several mouse models have been added to this list of autosomal-recessive models, again the one most thoroughly studied being the motor-neuron disease mouse. Progress has also been made in the prenatal diagnosis of neuronal ceroid-lipofuscinosis: now the infantile, late-infantile, and juvenile forms can be recognized prenatally by a combined genetic and electron microscopic approach.
Collapse
Affiliation(s)
- H H Goebel
- Department of Neuropathology, Mainz University Medical Center, Germany
| |
Collapse
|
18
|
Philippart M, Chugani HT, Bateman JB. New Spielmeyer-Vogt variant with granular inclusions and early brain atrophy. AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 57:160-4. [PMID: 7668322 DOI: 10.1002/ajmg.1320570210] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three females in 2 families were originally diagnosed with Spielmeyer-Vogt disease (SVD). The clinical course was different from SVD, with vision well preserved until age 10 years, and learning rather than visual difficulties the marker at the onset. Later, regression was unusually rapid, including global dementia, blindness, aphasia, and finally loss of self-feeding and ambulation between ages 12-18 years. MRI scan in patient 3 documented brain atrophy between ages 8-10 years. Position Emission Tomography (PET) scanning with fluorodeoxyglucose in patients 2 and 3 showed diffusely decreased or absent cortical glucose metabolism, comparable at ages 12 and 18 years, respectively, to the results found in the oldest typical SVD case tested at age 29 years. Fine granular inclusions, instead of the expected fingerprint inclusions, were demonstrated by electron microscopy of lymphocytes, conjunctiva, and skin. Usual markers on chromosome 16p12 were not present in the first family tested. The clinical course, with nonspecific initial behavior difficulties, late onset of visual decline followed by fast global regression, progressive brain atrophy, decreased cortical glucose utilization as shown by PET scanning, and granular tissue inclusions, suggest a genetic variant of SVD.
Collapse
Affiliation(s)
- M Philippart
- Department of Pediatrics, UCLA School of Medicine, USA
| | | | | |
Collapse
|
19
|
Black L, Pullarkat RK. Bibliography on ceroid-lipofuscinoses, II. AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 57:130-6. [PMID: 7668316 DOI: 10.1002/ajmg.1320570204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- L Black
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| | | |
Collapse
|
20
|
Iannetti P, Messa C, Spalice A, Lucignani G, Fazio F. Positron emission tomography in neuronal ceroid lipofuscinosis (Jansky-Bielschowsky disease): a case report. Brain Dev 1994; 16:459-62. [PMID: 7694995 DOI: 10.1016/0387-7604(94)90008-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on a 13-year-old girl with late infantile neuronal ceroid lipofuscinosis (NCL) in whom PET scanning with [18F]-2-fluoro-2-deoxy-D-glucose ([18F]/FDG) was performed. Early psychomotor development was normal. At the age of 2 years, neurological signs such as hypotonia and incoordination appeared, followed by visual failure and ataxia. At the age of 4, funduscopic examination showed macular degeneration and papillary atrophy. At the age of 9, myoclonic jerks were observed; subsequently, generalized seizures together with failing vision, mental deterioration, and visual and auditory hallucinations appeared. Brain MRI showed severe cortical and subcortical atrophy. A skin biopsy detected the presence of 'finger-print' inclusions in the cytoplasm of smooth muscle fibers. Late infantile NCL (Jansky-Bielschowsky disease) was diagnosed. FDG/PET revealed a severe reduction of metabolism in all the cortical and subcortical structures. A regional analysis of the distribution of the tracer revealed marked bilateral hypometabolism, particularly in calcarine, lateral, occipital, and temporal cortices and in the thalamus.
Collapse
Affiliation(s)
- P Iannetti
- Pediatric Department, University La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
21
|
Woods PR, Walker MA, Weir VA, Storts RW, Menzies C, Shelton M. COMPUTED TOMOGRAPHY OF RAMBOUILLET SHEEP AFFECTED WITH NEURONAL CEROID LIPOFUSCINOSIS. Vet Radiol Ultrasound 1993. [DOI: 10.1111/j.1740-8261.1993.tb01574.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
22
|
Santavuori P, Vanhanen SL, Sainio K, Nieminen M, Wallden T, Launes J, Raininko R. Infantile neuronal ceroid-lipofuscinosis (INCL): diagnostic criteria. J Inherit Metab Dis 1993; 16:227-9. [PMID: 8411966 DOI: 10.1007/bf00710250] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P Santavuori
- Department of Child Neurology, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
In view of the epidemiological connotation of childhood neuronal ceroid-lipofuscinosis (NCL) as one of the most frequent progressive lysosomal diseases and neurodegenerative disorders in children, the recognition of the individual clinical forms of childhood NCL is still based on invasive diagnostic electronmicroscopy which, currently, may be applied also for prenatal diagnosis. Like other inherited disorders, the NCL group has finally also benefited from the genetic breakthroughs of localization of the genes for infantile NCL and juvenile NCL on chromosomes 1 and 16, respectively. This review concerns recent advances in morphological studies, broadening of the clinical spectrum of childhood NCL, new biochemical findings, and preliminary therapeutic results. Hereditary animal models, largely for human juvenile NCL, have been successfully employed in elucidation of the nosology of NCL, but the basic defect in human, canine and ovine NCL remains unknown.
Collapse
Affiliation(s)
- H H Goebel
- Division of Neuropathology, University of Mainz, Germany
| |
Collapse
|
24
|
Autti T, Raininko R, Launes J, Nuutila A, Santavuori P. Jansky-Bielschowsky variant disease: CT, MRI, and SPECT findings. Pediatr Neurol 1992; 8:121-6. [PMID: 1580955 DOI: 10.1016/0887-8994(92)90032-t] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Six patients with a variant type of Jansky-Bielschowsky (JBVD) disease were examined using 3 different imaging methods. Five of the patients underwent computed tomography, 4 magnetic resonance imaging, and 5 single photon emission computed tomography. All patients had brain atrophy that was most severe in the cerebellum. Magnetic resonance imaging demonstrated the parenchymal abnormalities well; all patients had hyperintense periventricular white matter, especially around the bodies and atria of the lateral ventricles, and a significant decrease in signal intensity in the thalami and/or putamina. Single photon emission computed tomography disclosed hypoperfusion of the cerebellum in all patients. Neuroimaging examinations are valuable in the diagnosis of JBVD. It may be difficult to divide patients with neuronal ceroid-lipofuscinosis disorders into clinical subtypes in the early stage of the disease. Magnetic resonance imaging, especially when combined with a typical clinical pattern, makes the diagnosis of JBVD highly likely. Radiologic examinations of the brain may also prove important in following the progression, as well as in investigating the pathophysiology, of the disease.
Collapse
Affiliation(s)
- T Autti
- Department of Child Neurology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|