1
|
Yang Y, Yan X, Redding M, Gu G, Luo Y, Patel J, Nou X. Biofilm formation of Escherichia coli O157:H7 strains associated with recent reoccurring lettuce outbreaks. Food Microbiol 2025; 128:104728. [PMID: 39952768 DOI: 10.1016/j.fm.2025.104728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025]
Abstract
Genomically closely clustered E. coli O157:H7 strains have been implicated in several recent multistate outbreaks linked to romaine lettuce. The underlying factors contributing to their reoccurrence and persistence remain elusive. Biofilm formation and acid resistance are crucial factors for foodborne pathogens in their environmental persistence and success in host gastrointestinal invasion. Thus, the objective of this study was to investigate the biofilm-forming capability of outbreak strains, their resistance to antimicrobials, and their tolerance to gastric acid, by comparing O157:H7 strains associated with recent reoccurring outbreaks and those associated with previous lettuce, spinach, and hamburger outbreaks. The recent outbreak strains, which were collectively described as "reoccurring, emerging, and persistent (REP)", exhibited significantly stronger biofilm-forming capabilities and resistance to quaternary ammonium compounds (QACs) compared to other strains. They also exhibited strong tolerance to simulated gastric fluid. Their ability to form robust biofilms is likely attributed to their pronounced production of curli and cellulose, as demonstrated on Congo Red and Calcoflour White agar plates. Moreover, their exceptional resistance to sanitizers may stem from the formation of dense biofilms with higher cellulose content, as visualized using fluorescent dyes under confocal laser scanning microscopy. The findings of this study support the assertion that biofilm formation is a critical factor for the reoccurring outbreak strains for environmental persistence and provide insights for developing prevention strategies.
Collapse
Affiliation(s)
- Yishan Yang
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agriculture Research Center, Beltsville, MD, 20705, USA
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agriculture Research Center, Beltsville, MD, 20705, USA
| | - Marina Redding
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agriculture Research Center, Beltsville, MD, 20705, USA
| | - Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agriculture Research Center, Beltsville, MD, 20705, USA
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agriculture Research Center, Beltsville, MD, 20705, USA
| | - Jitendra Patel
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agriculture Research Center, Beltsville, MD, 20705, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agriculture Research Center, Beltsville, MD, 20705, USA.
| |
Collapse
|
2
|
Fneish FH, Abd El Galil KH, Domiati SA. Evaluation of Single and Multi-Strain Probiotics with Gentamicin Against E. coli O157:H7: Insights from In Vitro and In Vivo Studies. Microorganisms 2025; 13:460. [PMID: 40005825 PMCID: PMC11858083 DOI: 10.3390/microorganisms13020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
The emergence of antibiotic-resistant food-borne pathogens, especially Escherichia coli O157:H7, highlights the urgent need for innovative treatment strategies, particularly in light of rising resistances and the ongoing controversy surrounding antibiotic use in response to E. coli O157:H7 infections. To address this issue, we explored the potential of single- and multi-strain probiotics, both independently and in combination with gentamicin, through a series of in vitro and in vivo experiments. In vitro, gentamicin alone produced a mean inhibition zone of 12.9 ± 2.27 mm against E. coli O157:H7. The combination of gentamicin with single-strain probiotics (P1) increased the inhibition zone to 16.5 ± 2.24 mm (p < 0.05), while the combination with multi-strain probiotics (P2) resulted in the largest inhibition zone of 19 ± 2.8 mm (p < 0.05). In vivo, mice infected with E. coli O157:H7 and treated with P2, gentamicin (G), or their combination (G+P2), achieved 100% survival, no pathological symptoms, and full weight recovery within seven days. Conversely, mice treated with P1 or G+P1 exhibited lower survival rates (71.4% and 85%, respectively) and slower weight recovery. Hematological parameters improved across all groups, but kidney function analysis showed significantly higher serum creatinine levels in the P1, G, G+P1, and G+P2 groups compared to the P2 group (P1: 0.63 ± 0.15 mg/dL; G: 0.34 ± 0.09 mg/dL; G+P1: 0.53 ± 0.19 mg/dL; G+P2: 0.5 ± 0.23 mg/dL vs. P2: 0.24 ± 0.2 mg/dL). Histological analysis showed better intestinal and kidney tissue recovery in the P2 group, while the P1 and G+P1 groups exhibited abnormal ileal structures and severe cortical bleeding. These findings highlight the promise of multi-strain probiotics, alone or in conjunction with antibiotics, as a therapeutic strategy for E. coli O157:H7 infections. However, the nephrotoxicity associated with gentamicin co-administration remains a limitation, warranting further studies to optimize this approach.
Collapse
Affiliation(s)
- Fatima H. Fneish
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Riad El Solh P.O. Box 11-5020, Beirut 11072809, Lebanon
| | - Khaled H. Abd El Galil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Souraya A. Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon;
| |
Collapse
|
3
|
Oats MF, Coronel-Aguilera CP, Applegate BM, Csonka LN, Bhunia AK, Gehring AG, Paoli GC. Determination of the Infection Dynamics of Escherichia coli O157:H7 by Bacteriophage ΦV10. Foods 2025; 14:617. [PMID: 40002061 PMCID: PMC11854483 DOI: 10.3390/foods14040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
ΦV10 is an Escherichia coli O157:H7-specific bacteriophage that has been used to develop luminescent reporter assays for the detection of this important foodborne pathogen. Previous work demonstrated the specificity of ΦV10 for infection of E.coli O157:H7 through interaction with the O157 antigen. In addition, modification of the lipopolysaccharide (LPS) via O-acetylation prevents ΦV10 infection in an E. coli O157:H7 expressing a phage-encoded O-acetylase gene. Through assays for phage binding, plaque formation, and lysogeny using non-O157:H7 and O157: non-H7 strains, as well as complementation of an O157:H- strain, it is demonstrated in this study that both the somatic O157 antigen and flagellar H7 antigen are required for productive infection of E. coli O157:H7 by ΦV10. Together, the results indicate that the O157 antigen is required for phage binding and that the H7 antigen is necessary to complete the infection process.
Collapse
Affiliation(s)
- Michael F. Oats
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
| | | | - Bruce M. Applegate
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Laszlo N. Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew G. Gehring
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - George C. Paoli
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| |
Collapse
|
4
|
Ali MG, Abdelhamid AG, Yousef AE. How colonizing alfalfa sprouts modulates the virulence of Shiga toxin-producing Escherichia coli. Int J Food Microbiol 2025; 428:110972. [PMID: 39608275 DOI: 10.1016/j.ijfoodmicro.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC), a significant cause of foodborne illnesses, is often associated with the consumption of fresh produce, including alfalfa sprouts. This study was executed to determine how quickly STEC grows, adapts, and colonizes alfalfa sprouts during production and storage, and whether the pathogen's virulence and infectious doses are affected by physiological adaptation to sprouts as an environment. A reporter STEC O157:H7 EDL933 strain was developed to track the transcription of eae, a virulence gene involved in colonizing human intestinal enterocytes. When the seeds were inoculated with 2.1 × 103 CFU/g of the reporter strain, the pathogen's population increased to 1.5 × 106 CFU/g sprouts within 1.38 days and then remained stable during the remainder of the 5-day sprouting, indicating physiological adaptation to this environment. Seeds were inoculated with ∼108 CFU/g and subsequently treated with 2000 ppm calcium hypochlorite solution, followed by a water-rinse (treated seeds), or just rinsed with water (untreated seeds). After 5 days of sprouting, the resulting fresh sprouts were refrigerated for three days at 4 °C. Sprout samples were collected and treated with 2000 ppm calcium hypochlorite solution and rinsed thoroughly with water before counting internalized STEC, or just water-washed before measuring total STEC. The transcription of eae (normalized to cell count) was the highest on the second day of sprouting, but the transcription of other virulence and stress-related genes varied, with sodA being upregulated in STEC cells. Lethal dose 50 (LD50) to Galleria mellonella, a STEC infection animal model, was lower (i.e., virulence was higher) in total STEC collected from fresh sprouts produced from treated seeds, compared to that from untreated seeds (1.9 × 100 and 6.0 × 101 CFU/larva, respectively). Compared to refrigerated sprouts, the LD50 of STEC from freshly produced sprouts was lower. Based on these findings, it can be concluded that (a) STEC quickly adapts physiologically to sprouts as an environment, (b) transcription of STEC virulence genes changed during sprouts production but generally decreased during refrigeration, and (c) STEC from fresh sprouts grown from sanitizer-treated seeds were more virulent in the animal model, but STEC from refrigerated sprouts were less virulent.
Collapse
Affiliation(s)
- Mostafa G Ali
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Gu X, Wu Q, Chai Y, Huang X, Zhou X, Han M, Wu T, Zhang X, Zhong F. Epidemiological and molecular characteristics of extraintestinal pathogenic escherichia coli isolated from diseased cattle and sheep in Xinjiang, China from 2015 to 2019. BMC Vet Res 2025; 21:42. [PMID: 39885526 PMCID: PMC11783789 DOI: 10.1186/s12917-025-04502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Escherichia coli has become a common causative agent of infections in animals, inflicting serious economic losses on livestock production and posing a threat to public health. Escherichia coli infection is common and tends to be complex in Xinjiang, a major region of cattle and sheep breeding in China. This study aims to explore the current status and molecular characteristics of Escherichia coli infection in cattle and sheep in Xinjiang, as part of the disease prevention and control strategy. Herein we isolated Extraintestinal pathogenic Escherichia coli (ExPEC) from the liver, spleen, lung, heart, and lymph nodes of infected cattle and sheep (Xinjiang, China), and phylogenetic grouping, serotyping, and multilocus sequence typing were performed to determine epidemic and molecular characteristics. We also assessed their biofilm formation ability. A total of 132 strains of ExPEC were identified from diseased cattle and sheep, belonging to 7 phylogenetic groups. A and B1 are advantageous groups. Further, 22 serogroups were found, with O101 (26/132), O154 (14/132), and O65 (8/132) being the predominant ones. Among the seven sequence types identified by multilocus sequence typing, ST10 was the most common, followed by ST23 and ST457. Of 132, 105 (79.5%) strains were able to form biofilms: 15 strains (11.4%) were strong, 28 (21.2%) were medium, and 62 (47%) were weak biofilm producers. These findings will contribute to a better understanding of the molecular epidemiology of ExPEC in Xinjiang, China, and can be applied to the development, prevention, and disease control of future diagnostic tools and vaccine.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Qin Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yingjin Chai
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xin Huang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.
| | - Xia Zhou
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Mengli Han
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Tongzhong Wu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Xingxing Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Fagang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
6
|
Loor-Giler A, Robayo-Chico M, Puga-Torres B, Hernandez-Alomia F, Santander-Parra S, Piantino Ferreira A, Muslin C, Nuñez L. Escherichia coli O157:H7, a Common Contaminant of Raw Milk from Ecuador: Isolation and Molecular Identification. Foods 2025; 14:410. [PMID: 39942004 PMCID: PMC11816838 DOI: 10.3390/foods14030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Escherichia coli (E. coli), especially the Shiga toxin-producing O157:H7 strain, poses severe health risks. In rural Ecuador, raw milk consumption heightens contamination risks. This study analyzed 633 raw milk samples from Pichincha and Manabí to assess E. coli O157:H7 prevalence. The samples were enriched using BHI broth, and then specific culture media were used to isolate E. coli O157:H7. The pathogen in the enriched raw milk was identified, and the isolates were specifically confirmed through the application of a newly designed qPCR assay. The novel qPCR assay demonstrated remarkable sensitivity, capable of detecting up to one copy of genetic material, and specificity (no amplification of other bacteria). An extremely high E. coli O157:H7 prevalence of 0.63 (n = 401) was detected, where the province with the highest number of positive samples was Manabí with 72.8% (n = 225/309) and 54.3% (n = 179/324) for Pichincha. In both provinces, the presence of E. coli O157:H7 contamination exhibited a favorable correlation with small-scale farms and elevated temperatures. This research provides valuable data on the microbiological contamination of E. coli O157:H7 present in raw milk, in addition to an improved method that has been demonstrated to be faster, more sensitive, and more specific than conventional and previously published methods, highlighting the associated risk of food-borne infections and pointing out potential shortcomings in the regulation of agricultural practices and the need for periodic monitoring of bacterial contamination levels with updated methods.
Collapse
Affiliation(s)
- Anthony Loor-Giler
- Laboratorios de Investigación, Dirección General de Investigación, Universidad de las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
| | - Marcela Robayo-Chico
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
| | - Byron Puga-Torres
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Jerónimo Leyton s/n y Gilberto Gatto Sobral, Quito EC 170521, Ecuador;
| | - Fernanda Hernandez-Alomia
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito EC 170125, Ecuador;
| | - Silvana Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
| | - Antonio Piantino Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo 05508-270, SP, Brazil;
| | - Claire Muslin
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Americas, Quito EC 170124, Ecuador
| | - Luis Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Americas, Quito EC 170124, Ecuador
| |
Collapse
|
7
|
Cheng C, Du J, Tao J, Cheng D. Growth Characteristics of Sheep-Derived Bacteroides fragilis and Preliminary Research on Effects in Mice and Lambs. Microorganisms 2025; 13:87. [PMID: 39858855 PMCID: PMC11767915 DOI: 10.3390/microorganisms13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
With the growing demand for sheep, the sheep farming industry has developed rapidly. However, lamb diarrhea, a disease with high mortality rates, significantly hampers the industry's growth. Traditional antibiotic treatments often disrupt the Intestinal microbiota, induce antibiotic resistance, and cause adverse side effects, highlighting the urgent need to develop alternative therapies. Bacteroides fragilis, a candidate next-generation probiotic, has been closely associated with intestinal health. This study investigated the growth characteristics and probiotic effects of a sheep-derived Bacteroides fragilis isolate, focusing on its efficacy in alleviating lamb diarrhea and infectious intestinal diseases. The experiments demonstrated that the Bacteroides fragilis isolate grows well under mildly acidic conditions (pH 6-8), exhibits some tolerance to bile salts, and has survival rates of 38.89% and 92.22% in simulated gastric and intestinal fluids, respectively, indicating its potential as a probiotic. In a mouse model, Bacteroides fragilis intervention significantly alleviated colonic inflammation caused by Enterohemorrhagic Escherichia coli infection, enhanced tight junction protein expression, mitigated oxidative stress, and improved intestinal barrier function, with high-dose interventions showing superior effects. In lamb trials, Bacteroides fragilis intervention stopped diarrhea in four out of five lambs, partially restored intestinal microbiota diversity, and reduced the abundance of potential pathogens such as Aerococcus suis and Corynebacterium camporealensis. Therefore, Bacteroides fragilis exhibited remarkable effects in regulating intestinal homeostasis, alleviating inflammation, and promoting recovery from diarrhea.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jinye Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Darong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Yun YS, Park DY, Oh IH, Shin WR, Ahn G, Ahn JY, Kim YH. Pathogenic Factors and Recent Study on the Rapid Detection of Shiga Toxin-Producing Escherichia coli (STEC). Mol Biotechnol 2025; 67:16-26. [PMID: 38153662 DOI: 10.1007/s12033-023-00985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/05/2023] [Indexed: 12/29/2023]
Abstract
This comprehensive review delves into the pathogenicity and detection of Shiga Toxin-Producing Escherichia coli (STEC), shedding light on its various genetic and clinical manifestations. STEC originating from E. coli acquires pathogenicity through mobility and genetic elements. The pathogenicity of STEC is explored in terms of clinical progression, complications, and key toxins such as Shiga toxin (Stx). Stx1 and Stx2 are two distinct Stx types exhibiting different toxicities, with Stx2 often associated with severe diseases. This review also delves into Subtilase cytotoxin, an additional cytotoxin produced by some STEC strains. Pathogenic mechanisms of STEC, such as attaching and effacing intestinal lesions, are discussed, with a focus on roles of genetic factors. Plasmids in STEC can confer unique pathogenicity. Hybridization with other pathogenic E. coli can create more lethal pathogens. This review covers a range of detection methods, ranging from DNA amplification to antigen detection techniques, emphasizing the need for innovative approaches to improve the sensitivity and speed of STEC diagnosis. In conclusion, understanding diverse aspects of STEC pathogenicity and exploring enhanced diagnostic methods are critical to addressing this foodborne pathogen effectively.
Collapse
Affiliation(s)
- Young-Sun Yun
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA, 19104, USA
| | - Gna Ahn
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
9
|
Yang Y, Yan X, Haley BJ, Li C, Nou X. Genomic Comparison of Reoccurring, Emerging, and Persistent (REP) Shiga Toxin-Producing Escherichia coli O157:H7. Foodborne Pathog Dis 2024. [PMID: 39670914 DOI: 10.1089/fpd.2024.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Escherichia coli O157:H7 strains associated with several recent (2017-2020) multi-state outbreaks linked to leafy green vegetables have been characterized as "reoccurring, emerging, and persistent" (REP). Our recent unpublished work demonstrated that the REP strains had significantly enhanced potential for biofilm formation. In this study, comparative genomic analyses were conducted for a better understanding of the mechanisms behind the enhanced biofilm formation, and thereby potentially increased environmental fitness, by the REP strains. Phylogenetically, the recent outbreak strains formed two distinct clusters represented by REPEXH01 and REPEXH02. Compared with EDL933 and other previous outbreak reference strains, the REP strains (clustering with REPEXH02) exhibiting strong biofilm formation were found to have acquired two genes encoding proteins of unknown functions (hypothetical proteins) and lost certain prophage-related genes. In addition, several single nucleotide polymorphisms in genes related to biofilm formation were identified.
Collapse
Affiliation(s)
- Yishan Yang
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service-US Department of Agriculture (ARS-USDA), Beltsville Agricultural Research Center, Beltsville, Maryland, USA
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service-US Department of Agriculture (ARS-USDA), Beltsville Agricultural Research Center, Beltsville, Maryland, USA
| | - Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service-US Department of Agriculture (ARS-USDA), Beltsville Agricultural Research Center, Beltsville, Maryland, USA
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS-USDA, Beltsville, Maryland, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service-US Department of Agriculture (ARS-USDA), Beltsville Agricultural Research Center, Beltsville, Maryland, USA
| |
Collapse
|
10
|
Capitani S, Brown LP, Carrillo CD, Lau CHF. Bacterial microbiota associated with raw plant-based meat analogue products and their influences on selective enrichment for Escherichia coli O157:H7. Curr Res Food Sci 2024; 10:100944. [PMID: 39717681 PMCID: PMC11664062 DOI: 10.1016/j.crfs.2024.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024] Open
Abstract
Towards fostering a more sustainable food production system in face of the climate change challenge, alternative protein meat-substitute products that are plant-based and free of animal by-products have been gaining attractions from both food manufacturers and consumers. With these so-called plant-based meat analogues (PBMAs) becoming increasingly available at supermarkets, there is very little known about their microbial properties. In this short report, we characterized the bacterial composition of raw plant-based ground meat imitation retail products using 16S rRNA gene amplicon sequencing. Despite the observed bacterial community dissimilarity between sample brands, a total of 18 shared genera (dominated by Bacilli and Gammaproteobacteria classes) were identified as the core constituents of the bacterial microbiota of these PBMA products. Within the scope of food safety testing, to gain insights on the dynamics of the enrichment process for E. coli O157:H7 in accordance with the Health Canada reference method MFHPB-10, bacterial taxonomic analyses were conducted at different stages of the prescribed cultural procedures. Using both control and E. coli O157:H7-inoculated PBMA samples it was revealed that, independent of the presence of E. coli O157:H7, off-target bacteria of the Clostridium sensu stricto 1 genus were significantly enriched from the uncultured samples. Additionally, the abundance of Hafnia-Obesumbacterium bacteria in the PBMA samples was also increased in the enrichment products, but only when E. coli O157:H7 was absent. Consistent with the spread-plating results indicating that the inoculated E. coli O157:H7 cells were capable of reaching a high density (>108 CFU/ml) in the resultant enrichment cultures, the significant enrichment of bacterial 16S rRNA gene sequences belonging to the targeted genus of Escherichia, but not Hafnia-Obesumbacterium. This further highlights the competitive nature of the selective enrichment for E. coli O157:H7 against specific background bacteria associated with the PBMA products.
Collapse
Affiliation(s)
- Sabrina Capitani
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Liam P. Brown
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Catherine D. Carrillo
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Braun HG, Kanwal N, Rivera Lopez LF, Thomassin JL. Generation of a plasmid series for rapid sub-cloning and use in various Enterobacteriaceae. J Biosci Bioeng 2024; 138:478-487. [PMID: 39244484 DOI: 10.1016/j.jbiosc.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024]
Abstract
Plasmids are molecular genetic tools used for trans-complementation and gene expression in bacteria. Challenges faced by researchers include limited repertoire of antibiotic resistance of plasmids, issues related to plasmid compatibility and restricted or incompatible multiple cloning sites when needing to change plasmid copy number to tune production of their protein of interest. In this study, a series of plasmids were generated with compatible multiple cloning sites and homologous DNA regions to allow for modular cloning for rapid exchange of antibiotic resistance and plasmid origin. Plasmids generated in this series have options for high, mid, and low plasmid copy number, and have either an integrated FLAG epitope in the multiple cloning site or possess an uninterrupted multiple cloning site with the option of using the common LacZ-based blue/white screening method. Low copy plasmids also have one of five antibiotic selection markers. To demonstrate functionality of these plasmids, a representative FLAG tagged protein and mCherry were cloned into the low copy plasmids and expressed in various bacteria belonging to the Enterobacteriaceae family. In conclusion, by creating a new plasmid series, we have expanded the toolkit of available molecular biology tools for bacterial work.
Collapse
Affiliation(s)
- Hannah Gertrude Braun
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan SK S7H 5N5, Canada
| | - Nabeela Kanwal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan SK S7H 5N5, Canada
| | - Luisa Fernanda Rivera Lopez
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan SK S7H 5N5, Canada; Department of Biochemistry and Microbiology, Universidad del Valle de Guatemala, Guatemala
| | - Jenny-Lee Thomassin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan SK S7H 5N5, Canada.
| |
Collapse
|
12
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
13
|
Tamminen LM, Dicksved J, Eriksson E, Keeling LJ, Emanuelson U. Untangling the role of environmental and host-related determinants for on-farm transmission of verotoxin-producing Escherichia coli O157. Infect Ecol Epidemiol 2024; 14:2406852. [PMID: 39386259 PMCID: PMC11463013 DOI: 10.1080/20008686.2024.2406852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Background: Cattle colonised by the zoonotic pathogen verotoxin-producing Escherichia coli of serotype O157 (VTEC O157) can shed high levels of the pathogen in their faeces. A suggested key for controlling VTEC O157 is preventing colonisation of individuals. Aim: In this study the role of individual super-shedders and factors related to susceptibility and environmental exposure in the transmission of VTEC O157 among dairy calves are explored. Methods: The association between sex, age, pen hygiene, pen type and stocking density and colonisation of individual calves, established by recto-anal mucosal swabs, on farms where pathogenic VTEC O157 had been confirmed was investigated. In a follow-up sampling, the consistency of previously identified risk factors and the role of shedding pen mates was assessed by studying the risk of new/re-colonisation. Results: The results suggest an important role of stocking density that decreases with age, possibly due to increased resistance to colonisation following exposure. However, previous colonisation did not influence the risk of being colonised in the second sampling. Super-shedders (shedding >103 colony forming units/g faeces) significantly increased the risk of colonisation in peers (OR = 10, CI 4.2-52). In addition, environmental factors associated with survival of the bacteria, affected risk. Conclusion: The results confirm the suggested importance of super-shedders but also emphasises the importance of considering the combined exposure from peers and the environment.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Linda J. Keeling
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Duan M, Ren K, Chen X, Chang Y, Lv Z, Wang Z, Wu S, Duan N. Discovery and design of an aptamer that inhibits Shiga toxin type 2 activity by blocking Stx2 B subunit-Gb3 interaction. Int J Biol Macromol 2024; 277:134365. [PMID: 39089540 DOI: 10.1016/j.ijbiomac.2024.134365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Shiga toxin (Stx) is the definitive virulence factor of Stx-producing Escherichia coli. This bacterial pathogen can contaminate food and threaten human health. Binding of the B subunit of Stx to the specific receptor globotriaosylceramide (Gb3) on the cell membrane is a key step for Stx to enter cells and exert its toxicity. In this work, we aimed to screen for aptamers targeting the Stx 2 B subunit, to interfere with the interaction of Stx2 B subunit and Gb3, thereby blocking Stx2 from entering cells. The results of molecular simulation docking, competitive ELISA, flow cytometry, and laser confocal microscopy confirmed that aptamers S4, S5, and S6 can mediate the interaction between Stx2 B subunit and Gb3. To further improve the inhibition effect, multiple aptamer sequences were tailored and were fused. The bivalent modification aptamer B2 inhibited Stx2 toxicity to Vero cells with inhibition rate of 53 %. Furthermore, the aptamer B2 reduced Stx2 damage to the mice, indicating that it has great potential to interfere with Stx2 binding to Gb3 receptors in vivo and in vitro. This work provides a theoretical and experimental basis for the application of aptamers in the inhibition of Stx2 toxicity and control of food hazards.
Collapse
Affiliation(s)
- Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kexin Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaowan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ziyu Lv
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Kimura R, Kimura H, Shirai T, Hayashi Y, Sato-Fujimoto Y, Kamitani W, Ryo A, Tomita H. Molecular Evolutionary Analyses of Shiga toxin type 2 subunit A Gene in the Enterohemorrhagic Escherichia coli (EHEC). Microorganisms 2024; 12:1812. [PMID: 39338486 PMCID: PMC11434168 DOI: 10.3390/microorganisms12091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
To better understand the molecular genetics of the Shiga toxin type 2 subunit A gene (stx2A gene), we collected many subtypes of stx2A genes and performed detailed molecular evolutionary analyses of the gene. To achieve the aim of the study, we used several bioinformatics technologies, including time-scaled phylogenetic analyses, phylogenetic distance analyses, phylodynamics analyses, selective pressure analyses, and conformational epitope analyses. A time-scaled phylogeny showed that the common ancestor of the stx2A gene dated back to around 18,600 years ago. After that, the gene diverged into two major lineages (Lineage 1 and 2). Lineage 1 comprised the stx2a-2d subtypes, while Lineage 2 comprised the stx2e, 2g, 2h, and 2o subtypes. The evolutionary rates of the genes were relatively fast. Phylogenetic distances showed that the Lineage 2 strains had a wider genetic divergence than Lineage 1. Phylodynamics also indicated that the population size of the stx2A gene increased after the 1930s and spread globally. Moreover, negative selection sites were identified in the Stx2A proteins, and these sites were diffusely distributed throughout the protein. Two negative selection sites were located adjacent to an active site of the common Stx2A protein. Many conformational epitopes were also estimated in these proteins, while no conformational epitope was found adjacent to the active site. The results suggest that the stx2A gene has uniquely evolved and diverged over an extremely long time, resulting in many subtypes. The dominance of the strains belonging to Lineage 1 suggests that differences in virulence may be involved in the prosperity of the offspring. Furthermore, some subtypes of Stx2A proteins may be able to induce effective neutralizing antibodies against the proteins in humans.
Collapse
Affiliation(s)
- Ryusuke Kimura
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Hirokazu Kimura
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yuriko Hayashi
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Yuka Sato-Fujimoto
- Faculty of Healthcare, Tokyo Healthcare University, Tokyo 141-8648, Japan;
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi-shi 371-8511, Gunma, Japan;
| | - Akihide Ryo
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
| |
Collapse
|
16
|
Fu Y, Nawrocki EM, M’ikanatha NM, Dudley EG. Host species shapes genotype, antimicrobial resistance, and virulence profiles of enterotoxigenic Escherichia coli (ETEC) from livestock in the United States. Appl Environ Microbiol 2024; 90:e0074924. [PMID: 39082811 PMCID: PMC11337801 DOI: 10.1128/aem.00749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are significant pathogen in both cattle and pigs, causing diarrhea in these animals and leading to economic losses in the livestock industry. Understanding the dissimilarity in genotype, antimicrobial resistance (AMR), and virulence between bovine and swine ETEC is crucial for development of targeted preventive and therapeutic approaches for livestock. However, a comprehensive study on this area remains lacking. Here, we performed whole-genome sequencing-based analyses of bovine (n = 554) and swine (n = 623) ETEC collected in the United States over a 53-year period. We identified distinct ETEC genotypes (fimH type, O antigen, H antigen, sequence type) in cattle and pigs. Furthermore, specific AMR and virulence profiles were associated with bovine and swine ETEC. Compared to swine ETEC, bovine ETEC were less diverse in genotypes and had a significantly (P < 0.001) lower number of AMR genes per isolate but higher co-occurrence of Shiga toxin and enterotoxin genes. Our results provide an overview of the key genomic differences between bovine and swine ETEC in the United States, which might be attributed to host adaptation and antibiotic usage practice. Ongoing surveillance and research are essential to monitor the genetic diversity and AMR patterns of ETEC in different host species. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC)-associated diarrhea represent one of the most economically important diseases in the livestock industry. By analyzing over a thousand livestock-derived ETEC samples in the United States, our study unveiled a clear distinction in ETEC's genetic traits (i.e., genotypes, antimicrobial resistance [AMR], and virulence profiles) that might be tied to the different use of antibiotics in cattle and pigs, and the bacteria's adaptation to their specific animal hosts. This understanding is crucial for tailoring preventive and therapeutic strategies. It also highlights the significance of ongoing surveillance and research into the evolution of bacterial pathogens like ETEC in livestock by using advanced techniques such as whole-genome sequencing.
Collapse
Affiliation(s)
- Yezhi Fu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Erin M. Nawrocki
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Woodward SE, Neufeld LMP, Peña-Díaz J, Feng W, Serapio-Palacios A, Tarrant I, Deng W, Finlay BB. Both pathogen and host dynamically adapt pH responses along the intestinal tract during enteric bacterial infection. PLoS Biol 2024; 22:e3002761. [PMID: 39146372 PMCID: PMC11349234 DOI: 10.1371/journal.pbio.3002761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/27/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Enteric pathogens navigate distinct regional microenvironments within the intestine that cue important adaptive behaviors. We investigated the response of Citrobacter rodentium, a model of human pathogenic Escherichia coli infection in mice, to regional gastrointestinal pH. We found that small intestinal pH (4.4-4.8) triggered virulence gene expression and altered cell morphology, supporting initial intestinal attachment, while higher pH, representative of C. rodentium's replicative niches further along the murine intestine, supported pathogen growth. Gastric pH, a key barrier to intestinal colonization, caused significant accumulation of intra-bacterial reactive oxygen species (ROS), inhibiting growth of C. rodentium and related human pathogens. Within-host adaptation increased gastric acid survival, which may be due to a robust acid tolerance response (ATR) induced at colonic pH. However, the intestinal environment changes throughout the course of infection. We found that murine gastric pH decreases postinfection, corresponding to increased serum gastrin levels and altered host expression of acid secretion-related genes. Similar responses following Salmonella infection may indicate a protective host response to limit further pathogen ingestion. Together, we highlight interlinked bacterial and host adaptive pH responses as an important component of host-pathogen coevolution.
Collapse
Affiliation(s)
- Sarah E. Woodward
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Laurel M. P. Neufeld
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Jorge Peña-Díaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Wenny Feng
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Antonio Serapio-Palacios
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Isabel Tarrant
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - B. Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Saleem F, Li E, Tran KL, Rudra B, Edge TA, Schellhorn HE, Gupta RS. Utilizing novel Escherichia coli-specific conserved signature proteins for enhanced monitoring of recreational water quality. Microbiologyopen 2024; 13:e1410. [PMID: 38682792 PMCID: PMC11057252 DOI: 10.1002/mbo3.1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Escherichia coli serves as a proxy indicator of fecal contamination in aquatic ecosystems. However, its identification using traditional culturing methods can take up to 24 h. The application of DNA markers, such as conserved signature proteins (CSPs) genes (unique to all species/strains of a specific taxon), can form the foundation for novel polymerase chain reaction (PCR) tests that unambiguously identify and detect targeted bacterial taxa of interest. This paper reports the identification of three new highly-conserved CSPs (genes), namely YahL, YdjO, and YjfZ, which are exclusive to E. coli/Shigella. Using PCR primers based on highly conserved regions within these CSPs, we have developed quantitative PCR (qPCR) assays for the evaluation of E. coli/Shigella species in water ecosystems. Both in-silico and experimental PCR testing confirmed the absence of sequence match when tested against other bacteria, thereby confirming 100% specificity of the tested CSPs for E. coli/Shigella. The qPCR assays for each of the three CSPs provided reliable quantification for all tested enterohaemorrhagic and environmental E. coli strains, a requirement for water testing. For recreational water samples, CSP-based quantification showed a high correlation (r > 7, p < 0.01) with conventional viable E. coli enumeration. This indicates that novel CSP-based qPCR assays for E. coli can serve as robust tools for monitoring water ecosystems and other critical areas, including food monitoring.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | - Enze Li
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | - Kevin L. Tran
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Thomas A. Edge
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | | | - Radhey S. Gupta
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
19
|
Tamura A, Azam AH, Nakamura T, Lee K, Iyoda S, Kondo K, Ojima S, Chihara K, Yamashita W, Cui L, Akeda Y, Watashi K, Takahashi Y, Yotsuyanagi H, Kiga K. Synthetic phage-based approach for sensitive and specific detection of Escherichia coli O157. Commun Biol 2024; 7:535. [PMID: 38710842 PMCID: PMC11074155 DOI: 10.1038/s42003-024-06247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Escherichia coli O157 can cause foodborne outbreaks, with infection leading to severe disease such as hemolytic-uremic syndrome. Although phage-based detection methods for E. coli O157 are being explored, research on their specificity with clinical isolates is lacking. Here, we describe an in vitro assembly-based synthesis of vB_Eco4M-7, an O157 antigen-specific phage with a 68-kb genome, and its use as a proof of concept for E. coli O157 detection. Linking the detection tag to the C-terminus of the tail fiber protein, gp27 produces the greatest detection sensitivity of the 20 insertions sites tested. The constructed phage detects all 53 diverse clinical isolates of E. coli O157, clearly distinguishing them from 35 clinical isolates of non-O157 Shiga toxin-producing E. coli. Our efficient phage synthesis methods can be applied to other pathogenic bacteria for a variety of applications, including phage-based detection and phage therapy.
Collapse
Affiliation(s)
- Azumi Tamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Nakamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kohei Kondo
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kotaro Chihara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Wakana Yamashita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| |
Collapse
|
20
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
21
|
Wang X, Yu D, Chui L, Zhou T, Feng Y, Cao Y, Zhi S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms 2024; 12:687. [PMID: 38674631 PMCID: PMC11052178 DOI: 10.3390/microorganisms12040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin (Stx), the main virulence factor of Shiga-toxin-producing E. coli (STEC), was first discovered in Shigella dysenteriae strains. While several other bacterial species have since been reported to produce Stx, STEC poses the most significant risk to human health due to its widespread prevalence across various animal hosts that have close contact with human populations. Based on its biochemical and molecular characteristics, Shiga toxin can be grouped into two types, Stx1 and Stx2, among which a variety of variants and subtypes have been identified in various bacteria and host species. Interestingly, the different Stx subtypes appear to vary in their host distribution characteristics and in the severity of diseases that they are associated with. As such, this review provides a comprehensive overview on the bacterial species that have been recorded to possess stx genes to date, with a specific focus on the various Stx subtype variants discovered in STEC, their prevalence in certain host species, and their disease-related characteristics. This review provides a better understanding of the Stx subtypes and highlights the need for rapid and accurate approaches to toxin subtyping for the proper evaluation of the health risks associated with Shiga-toxin-related bacterial food contamination and human infections.
Collapse
Affiliation(s)
- Xuan Wang
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Daniel Yu
- School of Public Health, Univeristy of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Linda Chui
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Tiantian Zhou
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yu Feng
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yuhao Cao
- School of Basic Medical Sciences, Ningbo University, Ningbo 315000, China;
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| |
Collapse
|
22
|
Kalalah AA, Koenig SSK, Bono JL, Bosilevac JM, Eppinger M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front Microbiol 2024; 15:1364026. [PMID: 38562479 PMCID: PMC10982417 DOI: 10.3389/fmicb.2024.1364026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| |
Collapse
|
23
|
Tamaki Y, Harakuni T, Arakawa T. Shiga toxin type 2 B subunit protects mice against toxin challenge when leashed and bundled by a stable pentameric coiled-coil molecule. Vaccine 2024; 42:1757-1767. [PMID: 38365487 DOI: 10.1016/j.vaccine.2024.01.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Vaccines against Shiga toxin (Stx)-producing Escherichia coli (STEC) have not yet been developed. Two immunologically distinct serotypes of Stx (Stx1 and Stx2) are the main virulence factors of STEC. Thus, blocking their B subunits (StxB) from binding to the cell surface receptor globotriaosylceramide (Gb3) efficiently prevents the action of these toxins. We expressed Stx1B and Stx2B in E. coli inclusion bodies and reassembled them into pentamers by a stepwise dialysis. Stx1B pentamer fully protected mice against Stx1 challenge, but Stx2B pentamer failed to protect mice against Stx2 challenge. To explain those observations, we proposed that the pentamer of Stx2B readily dissociates into its constituent monomers, especially under in vivo conditions, thus being unable to induce pentamer-specific immunity. To increase pentamer stability, we fused the B subunit to a pentameric coiled-coil domain of the cartilage oligomeric matrix protein (COMP). This "five-to-five" fusion hybrid molecule (Stx2B-COMP) was shown to be protective against Stx2 challenge, demonstrating that the Stx2B subunit when leashed and bundled by a rigid pentameric coiled-coil domain mount a pentamer-specific immune response and efficiently neutralize the toxin both in vitro and in vivo. Our data strongly suggest that the Stx2B subunit moiety fluctuates between a pentameric and monomeric state within the fusion protein, which may increase the likelihood of the immune system recognizing the pentameric conformation for toxin neutralization.
Collapse
Affiliation(s)
- Yukihiro Tamaki
- Laboratory of Vaccine Research and Development, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Tetsuya Harakuni
- Laboratory of Vaccine Research and Development, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Takeshi Arakawa
- Laboratory of Vaccine Research and Development, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
24
|
Pan B, El-Moghazy AY, Norwood M, Nitin N, Sun G. Rapid and Ultrasensitive Colorimetric Biosensors for Onsite Detection of Escherichia coli O157:H7 in Fluids. ACS Sens 2024; 9:912-922. [PMID: 38320289 PMCID: PMC10897931 DOI: 10.1021/acssensors.3c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
This study presents a breakthrough in the field of onsite bacterial detection, offering an innovative, rapid, and ultrasensitive colorimetric biosensor for the detection of Escherichia coli (E. coli) O157:H7, using chemically modified melamine foam (MF). Different from conventional platforms, such as 96-well plates and fiber-based membranes, the modified MF features a macroporous reticulated three-dimensional (3D) framework structure, allowing fast and free movement of large biomolecules and bacteria cells through the MF structure in every direction and ensuring good accessibility of entire active binding sites of the framework structure with the target bacteria, which significantly increased sensitive and volume-responsive detection of whole-cell bacteria. The biosensing platform requires less than 1.5 h to complete the quantitative detection with a sensitivity of 10 cfu/mL, discernible by the naked eye, and an enhanced sensitivity of 5 cfu/mL with the help of a smartphone. Following a short enrichment period of 1 h, the sensitivity was further amplified to 2 cfu/mL. The biosensor material is volume responsive, making the biosensing platform sensitivity increase as the volume of the sample increases, and is highly suitable for testing large-volume fluid samples. This novel material paves the way for the development of volume-flexible biosensing platforms for the record-fast, onsite, selective, and ultrasensitive detection of various pathogenic bacteria in real-world applications.
Collapse
Affiliation(s)
- Bofeng Pan
- Biological
and Agricultural Engineering, University
of California, Davis, California 95616, United States
| | - Ahmed Y. El-Moghazy
- Department
of Food Science and Technology, University
of California, Davis, California 95616, United States
| | - Makela Norwood
- Biological
and Agricultural Engineering, University
of California, Davis, California 95616, United States
| | - Nitin Nitin
- Biological
and Agricultural Engineering, University
of California, Davis, California 95616, United States
- Department
of Food Science and Technology, University
of California, Davis, California 95616, United States
| | - Gang Sun
- Biological
and Agricultural Engineering, University
of California, Davis, California 95616, United States
| |
Collapse
|
25
|
Khan N, Graham T, Franciszkiewicz K, Bloch S, Nejman-Faleńczyk B, Wegrzyn A, Donaldson LW. The NMR structure of the Orf63 lytic developmental protein from lambda bacteriophage. Sci Rep 2024; 14:3793. [PMID: 38360900 PMCID: PMC10869804 DOI: 10.1038/s41598-024-54508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
The orf63 gene resides in a region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed during infection. In lambda phage and Shiga toxin (Stx) producing phages found in enterohemorrhagic Escherichia coli (EHEC) associated with food poisoning, Orf63 expression reduces the host survival and hastens the period between infection and lysis thereby giving it pro-lytic qualities. The NMR structure of dimeric Orf63 reveals a fold consisting of two helices and one strand that all make extensive intermolecular contacts. Structure-based data mining failed to identify any Orf63 homolog beyond the family of temperate bacteriophages. A machine learning approach was used to design an amphipathic helical ligand that bound a hydrophobic cleft on Orf63 with micromolar affinity. This approach may open a new path towards designing therapeutics that antagonize the contributions of Stx phages in EHEC outbreaks.
Collapse
Affiliation(s)
- Naushaba Khan
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Tavawn Graham
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | | | - Sylwia Bloch
- Department of Molecular Biology, University of Gdańsk, 80-308, Gdańsk, Poland
| | | | - Alicja Wegrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdańsk, 80-822, Gdańsk, Poland
| | - Logan W Donaldson
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
| |
Collapse
|
26
|
Shirzad H, Panji M, Nezhad SAM, Houshmand P, Tamai IA. One-pot rapid visual detection of E. coli O157:H7 by label-free AuNP-based plasmonic-aptasensor in water sample. J Microbiol Methods 2024; 217-218:106858. [PMID: 38040292 DOI: 10.1016/j.mimet.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Access to clean water for irrigation and drinking has long been a global concern. The need for fast, precise, and cost-effective methods to detect harmful bacteria like Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is high due to the potential for severe infectious diseases. Fortunately, recent research has led to developing and utilizing rapid bacterial detection methods. The creation of an aptamer-based biosensor (aptasensor) for the detection of E. coli O157:H7 using label-free aptamers and gold nanoparticles (AuNPs) is described in this study. The specific aptamers that can detect target bacteria are adsorbed on the surface of unmodified AuNPs to form the aptasensor. The detection is performed by target bacterium-induced aptasensor aggregation, which is associated with a red-to-purple color change under high-salt circumstances. We devised a quick and easy method for detecting bacteria using an anti-E. coli O157:H7 aptamer without the need for specialized equipment or pretreatment processes like cell lysis. The aptasensor could identify target bacteria with only as few as 250 colony-forming units (CFU)/ml in 15 min or less, and its specificity based on our test was 100%. This method not only provides a fast direct preparation process but also exhibits remarkable proficiency in promptly identifying the intended target with a heightened level of sensitivity and specificity. Therefore, it can serve as an intelligent tool for monitoring water reservoirs and preventing the transmission of infectious diseases associated with EHEC.
Collapse
Affiliation(s)
- Hadi Shirzad
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Mohammad Panji
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Seyed Amin Mousavi Nezhad
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Pouya Houshmand
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
27
|
Shruti A, Bage N, Kar P. Nanomaterials based sensors for analysis of food safety. Food Chem 2024; 433:137284. [PMID: 37703589 DOI: 10.1016/j.foodchem.2023.137284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
The freshnessof the food is a major issue because spoiled food lacks critical nutrients for growth and could be harmful to human health if consumed directly. Nanomaterials are captivating due to their unique properties like large surface area, high selectivity, small dimension, great biocompatibility and conductivity, real-time onsite analysis, etc. which give them an advantage over conventional evaluation techniques. Despite these advantages of nanomaterials used in food safety and their preservation, food products can still get affected by various environmental factors (like pH, temperature, etc.), making the use of time-temperature indicators more condescending. This review is a comprehensive study on food safety, its causes, the responsible analytes, their remedies by various nanomaterials, the development of various nanosensors, and the various challenges faced in maintaining food safety standards to reduce the risk of contaminants.
Collapse
Affiliation(s)
- Asparshika Shruti
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Nirgaman Bage
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Pradip Kar
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
28
|
Yesil M, Kasler DR, Huang E, Yousef AE. Thermal Inactivation of Escherichia Phage OSYSP and Host Strain Escherichia coli O157:H7 EDL933: A Comparative Kinetic Analysis. J Food Prot 2024; 87:100215. [PMID: 38182094 DOI: 10.1016/j.jfp.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Lytic bacteriophages are promising biocontrol agents against pathogenic bacteria for food and therapeutic applications. Investigating the feasibility of combining phage and physical lethal agents, such as heat, as an effective hurdle combination could lead to beneficial applications. The current research was initiated to compare the thermal inactivation kinetics of a lytic phage (Escherichia phage OSYSP) and its host (Shiga toxin-producing Escherichia coli O157:H7 EDL933), considering they have different critical thermal targets in their structures. To provide a basis for comparison, thermal inactivation kinetics were determined on suspensions of these agents in buffered peptone water using a thermally controlled circulating water bath. Results showed that the bacteriophage virions have a remarkable heat resistance (p < 0.05) compared to their host cells. The D-values of the populations of phage (PFU/mL) and EDL933 strain (CFU/mL) were 166.7 and 7.3 min at 55°C, compared to 44.4 and 0.3 min at 60°C, respectively. Additionally, D-values were significantly (p < 0.05) more influenced by temperature changes in the case of E. coli O157:H7 EDL933 (z-value 3.7°C) compared to that for phage OSYSP (z-value 7.7°C). When the phage suspension was heat-treated in a thermal cycler instead of a water bath, no significant differences between the two treatment procedures (p > 0.05) in estimating virus D- and z-values were observed. Based on these findings, it may be feasible to combine phage OSYSP with mild heat during processing of food to selectively inactivate E. coli O157:H7 EDL933 and subsequently maintain product safety during storage by the surviving phage population; however, the feasibility of this application needs to be investigated. Additionally, the relatively heat-resistant phage OSYSP could qualify as a biological indicator to validate thermal treatments of minimally processed foods in which E. coli O157:H7 EDL933 is the pathogen-of-concern.
Collapse
Affiliation(s)
- Mustafa Yesil
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - David R Kasler
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - En Huang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Liao YT, Ho KJ, Zhang Y, Salvador A, Wu VCH. A new Rogue-like Escherichia phage UDF157lw to control Escherichia coli O157:H7. Front Microbiol 2024; 14:1302032. [PMID: 38318127 PMCID: PMC10838988 DOI: 10.3389/fmicb.2023.1302032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Shiga toxin-producing Escherichia coli (STEC) O157:H7 is one of the notorious foodborne pathogens causing high mortality through the consumption of contaminated food items. The food safety risk from STEC pathogens could escalate when a group of bacterial cells aggregates to form a biofilm. Bacterial biofilm can diminish the effects of various antimicrobial interventions and enhance the pathogenicity of the pathogens. Therefore, there is an urgent need to have effective control measurements. Bacteriophages can kill the target bacterial cells through lytic infection, and some enzymes produced during the infection have the capability to penetrate the biofilm for mitigation compared to traditional interventions. This study aimed to characterize a new Escherichia phage vB_EcoS-UDF157lw (or UDF157lw) and determine its antimicrobial efficacy against E. coli O157:H7. Methods Phage characterization included biological approaches, including phage morphology, one-step growth curve, stability tests (pH and temperature), and genomic approaches (whole-genome sequencing). Later, antimicrobial activity tests, including productive infection against susceptible bacterial strains, in vitro antimicrobial activity, and anti-biofilm, were conducted. Results UDF157lw is a new member of the phages belonging to the Rogunavirus genus, comprising a long and non-contractile tail, isolated from bovine feces and shares close genomic evolutionary similarities with Escherichia phages vB_EcoS-BECP10 and bV_EcoS_AKS96. When used against E. coli O157:H7 (ATCC35150), phage UDF157lw exhibited a latent period of 14 min and a burst size of 110 PFU per infected cell. The phage remained viable in a wide range of pH values (pH 4-11) and temperatures (4-60°C). No virulence genes, such as stx, lysogenic genes, and antibiotic resistance genes, were found. Phage UDF157lw demonstrated high infection efficiencies against different E. coli O157:H7 and generic E. coli strains. In addition, UDF157lw encoded a unique major tail protein (ORF_26) with prominent depolymerase enzyme activity against various E. coli O157:H7 strains, causing large plaque sizes. In contrast to the phage without encoding depolymerase gene, UDF157lw was able to reduce the 24-h and 48-h E. coli O157:H7 biofilm after 1-h phage treatment. Discussion The findings of this study provide insights into a new member of the Rogunavirus phages and demonstrate its antimicrobial potential against E. coli O157:H7 in vitro.
Collapse
Affiliation(s)
| | | | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
30
|
Naidoo N, Zishiri OT. Comparative genomics analysis and characterization of Shiga toxin-producing Escherichia coli O157:H7 strains reveal virulence genes, resistance genes, prophages and plasmids. BMC Genomics 2023; 24:791. [PMID: 38124028 PMCID: PMC10731853 DOI: 10.1186/s12864-023-09902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that has been linked to global disease outbreaks. These diseases include hemorrhagic colitis and hemolytic uremic syndrome. It is vital to know the features that make this strain pathogenic to understand the development of disease outbreaks. In the current study, a comparative genomic analysis was carried out to determine the presence of structural and functional features of O157:H7 strains obtained from 115 National Center for Biotechnology Information database. These strains of interest were analysed in the following programs: BLAST Ring Image Generator, PlasmidFinder, ResFinder, VirulenceFinder, IslandViewer 4 and PHASTER. Five strains (ECP19-198, ECP19-798, F7508, F8952, H2495) demonstrated a great homology with Sakai because of a few regions missing. Five resistant genes were identified, however, Macrolide-associated resistance gene mdf(A) was commonly found in all genomes. Majority of the strains (97%) were positive for 15 of the virulent genes (espA, espB, espF, espJ, gad, chuA, eae, iss, nleA, nleB, nleC, ompT, tccP, terC and tir). The plasmid analysis demonstrated that the IncF group was the most prevalent in the strains analysed. The prophage and genomic island analysis showed a distribution of bacteriophages and genomic islands respectively. The results indicated that structural and functional features of the many O157:H7 strains differ and may be a result of obtaining mobile genetic elements via horizontal gene transfer. Understanding the evolution of O157:H7 strains pathogenicity in terms of their structural and functional features will enable the development of detection and control of transmission strategies.
Collapse
Affiliation(s)
- Natalie Naidoo
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
31
|
Sui X, Yang X, Luo M, Wang H, Liu Q, Sun H, Jin Y, Wu Y, Bai X, Xiong Y. Characteristics of Shiga Toxin-Producing Escherichia coli Circulating in Asymptomatic Food Handlers. Toxins (Basel) 2023; 15:640. [PMID: 37999503 PMCID: PMC10675304 DOI: 10.3390/toxins15110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne zoonotic pathogen that causes diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) worldwide. Since the infection can be asymptomatic, the circulation of STEC in some asymptomatic carriers, especially in healthy-food-related professionals, is not yet well understood. In this study, a total of 3987 anal swab samples from asymptomatic food handlers were collected, and ten swabs recovered STEC strains (0.251%). Of the ten STEC isolates, seven serotypes and eight sequence types (ST) were determined using whole genome sequencing (WGS). Two stx1 subtypes (stx1a and stx1c) and four stx2 subtypes (stx2a, stx2b, stx2d, and stx2e) were detected. Seven different insertion sites were found in fourteen Stx prophages, and the dmsB and yfhL were the newly identified insertion sites. The ten strains showed the variable Stx transcription levels after the mitomycin C induction. The whole-genome phylogeny indicated that the strains from the asymptomatic food handlers were genetically distant from the strains of HUS patients. The STEC isolates circulating in asymptomatic carriers might pose a low potential to cause disease.
Collapse
Affiliation(s)
- Xinxia Sui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xi Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin 537000, China
| | - Hua Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qian Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yujuan Jin
- Longgang Center for Disease Control and Prevention, Shenzhen 518172, China
| | - Yannong Wu
- Yulin Center for Disease Control and Prevention, Yulin 537000, China
| | - Xiangning Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Yanwen Xiong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
32
|
Patel D, Hansen M, Lambert C, Hegde S, Jayamohan H, Gale BK, Sant HJ. Characterizing a Silver Nanoparticle-Based Electrochemical Biosensor for Shiga Toxin Detection. ACS OMEGA 2023; 8:40898-40903. [PMID: 37929116 PMCID: PMC10620918 DOI: 10.1021/acsomega.3c06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Shiga toxins (1, 2) regularly cause outbreaks and food recalls and pose a significant health risk to the infected population. Therefore, new reliable tools are needed to rapidly detect Shiga toxin cost-effectively in food, water, and wastewater before human consumption. Enzyme immunoassay and polymerase chain reaction approaches are the gold standard detection methods for the Shiga toxin. However, these methods require expensive instruments along with expensive reagents, which makes them hard to convert into point-of-use and low-cost systems. This study introduces an electrochemical biosensing method that utilizes silver nanoparticles (AgNPs) as electrochemical tags and commercially available low-cost screen-printed carbon electrodes for detection. This study introduces the modification of reference electrodes on commercially available screen-printed carbon electrodes to detect AgNPs dissolved in nitric acid. This biosensor achieved a 2 ng/mL lowest measured concentration for Shiga toxin-1 in less than 3 h. These biosensor results also showed that the AgNP-based sensor has better linearity (for graph between peak current vs concentration) and lower standard deviation compared to gold nanoparticles (AuNP)-based electrochemical biosensors.
Collapse
Affiliation(s)
- Dhruv Patel
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
| | - Madison Hansen
- Department
of Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher Lambert
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Espira
Inc., 825 N 300 W Suite
N-223, Salt Lake City, Utah 84103, United States
| | - Shruti Hegde
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Harikrishnan Jayamohan
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
| | - Bruce K. Gale
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Espira
Inc., 825 N 300 W Suite
N-223, Salt Lake City, Utah 84103, United States
| | - Himanshu Jayant Sant
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
33
|
Kintz E, Brainard J, Vanderes M, Vivancos R, Byrne L, Butt S, Jenkins C, Elson R, Lake I, Hunter P. Animal and environmental risk factors for sporadic Shiga toxin-producing Escherichia coli (STEC) infection in England: a case control study for O157, O26 and other STEC serotypes. Pathog Glob Health 2023; 117:655-663. [PMID: 37016510 PMCID: PMC10498794 DOI: 10.1080/20477724.2023.2197672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Most Shiga toxin-producing E. coli (STEC) infections are sporadic. Routine enhanced surveillance questionnaires of confirmed STEC cases in England contained promising data to conduct a case-control study to identify non-food exposures linked to the risk of becoming infected with different STEC serotypes, including O157, O26 and all others; this study pulled eligible cases from the recorded enhanced surveillance data. Controls were recruited from the general population and answered a comparable postal questionnaire. Logistic regression was performed to identify risk factors associated with STEC infection for O157, O26 and other serotype cases. In adjusted models, travel outside of the U.K. and childcare occupations raised the risk of infection for all serotypes. Day trips within the UK, exposure to dogs and contact with soil were linked to lower infection risk. Resident region within England was often linked to decreased risk. Summer season was linked to O157 and O26, but not other STEC. Swimming in the sea was linked to increased risk of infection by O157, but not other types of STEC. Correlations between exposures and infection were similar when the analysis was repeated excluding participants with a history of foreign travel. As the first case-control study in England to include sporadic non-O157 STEC, the varying risk factors between O157 and non-O157 cases suggest there are potentially unique reservoirs for different serotypes.
Collapse
Affiliation(s)
- Erica Kintz
- Norwich Medical School, University of East Anglia, Norwich, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Julii Brainard
- Norwich Medical School, University of East Anglia, Norwich, UK
- NIHR Health Protection Research Unit in Emergency Preparedness, University of East Anglia, Norwich, UK
| | - Mike Vanderes
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Roberto Vivancos
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Field Epidemiology Services, UK Health Security Agency, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Lisa Byrne
- Gastrointestinal Pathogens Unit, UK Health Security Agency, London, UK
| | - Saira Butt
- Gastrointestinal Pathogens Unit, UK Health Security Agency, London, UK
| | - Claire Jenkins
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Gastrointestinal Pathogens Unit, UK Health Security Agency, London, UK
| | - Richard Elson
- Gastrointestinal Pathogens Unit, UK Health Security Agency, London, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Iain Lake
- NIHR Health Protection Research Unit in Emergency Preparedness, University of East Anglia, Norwich, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Paul Hunter
- Norwich Medical School, University of East Anglia, Norwich, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emergency Preparedness, University of East Anglia, Norwich, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
34
|
Biernbaum EN, Dassanayake RP, Nicholson EM, Kudva IT. Comparative evaluation of antimicrobial activity of human granulysin, bovine and porcine NK-lysins against Shiga toxin-producing Escherichia coli O157:H7. PLoS One 2023; 18:e0292234. [PMID: 37768945 PMCID: PMC10538649 DOI: 10.1371/journal.pone.0292234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157:H7 (O157) is a foodborne pathogen causing human disease ranging from hemorrhagic colitis and hemolytic uremic syndrome to kidney failure, while remaining harmless to cattle, its primary reservoir. The severity of the human disease associated mainly with Shiga toxin production and a global emergence of antibiotic resistant STEC highlights the need for effective non-antibiotic, pre-harvest strategies to reduce O157 in cattle, the principal source of human infection. Towards this goal three synthetic antimicrobial peptides (AMPs): human granulysin (hGRNL), bovine NK-lysin (bNK2A), and porcine NK-lysin (pNKL), were tested in vitro against O157 isolates. As expected, circular dichroism spectroscopy findings were consistent with a predominantly α-helical conformation for all three AMPs in an environment mimicking bacterial outer surface or liposaccharides. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations of hGRNL (200 μM), bNK2A (12.5 μM against strain 86-24 and 25 μM against EDL933), and pNKL (6.25 μM) were determined using the Clinical and Laboratory Standards Institute broth microdilution method in Müeller-Hinton broth (cation-adjusted). The bNK2A and pNKL AMPs did not induce Shiga toxin expression in O157 at MIC, as there was a significant decrease or no change in toxin expression following 4- or 20 h incubation with the AMPs; bNK2A p <0.0001 (4 h) and p = 0.4831 (20 h); pNKL p <0.0001 (4 h) and p = 0.0001 (20 h). Propidium iodide uptake assay revealed faster O157 membrane damage or killing kinetics with bNK2A and pNKL compared to hGRNL. Nonetheless, transmission electron microscopy demonstrated that all three AMPs mediated damage to O157 membranes. In contrast, the three AMPs showed minimal cytotoxicity (<2%) against cattle red blood cells at tested concentrations (0.39-50 μM). Overall, our results demonstrate the potential for bNK2A and pNKL to be further developed into novel non-antibiotic agents to reduce O157 shedding in cattle.
Collapse
Affiliation(s)
- Erika N. Biernbaum
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, Tennessee, United States of America
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
| |
Collapse
|
35
|
Zehentner B, Scherer S, Neuhaus K. Non-canonical transcriptional start sites in E. coli O157:H7 EDL933 are regulated and appear in surprisingly high numbers. BMC Microbiol 2023; 23:243. [PMID: 37653502 PMCID: PMC10469882 DOI: 10.1186/s12866-023-02988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Analysis of genome wide transcription start sites (TSSs) revealed an unexpected complexity since not only canonical TSS of annotated genes are recognized by RNA polymerase. Non-canonical TSS were detected antisense to, or within, annotated genes as well new intergenic (orphan) TSS, not associated with known genes. Previously, it was hypothesized that many such signals represent noise or pervasive transcription, not associated with a biological function. Here, a modified Cappable-seq protocol allows determining the primary transcriptome of the enterohemorrhagic E. coli O157:H7 EDL933 (EHEC). We used four different growth media, both in exponential and stationary growth phase, replicated each thrice. This yielded 19,975 EHEC canonical and non-canonical TSS, which reproducibly occurring in three biological replicates. This questions the hypothesis of experimental noise or pervasive transcription. Accordingly, conserved promoter motifs were found upstream indicating proper TSSs. More than 50% of 5,567 canonical and between 32% and 47% of 10,355 non-canonical TSS were differentially expressed in different media and growth phases, providing evidence for a potential biological function also of non-canonical TSS. Thus, reproducible and environmentally regulated expression suggests that a substantial number of the non-canonical TSSs may be of unknown function rather than being the result of noise or pervasive transcription.
Collapse
Affiliation(s)
- Barbara Zehentner
- Chair for Microbial Ecology, TUM School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, TUM School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
- Core Facility Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
36
|
Rakhalaru P, Munzhedzi L, Abia ALK, Kabue JP, Potgieter N, Traore AN. Prevalence and Antimicrobial Resistance Profile of Diarrheagenic Escherichia coli from Fomites in Rural Households in South Africa. Antibiotics (Basel) 2023; 12:1345. [PMID: 37627765 PMCID: PMC10451885 DOI: 10.3390/antibiotics12081345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Diarrheagenic Escherichia coli (DEC) pathotypes are the leading cause of mortality and morbidity in South Asia and sub-Saharan Africa. Daily interaction between people contributes to the spreading of Escherichia coli (E. coli), and fomites are a common source of community-acquired bacterial infections. The spread of bacterial infectious diseases from inanimate objects to the surrounding environment and humans is a serious problem for public health, safety, and development. This study aimed to determine the prevalence and antibiotic resistance of diarrheagenic E. coli found in toilets and kitchen cloths in the Vhembe district, South Africa. One hundred and five samples were cultured to isolate E. coli: thirty-five samples were kitchen cloths and seventy-five samples were toilet swabs. Biochemical tests, API20E, and the VITEK®-2 automated system were used to identify E. coli. Pathotypes of E. coli were characterised using Multiplex Polymerase Chain Reaction (mPCR). Nine amplified gene fragments were sequenced using partial sequencing. A total of eight antibiotics were used for the antibiotic susceptibility testing of E. coli isolates using the Kirby-Bauer disc diffusion method. Among the collected samples, 47% were positive for E. coli. DEC prevalence was high (81%), with ETEC (51%) harboring lt and st genes being the most dominant pathotype found on both kitchen cloths and toilet surfaces. Diarrheagenic E. coli pathotypes were more prevalent in the kitchen cloths (79.6%) compared with the toilet surfaces. Notably, hybrid pathotypes were detected in 44.2% of the isolates, showcasing the co-existence of multiple pathotypes within a single E. coli strain. The antibiotic resistance testing of E. coli isolates from kitchen cloths and toilets showed high resistance to ampicillin (100%) and amoxicillin (100%). Only E. coli isolates with hybrid pathotypes were found to be resistant to more than three antibiotics. This study emphasizes the significance of fomites as potential sources of bacterial contamination in rural settings. The results highlight the importance of implementing proactive measures to improve hygiene practices and antibiotic stewardship in these communities. These measures are essential for reducing the impact of DEC infections and antibiotic resistance, ultimately safeguarding public health.
Collapse
Affiliation(s)
| | | | | | | | | | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (P.R.); (L.M.); (A.L.K.A.); (J.P.K.); (N.P.)
| |
Collapse
|
37
|
Ro EY, Choi MR, Park YM, Kim SG, Lee SY. Antibacterial effects of vinegar N6 and UV-C light-emitting diodes against Shiga toxin-producing and enterohemorrhagic Escherichia coli in fresh beef. Food Sci Biotechnol 2023; 32:1205-1214. [PMID: 37362812 PMCID: PMC10290012 DOI: 10.1007/s10068-023-01260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Some Escherichia coli serotypes cause diarrhea in infants and acute gastroenteritis. In this study, the incidence of Shiga toxin-producing (STEC) and enterohemorrhagic (EHEC) E. coli in 310 fresh raw beef samples and the presence of pathogenicity-associated virulence genes in the isolated strains were evaluated. The contamination rate reached 18.06% (STEC, 12.26%; EHEC, 5.81%). The highest rate of identified virulence genes was 8.38% for stx2 and 3.23% for stx2 and eae in STEC and EHEC, respectively. Vinegar N6 significantly lowered E. coli growth in beef samples, depending on its concentration (> 0.5%), treatment temperature (5 or 10 °C), and E. coli type (STEC, EHEC, or enteropathogenic), during 28 days of storage. However, no bactericidal effects were detected, unlike those observed for combined treatment with UV-C LED and vinegar N6. Treatment with vinegar N6 and UV-C LED together may significantly reduce E. coli growth in fresh beef, thereby improving food safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01260-x.
Collapse
Affiliation(s)
- Eun Young Ro
- Food Safety Center, Pulmuone Institute of Technology, 29, Osongsaengmyeong 10-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28220 Republic of Korea
| | - Mi Ri Choi
- Food Safety Center, Pulmuone Institute of Technology, 29, Osongsaengmyeong 10-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28220 Republic of Korea
| | - Young Min Park
- Food Safety Center, Pulmuone Institute of Technology, 29, Osongsaengmyeong 10-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28220 Republic of Korea
| | - Sang Gu Kim
- Food Safety Center, Pulmuone Institute of Technology, 29, Osongsaengmyeong 10-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28220 Republic of Korea
| | - Sang Yun Lee
- Food Safety Center, Pulmuone Institute of Technology, 29, Osongsaengmyeong 10-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28220 Republic of Korea
| |
Collapse
|
38
|
Lee JE, Toushik SH, Park HJ, Kim SA, Shim WB. Rapid detection of Shiga-toxin-producing Escherichia coli O157:H7 based on a colorimetric loop-mediated isothermal amplification (cLAMP) assay using a molecular beacon paired with HRPzyme. Anal Bioanal Chem 2023; 415:4973-4984. [PMID: 37365333 DOI: 10.1007/s00216-023-04803-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Contamination by Escherichia coli O157:H7 is considered a threat in the livestock and food industries. Therefore, it is necessary to develop methods for the convenient and rapid detection of Shiga-toxin-producing E. coli O157:H7. This study aimed to develop a colorimetric loop-mediated isothermal amplification (cLAMP) assay using a molecular beacon to rapidly detect E. coli O157:H7. Primers and a molecular beacon were designed for targeting the Shiga-toxin-producing virulence genes (stx1 and stx2) as molecular markers. Additionally, Bst polymerase concentration and amplification conditions for bacterial detection were optimized. The sensitivity and specificity of the assay were also investigated and validated on artificially tainted (100-104 CFU/g) Korean beef samples. The cLAMP assay could detect 1 × 101 CFU/g at 65 °C for both genes, and the assay was confirmed to be specific for E. coli O157:H7. The cLAMP takes about an hour and does not require expensive devices (e.g., thermal cycler and detector). Hence, the cLAMP assay proposed herein can be used in the meat industry as a fast and simple way to detect E. coli O157:H7.
Collapse
Affiliation(s)
- Jeong-Eun Lee
- Institute of Smart Farm Research Center, Gyeongsang National University, Gyeongnam, Jinju, 52828, Korea
| | | | - Hyun-Jin Park
- Division of Applied Life Science, Graduate School, Gyeongsang National University, Gyeongnam, Jinju, 52828, Korea
| | - Sol-A Kim
- Division of Applied Life Science, Graduate School, Gyeongsang National University, Gyeongnam, Jinju, 52828, Korea
| | - Won-Bo Shim
- Division of Applied Life Science, Graduate School, Gyeongsang National University, Gyeongnam, Jinju, 52828, Korea.
- Institute of Agricultural and Life Science, Gyeongsang National University, Gyeongnam, Jinju, 52828, Korea.
- Division of Food Science and Technology, Gyeongsang National University, Gyeongnam, Jinju, 52828, Korea.
| |
Collapse
|
39
|
Zwe YH, Li D. Pathogenic and transmissional potentials of a Chromobacterium haemolyticum isolate from a hydroponic farm. J Appl Microbiol 2023; 134:lxad149. [PMID: 37442627 DOI: 10.1093/jambio/lxad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
AIMS This study aims to investigate the in vitro pathogenicity of Chromobacterium haemolyticum strain WI5 toward the intestinal tract, its resistance to water treatments, and its potential for foodborne transmission through leafy greens produced in hydroponic systems. METHODS AND RESULTS C. haemolyticum WI5 caused cytopathic effects in human colon cells HCT116 and exhibited an 8.2-fold higher cell attachment compared to Salmonella serotype Typhimurium. It showed comparable resistance to sodium hypochlorite (NaOCl) and ultraviolet (UV) treatments as Escherichia coli O157: H7 and Pseudomonas aeruginosa but was more susceptible to desiccation. On lettuce, C. haemolyticum WI5 failed to persist, with counts decreasing below the detection limit (≥4 log reductions) after 3 and 2 days at 4 and 25°C, respectively. CONCLUSIONS C. haemolyticum WI5 demonstrated considerable virulence features and high in vitro pathogenicity toward the intestinal tract. NaOCl and UV treatments were effective in disinfecting C. haemolyticum in water. Due to its high susceptibility to desiccation and poor survivability on lettuce, the foodborne transmission potential of C. haemolyticum is considered limited.
Collapse
Affiliation(s)
- Ye Htut Zwe
- Department of Food Science and Technology, National University of Singapore, Singapore 117543
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore 117543
| |
Collapse
|
40
|
Kudva IT, Biernbaum EN, Cassmann ED, Palmer MV. Bovine Rectoanal Junction In Vitro Organ Culture Model System to Study Shiga Toxin-Producing Escherichia coli Adherence. Microorganisms 2023; 11:1289. [PMID: 37317263 DOI: 10.3390/microorganisms11051289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Studies evaluating the interactions between Shiga toxin-producing Escherichia coli O157:H7 (O157) and the bovine recto-anal junction (RAJ) have been limited to either in vitro analyses of bacteria, cells, or nucleic acids at the RAJ, providing limited information. Alternatively, expensive in vivo studies in animals have been conducted. Therefore, our objective was to develop a comprehensive in vitro organ culture system of the RAJ (RAJ-IVOC) that accurately represents all cell types present in the RAJ. This system would enable studies that yield results similar to those observed in vivo. Pieces of RAJ tissue, obtained from unrelated cattle necropsies, were assembled and subjected to various tests in order to determine the optimal conditions for assaying bacterial adherence in a viable IVOC. O157 strain EDL933 and E. coli K12 with known adherence differences were used to standardize the RAJ-IVOC adherence assay. Tissue integrity was assessed using cell viability, structural cell markers, and histopathology, while the adherence of bacteria was evaluated via microscopy and culture methods. DNA fingerprinting verified the recovered bacteria against the inoculum. When the RAJ-IVOC was assembled in Dulbecco's Modified Eagle Medium, maintained at a temperature of 39 °C with 5% CO2 and gentle shaking for a duration of 3-4 h, it successfully preserved tissue integrity and reproduced the expected adherence phenotype of the bacteria being tested. The RAJ-IVOC model system provides a convenient method to pre-screen multiple bacteria-RAJ interactions prior to in vivo experiments, thereby reducing animal usage.
Collapse
Affiliation(s)
- Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Erika N Biernbaum
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
41
|
Zhang N, Liang C, Kan P, Yangyao J, Lu D, Yao Z, Gan H, Zhu DZ. Indigenous microbial community governs the survival of Escherichia coli O157:H7 in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117524. [PMID: 36801692 DOI: 10.1016/j.jenvman.2023.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The survival pattern of Escherichia coli O157:H7 (E. coli O157:H7) and its regulatory factors in natural environments have been widely studied. However, there is little information about the survival of E. coli O157:H7 in artificial environments, especially in wastewater treatment facilities. In this study, a contamination experiment was performed to explore the survival pattern of E. coli O157:H7 and its central control factors in two constructed wetlands (CWs) under different hydraulic loading rates (HLRs). The results showed that the survival time of E. coli O157:H7 was longer in the CW under the higher HLR. Substrate ammonium nitrogen and available phosphorus were the main factors that influenced the survival of E. coli O157:H7 in CWs. Despite the minimal effect of microbial α-diversity, some keystone taxa, such as Aeromonas, Selenomonas, and Paramecium, governed the survival of E. coli O157:H7. In addition, the prokaryotic community had a more significant impact on the survival of E. coli O157:H7 than the eukaryotic community. The biotic properties had a more substantial direct power on the survival of E. coli O157:H7 than the abiotic factors in CWs. Collectively, this study comprehensively disclosed the survival pattern of E. coli O157:H7 in CWs, which is an essential addition to the environmental behavior of E. coli O157:H7, providing a theoretical basis for the prevention and control of biological contamination in wastewater treatment processes.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jiannan Yangyao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - Huihui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
42
|
Jääskeläinen AE, Salmenlinna S, Antikainen J, Sihvonen R, Ahava M, Tarkka E, Pätäri-Sampo A. Shiga toxin-producing Escherichia coli (STEC) stool multiplex PCR can replace culture for clinical diagnosis and follow-up. APMIS 2023. [PMID: 37186317 DOI: 10.1111/apm.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Shiga toxin (stx)-producing Escherichia coli (STEC) causes potentially severe gastrointestinal infections. Due to its public health importance, control measures are required, and carriers may need to refrain from work or daycare when the risk of spread to vulnerable people is high. We evaluated the use of direct stool multiplex PCR compared to culture for primary STEC diagnostics and for follow-up in order to update the national guidelines for STEC monitoring. We analyzed primary and follow-up samples of 236 STEC PCR-positive cases at HUSLAB, Helsinki, Finland in 2016-2017, altogether 858 samples. All STEC PCR-positive samples were inoculated on non-selective chromogenic agar plates. Culture positivity was confirmed from culture sweeps by PCR. 211 (89%) of the cases were culture positive in their primary sample. Of all primary and follow-up samples, 499 were PCR positive and of these 450 (90%) were culture positive. PCR-negative follow-up samples were available from 125 cases. Of these, 88 cases were followed for at least three consecutive PCR-negative samples. Two cases (2%) had culture-positive sample(s) after two consecutive PCR-negative samples. The median time for STEC clearance was 22-23 days. The laboratory-developed multiplex PCR test used in this study is a reliable method for STEC diagnostics and follow-up in a clinical laboratory. When non-selective methodology is used, the majority of PCR-positive samples (90%) are also culture positive. Furthermore, only two cases (2%) in our material had two consecutive PCR-negative samples followed by positive samples. Consequently, to demonstrate the clearance from STEC infection, we consider two PCR-negative follow-up samples sufficient. The Finnish national guidelines for STEC monitoring have been updated accordingly.
Collapse
Affiliation(s)
- Anu E Jääskeläinen
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Saara Salmenlinna
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jenni Antikainen
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Reetta Sihvonen
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maarit Ahava
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eveliina Tarkka
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anu Pätäri-Sampo
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
43
|
Li S, Zhang W, Zhang D, Xiu W, Wu S, Chai J, Ma J, Jat Baloch MY, Sun S, Yang Y. Migration risk of Escherichia coli O157:H7 in unsaturated porous media in response to different colloid types and compositions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121282. [PMID: 36796664 DOI: 10.1016/j.envpol.2023.121282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The vadose zone is a critical zone for microbial entry into the subsurface environment, and various types of inorganic and organic colloids can affect the migration of pathogenic bacteria. In the study, we explored the migration behavior of Escherichia coli O157:H7 with humic acids (HA), iron oxides (Fe2O3) or their mixture, uncovering their migration mechanisms in the vadose zone. The effect of complex colloids on the physiological properties of E. coli O157:H7 was analyzed based on the measured particle size, zeta potential and contact angle. HA colloids significantly promoted the migration of E. coli O157:H7, where Fe2O3 was opposite. The migration mechanism of E. coli O157:H7 with HA and Fe2O3 is obviously different. Multiple colloids dominated by organic colloid will further highlight its promoting effect on E. coli O157:H7 under the guidance of electrostatic repulsion due to the influence of colloidal stability. Multiple colloids dominated by metallic colloid will inhibit the migration of E. coli O157:H7 under the control of capillary force due to the restriction of contact angle. The risk of secondary release of E. coli O157:H7 can be effectively reduced when the ratio of HA/Fe2O3 is ≥ 1. Combining this conclusion with the distribution characteristics of soil in China, an attempt was made to analyse the migration risk of E. coli O157:H7 on a national scale. In China, from north to south, the migration capacity of E. coli O157:H7 gradually decreased, and the risk of secondary release gradually increased. These results provide ideas for the subsequent study of the effect of other factors on the migration of pathogenic bacteria on a national scale and provide risk information about soil colloids for the construction of pathogen risk assessment model under comprehensive conditions in the future.
Collapse
Affiliation(s)
- Shuxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China
| | - Shengyu Wu
- Institute of Urban Environment, Chinese Academy of Sciences, Amoy, 361021, China
| | - Juanfen Chai
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Jincai Ma
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Muhammad Yousuf Jat Baloch
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Simiao Sun
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Yuesuo Yang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China
| |
Collapse
|
44
|
Patkowski JB, Dahlberg T, Amin H, Gahlot DK, Vijayrajratnam S, Vogel JP, Francis MS, Baker JL, Andersson M, Costa TRD. The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation. Nat Commun 2023; 14:1879. [PMID: 37019921 PMCID: PMC10076315 DOI: 10.1038/s41467-023-37600-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Conjugation is used by bacteria to propagate antimicrobial resistance (AMR) in the environment. Central to this process are widespread conjugative F-pili that establish the connection between donor and recipient cells, thereby facilitating the spread of IncF plasmids among enteropathogenic bacteria. Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics.
Collapse
Affiliation(s)
- Jonasz B Patkowski
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tobias Dahlberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | - Sukhithasri Vijayrajratnam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA.
| | | | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
45
|
Al-Smadi DM, Shahwan MY, Madi MY. Breaking Down the Gut: A Case of Severe Toxin-Mediated Colitis. Cureus 2023; 15:e37092. [PMID: 37153292 PMCID: PMC10158091 DOI: 10.7759/cureus.37092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is a worldwide, foodborne pathogen that can lead to life-threatening complications. Transmission has been associated with undercooked meat products, contaminated food and water sources, person-to-person contact, and direct exposure to infected farm animals. As the name suggests, the major virulence factors contributing to its pathogenicity are Shiga toxins, which can cause a spectrum of clinical presentations ranging from mild watery diarrhea to severe hemorrhagic colitis due to its toxic effects on the gastrointestinal tract. We report a case of a 21-year-old man seeking medical attention due to severe crampy abdominal pain and bloody diarrhea who was ultimately diagnosed with a less commonly encountered severe form of colitis in the setting of STEC infection. Thorough investigations while maintaining a high level of clinical suspicion allowed prompt medical care with a complete resolution of symptoms. This case highlights the importance of having high clinical suspicion for STEC even with more severe forms of colitis and sheds light on the role of medical personnel in managing such cases.
Collapse
|
46
|
Zhou Y, Li Z, Huang J, Wu Y, Mao X, Tan Y, Liu H, Ma D, Li X, Wang X. Development of a phage-based electrochemical biosensor for detection of Escherichia coli O157: H7 GXEC-N07. Bioelectrochemistry 2023; 150:108345. [PMID: 36495704 DOI: 10.1016/j.bioelechem.2022.108345] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Escherichia coli (E. coli) O157:H7 is one of the most important foodborne pathogens that causing severe foodborne diseases. With the development of foodborne diseases, there is an urgent need to seek new methods for early detection and monitoring of E. coli O157:H7. In this study, an electrochemical biosensor using phage EP01 as the recognition agent for detection of E. coli O157:H7 GXEC-N07 was established due to the specificity and high efficiency of phage EP01 in recognizing GXEC-N07. The biosensor was developed by depositing phages conjugated carboxyl graphene oxide (CFGO) and conductive carbon black (CB) onto the surface of glass carbon electrodes (GCEs). When detecting GXEC-N07 in the concentration range of 102 ∼ 107 CFU/mL, the biosensor showed good linearity with a low detection limit of 11.8 CFU/mL, and the whole progress was in less than 30 min. The biosensor was successfully applied to the quantitative detection of GXEC-N07 in fresh milk and raw pork. The recovery values ranged from 60.8 % to 114.2 %. The biosensor provides a rapid, specific, low cost, and label free tool for E. coli O157:H7 GXEC-N07 detection. It is expected to become a powerful method for the detection of bacteria that threatening food safety and public health security.
Collapse
Affiliation(s)
- Yuqing Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Ziyong Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jijie Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuxing Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Xinyu Mao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yizhou Tan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Hui Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Dongxin Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China.
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China.
| |
Collapse
|
47
|
Genotoxins: The Mechanistic Links between Escherichia coli and Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15041152. [PMID: 36831495 PMCID: PMC9954437 DOI: 10.3390/cancers15041152] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Emerging evidence indicates bacterial infections contribute to the formation of cancers. Bacterial genotoxins are effectors that cause DNA damage by introducing single- and double-strand DNA breaks in the host cells. The first bacterial genotoxin cytolethal distending toxin (CDT) was a protein identified in 1987 in a pathogenic strain in Escherichia coli (E. coli) isolated from a young patient. The peptide-polyketide genotoxin colibactin is produced by the phylogenetic group B2 of E. coli. Recently, a protein produced by attaching/effacing (A/E) pathogens, including enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC) and their murine equivalent Citrobacter rodentium (CR), has been reported as a novel protein genotoxin, being injected via the type III secretion system (T3SS) into host cells and harboring direct DNA digestion activity with a catalytic histidine-aspartic acid dyad. These E. coli-produced genotoxins impair host DNA, which results in senescence or apoptosis of the target cells if the damage is beyond repair. Conversely, host cells can survive and proliferate if the genotoxin-induced DNA damage is not severe enough to kill them. The surviving cells may accumulate genomic instability and acquire malignant traits. This review presents the cellular responses of infection with the genotoxins-producing E. coli and discusses the current knowledge of the tumorigenic potential of these toxins.
Collapse
|
48
|
Banerjee T, Panchal N, Sutton C, Elliott R, Patel T, Kajal K, Arogunyo E, Koti N, Santra S. Tunable Magneto-Plasmonic Nanosensor for Sensitive Detection of Foodborne Pathogens. BIOSENSORS 2023; 13:109. [PMID: 36671944 PMCID: PMC9856065 DOI: 10.3390/bios13010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Frequent outbreaks of food-borne pathogens, particularly E. coli O157:H7, continue to impact human health and the agricultural economy tremendously. The required cell count for this pathogenic strain of E. coli O157:H7 is relatively low and hence it is vital to detect at low colony forming unit (CFU) counts. Available detection methods, though sensitive, fall short in terms of timeliness and often require extensive sample processing. To overcome these limitations, we propose a novel magneto-plasmonic nanosensor (MPnS) by integrating surface plasmon resonance (SPR) properties with spin-spin magnetic relaxation (T2 MR) technology. We engineered MPnS by encapsulating several gold nanoparticles (GNPs) within the polymer-coating of iron oxide nanoparticles (IONPs). First, the polyacrylic acid (PAA)-coated IONPs were synthesized using a solvent precipitation method, then gold chloride solution was used to synthesize GNPs and encapsulate them within the PAA-coatings of IONPs in one step. A magnetic separation technique was used to purify the MPnS and the presence of GNPs within IONPs was characterized using transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and other spectroscopic methods. The synthesized MPnS exhibits MR relaxation properties while possessing amplified optical properties than conventional GNPs. This allows for rapid and ultrasensitive detection of E. coli O157:H7 by SPR, T2 MR, and colorimetric readout. Experiments conducted in simple buffer and in milk as a complex media demonstrated that our MPnS-based assay could detect as low as 10 CFUs of this pathogenic strain of E. coli O157:H7 in minutes with no cross-reactivity. Overall, the formulated MPnS is robust and holds great potential for the ultrasensitive detection of E. coli O157:H7 in a simple and timely fashion. Moreover, this platform is highly customizable and can be used for the detection of other foodborne pathogens.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Department of Chemistry and Biochemistry, College of Natural and Applied Sciences, Missouri State University, 901 S. National Avenue, Springfield, MO 65897, USA
| | - Nilamben Panchal
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Carissa Sutton
- Department of Chemistry and Biochemistry, College of Natural and Applied Sciences, Missouri State University, 901 S. National Avenue, Springfield, MO 65897, USA
| | - Rebekah Elliott
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Truptiben Patel
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Kajal Kajal
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Eniola Arogunyo
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Neelima Koti
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, College and Arts and Sciences, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| |
Collapse
|
49
|
Li D, Zhang Z, Li Y, Zhang X, Qin X, Wei D, Yang H. Escherichia coli phage phi2013: genomic analysis and receptor identification. Arch Virol 2022; 167:2689-2702. [PMID: 36194307 DOI: 10.1007/s00705-022-05617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Escherichia coli is an important foodborne pathogen that can cause severe human disease. Here, we report the isolation and characterization of the lytic virus phi2013, which is specific for Escherichia coli laboratory strains. Transmission electron microscopy showed that phage phi2013 has an icosahedral head and a long, fragile, noncontractile tail, exhibiting the typical form of a siphovirus. Evidence revealed that the phi2013 genome is a linear double-stranded DNA molecule of 49,833 bp with 79 predicted genes without any known antibiotic resistance genes, virulence factor genes, or integrase genes. Moreover, the conserved outer membrane protein FhuA, which is present in members of several genera of the family Enterobacteriaceae, was identified as the receptor of phage phi2013. To evaluate the potential of phage phi2013 as a biocontrol agent for controlling E. coli contamination, it was tested in several foods, including sterilized milk, ready-to-eat beef, and crisphead lettuce. The data showed that phage phi2013 can efficiently inhibit E. coli growth in the tested foods at 4°C and 25°C. We therefore conclude that phage phi2013 or cocktails containing phi2013 may be used as an antimicrobial agent in extending the shelf-life of food products by effectively controlling the growth of E. coli.
Collapse
Affiliation(s)
- Donghang Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhiqiang Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yueying Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xixi Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuying Qin
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Dongsheng Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongjiang Yang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
50
|
Hama S, Nakahara M, Watanabe-Takahashi M, Shimizu E, Tsutsuki H, Yahiro K, Nishikawa K. Development of a novel tetravalent peptide that absorbs subtilase cytotoxin by targeting the receptor-binding B-subunit. Biochem Biophys Res Commun 2022; 629:95-100. [PMID: 36115284 DOI: 10.1016/j.bbrc.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Subtilase cytotoxin (SubAB) is a major virulence factor produced by eae-negative Shiga-toxigenic Escherichia coli (STEC) that can cause fatal systemic complications. SubAB binds to target cells through multivalent interactions between its B-subunit pentamer and receptor molecules such as glycoproteins with a terminal N-glycolylneuraminic acid (Neu5Gc). We screened randomized multivalent peptide libraries synthesized on a cellulose membrane and identified a series of tetravalent peptides that efficiently bind to the receptor-binding region of the SubAB B-subunit pentamer. These peptides competitively inhibited the binding of the B-subunit to a receptor-mimic molecule containing clustered Neu5Gc (Neu5Gc-polymer). We selected the peptide with the highest inhibitory efficacy, FFP-tet, and covalently bound it to beads to synthesize FFP-tet-beads, a highly clustered SubAB absorber that displayed potency to absorb SubAB cytotoxicity through direct binding to the toxin. The efficacy of FFP-tet-beads to absorb SubAB cytotoxicity in solution was similar to that of Neu5Gc-polymer, suggesting that FFP-tet-beads might be an effective therapeutic agent against complications arising from eae-negative STEC infection.
Collapse
Affiliation(s)
- Shinichiro Hama
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan
| | - Miki Nakahara
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan
| | - Eiko Shimizu
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kinnosuke Yahiro
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan.
| |
Collapse
|