1
|
Xie R, Cao B, Wu Z, Ouyang Y, Chen H, Zhai W, Liu ZX, Xu M, Guo G. dbEBV: A database of Epstein-Barr virus variants and their correlations with human health. Comput Struct Biotechnol J 2024; 23:2076-2082. [PMID: 38803518 PMCID: PMC11128781 DOI: 10.1016/j.csbj.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Since Epstein-Barr virus (EBV) was discovered in 1964, it has been reported to be associated with various malignancies as well as benign diseases, and the pathogenicity of EBV has been widely studied. Several databases have been established to provide comprehensive information on the virus and its relation to diseases and introduce convenient analysis tools. Although they have greatly facilitated the analysis of EBV at the genome, gene, protein, or epitope level, they did not provide enough insight into the genomic variants of EBV, which have been suggested as relevant to diseases by multiple studies. Here, we introduce dbEBV, a comprehensive database of EBV genomic variation landscape, which contains 942 EBV genomes with 109,893 variants from different tissues or cell lines in 24 countries. The database enables the visualization of information with varying global frequencies and their relationship with the human health of each variant. It also supports phylogenetic analysis at the genome or gene level in subgroups of different characteristics. Information of interest can easily be reached with functions such as searching, browsing, and filtering. In conclusion, dbEBV is a convenient resource for exploring EBV genomic variants, freely available at http://dbebv.omicsbio.info.
Collapse
Affiliation(s)
- Ruoqi Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Bijin Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ze Wu
- Shenzhen Longgang District Central Blood Station, Shenzhen 518172, China
| | - Yi Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Hui Chen
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Guanghui Guo
- Clinical Laboratory, The Third People's Hospital of Longgang District, Shenzhen 518115, China
| |
Collapse
|
2
|
Ng CS. From the midfacial destructive drama to the unfolding EBV story: a short history of EBV-positive NK-cell and T-cell lymphoproliferative diseases. Pathology 2024; 56:773-785. [PMID: 39127542 DOI: 10.1016/j.pathol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that has been related to oncogenesis of lymphoid and epithelial malignancies. Although the mechanism of EBV infection of NK and T cells remains enigmatic, it plays a pathogenic role in various EBV+ NK-cell and T-cell lymphoproliferative diseases (LPDs), through promotion of cell activation pathways, inhibition of cell apoptotic pathways, behaving as oncogenes, interacting with host oncogenes or acting epigenetically. The study of NK-cell LPDs, previously hampered by the lack of immunophenotypical and genotypical criteria of NK cells, has become feasible with the recently accepted criteria. EBV+ NK- and T-cell LPDs are mostly of poor prognosis. This review delivers a short history from primeval to recent EBV+ NK- and T-cell LPDs in non-immunocompromised subjects, coupled with increasing interest, and work on the biological and oncogenic roles of EBV.
Collapse
Affiliation(s)
- Chi Sing Ng
- Department of Pathology, Caritas Medical Center, Shamshuipo, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Kong Q, Li M, Wang J, Wu L, Zhou D, Yang M, Xu X, Tan Z, Wu X, Wang Z. Prognostic scoring system for pediatric Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis based on baseline characteristics: A multicenter retrospective study. Pediatr Blood Cancer 2024; 71:e30772. [PMID: 37974392 DOI: 10.1002/pbc.30772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The prognosis of pediatric Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (EBV-HLH) varies. This study aimed to identify high-risk children early. PROCEDURE Data from 264 children (0-14 years of age), diagnosed with EBV-HLH at six centers in China between January 2016 and December 2021, were analyzed. Patients were randomly divided into derivation (n = 185) and verification (n = 79) cohorts. A Cox regression model was used to explore risk predictors and establish a prognostic scoring system for death events that occurred during the follow-up period. RESULTS Chronic active EBV infection (CAEBV) history (hazard ratio [HR] 1.82 [95% confidence interval, CI: 1.02-3.26]; p = .0441), plasma EBV-DNA more than 104 copies/mL (HR 2.89 [95% CI: 1.62-5.16]; p = .0003), pulmonary infection (HR 2.24 [95% CI: 1.06-4.75]; p = .0353), digestive tract hemorrhage (HR 2.55 [95% CI: 1.35-4.82]; p = .0041), and hypoxemia (HR 3.95 [95% CI: 2.15-7.26]; p < .0001) were independent risk factors. Accordingly, the CAEBV history, plasma EBV-DNA copy number, pulmonary infection hemorrhage of digestive tract, hypoxemia prognostic scoring system (CEPHO-PSS) were developed, which separated patients into low- (0-1 points), middle- (2-3 points), and high- (4-8 points) risk groups. Survival curves for the three groups exhibited statistically significant differences (p < .0001). Internal and external verification of CEPHO-PSS was performed using receiver operating characteristic (ROC) and calibration curves in the derivation and verification cohorts, respectively, confirming good accuracy and applicability. CONCLUSIONS The CEPHO-PSS identified three risk groups with statistically significant differences in survival curves. It was based on the baseline characteristics, and can give clinicians a convenient check for risk prediction.
Collapse
Affiliation(s)
- Qi Kong
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Li
- Clinical Epidemiology and EBM Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingshi Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Wu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dunhua Zhou
- Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojun Xu
- Department of Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Tan
- Department of Pediatric Hematology-Oncology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Verbist K, Nichols KE. Cytokine Storm Syndromes Associated with Epstein-Barr Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:227-248. [PMID: 39117818 DOI: 10.1007/978-3-031-59815-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous and predominantly B cell tropic virus. One of the most common viruses to infect humans, EBV, is best known as the causative agent of infectious mononucleosis (IM). Although most people experience asymptomatic infection, EBV is a potent immune stimulus and as such it elicits robust proliferation and activation of the B-lymphocytes it infects as well as the immune cells that respond to infection. In certain individuals, such as those with inherited or acquired defects affecting the immune system, failure to properly control EBV leads to the accumulation of EBV-infected B cells and EBV-reactive immune cells, which together contribute to the development of often life-threatening cytokine storm syndromes (CSS). Here, we review the normal immune response to EBV and discuss several CSS associated with EBV, such as chronic active EBV infection, hemophagocytic lymphohistiocytosis, and post-transplant lymphoproliferative disorder. Given the critical role for cytokines in driving inflammation and contributing to disease pathogenesis, we also discuss how targeting specific cytokines provides a rational and potentially less toxic treatment for EBV-driven CSS.
Collapse
Affiliation(s)
- Katherine Verbist
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis. Viruses 2023; 15:714. [PMID: 36992423 PMCID: PMC10056551 DOI: 10.3390/v15030714] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first identified human oncogenic virus that can establish asymptomatic life-long persistence. It is associated with a large spectrum of diseases, including benign diseases, a number of lymphoid malignancies, and epithelial cancers. EBV can also transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. Although EBV molecular biology and EBV-related diseases have been continuously investigated for nearly 60 years, the mechanism of viral-mediated transformation, as well as the precise role of EBV in promoting these diseases, remain a major challenge yet to be completely explored. This review will highlight the history of EBV and current advances in EBV-associated diseases, focusing on how this virus provides a paradigm for exploiting the many insights identified through interplay between EBV and its host during oncogenesis, and other related non-malignant disorders.
Collapse
Affiliation(s)
- Hui Yu
- Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Comprehensive Profiling of EBV Gene Expression and Promoter Methylation Reveals Latency II Viral Infection and Sporadic Abortive Lytic Activation in Peripheral T-Cell Lymphomas. Viruses 2023; 15:v15020423. [PMID: 36851637 PMCID: PMC9960980 DOI: 10.3390/v15020423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) latency patterns are well defined in EBV-associated epithelial, NK/T-cell, and B-cell malignancies, with links between latency stage and tumorigenesis deciphered in various studies. In vitro studies suggest that the oncogenic activity of EBV in T-cells might be somewhat different from that in EBV-tropic B lymphoid cells, prompting us to study this much less investigated viral gene expression pattern and its regulation in nine EBV+ peripheral T-cell lymphoma (PTCL) biopsies. Using frozen specimens, RT-PCR showed 6/7 cases with a latency II pattern of EBV gene expression. Analyses of EBNA1 promoter usage and CpG methylation status in these six cases showed that only Qp was used, while Cp, Wp, and Fp were all silent. However, the remaining case showed an exceptionally unique latency III type with lytic activation, as evidenced by EBV lytic clonality and confirmed by the full usage of Cp and Qp as well as weakly lytic Fp and Wp, fully unmethylated Cp and marginally unmethylated Wp. Further immunostaining of the eight cases revealed a few focally clustered LMP1+ cells in 7/8 cases, with rare isolated LMP1+ cells detected in another case. Double immunostaining confirmed that the LMP1+ cells were of the T-cell phenotype (CD3+). In 6/8 cases, sporadically scattered Zta+ cells were detected. Double staining of EBER-ISH with T-cell (CD45RO/UCHL1) or B-cell (CD20) markers confirmed that the vast majority of EBER+ cells were of the T-cell phenotype. Predominant type-A EBV variant and LMP1 30-bp deletion variant were present, with both F and f variants detected. In summary, the EBV gene expression pattern in PTCL was found to be mainly of latency II (BART+EBNA1(Qp)+LMP1+LMP2A+BZLF1+), similar to that previously reported in EBV-infected nasopharyngeal epithelial, NK/T-cell, and Hodgkin malignancies; however, fully lytic infection could also be detected in occasional cases. Rare cells with sporadic immediate-early gene expression were commonly detected in PTCL. These findings have implications for the future development of EBV-targeting therapeutics for this cancer.
Collapse
|
7
|
Bu GL, Xie C, Kang YF, Zeng MS, Sun C. How EBV Infects: The Tropism and Underlying Molecular Mechanism for Viral Infection. Viruses 2022; 14:2372. [PMID: 36366470 PMCID: PMC9696472 DOI: 10.3390/v14112372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
The Epstein-Barr virus (EBV) is associated with a variety of human malignancies, including Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric cancers. EBV infection is crucial for the oncogenesis of its host cells. The prerequisite for the establishment of infection is the virus entry. Interactions of viral membrane glycoproteins and host membrane receptors play important roles in the process of virus entry into host cells. Current studies have shown that the main tropism for EBV are B cells and epithelial cells and that EBV is also found in the tumor cells derived from NK/T cells and leiomyosarcoma. However, the process of EBV infecting B cells and epithelial cells significantly differs, relying on heterogenous glycoprotein-receptor interactions. This review focuses on the tropism and molecular mechanism of EBV infection. We systematically summarize the key molecular events that mediate EBV cell tropism and its entry into target cells and provide a comprehensive overview.
Collapse
Affiliation(s)
- Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
8
|
Peiretti E, Demarinis G, Casu C, Scano A, Orrù G. Oral-ocular trans infection of Epstein Barr virus. A possible new way of transmission by wearing masks in the SARS-CoV-2 era. Am J Ophthalmol Case Rep 2022; 27:101626. [PMID: 35761878 PMCID: PMC9217628 DOI: 10.1016/j.ajoc.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To describe a case of an infective vitreitis with an exudative retinal detachment in a 56-year-old lady who was previously affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). OBSERVATIONS A broad workup for infections including the main viruses and bacteria was performed. Salivary droplets, tear film and vitreous samples were collected, resulting positive only for Epstein-Barr virus (EBV). Viraemia and immunoglobulin M for EBV negative, whereas immunoglobulin G positive. The patient showed a simultaneous painless erosion on the right margin of the tongue that's with the lab swab demonstrated the presence of EBV at the same time the vitreitis in the left eye was present. CONCLUSIONS AND IMPORTANCE Our speculation is that a continuous use of the mask, especially in immunocompromised subjects, it might create a new route for spreading infectious oral agents in the ocular area, and this case is a warning for all the ophthalmologists that have to be aware of this threatening possibility in the COVID era.
Collapse
Affiliation(s)
- Enrico Peiretti
- Eye Clinic, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Giuseppe Demarinis
- Eye Clinic, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Cinzia Casu
- International PhD in Innovation Sciences and Technologies (IST), University of Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Sciences, Molecular Biology Service (MBS), University of Cagliari, 09124, Cagliari,, Italy
| | - Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service (MBS), University of Cagliari, 09124, Cagliari,, Italy
| |
Collapse
|
9
|
Arias-Calvachi C, Blanco R, Calaf GM, Aguayo F. Epstein-Barr Virus Association with Breast Cancer: Evidence and Perspectives. BIOLOGY 2022; 11:799. [PMID: 35741320 PMCID: PMC9220417 DOI: 10.3390/biology11060799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Epstein-Barr virus (EBV) is an enveloped DNA virus that belongs to the gamma Herpesviridae family. The virus establishes a latent/lytic persistent infection, though it can be involved in cancer development in some subjects. Indeed, evidence supports an etiological role of EBV in undifferentiated nasopharyngeal carcinoma (NPC), a subset of gastric carcinomas and lymphomas. Additionally, EBV has been detected in breast carcinomas (BCs) although its role has not been established. In this review, we summarize epidemiological information regarding the presence of EBV in BC and we propose mechanistic models. However, additional epidemiological and experimental evidence is warranted to confirm these models.
Collapse
Affiliation(s)
- Claudia Arias-Calvachi
- Programa de Virología, Laboratorio de Oncovirología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (C.A.-C.); (R.B.)
| | - Rancés Blanco
- Programa de Virología, Laboratorio de Oncovirología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (C.A.-C.); (R.B.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile;
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
10
|
Escalante GM, Mutsvunguma LZ, Muniraju M, Rodriguez E, Ogembo JG. Four Decades of Prophylactic EBV Vaccine Research: A Systematic Review and Historical Perspective. Front Immunol 2022; 13:867918. [PMID: 35493498 PMCID: PMC9047024 DOI: 10.3389/fimmu.2022.867918] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
BackgroundEpstein-Barr virus (EBV) is the causal agent of infectious mononucleosis and has been associated with various cancers and autoimmune diseases. Despite decades of research efforts to combat this major global health burden, there is no approved prophylactic vaccine against EBV. To facilitate the rational design and assessment of an effective vaccine, we systematically reviewed pre-clinical and clinical prophylactic EBV vaccine studies to determine the antigens, delivery platforms, and animal models used in these studies.MethodsWe searched Cochrane Library, ClinicalTrials.gov, Embase, PubMed, Scopus, Web of Science, WHO’s Global Index Medicus, and Google Scholar from inception to June 20, 2020, for EBV prophylactic vaccine studies focused on humoral immunity.ResultsThe search yielded 5,614 unique studies. 36 pre-clinical and 4 clinical studies were included in the analysis after screening against the exclusion criteria. In pre-clinical studies, gp350 was the most commonly used immunogen (33 studies), vaccines were most commonly delivered as monomeric proteins (12 studies), and mice were the most used animal model to test immunogenicity (15 studies). According to an adaptation of the CAMARADES checklist, 4 pre-clinical studies were rated as very high, 5 as high, 13 as moderate quality, 11 as poor, and 3 as very poor. In clinical studies, gp350 was the sole vaccine antigen, delivered in a vaccinia platform (1 study) or as a monomeric protein (3 studies). The present study was registered in PROSPERO (CRD42020198440).ConclusionsFour major obstacles have prevented the development of an effective prophylactic EBV vaccine: undefined correlates of immune protection, lack of knowledge regarding the ideal EBV antigen(s) for vaccination, lack of an appropriate animal model to test vaccine efficacy, and lack of knowledge regarding the ideal vaccine delivery platform. Our analysis supports a multivalent antigenic approach including two or more of the five main glycoproteins involved in viral entry (gp350, gB, gH/gL, gp42) and a multimeric approach to present these antigens. We anticipate that the application of two underused challenge models, rhesus macaques susceptible to rhesus lymphocryptovirus (an EBV homolog) and common marmosets, will permit the establishment of in vivo correlates of immune protection and attainment of more generalizable data.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=198440, identifier PROSPERO I.D. CRD4202019844.
Collapse
|
11
|
Wang SH, Medeiros LJ, Chen TY, Chang KC. Early onset post-transplant lymphoproliferative disorder following cutaneous NK/T-cell lymphoma mimicking recurrence. Pathology 2022; 54:807-809. [PMID: 35144827 DOI: 10.1016/j.pathol.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Shu-Hsien Wang
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | | | - Tsai-Yun Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
He X, Wang J, Song D, Wang Z. Development of a Nomogram to Predict the Risk of Chronic Active Epstein-Barr Virus Infection Progressing to Hemophagocytic Lymphohistiocytosis. Front Med (Lausanne) 2022; 9:826080. [PMID: 35187008 PMCID: PMC8854772 DOI: 10.3389/fmed.2022.826080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundChronic active Epstein-Barr virus infection (CAEBV) disease is sometimes associated with an aggressive clinical course, such as hemophagocytic lymphohistiocytosis (HLH). To explore the risk factors and predict the risk of CAEBV infection progressing to HLH, a retrospective research study was conducted.MethodsWe retrospectively reviewed the medical records of 187 CAEBV-infected patients who were admitted to our center between January 2015 and December 2020. The patients were followed up until May 2021. The patients were divided into a progression-to-HLH group and a no-progression-to-HLH group. Demographic, clinical and laboratory data were collected for each patient.ResultsAmong the 121 CAEBV-infected patients who fulfilled the study's inclusion criteria, 48 (30.7%) patients did not progress to HLH, and 73 (60.3%) patients progressed to HLH. The median time from CAEBV infection to progression to HLH was 14 months, and the cumulative incidence rate of HLH increased as the duration of follow up increased (24.9, 47.3, 55.1, and 85.2% at 1, 3, 5, and 10 years, respectively). Multivariate analyses showed that the independent risk factors for CAEBV progression to HLH were plasma EBV-DNA load (OR = 3.239, 95% CI 1.219–8.603, P = 0.018), Platelet count (OR=0.991, 95%CI 0.985–0.998, P = 0.010), elevated alanine aminotransferase (OR=1.019, 95%CI 1.005–1.034, P = 0.009) and ≥2 of 3 lineages of cytopenia (OR=8.364, 95%CI 1.062–65.839, P = 0.044). The regression coefficients (β) from the multivariate logistic model were used to construct a model for estimating the risk of CAEBV infection progressing to HLH. The discriminatory ability of the model was good, and the area under the receiver operating characteristic (ROC) curve (AUC) was 0.925.Conclusionplasma EBV-DNA load, platelet count, elevated alanine aminotransferase and ≥ 2 of 3 lineages of cytopenia increase the risk of CAEBV infection progressing to HLH. A nomogram can be used to estimate the risk of CAEBV-infected patients progressing to HLH.
Collapse
|
13
|
Shafiee A, Shamsi S, Kohandel Gargari O, Beiky M, Allahkarami MM, Miyanaji AB, Aghajanian S, Mozhgani SH. EBV associated T- and NK-cell lymphoproliferative diseases: A comprehensive overview of clinical manifestations and novel therapeutic insights. Rev Med Virol 2022; 32:e2328. [PMID: 35122349 DOI: 10.1002/rmv.2328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
EBV is a ubiquitous virus that infects nearly all people around the world. Most infected people are asymptomatic and do not show serious sequelae, while others may develop Epstein-Barr virus (EBV)-positive T and NK-cell lymphoproliferations characterised by EBV-infected T or NK cells. These disorders are more common in Asian and Latin American people, suggesting genetic predisposition as a contributing factor. The revised WHO classification classifies the lymphoproliferative diseases as: extranodal NK/T-cell lymphoma nasal type (ENKTL), aggressive NK-cell leukemia (ANKL), primary EBV-positive nodal T or NK cell lymphoma (NNKTL), systemic EBV-positive T-cell lymphoproliferative disease of childhood (STCLC), systemic chronic active EBV infection (sys CAEBV), hydroa-vacciniforme (HV) and severe mosquito bite allergy (SMBA). Recent advances in the molecular pathogenesis of these diseases have led to the development of new therapeutic strategies. Due to the infrequency of the diseases and broad clinicopathological overlap, the diagnosis and classification are challenging for both clinicians and pathologists. In this article, we aim to review the recent pathological findings which can be helpful for designing new drugs, clinical presentations and differential diagnoses, and suggested therapeutic interventions to provide a better understanding of these rare disorders.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sahel Shamsi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Maryam Beiky
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
14
|
Liu Z, Sarathkumara YD, Chan JKC, Kwong YL, Lam TH, Ip DKM, Chiu BCH, Xu J, Su YC, Proietti C, Cooper MM, Yu KJ, Bassig B, Liang R, Hu W, Ji BT, Coghill AE, Pfeiffer RM, Hildesheim A, Rothman N, Doolan DL, Lan Q. Characterization of the humoral immune response to the EBV proteome in extranodal NK/T-cell lymphoma. Sci Rep 2021; 11:23664. [PMID: 34880297 PMCID: PMC8655014 DOI: 10.1038/s41598-021-02788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma (NKTCL) is an aggressive malignancy that has been etiologically linked to Epstein-Barr virus (EBV) infection, with EBV gene transcripts identified in almost all cases. However, the humoral immune response to EBV in NKTCL patients has not been well characterized. We examined the antibody response to EBV in plasma samples from 51 NKTCL cases and 154 controls from Hong Kong and Taiwan who were part of the multi-center, hospital-based AsiaLymph case–control study. The EBV-directed serological response was characterized using a protein microarray that measured IgG and IgA antibodies against 202 protein sequences representing the entire EBV proteome. We analyzed 157 IgG antibodies and 127 IgA antibodies that fulfilled quality control requirements. Associations between EBV serology and NKTCL status were disproportionately observed for IgG rather than IgA antibodies. Nine anti-EBV IgG responses were significantly elevated in NKTCL cases compared with controls and had ORshighest vs. lowest tertile > 6.0 (Bonferroni-corrected P-values < 0.05). Among these nine elevated IgG responses in NKTCL patients, three IgG antibodies (all targeting EBNA3A) are novel and have not been observed for other EBV-associated tumors of B-cell or epithelial origin. IgG antibodies against EBNA1, which have consistently been elevated in other EBV-associated tumors, were not elevated in NKTCL cases. We characterize the antibody response against EBV for patients with NKTCL and identify IgG antibody responses against six distinct EBV proteins. Our findings suggest distinct serologic patterns of this NK/T-cell lymphoma compared with other EBV-associated tumors of B-cell or epithelial origin.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA.
| | - Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Yok-Lam Kwong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China
| | - Tai Hing Lam
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Dennis Kai Ming Ip
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Brian C-H Chiu
- Department of Public Health Sciences, University of Chicago, Chicago, USA
| | - Jun Xu
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Yu-Chieh Su
- Department of Medicine, School of Medicine, I-Shou University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Raymond Liang
- Hong Kong Sanatorium & Hospital, Hong Kong, SAR, China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Anna E Coghill
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| |
Collapse
|
15
|
Yiu CY, Chiu YJ, Lin TP. The Ethyl Acetate Subfraction of Polygonum cuspidatum Root Containing Emodin Affect EBV Gene Expression and Induce EBV-Positive Cells Apoptosis. Biol Pharm Bull 2021; 44:1837-1842. [PMID: 34615812 DOI: 10.1248/bpb.b21-00508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, is several human lymphoid malignancies-associated. Our earlier study found the effect of Polygonum cuspidatum root on promoting EBV-positive apoptosis. Therefore, this study investigated the effects of the Polygonum cuspidatum ethyl acetate subfraction containing emodin on EBV gene expression and anti-EBV tumor cells. Resultantly, the the Polygonum cuspidatum ethyl acetate subfraction containing emodin (F3a) promoted Raji cell death (50% cytotoxic concentration, CC50: 12.08 µg/mL); the 12.5 µg/mL F3a effect transcribed BRLF1 and BNLF1 and increased latent membrane protein 1 (LMP1), which may reduce the intracellular phospho-extracellular signal-regulated kinase (ERK) and phospho-inhibitor of Nuclear factor kappa B α (IκBα). Meanwhile, the Raji cells increased the intracellular reactive-oxygen species (ROS), activated the apoptosis-related proteins, cleaved caspase 3 and poly(ADP-ribose)polymerase (PARP), and increased the apoptosis percentage. Therefore, the Polygonum cuspidatum ethyl acetate subfraction containing emodin could be a therapeutic drug for EBV-related tumors.
Collapse
Affiliation(s)
- Ching-Yi Yiu
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science.,Department of Otolaryngology, Chi Mei Medical Center
| | - Yu-Jhe Chiu
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science
| | - Tsuey-Pin Lin
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science
| |
Collapse
|
16
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Gozzi F, Cimino L, Masia F, Moretti M, Foroni M, De Marco L, Pellegrini D, De Raeve H, Ricci S, Tamagnini I, Tafuni A, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 3). Cancers (Basel) 2021; 13:6021. [PMID: 34885131 PMCID: PMC8656853 DOI: 10.3390/cancers13236021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
EBV is the first known oncogenic virus involved in the development of several tumors. The majority of the global population are infected with the virus early in life and the virus persists throughout life, in a latent stage, and usually within B lymphocytes. Despite the worldwide diffusion of EBV infection, EBV-associated diseases develop in only in a small subset of individuals often when conditions of immunosuppression disrupt the balance between the infection and host immune system. EBV-driven lymphoid proliferations are either of B-cell or T/NK-cell origin, and range from disorders with an indolent behavior to aggressive lymphomas. In this review, which is divided in three parts, we provide an update of EBV-associated lymphoid disorders developing in the gastrointestinal tract, often representing a challenging diagnostic and therapeutic issue. Our aim is to provide a practical diagnostic approach to clinicians and pathologists who face this complex spectrum of disorders in their daily practice. In this part of the review, the chronic active EBV infection of T-cell and NK-cell type, its systemic form; extranodal NK/T-cell lymphoma, nasal type and post-transplant lymphoproliferative disorders are discussed.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Francesco Masia
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Marina Moretti
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Moira Foroni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - David Pellegrini
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Hendrik De Raeve
- Pathology, University Hospital Brussels, 1090 Brussels, Belgium;
- Pathology, O.L.V. Hospital Aalst, 9300 Aalst, Belgium
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| |
Collapse
|
17
|
Fan S, Chen J, Liu Z, Xiao J, Jiang F, Liu X, Sun Y. Efficacy of allogeneic hematopoietic stem cell transplantation with cocktail conditioning regimen for the treatment of pediatric patients with chronic active Epstein-Barr virus: A retrospective observational study. Stem Cells Dev 2021; 31:26-31. [PMID: 34779276 DOI: 10.1089/scd.2021.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) was considered as an only therapeutic strategy for chronic active Epstein-Barr virus (CAEBV) infection with few exceptions, while efficacy of various allo-HSCT conditioning regimens for CAEBV has not been fully investigated yet. This study aimed to compare the effectiveness of cocktail conditioning regimen (CCR)-allo-HSCT with reduced-intensity conditioning regimen (RICR)-allo-HSCT for pediatric patients with CAEBV. Data of a total of 54 children with CAEBV from July 2015 to December 2020, were retrospectively analyzed. Among them, 32 patients received VP16, total body irradiation (TBI), busulfan, fludarabine, cyclophosphamide, and anti-thymocyte globulin (ATG) (CCR1 group), 10 patients received VP16, ara-C, TBI, busulfan, fludarabine, cyclophosphamide, and ATG (CCR2 group), and the remaining 12 patients received VP16, busulfan or melphalan, fludarabine, and ATG with or without ara-C (RICR group). The overall survival (OS), hematopoietic engraftment, the incidence of severe graft-versus-host disease (GVHD), and other parameters were analyzed. After adjusting for potential confounders, CCR1 (hazard ratio (HR): 0.023; 95% confidence interval (CI): 0.001-0.448; P=0.013) and CCR2 (HR: 0.028; 95%CI: 0.002-0.457; P=0.012) were associated with a longer OS than RICR. The use of CCR could markedly improve the engraftment success rate and OS rate compared with RICR for pediatric patients with CAEBV.
Collapse
Affiliation(s)
- Shifen Fan
- Beijing Jingdu Children's Hospital, 586810, Beijing, China;
| | - Jiao Chen
- Beijing Jingdu Children's Hospital, 586810, Beijing, China;
| | - Zhouyang Liu
- Beijing Jingdu Children's Hospital, 586810, Department of Hematology, Beijing, China;
| | - Juan Xiao
- Beijing Jingdu Children's Hospital, 586810, Beijing, China;
| | - Fan Jiang
- Beijing Jingdu Children's Hospital, 586810, Beijing, China;
| | - Xiaomei Liu
- Beijing Jingdu Children's Hospital, 586810, Beijing, China;
| | - Yuan Sun
- Beijing Jingdu Children's Hospital, 586810, Beijing, China, 102208;
| |
Collapse
|
18
|
Wang Z, Kimura S, Iwasaki H, Takase K, Oshiro Y, Gamachi A, Makihara K, Ogata M, Daa T, Momosaki S, Takamatsu Y, Takeshita M. Clinicopathological findings of systemic Epstein-Barr virus-positive T-lymphoproliferative diseases in younger and older adults. Diagn Pathol 2021; 16:48. [PMID: 34088321 PMCID: PMC8176609 DOI: 10.1186/s13000-021-01107-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
Background Systemic Epstein-Barr virus+ T-cell lymphoma (sEBV+ TCL) occurs in childhood and young adults, and is exceptionally rare in older adults. Methods We investigated clinicopathological features in 16 patients of various ages with systemic EBV+ CD8+ T-lymphoproliferative diseases. Results Eight younger patients and four of eight older adults had sEBV+ CD8+ TCL, with invasion by medium-sized to/or large atypical lymphocytes primarily in bone marrow and lymph nodes, hemophagocytic lymphohistiocytosis (HLH), and progressive clinicopathological course. A further two patients demonstrated EBV+ node-based CD8+ large TCL without HLH, while the remaining two had the systemic form of chronic active EBV infection (sCAEBV) with CD8+ small lymphocytes. Past history of sCAEBV-like lesions was observed in one sEBV+ TCL patient (8.3%). Immunohistologically, in 12 sEBV+ TCL patients, atypical lymphocytes were positive for phosphate signal transducer and activator of transcription 3 (66.7%), CMYC (83.3%), and p53 (75%). Strong reactions of programmed cell death-ligand (PD-L)1+ tumor or non-neoplastic cells were detected in nine sEBV+ TCL patients (75%). Clonal peaks of the T-cell receptor (TCR) γ gene were detected in eight sEBV+ TCL patients by polymerase chain reaction. Four younger patients in sEBV+ TCL (33.3%) are in remission with chemotherapies including etoposide, and three of the four underwent allogeneic stem cell transplantation (SCT). Conclusion sEBV+ CD8+ TCL was observed in younger and older adults with less history of sCAEBV. HLH, tumor cell atypia, immunohistological findings, and progressive clinical course were characteristic of sEBV+ CD8+ TCL. Prompt chemotherapy and SCT induced tumor regression in sEBV+ CD8+ TCL patients.
Collapse
Affiliation(s)
- Ziyao Wang
- Graduate School of Medical Sciences, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 8140180, Japan.,Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 8140180, Japan
| | - Shoichi Kimura
- Graduate School of Medical Sciences, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 8140180, Japan.,Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 8140180, Japan
| | - Hiromi Iwasaki
- Departments of Hematology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 8108563, Japan
| | - Ken Takase
- Departments of Hematology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 8108563, Japan
| | - Yumi Oshiro
- Department of Pathology, Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama, 7910000, Japan
| | - Ayako Gamachi
- Department of Pathology, Almeida Memorial Hospital, 1509-2. Oita, Miyazaki, 8701195, Japan
| | - Kosuke Makihara
- Department of Pathology, Kyushu Rosai Hospital, 1-1, Sonekita, Kokura South Ward, Kitakyushu, 800-0296, Japan
| | - Masao Ogata
- Departments of Hematology, Faculty of Medicine, Oita University, Idaigaoka, Hazama-machi, Yufushi, Oita, 8795593, Japan
| | - Tsutomu Daa
- Departments of Pathology, Faculty of Medicine, Oita University, Idaigaoka, Hazama-machi, Yufushi, Oita, 8795593, Japan
| | - Seiya Momosaki
- Departments of Pathology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 8108563, Japan
| | - Yasushi Takamatsu
- Departments of Internal Medicine, Division of Medical Oncology, Hematology and Infectious Disease, Faculty of Medicine, and Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 8140180, Japan
| | - Morishige Takeshita
- Graduate School of Medical Sciences, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 8140180, Japan. .,Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 8140180, Japan.
| |
Collapse
|
19
|
Antineoplastic and anti-inflammatory effects of bortezomib on systemic chronic active EBV infection. Blood Adv 2021; 5:1805-1815. [PMID: 33787860 DOI: 10.1182/bloodadvances.2020002417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/29/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic chronic active Epstein-Barr virus (EBV; sCAEBV) infection, T- and natural killer (NK)-cell type (sCAEBV), is a fatal disorder accompanied by persisting inflammation harboring clonal proliferation of EBV-infected T or NK cells. Today's chemotherapy is insufficient to resolve disease activity and to rid infected cells of sCAEBV. The currently established treatment strategy for eradicating infected cells is allogeneic hematopoietic stem cell transplantation. In this study, we focused on the effects of proteasome inhibitor bortezomib on the disease. Bortezomib suppressed survival and induced apoptosis of EBV+ T- or NK-cell lines and peripheral mononuclear cells containing EBV-infected T or NK cells of sCAEBV patients. Bortezomib enhanced binding immunoglobulin protein/78-kDa glucose-regulated protein (Bip/GRP78) expression induced by endoplasmic reticulum stress and activated apoptosis-promoting molecules JNK and p38 in the cell lines. Bortezomib suppressed the activation of survival-promoting molecule NF-κB, which was constitutively activated in EBV+ T- or NK-cell lines. Furthermore, quantitative reverse transcription-polymerase chain reaction demonstrated that bortezomib suppressed messenger RNA expression of proinflammatory cytokines tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) in EBV+ T or NK cells from the patients. Finally, we examined the effects of bortezomib using xenograft models of sCAEBV generated by IV injection of patients' cells. The intraperitoneal administration of bortezomib significantly reduced EBV-DNA load in peripheral blood and the infiltration of EBV-infected cells in the models' livers. Moreover, the serum concentration of TNF-α and IFN-γ decreased after bortezomib treatment to the models. Our findings will be translated into the treatment of sCAEBV not only to reduce the number of tumor cells but also to suppress inflammation.
Collapse
|
20
|
Dieudonne Y, Martin M, Korganow AS, Boutboul D, Guffroy A. [EBV and immunodeficiency]. Rev Med Interne 2021; 42:832-843. [PMID: 33867195 DOI: 10.1016/j.revmed.2021.03.324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
Epstein-Barr virus (EBV), discovered in 1964, is a double-stranded DNA virus belonging to the Herpesviridae family. EBV has a lymphoid tropism with transforming capacities using different oncogenic viral proteins. This virus has two replication cycles: a lytic cycle mainly occuring during primary infection and a latent cycle allowing viral persistence into host memory B cells. More than 90% of adults are seropositive for EBV worldwide, with a past history of asymptomatic or mild primary infection. EBV infection can sometimes cause life-threatening complications such as hemophagocytic lymphohistiocytosis, and lead to the development of lymphoproliferative disorders or cancers. Risk factors associated with these phenotypes have been recently described through the study of monogenic primary immune deficiencies with EBV susceptibility. We here review the virological and immunological aspects of EBV infection and EBV-related complications with an overview of current available treatments.
Collapse
Affiliation(s)
- Y Dieudonne
- Université de Strasbourg, Inserm UMR - S1109, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, service d'immunologie clinique et de médecine interne, centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), centre de compétence pour les déficits immunitaires primitifs de l'adulte, 67000 Strasbourg, France; Université de Strasbourg, faculté de médecine, 67000 Strasbourg, France
| | - M Martin
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 86021 Poitiers, France; Université de Poitiers, 86021 Poitiers, France
| | - A-S Korganow
- Université de Strasbourg, Inserm UMR - S1109, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, service d'immunologie clinique et de médecine interne, centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), centre de compétence pour les déficits immunitaires primitifs de l'adulte, 67000 Strasbourg, France; Université de Strasbourg, faculté de médecine, 67000 Strasbourg, France
| | - D Boutboul
- Service d'immunopathologie clinique, U976 HIPI, hôpital Saint-Louis, université de Paris, Paris, France.
| | - A Guffroy
- Université de Strasbourg, Inserm UMR - S1109, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, service d'immunologie clinique et de médecine interne, centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), centre de compétence pour les déficits immunitaires primitifs de l'adulte, 67000 Strasbourg, France; Université de Strasbourg, faculté de médecine, 67000 Strasbourg, France.
| |
Collapse
|
21
|
Chronic Active Epstein-Barr Virus Infection: The Elucidation of the Pathophysiology and the Development of Therapeutic Methods. Microorganisms 2021; 9:microorganisms9010180. [PMID: 33467742 PMCID: PMC7829705 DOI: 10.3390/microorganisms9010180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) is a disease where Epstein-Barr virus (EBV)-infected T- or NK-cells are activated and proliferate clonally. The symptoms of this dual-faced disease include systemic inflammation and multiple organ failures caused by the invasion of infected cells: inflammation and neoplasm. At present, the only effective treatment strategy to eradicate EBV-infected cells is allogeneic stem cell transplantation. Lately, the investigation into the disease's pathogenic mechanism and pathophysiology has been advancing. In this review, I will evaluate the new definition in the 2017 WHO classification, present the advancements in the study of CAEBV, and unfold the future direction.
Collapse
|
22
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
23
|
Ondrejka SL, Hsi ED. Chronic active Epstein-Barr virus infection: A heterogeneous entity requiring a high index of suspicion for diagnosis. Int J Lab Hematol 2021; 42 Suppl 1:99-106. [PMID: 32543060 DOI: 10.1111/ijlh.13199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 11/30/2022]
Abstract
Chronic active Epstein-Barr virus infection of T- and NK-cell type, systemic form, is a rare entity within the spectrum of EBV-driven T- and NK-cell lymphoproliferative disorders. Established diagnostic criteria and a characteristic clinical course help to differentiate it from other closely related EBV-positive neoplasms and clinical states. We present a patient and review the natural history, pathologic features, pathogenesis, and differential diagnosis of this entity.
Collapse
Affiliation(s)
- Sarah L Ondrejka
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Eric D Hsi
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
24
|
Fujiwara S, Nakamura H. Chronic Active Epstein-Barr Virus Infection: Is It Immunodeficiency, Malignancy, or Both? Cancers (Basel) 2020; 12:cancers12113202. [PMID: 33143184 PMCID: PMC7692233 DOI: 10.3390/cancers12113202] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is a rare syndrome of unknown etiology characterized by prolonged infectious mononucleosis-like symptoms and proliferation of EBV-infected T and/or natural killer cells. CAEBV has been primarily reported in East Asia and Latin America, suggesting a genetic predisposition in its pathogenesis. The clinical course of CAEBV is heterogeneous ranging from an indolent and occasionally self-limiting disease to an aggressive and fatal condition, but its prognosis is generally poor. This heterogeneous clinical picture does not suggest a simple etiology for the syndrome. Clinicopathological investigations of CAEBV suggest that it has aspects of both malignant neoplasm and immunodeficiency. This article summarizes the latest findings on CAEBV and discusses critical unsolved questions regarding its pathogenesis and disease concept. Abstract Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is a rare syndrome characterized by prolonged infectious mononucleosis-like symptoms and elevated peripheral blood EBV DNA load in apparently immunocompetent persons. CAEBV has been primarily reported in East Asia and Latin America, suggesting a genetic predisposition in its pathogenesis. In most cases of CAEBV, EBV induces proliferation of its unusual host cells, T or natural killer (NK) cells. The clinical course of CAEBV is heterogeneous; some patients show an indolent course, remaining in a stable condition for years, whereas others show an aggressive course with a fatal outcome due to hemophagocytic lymphohistiocytosis, multiple organ failure, or progression to leukemia/lymphoma. The pathogenesis of CAEBV is unclear and clinicopathological investigations suggest that it has aspects of both malignant neoplasm and immunodeficiency. Recent genetic analyses of both viral and host genomes in CAEBV patients have led to discoveries that are improving our understanding of the nature of this syndrome. This article summarizes the latest findings on CAEBV and discusses critical unsolved questions regarding its pathogenesis and disease concept.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Correspondence:
| | - Hiroyuki Nakamura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| |
Collapse
|
25
|
Sejic N, George LC, Tierney RJ, Chang C, Kondrashova O, MacKinnon RN, Lan P, Bell AI, Lessene G, Long HM, Strasser A, Shannon-Lowe C, Kelly GL. BCL-XL inhibition by BH3-mimetic drugs induces apoptosis in models of Epstein-Barr virus-associated T/NK-cell lymphoma. Blood Adv 2020; 4:4775-4787. [PMID: 33017468 PMCID: PMC7556124 DOI: 10.1182/bloodadvances.2020002446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated T- and natural killer (NK)-cell malignancies, such as extranodal NK-/T-cell lymphoma (ENKTL), exhibit high chemoresistance and, accordingly, such patients have a poor prognosis. The rare nature of such cancers and nonmalignant T/NK lymphoproliferative disorders, such as chronic active EBV (CAEBV), has limited our understanding of the pathogenesis of these diseases. Here, we characterize a panel of ENKTL- and CAEBV-derived cell lines that had been established from human tumors to be used as preclinical models of these diseases. These cell lines were interleukin-2 dependent and found to carry EBV in a latency II gene-expression pattern. All cell lines demonstrated resistance to cell death induction by DNA damage-inducing agents, the current standard of care for patients with these malignancies. This resistance was not correlated with the function of the multidrug efflux pump, P-glycoprotein. However, apoptotic cell death could be consistently induced following treatment with A-1331852, a BH3-mimetic drug that specifically inhibits the prosurvival protein BCL-XL. A-1331852-induced apoptosis was most efficacious when prosurvival MCL-1 was additionally targeted, either by BH3-mimetics or genetic deletion. Xenograft models established from the ENKTL cell line SNK6 provided evidence that A-1331852 treatment could be therapeutically beneficial in vivo. The data here suggest that therapeutic targeting of BCL-XL would be effective for patients with EBV-driven T/NK proliferative diseases, however, MCL-1 could be a potential resistance factor.
Collapse
Affiliation(s)
- Nenad Sejic
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Institute of Immunology and Immunotherapy and
| | - Lindsay C George
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ruth N MacKinnon
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; and
- Department of Medicine (St. Vincent's) and
| | - Ping Lan
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | | | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
26
|
Yonese I, Sakashita C, Imadome KI, Kobayashi T, Yamamoto M, Sawada A, Ito Y, Fukuhara N, Hirose A, Takeda Y, Makita M, Endo T, Kimura SI, Ishimura M, Miura O, Ohga S, Kimura H, Fujiwara S, Arai A. Nationwide survey of systemic chronic active EBV infection in Japan in accordance with the new WHO classification. Blood Adv 2020; 4:2918-2926. [PMID: 32598475 PMCID: PMC7362364 DOI: 10.1182/bloodadvances.2020001451] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic chronic active Epstein-Barr virus infection (sCAEBV) was defined as a T- or NK-cell neoplasm in the 2017 World Health Organization (WHO) classification. To clarify the clinical features of sCAEBV under this classification and review the effects of chemotherapy, we performed a nationwide survey in Japan from 2016 through 2018 of patients with sCAEBV newly diagnosed from January 2003 through March 2016. One hundred cases were evaluated. The patients were aged 1 to 78 years (median, 21) and included 53 males and 47 females. Spontaneous regression was not observed in patients with active disease. In the childhood-onset group (age, <9 years), 78% of the patients were male. In contrast, 85% of the patients in the elderly-onset group (age, >45 years) were female. The prognosis of the childhood-onset group was better than those of the adolescent/adult- and elderly-onset groups. The main chemotherapies used were a combination of cyclosporine A, steroids, and etoposide (cooling therapy) in 52 cases and cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) in 45 cases. The rate of complete response (CR), defined as complete resolution of disease activity, was 17% for cooling therapy and 13% for CHOP. Virological CR was not observed. The 3-year overall survival rates in patients treated with chemotherapy only (n = 20), chemotherapy followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT; n = 47), and allo-HSCT only (n = 12) were 0%, 65%, and 82%, respectively. Distinct characteristics were observed between childhood- and elderly-onset sCAEBV, and they appeared to be different disorders. Chemotherapy is currently insufficient to resolve disease activity and eradicate infected cells. The development of an effective treatment is urgently needed.
Collapse
Affiliation(s)
- Ichiro Yonese
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Chizuko Sakashita
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | | | - Tohru Kobayashi
- Department of Management and Strategy, Clinical Research Center, National Center for Child Health and Development (NCCHD), Setagaya-ku, Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Akihisa Sawada
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University, Nagoya, Japan
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University, Sendai, Japan
| | - Asao Hirose
- Department of Hematology, Osaka City University, Osaka, Japan
| | - Yusuke Takeda
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Masanori Makita
- Department of Hematology, Okayama Medical Center, Okayama, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Shun-Ichi Kimura
- Department of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeyoshi Fujiwara
- Department of Allergy and Clinical Immunology, NCCHD, Setagaya-ku, Tokyo, Japan
| | - Ayako Arai
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan; and
- Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
27
|
Wang W, Nong L, Liang L, Zheng Y, Li D, Li X, Li T. Extranodal NK/T-cell lymphoma, nasal type without evidence of EBV infection. Oncol Lett 2020; 20:2665-2676. [PMID: 32782583 PMCID: PMC7401002 DOI: 10.3892/ol.2020.11842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Extranodal natural killer/T cell lymphoma-nasal type (EN-NK/T-NT) is extremely rare in Western countries; however, it is the most common subtype of peripheral T cell lymphoma in China. Despite this, there are a limited number of clinicopathological research studies on Epstein-Barr virus (EBV)-negative EN-NK/T-NTs. EBV-negative EN-NK/T-NT is a rare disease type, which has not been fully investigated. If other diagnostic criteria are met, such as the lesions being located predominantly in the upper aerodigestive tract, the presence of angiocentricity or angioinvasion, necrosis and expression of NK/T-cell phenotype, EN-NK/T-NT may be diagnosed, even if EBV is negative. In the present study, 99 cases of EN-NK/T-NTs were analyzed retrospectively, among which seven cases were EBV-negative EN-NK/T-NTs and selected for further investigation. In addition, the present study reviewed previously published research into EN-NK/T-NT, highlighting that EBV-negative EN-NK/T-NT is rare and that its geographical distribution is mainly in countries in Asia, Central America and South America. Patients with EBV-negative EN-NK/T-NT were all of Chinese ethnicity, with a median age of 32 years and primarily female. Furthermore, these patients shared similar clinicopathological characteristics (such as the tumor occurring mainly in the upper aerodigestive tract, the presence of vascular destruction, necrosis and cytotoxic phenotypes) to patients with EBV-positive EN-NK/T-NT. Immunohistochemistry and molecular analysis results indicated that tumor cells were primarily of NK or cytotoxic T origin; however, EBV-encoded small RNAs were not detected in any of these cases. Among the immunochemistry markers, T-bet was statistical significantly different between EBV-positive and -negative cases. Fluorescence in situ hybridization was also performed in two EBV-negative cases, including one case with a co-deletion of 6q21 and PR/SET domain 1 genes. There was only available follow-up data in 3/5 patients who survived for 37–113 months (median, 40 months). As EN-NK/T-NT can be diagnosed, even when EBV is negative, awareness of this subtype may prevent misdiagnosis or delayed diagnosis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Li Liang
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yalin Zheng
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Dong Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xin Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
28
|
Li Z, Zhang X, Dong L, Pang J, Xu M, Zhong Q, Zeng MS, Yu X. CryoEM structure of the tegumented capsid of Epstein-Barr virus. Cell Res 2020; 30:873-884. [PMID: 32620850 PMCID: PMC7608217 DOI: 10.1038/s41422-020-0363-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and has been shown to be closely associated with various malignancies. Here, we present a complete atomic model of EBV, including the icosahedral capsid, the dodecameric portal and the capsid-associated tegument complex (CATC). Our in situ portal from the tegumented capsid adopts a closed conformation with its channel valve holding the terminal viral DNA and with its crown region firmly engaged by three layers of ring-like dsDNA, which, together with the penton flexibility, effectively alleviates the capsid inner pressure placed on the portal cap. In contrast, the CATCs, through binding to the flexible penton vertices in a stoichiometric manner, accurately increase the inner capsid pressure to facilitate the pressure-driven genome delivery. Together, our results provide important insights into the mechanism by which the EBV capsid, portal, packaged genome and the CATCs coordinately achieve a pressure balance to simultaneously benefit both viral genome retention and ejection.
Collapse
Affiliation(s)
- Zhihai Li
- Cryo-Electron Microscopy Research Center, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Lili Dong
- Cryo-Electron Microscopy Research Center, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jingjing Pang
- Cryo-Electron Microscopy Research Center, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| | - Xuekui Yu
- Cryo-Electron Microscopy Research Center, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
CD21 (Complement Receptor 2) Is the Receptor for Epstein-Barr Virus Entry into T Cells. J Virol 2020; 94:JVI.00428-20. [PMID: 32238579 DOI: 10.1128/jvi.00428-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a number of T-cell diseases, including some peripheral T-cell lymphomas, hemophagocytic lymphohistiocytosis, and chronic active EBV disease. The tropism of EBV for B cells and epithelial cell infection has been well characterized, but infection of T cells has been minimally explored. We have recently shown that the EBV type 2 (EBV-2) strain has the unique ability to infect mature T cells. Utilizing an ex vivo infection model, we sought to understand the viral glycoprotein and cellular receptor required for EBV-2 infection of T cells. Here, using a neutralizing-antibody assay, we found that viral gp350 and complement receptor 2 (CD21) are required for CD3+ T-cell infection. Using the HB5 anti-CD21 antibody clone but not the Bly-4 anti-CD21 antibody clone, we detected expression of CD21 on both CD4+ and CD8+ T cells, with the highest expression on naive CD4 and CD8+ T-cell subsets. Using CRISPR to knock out CD21, we demonstrated that CD21 is necessary for EBV entry into the Jurkat T-cell line. Together, these results indicate that EBV uses the same viral glycoprotein and cellular receptor for both T- and B-cell infection.IMPORTANCE Epstein-Barr virus (EBV) has a well-described tropism for B cells and epithelial cells. Recently, we described the ability of a second strain of EBV, EBV type 2, to infect mature peripheral T cells. Using a neutralizing antibody assay, we determined that EBV uses the viral glycoprotein gp350 and the cellular protein CD21 to gain entry into mature peripheral T cells. CRISPR-Cas9 deletion of CD21 on the Jurkat T-cell line confirmed that CD21 is required for EBV infection. This study has broad implications, as we have defined a function for CD21 on mature peripheral T cells, i.e., as a receptor for EBV. In addition, the requirement for gp350 for T-cell entry has implications for EBV vaccine studies currently targeting the gp350 glycoprotein to prevent EBV-associated diseases.
Collapse
|
30
|
Jing JJ, Li H, Wang ZY, Zhou H, Sun LP, Yuan Y. Aberrantly methylated-differentially expressed genes and pathways in Epstein-Barr virus-associated gastric cancer. Future Oncol 2020; 16:187-197. [PMID: 31989840 DOI: 10.2217/fon-2019-0649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: To identify the methylated-differentially expressed genes (MDEGs) that may serve as diagnostic markers and therapeutic targets in Epstein-Barr virus-associated gastric cancer (EBVaGC) and to explore the methylation-based pathways for elucidating biological mechanisms of EBVaGC. Materials & methods: Gene expression and methylation profiles were downloaded from GEO database. MDEGs were identified by GEO2R. Pathway enrichment analyses were conducted based on DAVID database. Hub genes were identified by Cytoscape, which were further verified by The Cancer Genome Atlas database. Results: A total of 367 hypermethylated, lowly expressed genes were enriched in specific patterns of cell differentiation. 31 hypomethylated, highly expressed genes demonstrated enrichment in regulation of immune system process. After validation using The Cancer Genome Atlas database, seven genes were confirmed to be significantly different hub genes in EBVaGC. Conclusion: EBVaGC-specific MDEGs and pathways can be served as potential biomarkers for precise diagnosis and treatment of EBVaGC and provide novel insights into the mechanisms involved.
Collapse
Affiliation(s)
- Jing-Jing Jing
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of Cancer Etiology & Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of GI Cancer Etiology & Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Hao Li
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of Cancer Etiology & Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of GI Cancer Etiology & Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Ze-Yang Wang
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of Cancer Etiology & Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of GI Cancer Etiology & Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Heng Zhou
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Li-Ping Sun
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of Cancer Etiology & Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of GI Cancer Etiology & Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Yuan Yuan
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of Cancer Etiology & Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of GI Cancer Etiology & Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, PR China
| |
Collapse
|
31
|
Montes-Mojarro IA, Kim WY, Fend F, Quintanilla-Martinez L. Epstein - Barr virus positive T and NK-cell lymphoproliferations: Morphological features and differential diagnosis. Semin Diagn Pathol 2019; 37:32-46. [PMID: 31889602 DOI: 10.1053/j.semdp.2019.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spectrum of Epstein-Barr virus (EBV)-positive T and NK-cell lymphoproliferations is broad and ranges from reactive self-limited disorders to neoplastic processes with a fulminant clinical course. EBV plays an important role promoting lymphomagenesis, although the precise mechanisms remain elusive. EBV-positive lymphoproliferative disorders (LPD) are more common in East Asia (China, Japan, Korea and Taiwan), and Latin America suggesting a strong genetic predisposition. The revised 2016 World Health Organization (WHO) lymphoma classification recognizes the following malignant NK- and T-cell lymphomas; extranodal NK/T-cell lymphoma, nasal type (ENKTCL), aggressive NK-cell leukemia (ANKL), and the provisional entity within the group of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) "primary EBV-positive nodal T or NK cell lymphoma". Disorders presenting mainly in children and young adults include chronic active EBV infection (CAEBV) - systemic and cutaneous forms - which are not considered malignant disorders but were included in the WHO classification for the first time because of the differential diagnosis with other T- or NK-cell lymphomas. CAEBV, cutaneous form, includes hydroa vacciniforme-like LPD (HV-LPD) and severe mosquito bite allergy (SMBA). Finally, systemic EBV-positive T-cell lymphoma of childhood was recognized as lymphoma because of its fulminant clinical course. Given the shared pathogenesis of these disorders, overlapping features are common demanding a close clinical, morphological and molecular correlation for an accurate diagnosis. This review summarizes the clinical, histopathological and molecular features of EBV-associated T and NK-cell LPD, highlighting the main features that might aid in the differential diagnosis.
Collapse
Affiliation(s)
- Ivonne A Montes-Mojarro
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Wook Youn Kim
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany; Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany.
| |
Collapse
|
32
|
Himi K, Takeichi O, Imai K, Hatori K, Tamura T, Ogiso B. Epstein-Barr virus reactivation by persistent apical periodontal pathogens. Int Endod J 2019; 53:492-505. [PMID: 31730263 DOI: 10.1111/iej.13255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
AIM To assess whether Epstein-Barr virus (EBV) reactivation is triggered by persistent apical periodontitis-related microbes using in vitro and ex vivo methodologies. METHODOLOGY Surgically removed human periapical granulomas (n = 50) and healthy gingival tissues (n = 10) were analysed to determine the presence of EBV and seven persistent apical periodontitis-related microbes. In addition, real-time polymerase chain reaction was used to detect the mRNA expression of BZLF-1, an immediate-early gene of EBV. Expression of latent membrane protein (LMP)-1 and ZEBRA, an early lytic protein of EBV encoded by BZLF-1, was also examined using triple-colour immunofluorescence staining. n-Butyric acid produced by the microbes was quantified, and luciferase assays were performed in association with bacterial lysates. In addition, Daudi cells were cultured with bacterial lysates, and the expression levels of BZLF-1 mRNA and ZEBRA protein were determined. RESULTS EBV DNA and BZLF-1 mRNA were detected in 47 out of 50 periapical granulomas, but not in healthy gingival tissues. The EBV DNA copy number and the number of Fusobacterium nucleatum were significantly positively correlated with BZLF-1 expression in periapical granulomas. The number of Prevotella intermedia was slightly correlated with BZLF-1 expression; however, the other microbes were not. CD79a-positive B cells in periapical granulomas, but not those in healthy gingival tissues, expressed both LMP-1 and ZEBRA. n-Butyric acid production was the highest in F. nucleatum and the lowest in P. intermedia. Enterococcus faecalis, Candida albicans and the other tested microbes did not produce n-butyric acid. An F. nucleatum lysate exhibited significantly increased BZLF-1-luciferase activity in the same manner of commercial butyric acid, whereas P. intermedia did not. F. nucleatum also induced the expression of BZLF-1 mRNA and ZEBRA protein by Daudi cells, indicating that EBV reactivation was induced. CONCLUSION Among the persistent apical periodontitis-related bacteria that were tested, F. nucleatum most strongly reactivated latent EBV, whereas E. faecalis and C. albicans as well as the other microbes did not.
Collapse
Affiliation(s)
- K Himi
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan
| | - O Takeichi
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, School of Dentistry, Nihon University, Tokyo, Japan
| | - K Imai
- Department of Microbiology, School of Dentistry, Nihon University, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Centre, School of Dentistry, Nihon University, Tokyo, Japan
| | - K Hatori
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, School of Dentistry, Nihon University, Tokyo, Japan
| | - T Tamura
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan
| | - B Ogiso
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, School of Dentistry, Nihon University, Tokyo, Japan
| |
Collapse
|
33
|
Li X, Kozlov SV, El-Guindy A, Bhaduri-McIntosh S. Retrograde Regulation by the Viral Protein Kinase Epigenetically Sustains the Epstein-Barr Virus Latency-to-Lytic Switch To Augment Virus Production. J Virol 2019; 93:e00572-19. [PMID: 31189703 PMCID: PMC6694827 DOI: 10.1128/jvi.00572-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous, and infection by some, like Epstein-Barr virus (EBV), is nearly universal. To persist, EBV must periodically switch from a latent to a replicative/lytic phase. This productive phase is responsible for most herpesvirus-associated diseases. EBV encodes a latency-to-lytic switch protein which, upon activation, sets off a vectorially constrained cascade of gene expression that results in production of infectious virus. While triggering expression of the switch protein ZEBRA is essential to lytic cycle entry, sustaining its expression is equally important to avoid premature termination of the lytic cascade. We report that the viral protein kinase (vPK), encoded by a gene that is kinetically downstream of the lytic switch, sustains expression of ZEBRA, amplifies the lytic cascade, increasing virus production, and, importantly, prevents the abortive lytic cycle. We find that vPK, through a noncanonical site phosphorylation, activates the cellular phosphatidylinositol 3-kinase-related kinase ATM to cause phosphorylation of the heterochromatin enforcer KAP1/TRIM28 even in the absence of EBV genomes or other EBV proteins. Phosphorylation of KAP1 renders it unable to restrain ZEBRA, thereby further derepressing and sustaining its expression to culminate in virus production. This partnership with a host kinase and a transcriptional corepressor enables retrograde regulation by vPK of ZEBRA, an observation that is counter to the unidirectional regulation of gene expression reminiscent of most DNA viruses.IMPORTANCE Herpesviruses infect nearly all humans and persist quiescently for the life of the host. These viruses intermittently activate into the lytic phase to produce infectious virus, thereby causing disease. To ensure that lytic activation is not prematurely terminated, expression of the virally encoded lytic switch protein needs to be sustained. In studying Epstein-Barr virus, one of the most prevalent human herpesviruses that also causes cancer, we have discovered that a viral kinase activated by the viral lytic switch protein partners with a cellular kinase to deactivate a silencer of the lytic switch protein, thereby providing a positive feedback loop to ensure successful completion of the viral productive phase. Our findings highlight key nodes of interaction between the host and virus that could be exploited to treat lytic phase-associated diseases by terminating the lytic phase or kill cancer cells harboring herpesviruses by accelerating the completion of the lytic cascade.
Collapse
Affiliation(s)
- Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Sergei V Kozlov
- Radiation Biology and Oncology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Ayman El-Guindy
- Division of Infectious Diseases, Department of Pediatrics, Yale University, New Haven, Connecticut, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
34
|
Coffey AM, Lewis A, Marcogliese AN, Elghetany MT, Punia JN, Chang CC, Allen CE, McClain KL, Gaikwad AS, El-Mallawany NK, Curry CV. A clinicopathologic study of the spectrum of systemic forms of EBV-associated T-cell lymphoproliferative disorders of childhood: A single tertiary care pediatric institution experience in North America. Pediatr Blood Cancer 2019; 66:e27798. [PMID: 31099136 DOI: 10.1002/pbc.27798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Systemic forms of EBV-associated T-cell lymphoproliferative disorders of childhood (S-EBV-T-LPD) comprise three major forms: EBV-positive hemophagocytic lymphohistiocytosis (EBV-HLH), systemic EBV-positive T-cell lymphoma (S-EBV-TCL), and systemic chronic active EBV infection (S-CAEBV). These disorders occur rarely in children in Western countries. Here, we described eight children of such entities. DESIGN Eight cases (six clinical and two autopsy) with S-EBV-T-LPD of childhood were retrospectively identified from 1990 to 2015. Clinicopathologic parameters including histomorphology, immunophenotype, EBV studies, and T-cell receptor gene rearrangement studies were recorded. RESULTS Patients include five females and three males of Hispanic, Asian, and Caucasian origins with an age range of 14 months to 9 years. Fever, hepatosplenomegaly, cytopenias, abnormal EBV serologies, and very high EBV viral loads were common findings. Histologic findings showed EBV+ T-cell infiltrates with variable degrees of architectural distortion and cytologic atypia ranging from no to mild cytologic atypia to overt lymphoma and tissue hemophagocytosis. All showed aberrant CD4+ or CD8+ T cells with dim to absent CD5, CD7, and CD3, and bright CD2 and CD45 by flow cytometry or loss of CD5 by immunohistochemistry. TCR gene rearrangement studies showed monoclonal rearrangements in all clinical cases (6/6). Outcomes were poor with treatment consisting of chemotherapy per the HLH-94 or HLH-2004 protocols with or without bone marrow transplant. CONCLUSION In this large pediatric clinicopathologic study of S-EBV-T-LPD of childhood in the United States, EBV-HLH, S-EBV-TCL, and S-CAEBV show many overlapping features. Diagnosis is challenging, and overall outcome is poor using current HLH-directed therapies.
Collapse
Affiliation(s)
- Amy M Coffey
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Annisa Lewis
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Andrea N Marcogliese
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - M Tarek Elghetany
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Jyotinder N Punia
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Chung-Che Chang
- Department of Pathology, University of Central Florida and Florida Hospital, Orlando, Florida
| | - Carl E Allen
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital and Division of Pediatric Hematology-Oncology, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kenneth L McClain
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital and Division of Pediatric Hematology-Oncology, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Amos S Gaikwad
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital and Division of Pediatric Hematology-Oncology, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nader Kim El-Mallawany
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital and Division of Pediatric Hematology-Oncology, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|
35
|
Gammaherpesvirus entry and fusion: A tale how two human pathogenic viruses enter their host cells. Adv Virus Res 2019; 104:313-343. [PMID: 31439152 DOI: 10.1016/bs.aivir.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prototypical human γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi Sarcoma-associated herpesvirus (KSHV) are involved in the development of malignancies. Like all herpesviruses, they share the establishment of latency, the typical architecture, and the conserved fusion machinery to initiate infection. The fusion machinery reflects virus-specific adaptations due to the requirements of the respective herpesvirus. For example, EBV evolved a tropism switch involving either the B- or epithelial cell-tropism complexes to activate fusion driven by gB. Most of the EBV entry proteins and their cellular receptors have been crystallized providing molecular details of the initial steps of infection. For KSHV, a variety of entry and binding receptors has also been reported but the mechanism how receptor binding activates gB-driven fusion is not as well understood as that for EBV. However, the downstream signaling pathways that promote the early steps of KSHV entry are well described. This review summarizes the current knowledge of the key players involved in EBV and KSHV entry and the cell-type specific mechanisms that allow infection of a wide variety of cell types.
Collapse
|
36
|
Cai Q, Cai J, Fang Y, Young KH. Epstein-Barr Virus-Positive Natural Killer/T-Cell Lymphoma. Front Oncol 2019; 9:386. [PMID: 31139570 PMCID: PMC6527808 DOI: 10.3389/fonc.2019.00386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma, nasal type (ENKL), is a rare malignancy of Non-Hodgkin lymphoma characterized by an aggressive clinical course and poor prognosis. It shows strong association with Epstein-Barr virus infection and occurs more commonly in Asia and Latin America. Various genetic alterations have been identified in ENKL by gene expression profiling and sequencing techniques. The frequent deletion of chromosome 6q21 was reported to lead to the silence of several tumor suppressor genes. Also, there have been novel genetic mutations that were recently uncovered and were found to frequently activate several oncogenic pathways, including the JAK/STAT, NF-κB, and MAPK pathways. Besides, we believe that deregulated single genes and epigenetic dysregulation might be relevant to the mechanism of this disease and thus, may have the potential to shed lights on the development of new therapeutic strategies. The consensus on the standard treatment for ENKL has not yet been currently established. For localized ENKL patients, radiotherapy with concurrent chemotherapy and sequential patterns of chemotherapy and radiotherapy are recommended as first-line therapy. As for advanced or relapsed/refractory ENKL patients, the application of non-anthracycline-containing regimens have significantly improved the clinical outcome, contributing to higher response rate, longer overall survival and progression-free survival. Hematopoietic stem cell transplantation is widely recommended for consolidation after a complete remission or partial remission has been achieved. The anti-programmed death 1 antibody, an immune checkpoint inhibitor, has demonstrated favorable results in treating relapsed or refractory ENKL. Of the current ENKL treatment, researchers are still striving to validate how radiotherapy and chemotherapy should be optimally combined and which of the non-anthracycline-containing regimens is superior. In this review, we summarize the main genetic alterations frequently found in ENKL and their role in providing new insights into the therapeutic targets of this disease, and highlight the recent findings regarding new biologic markers, novel therapeutic strategies applied to this intriguing neoplasm.
Collapse
Affiliation(s)
- Qingqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
37
|
Barros MHM, Vera-Lozada G, Segges P, Hassan R, Niedobitek G. Revisiting the Tissue Microenvironment of Infectious Mononucleosis: Identification of EBV Infection in T Cells and Deep Characterization of Immune Profiles. Front Immunol 2019; 10:146. [PMID: 30842768 PMCID: PMC6391352 DOI: 10.3389/fimmu.2019.00146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022] Open
Abstract
To aid understanding of primary EBV infection, we have performed an in depth analysis of EBV-infected cells and of local immune cells in tonsils from infectious mononucleosis (IM) patients. We show that EBV is present in approximately 50% of B-cells showing heterogeneous patterns of latent viral gene expression probably reflecting different stages of infection. While the vast majority of EBV+ cells are B-cells, around 9% express T-cell antigens, with a predominance of CD8+ over CD4+ cells. PD-L1 was expressed by a median of 14% of EBV+ cells. The numbers of EBER+PD-L1+ cells were directly correlated with the numbers of EBER+CD3+ and EBER+CD8+ cells suggesting a possible role for PD-L1 in EBV infection of T-cells. The microenvironment of IM tonsils was characterized by a predominance of M1-polarized macrophages over M2-polarized cells. However, at the T-cell level, a heterogeneous picture emerged with numerous Th1/cytotoxic cells accompanied and sometimes outnumbered by Th2/regulatory T-cells. Further, we observed a direct correlation between the numbers of Th2-like cells and EBV- B-cells. Also, a prevalence of cytotoxic T-cells over Th2-like cells was associated with an increased viral load. These observations point to contribution of B- and Th2-like cells to the control of primary EBV infection. 35% of CD8+ cells were differentiated CD8+TBET+ cells, frequently detected in post-capillary venules. An inverse correlation was observed between the numbers of CD8+TBET+ cells and viral load suggesting a pivotal role for these cells in the control of primary EBV infection. Our results provide the basis for a better understanding of immune reactions in EBV-associated tumors.
Collapse
Affiliation(s)
| | - Gabriela Vera-Lozada
- Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Priscilla Segges
- Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Rocio Hassan
- Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gerald Niedobitek
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany
- Institute for Pathology, Sana Klinikum Lichtenberg, Berlin, Germany
| |
Collapse
|
38
|
Arai A. Chronic active Epstein-Barr virus infection: a bi-faceted disease with inflammatory and neoplastic elements. Immunol Med 2019; 41:162-169. [PMID: 30704352 DOI: 10.1080/25785826.2018.1556030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) is one of the Epstein-Barr virus (EBV)-positive T- or NK-cell lymphoproliferative diseases. It is characterized by clonal proliferation of EBV-infected T or NK cells and their infiltration into systemic organs, leading to their failure. Inflammatory symptoms, fever, lymphadenopathy and liver dysfunction are main clinical findings of CAEBV. EBV itself contributes to the survival of the host cells via induction of CD40 and CD137 expression and constitutive activation of NF-κB. Accumulation of gene mutations in the infected cells may lead to the development of highly malignant lymphoma or leukemia. Furthermore, constitutive activation of STAT3 is detected in the infected cells, which not only promotes cell survival but also enhances production of inflammatory cytokines. Currently, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only effective treatment strategy for eradication of EBV-infected T or NK cells. However, active disease at the time of allo-HSCT (defined as presence of fever, liver dysfunction, progressive skin lesions, vasculitis or uveitis) is a negative prognostic factor. Establishment of chemotherapy regimens for effective resolution of disease activity in patients with CAEBV is a key imperative. Based on the recently unraveled molecular mechanisms CAEBV development, pathways mediated by NF-κB or JAK/STAT are potential novel therapeutic targets.
Collapse
Affiliation(s)
- Ayako Arai
- a Laboratory Molecular Genetics of Hematology Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| |
Collapse
|
39
|
Abstract
Epstein–Barr virus (EBV) contributes to about 1.5% of all cases of human cancer worldwide, and viral genes are expressed in the malignant cells. EBV also very efficiently causes the proliferation of infected human B lymphocytes. The functions of the viral proteins and small RNAs that may contribute to EBV-associated cancers are becoming increasingly clear, and a broader understanding of the sequence variation of the virus genome has helped to interpret their roles. The improved understanding of the mechanisms of these cancers means that there are great opportunities for the early diagnosis of treatable stages of EBV-associated cancers and the use of immunotherapy to target EBV-infected cells or overcome immune evasion. There is also scope for preventing disease by immunization and for developing therapeutic agents that target the EBV gene products expressed in the cancers.
Collapse
Affiliation(s)
- Paul J. Farrell
- Section of Virology, Imperial College Faculty of Medicine, London W2 1PG, United Kingdom
| |
Collapse
|
40
|
Kim WY, Montes-Mojarro IA, Fend F, Quintanilla-Martinez L. Epstein-Barr Virus-Associated T and NK-Cell Lymphoproliferative Diseases. Front Pediatr 2019; 7:71. [PMID: 30931288 PMCID: PMC6428722 DOI: 10.3389/fped.2019.00071] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
EBV-associated T and NK-cell lymphoproliferative diseases (EBV-T/NK LPDs) are characterized by the transformation and proliferation of EBV-infected T or NK cells. The 2016 revised World Health Organization classification recognizes the following EBV-positive lymphoproliferative disorders (LPD): chronic active EBV infection (CAEBV) of T- and NK-cell type (cutaneous and systemic forms), systemic EBV-positive T-cell lymphoma of childhood, aggressive NK-cell leukemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity primary EBV-positive nodal T/NK-cell lymphoma. EBV-associated hemophagocytic lymphohistiocytosis (HLH), although not included in the WHO classification because it is a reactive, inflammatory disease, is included in this review because it can be life-threatening and may have overlapping features with other EBV+ T/NK LPDs. EBV+ T/NK LPDs are rare diseases difficult to diagnose and manage properly, because some LPDs have unusual presentations, and discrepancies between clinical and histological findings might be encountered. Furthermore, EBV+ T/NK disorders share some clinico-pathological features, and may evolve into other categories during the clinical course, including malignant transformation of CAEBV. Here, we review the EBV+ T/NK LPDs in terms of their definitions, clinical features, histology, immunophenotype, molecular findings, and pathogenesis. This review aims to increase our understanding and awareness of the differential diagnosis among the different EBV+ T/NK LPDs. New insights into the genetic characteristics of these disorders will also be discussed.
Collapse
Affiliation(s)
- Wook Youn Kim
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany.,Department of Pathology, Konkuk University School of Medicine, Seoul, South Korea
| | - Ivonne A Montes-Mojarro
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
41
|
Arai A. Advances in the Study of Chronic Active Epstein-Barr Virus Infection: Clinical Features Under the 2016 WHO Classification and Mechanisms of Development. Front Pediatr 2019; 7:14. [PMID: 30805320 PMCID: PMC6370717 DOI: 10.3389/fped.2019.00014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) is one of the Epstein-Barr virus (EBV)-positive T- or NK-lymphoproliferative diseases. It is considered rare and geographically limited to Japan and East Asia. However, CAEBV is drawing international attention, and the number of case reported worldwide is increasing, after its classification in the EBV-positive T- or NK-cell neoplasms, in the 2016 WHO classification. In this article, I review current advances in the study of CAEBV under the new definition and show future directions. In CAEBV, EBV-infected T or NK cells clonally proliferate and infiltrate multiple organs, leading to their failure. These characteristics define CAEBV as a lymphoid neoplasm. However, the main symptom of CAEBV is inflammation. Recently, the mechanisms underlying the development of CAEBV have gradually become clearer. EBV infection of T or NK cells can occur during the acute phase of primary infection with a high EBV load in the peripheral blood. In addition, it was reported that cytotoxic T cells decreased in numbers or showed dysfunction in CAEBV. These findings suggest that undetermined immunosuppressive disorders may underlie persistent infection of T or NK cells. Furthermore, EBV itself contributes to the survival of host cells. In vitro EBV infection of T cells induced intercellular survival-promoting pathways. Constitutive activation of NF-kB and STAT3 was observed in EBV-positive T or NK cells in CAEBV, promoting not only cell survival but also CAEBV development. During the disease course, CAEBV can lead to two lethal conditions: hemophagocytic lymphohistiocytosis and chemotherapy-resistant lymphoma. It is necessary to start treatment before these conditions develop. At present, the only effective treatment strategy for eradicating EBV-infected T or NK cells is allogeneic stem cell transplantation (allo-HSCT). However, patients with an active disease, in which the condition is accompanied by fever, liver dysfunction, progressive skin lesions, vasculitis, or uveitis, had worse outcomes after allo-HSCT, than patients with an inactive disease had. Unfortunately, current chemotherapies are insufficient to improve the activity of CAEBV. Based on the molecular mechanisms for the development of the disease, the NF-kB, or JAK/STAT mediating pathways are attractive candidate targets for new treatments.
Collapse
Affiliation(s)
- Ayako Arai
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
42
|
STAT3 is constitutively activated in chronic active Epstein-Barr virus infection and can be a therapeutic target. Oncotarget 2018; 9:31077-31089. [PMID: 30123428 PMCID: PMC6089567 DOI: 10.18632/oncotarget.25780] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) is a lymphoproliferative disorder characterized by the clonal proliferation of EBV-infected T or NK cells and is related to severe systemic inflammation. This study aims to investigate STAT3 to elucidate the mechanism underlying the CAEBV development. We determined that STAT3 was constitutively activated in EBV-positive T- or NK-cell lines. We also determined that STAT3 was activated in the peripheral blood mononuclear cells (PBMCs) containing EBV-infected clonally proliferating T or NK cells in six of seven patients with CAEBV. We conducted direct sequencing of the STAT3 Src homology 2 (SH2) domain, which has previously been reported to be mutated in T- or NK-cell neoplasms. No mutation was detected in the STAT3 SH2 domain in patients with CAEBV. Next, we investigated the effects of ruxolitinib, an inhibitor of both JAK1 and JAK2, which phosphorylates and activates STAT3. Ruxolitinib suppressed the phosphorylation of STAT3 in EBV-positive T- or NK-cell lines. Ruxolitinib also decreased the viable cell number of EBV-positive T- or NK-cell lines and PBMCs from patients with CAEBV. Furthermore, ruxolitinib suppressed the production of inflammatory cytokines in the cell lines and CAEBV patient-derived cells. In conclusion, constitutively activated STAT3, which promotes survival and cytokine production, could be a therapeutic target for CAEBV.
Collapse
|
43
|
Rezk SA, Zhao X, Weiss LM. Epstein-Barr virus (EBV)-associated lymphoid proliferations, a 2018 update. Hum Pathol 2018; 79:18-41. [PMID: 29885408 DOI: 10.1016/j.humpath.2018.05.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) has been linked to many human neoplasms including hematopoietic, epithelial, and mesenchymal tumors. Since our original review of EBV-associated lymphoproliferative disorders in 2007, many advances and developments have been reported. In this review, we will examine the recent advances in EBV-associated lymphoid/histiocytic proliferations, dividing them into reactive, B cell, T/NK cell, immunodeficiency-related, and histiocytic/dendritic cell proliferations.
Collapse
Affiliation(s)
- Sherif A Rezk
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA.
| | - Xiaohui Zhao
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA
| | - Lawrence M Weiss
- Department of Pathology & Laboratory Medicine, University of California Irvine (UCI) Medical Center, Orange, 92868, CA; NeoGenomics Laboratories, Aliso Viejo, 92656, CA
| |
Collapse
|
44
|
Comprehensive molecular diagnosis of Epstein-Barr virus-associated lymphoproliferative diseases using next-generation sequencing. Int J Hematol 2018; 108:319-328. [PMID: 29777376 DOI: 10.1007/s12185-018-2475-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Epstein-Barr virus (EBV) is associated with several life-threatening diseases, such as lymphoproliferative disease (LPD), particularly in immunocompromised hosts. Some categories of primary immunodeficiency diseases (PIDs) including X-linked lymphoproliferative syndrome (XLP), are characterized by susceptibility and vulnerability to EBV infection. The number of genetically defined PIDs is rapidly increasing, and clinical genetic testing plays an important role in establishing a definitive diagnosis. Whole-exome sequencing is performed for diagnosing rare genetic diseases, but is both expensive and time-consuming. Low-cost, high-throughput gene analysis systems are thus necessary. We developed a comprehensive molecular diagnostic method using a two-step tailed polymerase chain reaction (PCR) and a next-generation sequencing (NGS) platform to detect mutations in 23 candidate genes responsible for XLP or XLP-like diseases. Samples from 19 patients suspected of having EBV-associated LPD were used in this comprehensive molecular diagnosis. Causative gene mutations (involving PRF1 and SH2D1A) were detected in two of the 19 patients studied. This comprehensive diagnosis method effectively detected mutations in all coding exons of 23 genes with sufficient read numbers for each amplicon. This comprehensive molecular diagnostic method using PCR and NGS provides a rapid, accurate, low-cost diagnosis for patients with XLP or XLP-like diseases.
Collapse
|
45
|
Zhao B, Zhang X, Krummenacher C, Song S, Gao L, Zhang H, Xu M, Feng L, Feng Q, Zeng M, Xu Y, Zeng Y. Immunization With Fc-Based Recombinant Epstein-Barr Virus gp350 Elicits Potent Neutralizing Humoral Immune Response in a BALB/c Mice Model. Front Immunol 2018; 9:932. [PMID: 29765376 PMCID: PMC5938345 DOI: 10.3389/fimmu.2018.00932] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Epstein–Barr virus (EBV) was the first human virus proved to be closely associated with tumor development, such as lymphoma, nasopharyngeal carcinoma, and EBV-associated gastric carcinoma. Despite many efforts to develop prophylactic vaccines against EBV infection and diseases, no candidates have succeeded in effectively blocking EBV infection in clinical trials. Previous investigations showed that EBV gp350 plays a pivotal role in the infection of B-lymphocytes. Nevertheless, using monomeric gp350 proteins as antigens has not been effective in preventing infection. Multimeric forms of the antigen are more potently immunogenic than monomers; however, the multimerization elements used in previous constructs are not approved for human clinical trials. To prepare a much-needed EBV prophylactic vaccine that is potent, safe, and applicable, we constructed an Fc-based form of gp350 to serve as a dimeric antigen. Here, we show that the Fc-based gp350 antigen exhibits dramatically enhanced immunogenicity compared with wild-type gp350 protein. The complete or partial gp350 ectodomain was fused with the mouse IgG2a Fc domain. Fusion with the Fc domain did not impair gp350 folding, binding to a conformation-dependent neutralizing antibody (nAb) and binding to its receptor by enzyme-linked immunosorbent assay and surface plasmon resonance. Specific antibody titers against gp350 were notably enhanced by immunization with gp350-Fc dimers compared with gp350 monomers. Furthermore, immunization with gp350-Fc fusion proteins elicited potent nAbs against EBV. Our data strongly suggest that an EBV gp350 vaccine based on Fc fusion proteins may be an efficient candidate to prevent EBV infection in clinical applications.
Collapse
Affiliation(s)
- Bingchun Zhao
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao Zhang
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, NJ, United States.,Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, United States
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Ling Gao
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Haojiong Zhang
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Miao Xu
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Feng
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qisheng Feng
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Musheng Zeng
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuting Xu
- Guiyang City National High School, Guiyang, China
| | - Yixin Zeng
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
46
|
Hasegawa M, Kobayashi R, Okayasu I, Hirai K. Nasopharyngeal Carcinoma and Epstein-Barr Virus Infection in Japanese Patients. ACTA ACUST UNITED AC 2018. [DOI: 10.2500/105065896781794824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Of 38 Japanese patients with nasopharyngeal malignancies, Epstein-Barr virus (EBV) infection and neck metastasis were investigated. Thirty-three patients had nasopharyngeal carcinoma: moderately differentiated squamous cell carcinoma, poorly differentiated squamous cell carcinoma, and undifferentiated carcinoma. Formalin-fixed and paraffin-embedded surgical specimens were studied by in situ hybridization technique detecting EBER 1, which is EBV-encoded, small molecular nonpolyadenylated RNA. “EBER 1 positive” rates of moderately differentiated squamous cell carcinoma, poorly differentiated squamous cell carcinoma, and undifferentiated carcinoma were 29%, 80%, and 88%, respectively. On the other hand, neck metastasis in each group was found 71%, 70%, and 75%, respectively. The possible role of EBV in nasopharyngeal carcinoma was discussed.
Collapse
Affiliation(s)
- Makoto Hasegawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Ryo Kobayashi
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isao Okayasu
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kanji Hirai
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
47
|
Xu C, Ai J, Zhang Q, Li T, Wu X, Xie Z, Duan Z. An Efficient and Simple Method to Establish NK and T Cell Lines from Patients with Chronic Active Epstein-Barr Virus Infection. J Vis Exp 2018. [PMID: 29658924 DOI: 10.3791/56515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A number of methods have been described to establish NK/T cell lines from patients with lymphoma or lymphoproliferative syndrome. These methods employed feeder cells, purified NK or T cells with as much as 10 mL of blood, or a high-dose of IL-2. This study presents a new method with a powerful and simple strategy to establish NK and T cell lines by culturing the peripheral blood mononuclear cells (PBMC) with the addition of recombinant human IL-2 (rhIL-2), and uses as little as 2 mL of whole blood. The cells can proliferate quickly in two weeks and be maintained for more than 3 months. With this method, 7 NK or T cell lines have been established with a high success rate. This method is simple, reliable, and applicable to establishing cell lines from more cases of CAEBV or NK/T cell lymphoma.
Collapse
Affiliation(s)
- Chongfeng Xu
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Junhong Ai
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University
| | - Qingxun Zhang
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Ting Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Xiaorong Wu
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Zhengde Xie
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University;
| | - Ziyuan Duan
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;
| |
Collapse
|
48
|
Abstract
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored.
Collapse
|
49
|
Chang A, Schlafer D, Flowers CR, Allen PB. Investigational PD-1 inhibitors in HL and NHL and biomarkers for predictors of response and outcome. Expert Opin Investig Drugs 2018; 27:55-70. [PMID: 29228840 PMCID: PMC5762391 DOI: 10.1080/13543784.2018.1416091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inhibitors against the PD-1/PD-L1 pathway are revolutionizing the treatment and management of malignancies. AREAS COVERED We summarize our current understanding of the function of PD-1, its role in immune evasion, the clinical data available that support the use of PD-1 antagonist in Hodgkin and non-Hodgkin lymphomas, and potential predictors of response. EXPERT OPINION We anticipate that in the next 10 years, agents that modulate the immune system such as PD-1 antagonists will be increasingly used in favor over traditional cytotoxic chemotherapeutic agents. PD-1 antagonists will be combined with future immunotherapies or used as adjuncts to cellular therapy to boost tumor-specific immune responses.
Collapse
Affiliation(s)
- Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Danielle Schlafer
- Department of Pharmaceutical Services, Emory Healthcare, Atlanta, GA 30322
| | - Christopher R. Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Pamela B. Allen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
50
|
Abstract
Epstein-Barr virus (EBV), which is associated with B-cell proliferative disorders, also transforms T- or natural killer (NK)-lineage cells and has been connected with various T- or NK (T/NK)-cell malignancies, such as extranodal NK/T-cell lymphoma-nasal type and aggressive NK-cell leukemia. Chronic active EBV (CAEBV) disease , which occurs most often in children and young adults in East Asia, is an EBV-associated T-/NK-cell lymphoproliferative disease. Patients with CAEBV often progress to overt lymphoma or leukemia over a long-term clinical course. EBV's transforming capacity in B cells is well characterized, but the molecular pathogenesis of clonal expansion caused by EBV in T/NK cells has not yet been clarified. In the primary infection, EBV infects B cells and epithelial cells and may also infect some T/NK cells. In some individuals, because of poor presentation by specific human leukocyte antigens or the genetic background, EBV-infected T/NK cells evade host immunity and survive. Occasionally, with the help of viral oncogenes, EBV-associated T/NK lymphoproliferative diseases, such as CAEBV, may develop. The subsequent accumulation of genetic mutations and/or epigenetic modifications in driver genes, such as DDX3X and TP53, may lead to overt lymphoma and leukemia. Activation-induced cytidine deaminase and the APOBEC3 family, driven by EBV infection, may induce chromosomal recombination and somatic mutations.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|