1
|
Thio CLP, Shao JS, Luo CH, Chang YJ. Decoding innate lymphoid cells and innate-like lymphocytes in asthma: pathways to mechanisms and therapies. J Biomed Sci 2025; 32:48. [PMID: 40355861 PMCID: PMC12067961 DOI: 10.1186/s12929-025-01142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Asthma is a chronic inflammatory lung disease driven by a complex interplay between innate and adaptive immune components. Among these, innate lymphoid cells (ILCs) and innate-like lymphocytes have emerged as crucial players in shaping the disease phenotype. Within the ILC family, group 2 ILCs (ILC2s), in particular, contribute significantly to type 2 inflammation through their rapid production of cytokines such as IL-5 and IL-13, promoting airway eosinophilia and airway hyperreactivity. On the other hand, innate-like lymphocytes such as invariant natural killer T (iNKT) cells can play either pathogenic or protective roles in asthma, depending on the stimuli and lung microenvironment. Regulatory mechanisms, including cytokine signaling, metabolic and dietary cues, and interactions with other immune cells, play critical roles in modulating their functions. In this review, we highlight current findings on the role of ILCs and innate-like lymphocytes in asthma development and pathogenesis. We also examine the underlying mechanisms regulating their function and their interplay with other immune cells. Finally, we explore current therapies targeting these cells and their effector cytokines for asthma management.
Collapse
Affiliation(s)
- Christina Li-Ping Thio
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
| | - Jheng-Syuan Shao
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, 115, Taiwan
| | - Chia-Hui Luo
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, 115, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
2
|
Vichara-Anont I, Lumkul L, Phinyo P, Wongsa C, Thongngarm T. Efficacy and Safety of Maintenance Regimens for Adolescent and Adult Asthmatics With Exercise-Induced Bronchospasm: Systematic Review and Network Meta-Analysis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025:S2213-2198(25)00189-8. [PMID: 40021120 DOI: 10.1016/j.jaip.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Exercise-induced bronchospasm (EIB) commonly coexists with asthma. However, the data on the efficacy of maintenance therapies for asthma with EIB are scarce. OBJECTIVE This network meta-analysis assessed the comparative efficacy and safety of maintenance regimens for asthmatics with EIB. METHODS We searched PubMed, Scopus, Embase, the Cochrane Center of Controlled Trials, and Google Scholar for randomized controlled trials (RCTs) that addressed the efficacy and safety of maintenance treatments in adolescent and adult asthmatics with EIB from inception to April 2024. The primary outcome was the change in forced expiratory volume in 1 second postexercise after maintenance therapy. The secondary outcome focused on treatment-related adverse events (AEs). RESULTS Eleven RCTs involving 1054 patients were included. Low-dose inhaled corticosteroid (ICS)-montelukast significantly improved EIB with a mean difference (95% confidence interval) of 14.96% (9.61, 20.31), followed by low- to medium-dose (LM-dose) ICS-salmeterol 13.7% (8.68, 18.72), high-dose ICS 13.30% (1.34, 25.26), montelukast 11.35% (5.76, 16.95), ICS-vilanterol 9.24% (4.41, 14.07), zafirlukast 8.80% (2.28, 15.32), LM-dose ICS 7.55% (3.48, 11.63), and as-needed ICS-formoterol 6.91% (2.07, 11.75). Low-dose ICS-montelukast and LM-dose ICS-salmeterol were comparably effective. There were no significant efficacy differences among ICS monotherapy, as-needed ICS-formoterol, and antileukotrienes. Antileukotrienes were inferior to ICS monotherapy in reducing asthma exacerbation. Long-acting β2-agonist (LABA)-induced tachyphylaxis may occur despite using alongside ICS. CONCLUSION Low-dose ICS and as-needed ICS-formoterol were equally effective in managing asthmatics with EIB. The addition of antileukotrienes or LABA to ICS should be considered for more severe cases, with close monitoring to assess treatment response and detect potential tachyphylaxis or AEs.
Collapse
Affiliation(s)
- Irin Vichara-Anont
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; School of Internal Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Lalita Lumkul
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phichayut Phinyo
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Biomedical Informatics and Clinical Epidemiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chamard Wongsa
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Torpong Thongngarm
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Arce SC, Benítez-Pérez RE. Breathing Easy During Training. Strategies for Managing Exercise-Induced Bronchoconstriction. Immunol Allergy Clin North Am 2025; 45:101-111. [PMID: 39608872 DOI: 10.1016/j.iac.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Exercise-induced asthma (EIA) and exercise-induced bronchoconstriction (EIB) are closely related conditions that can make it challenging to differentiate between them. These conditions necessitate that asthmatic patients adhere to established asthma guidelines for baseline treatment. Short-acting beta-agonists are emphasized as the primary treatment for managing symptoms. The management of EIA and EIB in children is particularly complex due to their high levels of spontaneous physical activity. Patients must identify and avoid environmental triggers that may exacerbate their symptoms whenever possible. For effective management, physicians should regularly assess treatment efficacy through the remission of symptoms. However, athletes may require more specialized and serial testing to tailor their treatment plans effectively and ensure optimal performance. This article encapsulates the critical points concerning managing exercise-induced respiratory issues in asthmatic individuals, highlighting the need for careful and tailored approaches for different patient groups.
Collapse
Affiliation(s)
- Santiago Cruz Arce
- Medical Research Institute, A. Lanari, University of Buenos Aires, Combatientes de Malvinas 3150 (1427), Buenos Aires, Argentina
| | | |
Collapse
|
4
|
Ameri S, Stang J, Walsted E, Price OJ. Mechanisms and Biomarkers of Exercise-induced Bronchoconstriction: Current Insights and Future Directions. Immunol Allergy Clin North Am 2025; 45:63-75. [PMID: 39608880 DOI: 10.1016/j.iac.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Exercise-induced bronchoconstriction (EIB) refers to temporary lower airway narrowing that occurs during or after vigorous physical exertion, with a high incidence in athletes and individuals with pre-existing asthma. The pathophysiology of EIB is not completely understood, but it is thought to involve a complex interplay among airway epithelial changes, immune responses, and environmental interactions. Phenotypic differences are apparent among those affected by EIB. This clinical review aims to summarize the complex mechanisms underlying EIB, explore the role of biomarkers in the diagnosis and management, and identify current gaps in knowledge to pave the way for future scientific discoveries.
Collapse
Affiliation(s)
- Sammy Ameri
- Department of Respiratory Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, Building 66, København NV 2400, Denmark.
| | - Julie Stang
- Department of Sports Medicine, Norwegian School of Sport Sciences, Sognsveien 220, Oslo 0863, Norway
| | - Emil Walsted
- Department of Respiratory Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, Building 66, København NV 2400, Denmark
| | - Oliver J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, UK
| |
Collapse
|
5
|
Mou Y, Song Q, Zhao C, Fang H, Ren C, Song X. Meta-analysis of the relationship between montelukast use and neuropsychiatric events in patients with allergic airway disease. Heliyon 2023; 9:e21842. [PMID: 38034763 PMCID: PMC10685197 DOI: 10.1016/j.heliyon.2023.e21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Use of montelukast, as a cause of neuropsychiatric events, in patients with asthma or allergic rhinitis is controversial, and comprehensive statistical analyses verifying this relationship remain lacking. To better understand the relationship between montelukast and neuropsychiatric events, it is vital to guide patients in the effective use of the drug, especially in children whose mothers are concerned about its side effects. In this study, randomized controlled trials (RCTs) investigating montelukast and neuropsychiatric events were retrieved from a literature search of the Medline (1966 to February 2023), Embase (1974 to February 2023), Web of Science, and other related databases. After screening, 18 RCTs were ultimately included in a meta-analysis to merge statistics, which demonstrated no significant increase in neuropsychiatric events compared with placebo. A similar pattern of adverse neuropsychiatric events was observed in patients grouped according to age, with headache being the most common adverse neuropsychiatric event. Overall, montelukast did not significantly increase neuropsychiatric events in patients with allergic rhinitis and/or asthma compared with placebo. Large-sample RCTs are needed to verify the association between neuropsychiatric events and montelukast use in children, and attention is also devoted to FDA warnings.
Collapse
Affiliation(s)
- Yakui Mou
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, 264000, China
| | - Qing Song
- Department of Otolaryngology, Yantai YEDA Hospital, Yantai, Shandong Province, 264000, China
| | - Chunying Zhao
- Epilepsy Sleep Center, Linyi People Hospital, Linyi, Shandong Province, 276000, China
| | - Han Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, 264000, China
| | - Chao Ren
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, 264000, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, 264000, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, 264000, China
| |
Collapse
|
6
|
Belikova M, Al-Ameri M, Orre AC, Säfholm J. Defining the contractile prostanoid component in hyperosmolar-induced bronchoconstriction in human small airways. Prostaglandins Other Lipid Mediat 2023; 168:106761. [PMID: 37336434 DOI: 10.1016/j.prostaglandins.2023.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Exercise-induced bronchoconstriction (EIB) is thought to be triggered by increased osmolarity at the airway epithelium. The aim of this study was to define the contractile prostanoid component of EIB, using an ex vivo model where intact segments of bronchi (inner diameter 0.5-2 mm) isolated from human lung tissue and subjected to mannitol. Exposure of bronchial segments to hyperosmolar mannitol evoked a contraction (64.3 ± 3.5 %) which could be prevented either by elimination of mast cells (15.8 ± 4.3 %) or a combination of cysteinyl leukotriene (cysLT1), histamine (H1) and thromboxane (TP) receptor antagonists (11.2 ± 2.3 %). Likewise, when antagonism of TP receptor was exchanged for inhibition of either cyclooxygenase-1 (8 ± 2.5 %), hematopoietic prostaglandin (PG)D synthase (20.7 ± 5.6 %), TXA synthase (14.8 ± 4.9 %), or the combination of the latter two (12.2 ± 4.6 %), the mannitol-induced contraction was prevented, suggesting that the TP-mediated component is induced by PGD2 and TXA2 generated by COX-1 and their respective synthases.
Collapse
Affiliation(s)
- Maria Belikova
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; Centre for Allergy Research, Karolinska Institutet, Sweden
| | - Mamdoh Al-Ameri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden; Heart and Vascular Theme, Karolinska University Hospital, Sweden
| | | | - Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; Centre for Allergy Research, Karolinska Institutet, Sweden.
| |
Collapse
|
7
|
Ryu S, Lim M, Kim J, Kim HY. Versatile roles of innate lymphoid cells at the mucosal barrier: from homeostasis to pathological inflammation. Exp Mol Med 2023; 55:1845-1857. [PMID: 37696896 PMCID: PMC10545731 DOI: 10.1038/s12276-023-01022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 09/13/2023] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes that do not express antigen-specific receptors and largely reside and self-renew in mucosal tissues. ILCs can be categorized into three groups (ILC1-3) based on the transcription factors that direct their functions and the cytokines they produce. Their signature transcription factors and cytokines closely mirror those of their Th1, Th2, and Th17 cell counterparts. Accumulating studies show that ILCs are involved in not only the pathogenesis of mucosal tissue diseases, especially respiratory diseases, and colitis, but also the resolution of such diseases. Here, we discuss recent advances regarding our understanding of the biology of ILCs in mucosal tissue health and disease. In addition, we describe the current research on the immune checkpoints by which other cells regulate ILC activities: for example, checkpoint molecules are potential new targets for therapies that aim to control ILCs in mucosal diseases. In addition, we review approved and clinically- trialed drugs and drugs in clinical trials that can target ILCs and therefore have therapeutic potential in ILC-mediated diseases. Finally, since ILCs also play important roles in mucosal tissue homeostasis, we explore the hitherto sparse research on cell therapy with regulatory ILCs. This review highlights various therapeutic approaches that could be used to treat ILC-mediated mucosal diseases and areas of research that could benefit from further investigation.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - MinYeong Lim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Jinwoo Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
- CIRNO, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
8
|
Hébert MPA, Selka A, Lebel AA, Doiron JA, Isabel Chiasson A, Gauvin VL, Matthew AJ, Hébert MJG, Doucet MS, Joy AP, Barnett DA, Touaibia M, Surette ME, Boudreau LH. Caffeic acid phenethyl ester analogues as selective inhibitors of 12-lipoxygenase product biosynthesis in human platelets. Int Immunopharmacol 2023; 121:110419. [PMID: 37295028 DOI: 10.1016/j.intimp.2023.110419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.
Collapse
Affiliation(s)
- Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Ayyoub Selka
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andréa A Lebel
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Jérémie A Doiron
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Audrey Isabel Chiasson
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Vanessa L Gauvin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Alexis J Matthew
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Martin J G Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Marco S Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - David A Barnett
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada.
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada.
| |
Collapse
|
9
|
Davis BE, Gauvreau GM. The ABCs and DEGs (Differentially Expressed Genes) of Airway Hyperresponsiveness. Am J Respir Crit Care Med 2023; 207:1545-1546. [PMID: 37058325 PMCID: PMC10273106 DOI: 10.1164/rccm.202303-0614ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Affiliation(s)
- Beth E Davis
- Department of Medicine University of Saskatchewan Saskatoon, Saskatchewan, Canada
| | - Gail M Gauvreau
- Department of Medicine McMaster University Hamilton, Ontario, Canada
| |
Collapse
|
10
|
McCarthy MW. Montelukast as a potential treatment for COVID-19. Expert Opin Pharmacother 2023; 24:551-555. [PMID: 36927284 DOI: 10.1080/14656566.2023.2192866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
INTRODUCTION Montelukast is a leukotriene inhibitor that is widely used to treat chronic asthma and allergic rhinitis. The drug interferes with molecular signaling pathways produced by leukotrienes in a variety of cells and tissues throughout the human body that lead to tightening of airway muscles, production of aberrant pulmonary fluid (airway edema), and in some cases, pulmonary inflammation. AREAS COVERED Montelukast has also been noted to have anti-inflammatory properties, suggesting it may have a role in the treatment of coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has been noted to induce misfiring of the immune system in some patients. A literature search of PubMed was performed to identify all relevant studies of montelukast and SARS-CoV-2 through 27 January 2023. EXPERT OPINION Montelukast has been the subject of small studies of SARS-CoV-2 and will be included in a large, randomized, double-blind, placebo-controlled study of outpatients with COVID-19 sponsored by the United States National Institutes of Health known as Accelerating COVID-19 Therapeutic Interventions and Vaccines-6. This paper reviews what is known about montelukast, an inexpensive, well-tolerated, and widely available medication, and examines the rationale for using this drug to potentially treat patients with COVID-19.
Collapse
|
11
|
Rostevanov IS, Betesh-Abay B, Nassar A, Rubin E, Uzzan S, Kaplanski J, Biton L, Azab AN. Montelukast induces beneficial behavioral outcomes and reduces inflammation in male and female rats. Front Immunol 2022; 13:981440. [PMID: 36148246 PMCID: PMC9487911 DOI: 10.3389/fimmu.2022.981440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Accumulative data links inflammation and immune dysregulation to the pathophysiology of mental disorders; little is known regarding leukotrienes’ (LTs) involvement in this process. Circumstantial evidence suggests that treatment with leukotriene modifying agents (LTMAs) such as montelukast (MTK) may induce adverse neuropsychiatric events. Further methodic evaluation is warranted. Objective This study aims to examine behavioral effects, as well as inflammatory mediator levels of chronic MTK treatment in male and female rats. Methods Depression-like phenotypes were induced by exposing male and female rats to a chronic unpredictable mild stress (CUMS) protocol for four weeks. Thereafter, rats were treated (intraperitoneally) once daily, for two weeks, with either vehicle (dimethyl sulfoxide 0.2 ml/rat) or 20 mg/kg MTK. Following treatment protocols, behavioral tests were conducted and brain regions were evaluated for inflammatory mediators including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and prostaglandin (PG) E2. Results Overall, MTK did not invoke negative behavioral phenotypes (except for an aggression-inducing effect in males). Numerous positive behavioral outcomes were observed, including reduction in aggressive behavior in females and reduced manic/hyperactive-like behavior and increased sucrose consumption (suggestive of antidepressant-like effect) in males. Furthermore, in control males, MTK increased IL-6 levels in the hypothalamus and TNF-α in the frontal cortex, while in control females it generated a robust anti-inflammatory effect. In females that were subjected to CUMS, MTK caused a prominent reduction in TNF-α and IL-6 in brain regions, whereas in CUMS-subjected males its effects were inconsistent. Conclusion Contrary to prior postulations, MTK may be associated with select beneficial behavioral outcomes. Additionally, MTK differentially affects male vs. female rats in respect to brain inflammatory mediators, plausibly explaining the dissimilar behavioral phenotypes of sexes under MTK treatment.
Collapse
Affiliation(s)
- Ira S. Rostevanov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Batya Betesh-Abay
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elina Rubin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jacob Kaplanski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Linoy Biton
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Abed N. Azab,
| |
Collapse
|
12
|
Hull JH, Burns P, Carre J, Haines J, Hepworth C, Holmes S, Jones N, MacKenzie A, Paton JY, Ricketts WM, Howard LS. BTS clinical statement for the assessment and management of respiratory problems in athletic individuals. Thorax 2022; 77:540-551. [DOI: 10.1136/thoraxjnl-2021-217904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Shin JW, Kim J, Ham S, Choi SM, Lee CH, Lee JC, Kim JH, Cho SH, Kang HR, Kim YM, Chung DH, Chung Y, Bae YS, Bae YS, Roh TY, Kim T, Kim HY. A unique population of neutrophils generated by air pollutant-induced lung damage exacerbates airway inflammation. J Allergy Clin Immunol 2021; 149:1253-1269.e8. [PMID: 34653517 DOI: 10.1016/j.jaci.2021.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diesel exhaust particles (DEPs) are the main component of traffic-related air pollution and have been implicated in the pathogenesis and exacerbation of asthma. However, the mechanism by which DEP exposure aggravates asthma symptoms remains unclear. OBJECTIVE This study aimed to identify a key cellular player of air pollutant-induced asthma exacerbation and development. METHODS We examined the distribution of innate immune cells in the murine models of asthma induced by house dust mite and DEP. Changes in immune cell profiles caused by DEP exposure were confirmed by flow cytometry and RNA-Seq analysis. The roles of sialic acid-binding, Ig-like lectin F (SiglecF)-positive neutrophils were further evaluated by adoptive transfer experiment and in vitro functional studies. RESULTS DEP exposure induced a unique population of lung granulocytes that coexpressed Ly6G and SiglecF. These cells differed phenotypically, morphologically, functionally, and transcriptionally from other SiglecF-expressing cells in the lungs. Our findings with murine models suggest that intratracheal challenge with DEPs induces the local release of adenosine triphosphate, which is a damage-associated molecular pattern signal. Adenosine triphosphate promotes the expression of SiglecF on neutrophils, and these SiglecF+ neutrophils worsen type 2 and 3 airway inflammation by producing high levels of cysteinyl leukotrienes and neutrophil extracellular traps. We also found Siglec8- (which corresponds to murine SiglecF) expressing neutrophils, and we found it in patients with asthma-chronic obstructive pulmonary disease overlap. CONCLUSION The SiglecF+ neutrophil is a novel and critical player in airway inflammation and targeting this population could reverse or ameliorate asthma.
Collapse
Affiliation(s)
- Jae Woo Shin
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seokjin Ham
- Department of Life Sciences and Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Republic of Korea
| | - Sun Mi Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang-Hoon Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang-Heon Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences and Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Republic of Korea; SysGenLab Inc, Pohang, Republic of Korea
| | - Taesoo Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Dey S, Eapen MS, Chia C, Gaikwad AV, Wark PAB, Sohal SS. Pathogenesis, clinical features of asthma COPD overlap (ACO), and therapeutic modalities. Am J Physiol Lung Cell Mol Physiol 2021; 322:L64-L83. [PMID: 34668439 DOI: 10.1152/ajplung.00121.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both asthma and COPD are heterogeneous diseases identified by characteristic symptoms and functional abnormalities, with airway obstruction common in both diseases. Asthma COPD overlap (ACO) does not define a single disease but is a descriptive term for clinical use that includes several overlapping clinical phenotypes of chronic airways disease with different underlying mechanisms. This literature review was initiated to describe published studies, identify gaps in knowledge, and propose future research goals regarding the disease pathology of ACO, especially the airway remodelling changes and inflammation aspects. Airway remodelling occurs in asthma and COPD, but there are differences in the structures affected and the prime anatomic site at which they occur. Reticular basement membrane thickening and cellular infiltration with eosinophils and T-helper (CD4+) lymphocytes are prominent features of asthma. Epithelial squamous metaplasia, airway wall fibrosis, emphysema, bronchoalveolar lavage (BAL) neutrophilia and (CD8+) T-cytotoxic lymphocyte infiltrations in the airway wall are features of COPD. There is no universally accepted definition of ACO, nor are there clearly defined pathological characteristics to differentiate from asthma and COPD. Understanding etiological concepts within the purview of inflammation and airway remodelling changes in ACO would allow better management of these patients.
Collapse
Affiliation(s)
- Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia.,Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia.,Department of Respiratory and Sleep Medicine John Hunter Hospital, New Lambton Heights, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
15
|
Hood AM, Stotesbury H, Kölbel M, DeHaan M, Downes M, Kawadler JM, Sahota S, Dimitriou D, Inusa B, Wilkey O, Pelidis M, Trompeter S, Leigh A, Younis J, Drasar E, Chakravorty S, Rees DC, Height S, Lawson S, Gavlak J, Gupta A, Ridout D, Clark CA, Kirkham FJ. Study of montelukast in children with sickle cell disease (SMILES): a study protocol for a randomised controlled trial. Trials 2021; 22:690. [PMID: 34629091 PMCID: PMC8502503 DOI: 10.1186/s13063-021-05626-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023] Open
Abstract
Background Young children with sickle cell anaemia (SCA) often have slowed processing speed associated with reduced brain white matter integrity, low oxygen saturation, and sleep-disordered breathing (SDB), related in part to enlarged adenoids and tonsils. Common treatments for SDB include adenotonsillectomy and nocturnal continuous positive airway pressure (CPAP), but adenotonsillectomy is an invasive surgical procedure, and CPAP is rarely well-tolerated. Further, there is no current consensus on the ability of these treatments to improve cognitive function. Several double-blind, randomised controlled trials (RCTs) have demonstrated the efficacy of montelukast, a safe, well-tolerated anti-inflammatory agent, as a treatment for airway obstruction and reducing adenoid size for children who do not have SCA. However, we do not yet know whether montelukast reduces adenoid size and improves cognition function in young children with SCA. Methods The Study of Montelukast In Children with Sickle Cell Disease (SMILES) is a 12-week multicentre, double-blind, RCT. SMILES aims to recruit 200 paediatric patients with SCA and SDB aged 3–7.99 years to assess the extent to which montelukast can improve cognitive function (i.e. processing speed) and sleep and reduce adenoidal size and white matter damage compared to placebo. Patients will be randomised to either montelukast or placebo for 12 weeks. The primary objective of the SMILES trial is to assess the effect of montelukast on processing speed in young children with SCA. At baseline and post-treatment, we will administer a cognitive evaluation; caregivers will complete questionnaires (e.g. sleep, pain) and measures of demographics. Laboratory values will be obtained from medical records collected as part of standard care. If a family agrees, patients will undergo brain MRIs for adenoid size and other structural and haemodynamic quantitative measures at baseline and post-treatment, and we will obtain overnight oximetry. Discussion Findings from this study will increase our understanding of whether montelukast is an effective treatment for young children with SCA. Using cognitive testing and MRI, the SMILES trial hopes to gain critical knowledge to help develop targeted interventions to improve the outcomes of young children with SCA. Trial registration ClinicalTrials.govNCT04351698. Registered on April 17, 2020. European Clinical Trials Database (EudraCT No. 2017-004539-36). Registered on May 19, 2020
Collapse
Affiliation(s)
- Anna M Hood
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Hanne Stotesbury
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Melanie Kölbel
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michelle DeHaan
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michelle Downes
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Jamie M Kawadler
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Satwinder Sahota
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Dagmara Dimitriou
- Department of Psychology and Human Development, UCL Institute of Education, London, UK
| | - Baba Inusa
- Children's Sickle Cell and Thalassaemia Centre, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, UK
| | - Olu Wilkey
- North Middlesex Hospital National Health Service Trust, London, UK
| | - Maria Pelidis
- Department of Paediatric Haematology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, UK
| | - Sara Trompeter
- University College London Hospitals NHS Foundation Trust, London, UK.,NHS Blood and Transplant, London, UK
| | - Andrea Leigh
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Emma Drasar
- Whittington Health NHS Trust, London, UK.,Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - David C Rees
- Department of Haematological Medicine, King's College Hospital NHS Trust, London, UK
| | - Sue Height
- Paediatric Haematology, King's College Hospital NHS Trust, London, UK
| | - Sarah Lawson
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Johanna Gavlak
- Department of Child Health, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Atul Gupta
- Department of Paediatric Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Deborah Ridout
- Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christopher A Clark
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Fenella J Kirkham
- Developmental Neurosciences Unit and Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.,Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Child Health, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
16
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
17
|
Hamilton D, Lehman H. Asthma Phenotypes as a Guide for Current and Future Biologic Therapies. Clin Rev Allergy Immunol 2021; 59:160-174. [PMID: 31359247 DOI: 10.1007/s12016-019-08760-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asthma has been increasingly recognized as being a heterogeneous disease with multiple distinct mechanisms and pathophysiologies. Evidence continues to build regarding the existence of different cell types, environmental exposures, pathogens, and other factors that produce a similar set of symptoms known collectively as asthma. This has led to a movement from a "one size fits all" symptom-based methodology to a more patient-centered, individualized approach to asthma treatment targeting the underlying disease process. A significant contributor to this shift to more personalized asthma therapy has been the increasing availability of numerous biologic therapies in recent years, providing the opportunity for more targeted treatments. When targeted biologics began to be developed for treatment of asthma, the hope was that distinct biomarkers would become available, allowing the clinician to determine which biologic therapy was best suited for which patients. Presence of certain biomarkers, like eosinophilia or antigen-specific IgE, is important features of specific asthma phenotypes. Currently available biomarkers can help with decision making about biologics, but are generally too broad and non-specific to clearly identify an asthma phenotype or the single biologic best suited to an asthmatic. Identification of further biomarkers is the subject of intense research. Yet, identifying a patient's asthma phenotype can help in predicting disease course, response to treatment, and biologic therapies to consider. In this review, major asthma phenotypes are reviewed, and the evidence for the utility of various biologics, both those currently on the market and those in the development process, in each of these phenotypes is explored.
Collapse
Affiliation(s)
- Daniel Hamilton
- SUNY Upstate Medical University College of Medicine, Syracuse, NY, USA
| | - Heather Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 1001 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
18
|
Management of Exercise-Induced Bronchoconstriction in Athletes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2183-2192. [PMID: 32620432 DOI: 10.1016/j.jaip.2020.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a phenomenon observed in asthma but is also seen in healthy individuals and frequently in athletes. High prevalence rates are observed in athletes engaged in endurance sports, winter sports, and swimming. The pathophysiology of EIB is thought to be related to hyperventilation, cold air, and epithelial damage caused by chlorine and fine particles in inspired air. Several diagnostic procedures can be used; however, the diagnosis of EIB based on self-reported symptoms is not reliable and requires an objective examination. The hyperosmolar inhalation test and eucapnic voluntary hyperpnea test, which involve indirect stimulation of the airway, are useful for the diagnosis of EIB. A short-acting β-agonist is the first choice for prevention of EIB, and an inhaled corticosteroid is essential for patients with asthma. Furthermore, treatment should accommodate antidoping requirements in elite athletes. Tailoring of the therapeutic strategy to the individual case and the prognosis after cessation of athletic activity are issues that should be clarified in the future.
Collapse
|
19
|
Liu Y, Xia G, Liu S, Song Z. Development of Oral Chewable Tablets Containing Montelukast Nanoparticles for the Treatment of Childhood Asthma: Preclinical Study in Animal Model. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to formulate oral chewable tablets of Montelukast (MTL) in the form of nanoparticles (NP’s). The MTL loaded NP’s were formulated by ionotropic external gelation method using tripolyphosphate (TPP) as crosslinking agent and Tween 60 as surfactant.
NP’s were characterized for drug loading, encapsulation efficiency, surface morphology, saturation solubility, particle size, zeta potential and polydispersity index. The optimized NP formulation was used for development of chewable tablets using direct compression method. The prepared
tablets were characterized for disintegration test, dissolution, thickness, hardness, friability and assay. The optimized formulation was evaluated in asthamatic animals to demonstrate the efficiency in asthama. The encapsulation efficiency of NP’s was found between 91.24 to 98.21% while
drug loading was in the range of 10.09–14.25%. All formulations were found of nanosized in nature (110 to 200 nm) with excellent zeta potential (20.12 to 22.27 mV). PDI of all NP formulations were found within acceptable limit (less than 0.3). The nanoparticles were found spherical in
shape with smooth surface. The saturation solubility of MTL was enhanced nearly 10 times (92 mg/ml) as compared to pure MTL saturation solubility. All physical parameters of the tablets were found within range. The optimized tablets showed disintegration time of 20 sec while other formulations
showed DT in the rage of 35–57 sec. Tab1 (Optimized formulation) showed almost 100% MTL release from chewable tablets within the period of 30 min. Reduction in lung resistance (RI) was found in animals treated with Tab1. This reduction in RI was found nearly two fold and three fold as
compare to MTL treated and control group animals. These observations clearly support the efficacy of chewable tablets containing nanoparticulate MTL in asthmatic animals.
Collapse
Affiliation(s)
- Ye Liu
- Otolaryngology, Ningbo Beilun People’s Hospital, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang Province, 315000, China
| | - Guihua Xia
- Otolaryngology, Ningbo Beilun People’s Hospital, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang Province, 315000, China
| | - Shaosheng Liu
- Otolaryngology, Ningbo Beilun People’s Hospital, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang Province, 315000, China
| | - Zhenyu Song
- Otolaryngology, Ningbo Beilun People’s Hospital, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang Province, 315000, China
| |
Collapse
|
20
|
Wang J, He X, Meng H, Li Y, Dmitriev P, Tian F, Page JC, Lu QR, He Z. Robust Myelination of Regenerated Axons Induced by Combined Manipulations of GPR17 and Microglia. Neuron 2020; 108:876-886.e4. [PMID: 33108748 PMCID: PMC7736523 DOI: 10.1016/j.neuron.2020.09.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022]
Abstract
Myelination facilitates rapid axonal conduction, enabling efficient communication across different parts of the nervous system. Here we examined mechanisms controlling myelination after injury and during axon regeneration in the central nervous system (CNS). Previously, we discovered multiple molecular pathways and strategies that could promote robust axon regrowth after optic nerve injury. However, regenerated axons remain unmyelinated, and the underlying mechanisms are elusive. In this study, we found that, in injured optic nerves, oligodendrocyte precursor cells (OPCs) undergo transient proliferation but fail to differentiate into mature myelination-competent oligodendrocytes, reminiscent of what is observed in human progressive multiple sclerosis. Mechanistically, we showed that OPC-intrinsic GPR17 signaling and sustained activation of microglia inhibit different stages of OPC differentiation. Importantly, co-manipulation of GPR17 and microglia led to extensive myelination of regenerated axons. The regulatory mechanisms of stage-dependent OPC differentiation uncovered here suggest a translatable strategy for efficient de novo myelination after CNS injury.
Collapse
Affiliation(s)
- Jing Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xuelian He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yi Li
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Phillip Dmitriev
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Feng Tian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jessica C Page
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Wang S, Ni XJ, Wen YG, Xie HS, Chen JR, Luo YL, Li PL. A simple and sensitive HPLC-MS/MS assay for the quantitation of montelukast in cell-based systems in vitro pulmonary drug permeability study. J Pharm Biomed Anal 2020; 192:113657. [PMID: 33053506 DOI: 10.1016/j.jpba.2020.113657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 01/30/2023]
Abstract
Montelukast is a potent and selective antagonist of the cysteinyl leukotriene receptor 1 subtype (CysLT1) and widely used in the form of oral tablets and granules for asthma prophylaxis and treatment. Recently, due to the pulmonary inhaled administration can limit montelukast distribution in the systemic circulation, avoid the first-pass metabolism and have better therapeutic effects in respiratory disease treatment, explore alternative routes of administration, like delivery of montelukast via an inhaled, is a new research trend for montelukast. The aim of the current study was to develop and validate a simple, accurate, highly sensitive and selective liquid chromatography-tandem mass spectrometry method (LC-MS/MS) for determination of montelukast in an in vitro cell-based pulmonary pharmacokinetics system model, which can be used to be a better understanding the fate of inhaled montelukast in the lungs. In this study, montelukast was extracted by protein precipitation with acetonitrile containing labeled montelukast. The chromatography was performed on an Agilent Eclipse plus C8 column (4.6 mm × 100 mm, 3.5 μm, Darmstadt, Germany) operating at 35 ◦C. The mobile phase consisted of acetonitrile: 20 mM ammonium formate buffer (80: 20, v/v), was delivered at a flow rate of 0.5 mL/min. montelukast and the internal standard were both eluted at 4.2 min. A linear (1/x2) relationship was used to perform the calibration over an analytical range from 0.5 to 600 ng/mL. The intra- and inter-batch precision expressed as CV for four QC samples including LLOQ range from 1.14 % to 6.25 %. The intra- and inter-batch accuracy for four concentrations of montelukast were in the range of 95.19%-104.1%. All the values for accuracy and precision were within the acceptance range. The method met all the bioanalytical method validation requirements by ICH and was suitable for the assay of montelukast which in the in vitro cell-based pulmonary pharmacokinetics system model.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiao-Jia Ni
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou 510370, PR China
| | - Yu-Guan Wen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou 510370, PR China
| | - Huan-Shan Xie
- The Center of Chronic Disease Control in Zhuhai & Zhuhai Third People' s Hospital, Zhuhai 519000, PR China
| | - Ju-Rong Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yu-Long Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health and the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Pan-Lin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
22
|
Greiwe J, Cooke A, Nanda A, Epstein SZ, Wasan AN, Shepard KV, Capão-Filipe M, Nish A, Rubin M, Gregory KL, Dass K, Blessing-Moore J, Randolph C. Work Group Report: Perspectives in Diagnosis and Management of Exercise-Induced Bronchoconstriction in Athletes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2542-2555. [PMID: 32636147 DOI: 10.1016/j.jaip.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
Abstract
Exercise-induced bronchoconstriction, otherwise known as exercise-induced bronchoconstriction with asthma or without asthma, is an acute airway narrowing that occurs as a result of exercise and can occur in patients with asthma. A panel of members from the American Academy of Allergy, Asthma & Immunology Sports, Exercise, & Fitness Committee reviewed the diagnosis and management of exercise-induced bronchoconstriction in athletes of all skill levels including recreational athletes, high school and college athletes, and professional athletes. A special emphasis was placed on the recommendations and regulations set forth by professional athletic organizations after a detailed review of their collective bargaining agreements, substance abuse policies, antidoping program manuals, and the World Anti-Doping Agency antidoping code. The recommendations in this review are based on currently available evidence in addition to providing guidance for athletes of all skill levels as well as their treating physicians to better understand which pharmaceutical and nonpharmaceutical management options are appropriate as well as which medications are permitted or prohibited, and the proper documentation required to remain compliant.
Collapse
Affiliation(s)
- Justin Greiwe
- Bernstein Allergy Group Inc, Cincinnati, Ohio; Division of Immunology/Allergy Section, Department of Internal Medicine, The University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Andrew Cooke
- Lake Allergy, Asthma & Immunology PA, Tavares, Fla
| | - Anil Nanda
- Asthma and Allergy Center, Lewisville and Flower Mound, Texas; Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Kirk V Shepard
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine and James A. Haley Veterans' Hospital, Tampa, Fla
| | | | - Andy Nish
- Northeast Georgia Physician's Group Allergy and Asthma, Gainesville, Ga
| | - Mark Rubin
- Asthma and COPD Emmi Solutions, Chicago, Ill; CME Education Program Steering Committee, The France Foundation, Old Lyme, Conn
| | - Karen L Gregory
- Oklahoma Allergy and Asthma Clinic, Oklahoma City, Okla; School of Nursing and Health Studies, Georgetown University, Washington, DC
| | - Kathleen Dass
- Michigan Allergy, Asthma & Immunology Center PLLC, Oak Park, Mich; Division of Immunology/Allergy Section, Department of Internal Medicine, Oakland University William Beaumont Hospital, Rochester, Mich
| | | | | |
Collapse
|
23
|
Bonvini SJ, Birrell MA, Dubuis E, Adcock JJ, Wortley MA, Flajolet P, Bradding P, Belvisi MG. Novel airway smooth muscle-mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur Respir J 2020; 56:13993003.01458-2019. [PMID: 32299856 PMCID: PMC7330131 DOI: 10.1183/13993003.01458-2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/27/2020] [Indexed: 01/28/2023]
Abstract
Mast cell–airway smooth muscle (ASM) interactions play a major role in the immunoglobulin (Ig)E- dependent bronchoconstriction seen in asthma but less is known about IgE-independent mechanisms of mast cell activation. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) activation causes contraction of human ASM via the release of cysteinyl leukotrienes (cysLTs) but the mechanism is unknown. The objective of the present study was to investigate a role for IgE-independent, mast cell–ASM interaction in TRPV4-induced bronchospasm. A technique not previously applied to respiratory research now uncovers important IgE-independent mechanisms involved in human mast cell–airway smooth muscle interactions that may be responsible for the bronchospasm associated with non-atopic asthmahttp://bit.ly/2U1n5nT
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Contributed equally
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Contributed equally
| | - Eric Dubuis
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - John J Adcock
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael A Wortley
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Pauline Flajolet
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Bradding
- Dept of Infection, Immunity and Inflammation, University of Leicester University, Institute for Lung Health, Glenfield Hospital, Leicester, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK .,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
24
|
Pace S, Werz O. Impact of Androgens on Inflammation-Related Lipid Mediator Biosynthesis in Innate Immune Cells. Front Immunol 2020; 11:1356. [PMID: 32714332 PMCID: PMC7344291 DOI: 10.3389/fimmu.2020.01356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis, asthma, allergic rhinitis and many other disorders related to an aberrant immune response have a higher incidence and severity in women than in men. Emerging evidences from scientific studies indicate that the activity of the immune system is superior in females and that androgens may act as “immunosuppressive” molecules with inhibitory effects on inflammatory reactions. Among the multiple factors that contribute to the inflammatory response, lipid mediators (LM), produced from polyunsaturated fatty acids, represent a class of bioactive small molecules with pivotal roles in the onset, maintenance and resolution of inflammation. LM encompass pro-inflammatory eicosanoids and specialized pro-resolving mediators (SPM) that coexist in a tightly regulated balance necessary for the return to homeostasis. Innate immune cells including neutrophils, monocytes and macrophages possess high capacities to generate distinct LM. In the last decades it became more and more evident that sex represents an important variable in the regulation of inflammation where sex hormones play crucial roles. Recent findings showed that the biosynthesis of inflammation-related LM is sex-biased and that androgens impact LM formation with consequences not only for pathophysiology but also for pharmacotherapy. Here, we review the modulation of the inflammatory response by sex and androgens with a specific focus on LM pathways. In particular, we highlight the impact of androgens on the biosynthetic pathway of inflammation-related eicosanoids in innate immune cells.
Collapse
Affiliation(s)
- Simona Pace
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
25
|
Abstract
There are multiple proinflammatory pathways in the pathogenesis of asthma. These include both innate and adaptive inflammation, in addition to inflammatory and physiologic responses mediated by eicosanoids. An important component of the innate allergic immune response is ILC2 activated by interleukin (IL)-33, thymic stromal lymphopoietin, and IL-25 to produce IL-5 and IL-13. In terms of the adaptive T-lymphocyte immunity, CD4+ Th2 and IL-17-producing cells are critical in the inflammatory responses in asthma. Last, eicosanoids involved in asthma pathogenesis include prostaglandin D2 and the cysteinyl leukotrienes that promote smooth muscle constriction and inflammation that propagate allergic responses.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, VUMC, T-1218 MCN, 1161 21st Avenue South, Nashville, TN 37232-2650, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, VUMC, T-1218 MCN, 1161 21st Avenue South, Nashville, TN 37232-2650, USA.
| | - Mark A Aronica
- Department of Pathobiology, Respiratory Institute, Cleveland Clinic Lerner College of Medicine, CWRU, 9500 Euclid Avenue, NB2-85, Cleveland, OH 44195, USA
| |
Collapse
|
26
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
27
|
Abstract
Athletes of various skill levels commonly use many different types of medications, often at rates higher than the general population. Common medication classes used in athletes include analgesics such as nonsteroidal anti-inflammatory drugs and acetaminophen, inhalers for asthma and exercise-induced bronchoconstriction, antihypertensives, antibiotics, and insulin. Prescribers must be aware of the unique considerations for each of these medications when using them in patients participating in physical activity. The safety, efficacy, impact on athletic performance, and regulatory restrictions of the most common medications used in athletes are discussed in this article.
Collapse
Affiliation(s)
- Benjamin Ferry
- Trident/MUSC Family Medicine Residency Program, Department of Family Medicine, Medical University of South Carolina, 9228 Medical Plaza Drive, Charleston, SC 29406, USA
| | - Alexei DeCastro
- Department of Family Medicine, Medical University of South Carolina, College of Medicine, 9228 Medical Plaza Drive, Charleston, SC 29406, USA
| | - Scott Bragg
- Department of Family Medicine, College of Medicine, College of Pharmacy, Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina, 280 Calhoun Street MSC 140, Charleston, SC 29425, USA.
| |
Collapse
|
28
|
Current state and future prospect of the therapeutic strategy targeting cysteinyl leukotriene metabolism in asthma. Respir Investig 2019; 57:534-543. [PMID: 31591069 DOI: 10.1016/j.resinv.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
Asthma is an allergic disorder with dominant type 2 airway inflammation, and its prevalence is increasing worldwide. Inhalation of corticosteroids is the primary treatment for asthma along with add-on drugs, including long-acting β2 agonists and/or cysteinyl leukotriene (cys-LT) receptor antagonists, in patients with poorly controlled asthma. Cys-LTs are composed of leukotriene C4 (LTC4), LTD4, and LTE4, which are enzymatically metabolized from arachidonic acid. These molecules act as inflammatory mediators through different types of high-affinity receptors, namely, CysLT1, CysLT2, and CysLT3 (also named as GPR99). CysLT1 antagonists possessing anti-inflammatory and bronchodilatory effects can be orally administered to patients with asthma. Recently, molecular biology-based studies have revealed the mechanism of inflammatory responses via other receptors, such as CysLT2 and CysLT3, as well as the importance of upstream inflammatory regulators, including type 2 cytokines (e.g., interleukins 4 and 5), in controlling cys-LT metabolism. These findings indicate the therapeutic potential of pharmacological agents targeting cys-LT metabolism-related receptors and enzymes, and antibody drugs neutralizing or antagonizing type 2 cytokines. This review focuses on the current state and future prospect of the therapeutic strategy targeting cys-LT metabolism.
Collapse
|
29
|
Abstract
This review provides an evidence-based guide for the diagnosis, evaluation, and treatment of patients with asthma. It addresses typical questions that arise in the clinic-based care of patients with asthma and provides a basic and comprehensive resource for asthma care.
Collapse
|
30
|
Mbarik M, Poirier SJ, Doiron J, Selka A, Barnett DA, Cormier M, Touaibia M, Surette ME. Phenolic acid phenethylesters and their corresponding ketones: Inhibition of 5-lipoxygenase and stability in human blood and HepaRG cells. Pharmacol Res Perspect 2019; 7:e00524. [PMID: 31523435 PMCID: PMC6743424 DOI: 10.1002/prp2.524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
5-lipoxygenase (5-LO) catalyzes the biosynthesis of leukotrienes, potent lipid mediators involved in inflammatory diseases, and both 5-LO and the leukotrienes are validated therapeutic targets. Caffeic acid phenethyl ester (CAPE) is an effective inhibitor of 5-LO and leukotriene biosynthesis but is susceptible to hydrolysis by esterases. In this study a number of CAPE analogues were synthesized with modifications to the caffeoyl moiety and the replacement of the ester linkage with a ketone. Several new molecules showed better inhibition of leukotriene biosynthesis than CAPE in isolated human neutrophils and in whole blood with IC50 values in the nanomolar (290-520 nmol/L) and low micromolar (1.0-2.3 µmol/L) ranges, respectively. Sinapic acid and 2,5-dihydroxy derivatives were more stable than CAPE in whole blood, and ketone analogues were degraded more slowly in HepaRG hepatocyte cultures than esters. All compounds underwent modification consistent with glucuronidation in HepaRG cultures as determined using LC-MS/MS analysis, though the modified sinapoyl ketone (10) retained 50% of its inhibitory activity after up to one hour of incubation. This study has identified at least one CAPE analogue, compound 10, that shows favorable properties that warrant further in vivo investigation as an antiinflammatory compound.
Collapse
Affiliation(s)
- Maroua Mbarik
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Samuel J. Poirier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Jérémie Doiron
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Ayyoub Selka
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | | | - Marc Cormier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Mohamed Touaibia
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Marc E. Surette
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| |
Collapse
|
31
|
Bankova LG, Dwyer DF, Yoshimoto E, Ualiyeva S, McGinty JW, Raff H, von Moltke J, Kanaoka Y, Frank Austen K, Barrett NA. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. Sci Immunol 2019; 3:3/28/eaat9453. [PMID: 30291131 DOI: 10.1126/sciimmunol.aat9453] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Respiratory epithelial cells (EpCs) orchestrate airway mucosal inflammation in response to diverse environmental stimuli, but how distinct EpC programs are regulated remains poorly understood. Here, we report that inhalation of aeroallergens leads to expansion of airway brush cells (BrCs), specialized chemosensory EpCs and the dominant epithelial source of interleukin-25 (IL-25). BrC expansion was attenuated in mice lacking either LTC4 synthase, the biosynthetic enzyme required for cysteinyl leukotriene (CysLT) generation, or the EpC receptor for leukotriene E4 (LTE4), CysLT3R. LTE4 inhalation was sufficient to elicit CysLT3R-dependent BrC expansion in the murine airway through an IL-25-dependent but STAT6-independent signaling pathway. Last, blockade of IL-25 attenuated both aeroallergen and LTE4-elicited CysLT3R-dependent type 2 lung inflammation. These results demonstrate that CysLT3R senses the endogenously generated lipid ligand LTE4 and regulates airway BrC number and function.
Collapse
Affiliation(s)
- Lora G Bankova
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Daniel F Dwyer
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eri Yoshimoto
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Saltanat Ualiyeva
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - John W McGinty
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hannah Raff
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Yoshihide Kanaoka
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - K Frank Austen
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nora A Barrett
- Division of Rheumatology, Immunology and Allergy, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Du F, Yuelling L, Lee EH, Wang Y, Liao S, Cheng Y, Zhang L, Zheng C, Peri S, Cai KQ, Ng JMY, Curran T, Li P, Yang ZJ. Leukotriene Synthesis Is Critical for Medulloblastoma Progression. Clin Cancer Res 2019; 25:6475-6486. [PMID: 31300449 DOI: 10.1158/1078-0432.ccr-18-3549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/18/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Here, we examined the role of leukotrienes, well-known inflammatory mediators, in the tumorigenesis of hedgehog pathway-associated medulloblastoma, and tested the efficacies of antagonists of leukotriene biosynthesis in medulloblastoma treatment.Experimental Design: We examined the leukotriene levels in medulloblastoma cells by ELISA. We next tested whether leukotriene synthesis in medulloblastoma cells relied on activation of hedgehog pathway, or the presence of hedgehog ligand secreted by astrocytes. We then investigated whether leukotriene mediated hedgehog-induced Nestin expression in tumor cells. The functions of leukotriene in tumor cell proliferation and tumor growth in medulloblastoma were determined through knocking down 5-lipoxygenase (a critical enzyme for leukotriene synthesis) by shRNAs, or using 5-lipoxygenase-deficient mice. Finally, the efficacies of antagonists of leukotriene synthesis in medulloblastoma treatment were tested in vivo and in vitro. RESULTS Leukotriene was significantly upregulated in medulloblastoma cells. Increased leukotriene synthesis relied on hedgehog ligand secreted by astrocytes, a major component of medulloblastoma microenvironment. Leukotriene stimulated tumor cells to express Nestin, a cytoskeletal protein essential for medulloblastoma growth. Genetic blockage of leukotriene synthesis dramatically suppressed medulloblastoma cell proliferation and tumor growth in vivo. Pharmaceutical inhibition of leukotriene synthesis markedly repressed medulloblastoma cell proliferation, but had no effect on proliferation of normal neuronal progenitors. Moreover, antagonists of leukotriene synthesis exhibited promising tumor inhibitory efficacies on drug-resistant medulloblastoma. CONCLUSIONS Our findings reveal a novel signaling pathway that is critical for medulloblastoma cell proliferation and tumor progression, and that leukotriene biosynthesis represents a promising therapeutic target for medulloblastoma treatment.
Collapse
Affiliation(s)
- Fang Du
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Larra Yuelling
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Eric H Lee
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shengyou Liao
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Cheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Li Zhang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Suraj Peri
- Biostatistics and Bioinformatics Research Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jessica M Y Ng
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Peng Li
- Department of Pharmacognosy and Traditional Chinese Pharmacology, College of Pharmacy, Army Medical University, Chongqing, China
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Comberiati P, Katial RK, Covar RA. Bronchoprovocation Testing in Asthma: An Update. Immunol Allergy Clin North Am 2019; 38:545-571. [PMID: 30342579 DOI: 10.1016/j.iac.2018.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bronchial hyperresponsiveness (BHR) is defined as a heightened bronchoconstrictive response to airway stimuli. It complements the cardinal features in asthma, such as variable or reversible airflow limitation and airway inflammation. Although BHR is considered a pathophysiologic hallmark of asthma, it should be acknowledged that this property of the airway is dynamic, because its severity and even presence can vary over time with disease activity, triggers or specific exposure, and with treatment. In addition, it is important to recognize that there is a component that is not reflective of a specific disease entity.
Collapse
Affiliation(s)
- Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, 56126 Pisa, Italy; Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Rohit K Katial
- National Jewish Health, 1400 Jackson Street (J321), Denver, CO 80206, USA
| | - Ronina A Covar
- National Jewish Health, 1400 Jackson Street (J321), Denver, CO 80206, USA.
| |
Collapse
|
34
|
Aissa I, Nimbarte VD, Zardi-Bergaoui A, Znati M, Flamini G, Ascrizzi R, Jannet HB. Isocostic Acid, a Promising Bioactive Agent from the Essential Oil of Inula viscosa (L.): Insights from Drug Likeness Properties, Molecular Docking and SAR Analysis. Chem Biodivers 2019; 16:e1800648. [PMID: 30874370 DOI: 10.1002/cbdv.201800648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/04/2019] [Indexed: 02/04/2023]
Abstract
The chemical composition of the essential oil (LEO) and its volatile fractions (V1 -V10 ) collected during the hydrodistillation process every 15 min from the fresh leaves of I. viscosa (L.), growing in Tunisia, were analyzed by GC-FID and GC/MS. Eighty-two compounds, representing 90.9-99.4 % of the total samples, were identified. The crude essential oil (LEO) and its fractions (V1 -V10 ) were characterized by the presence of a high amount of oxygenated sesquiterpenes (82.7-95.8 %). Isocostic acid (1) was found to be the most abundant component (37.4-83.9 %) and was isolated from the same essential oil over silica gel column chromatography and identified by spectroscopic methods (1 H, 13 C, DEPT 135 NMR and EI-MS) and by comparison with literature data. Furthermore, the fresh leaves essential oil (LEO), its volatile fractions (V1 -V10 ) as well as compound 1 were screened for their antibacterial, antityrosinase, anticholinesterase and anti-5-lipoxygenase activities. It was found that the isolated compound 1 exhibited an interesting antibacterial activity against Staphylococcus aureus ATCC 25923 (MIC=32 μg/mL) and Enterococcus faecalis ATCC 29212 (MIC=32 μg/mL) and the highest antityrosinase activity (IC50 =13.82±0.87 μg/mL). Compound 1 was also found to be able to strongly inhibit 5-lipoxygenase with an IC50 value of 59.21±0.85 μg/mL. The bioactivity and drug likeness scores of compound 1 were calculated using Molinspiration software and interpreted, and the structure-activity relationship (SAR) was discussed with the help of molecular docking analysis.
Collapse
Affiliation(s)
- Ibrahim Aissa
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Vijaykumar D Nimbarte
- Laboratory of Chemistry, URCOM, EA 3221, INC3M CNRS-F3038, UFR of Science and Technology, University of Le Havre BP: 1123, 25 rue Philipe Lebon, 76063, Le Havre Cedex, France
| | - Afifa Zardi-Bergaoui
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Mansour Znati
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy.,Centro Interdipartimentale di Ricerca 'Nutraceutica e Alimentazione per la Salute' Nutrafood, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
35
|
Backer V, Mastronarde J. Pharmacologic Strategies for Exercise-Induced Bronchospasm with a Focus on Athletes. Immunol Allergy Clin North Am 2019; 38:231-243. [PMID: 29631732 DOI: 10.1016/j.iac.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is the transient narrowing of the airways during and after exercise that occurs in response to increased ventilation in susceptible individuals. It occurs across the age spectrum in patients with underlying asthma and can occur in athletes without baseline asthma. The inflammatory mechanisms underlying EIB in patients without asthma may be distinct from those underlying EIB in patients with asthma. This review summarizes mechanistic and clinical data that can guide the choice of chronic and acute pharmacologic therapies targeting control of EIB. Relevant regulations from the World Anti-Doping Agency are also discussed.
Collapse
Affiliation(s)
- Vibeke Backer
- Department of Respiratory Medicine, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen NV 2400, Denmark.
| | - John Mastronarde
- Department of Medical Education, Providence Portland Medical Center, Pulmonary/Critical Care Medicine, Oregon Health & Science University, 5050 Northeast Hoyt Avenue, Suite 540, Portland, OR 97213, USA
| |
Collapse
|
36
|
Kanaoka Y, Austen KF. Roles of cysteinyl leukotrienes and their receptors in immune cell-related functions. Adv Immunol 2019; 142:65-84. [PMID: 31296303 DOI: 10.1016/bs.ai.2019.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cysteinyl leukotrienes (cys-LTs), leukotriene C4, (LTC4), LTD4, and LTE4, are lipid mediators of inflammation. LTC4 is the only intracellularly synthesized cys-LT through the 5-lipoxygenase and LTC4 synthase pathway and after transport is metabolized to LTD4 and LTE4 by specific extracellular peptidases. Each cys-LT has a preferred functional receptor in vivo; LTD4 to the type 1 cys-LT receptor (CysLT1R), LTC4 to CysLT2R, and LTE4 to CysLT3R (OXGR1 or GPR99). Recent studies in mouse models revealed that there are multiple regulatory mechanisms for these receptor functions and each receptor plays a distinct role as observed in different mouse models of inflammation and immune responses. This review focuses on the integrated host responses to the cys-LT/CysLTR pathway composed of sequential ligands with preferred receptors as seen from mouse models. It also discusses potential therapeutic targets for LTC4 synthase, CysLT2R, and CysLT3R.
Collapse
Affiliation(s)
- Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, United States.
| | - K Frank Austen
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
37
|
Doucet MS, Jougleux JL, Poirier SJ, Cormier M, Léger JL, Surette ME, Pichaud N, Touaibia M, Boudreau LH. Identification of Peracetylated Quercetin as a Selective 12-Lipoxygenase Pathway Inhibitor in Human Platelets. Mol Pharmacol 2019; 95:139-150. [PMID: 30404890 DOI: 10.1124/mol.118.113480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/31/2018] [Indexed: 02/14/2025] Open
Abstract
The inflammatory response is necessary for the host's defense against pathogens; however, uncontrolled or unregulated production of eicosanoids has been associated with several types of chronic inflammatory diseases. Thus, it is not surprising that enzymes implicated in the production of eicosanoids have been strategically targeted for potential therapeutic approaches. The 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] lipid mediator is among inflammatory molecules that are abundantly produced in various diseases and is primarily biosynthesized via the 12(S)-lipoxygenase pathway. The effects of the abundance of 12(S)-HETE and its contribution to several chronic inflammatory diseases have been well studied over the last few years. While most developed compounds primarily target the 5-lipoxygenase (5-LO) or the cyclooxygenase (COX) pathways, very few compounds selectively inhibiting the 12-lipoxygenase (12-LO) pathway are known. In this study, we examined whether the distribution of hydroxyl groups among flavones could influence their potency as 12-LO inhibitors. Using human platelets, the human embryonic kidney 293 (HEK293) cell line expressing 5-LO, and human polymorphonuclear leukocytes (PMNLs) we investigated the effects of these compounds on several inflammatory pathways, namely, 12-LO, 5-LO, and COX. Using high-resolution respirometry and flow cytometry, we also evaluated some normal cell functions that could be modulated by our compounds. We identified a peracetylated quercetin (compound 6) that exerts potent inhibitory activity toward the platelet 12-LO pathway (IC50 = 1.53 μM) while having a lesser affinity toward the COX pathway. This study characterizes the peracetylated quercetin (compound 6) as a more selective platelet-type 12-LO inhibitor than baicalein, with no measurable nontargeted effects on the platelet's activation or overall cell's oxygen consumption.
Collapse
Affiliation(s)
- Marco S Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Jean-Luc Jougleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Samuel J Poirier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Marc Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Jacob L Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada (M.S.D., J.-L.J., S.J.P., M.C., J.L.L., M.E.S., N.P., M.T., L.H.B.) and Centre de Recherche, Département de Médecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (S.J.P.)
| |
Collapse
|
38
|
Hallstrand TS, Leuppi JD, Joos G, Hall GL, Carlsen KH, Kaminsky DA, Coates AL, Cockcroft DW, Culver BH, Diamant Z, Gauvreau GM, Horvath I, de Jongh FHC, Laube BL, Sterk PJ, Wanger J. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur Respir J 2018; 52:13993003.01033-2018. [PMID: 30361249 DOI: 10.1183/13993003.01033-2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022]
Abstract
Recently, this international task force reported the general considerations for bronchial challenge testing and the performance of the methacholine challenge test, a "direct" airway challenge test. Here, the task force provides an updated description of the pathophysiology and the methods to conduct indirect challenge tests. Because indirect challenge tests trigger airway narrowing through the activation of endogenous pathways that are involved in asthma, indirect challenge tests tend to be specific for asthma and reveal much about the biology of asthma, but may be less sensitive than direct tests for the detection of airway hyperresponsiveness. We provide recommendations for the conduct and interpretation of hyperpnoea challenge tests such as dry air exercise challenge and eucapnic voluntary hyperpnoea that provide a single strong stimulus for airway narrowing. This technical standard expands the recommendations to additional indirect tests such as hypertonic saline, mannitol and adenosine challenge that are incremental tests, but still retain characteristics of other indirect challenges. Assessment of airway hyperresponsiveness, with direct and indirect tests, are valuable tools to understand and to monitor airway function and to characterise the underlying asthma phenotype to guide therapy. The tests should be interpreted within the context of the clinical features of asthma.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Joerg D Leuppi
- University Clinic of Medicine, Cantonal Hospital Baselland, Liestal, and Medical Faculty University of Basel, Basel, Switzerland
| | - Guy Joos
- Dept of Respiratory Medicine, University of Ghent, Ghent, Belgium
| | - Graham L Hall
- Children's Lung Health, Telethon Kids Institute, School of Physiotherapy and Exercise Science, Curtin University, and Centre for Child Health Research University of Western Australia, Perth, Australia
| | - Kai-Håkon Carlsen
- University of Oslo, Institute of Clinical Medicine, and Oslo University Hospital, Division of Child and Adolescent Medicine, Oslo, Norway
| | - David A Kaminsky
- Pulmonary and Critical Care, University of Vermont College of Medicine, Burlington, VT, USA
| | - Allan L Coates
- Division of Respiratory Medicine, Translational Medicine, Research Institute-Hospital for Sick Children, University of Toronto, ON, Canada
| | - Donald W Cockcroft
- Division of Respirology, Critical Care and Sleep Medicine, Royal University Hospital, Saskatoon, SK, Canada
| | - Bruce H Culver
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Zuzana Diamant
- Dept of Clinical Pharmacy and Pharmacology and QPS-Netherlands, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Gail M Gauvreau
- Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ildiko Horvath
- Dept of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Frans H C de Jongh
- Dept of Pulmonary Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Beth L Laube
- Division of Pediatric Pulmonology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jack Wanger
- Pulmonary Function Testing and Clinical Trials Consultant, Rochester, MN, USA
| | | |
Collapse
|
39
|
Anderson SD. Repurposing drugs as inhaled therapies in asthma. Adv Drug Deliv Rev 2018; 133:19-33. [PMID: 29906501 DOI: 10.1016/j.addr.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/26/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023]
Abstract
For the first 40 years of the 20th century treatment for asthma occurred in response to an asthma attack. The treatments were given by injection or orally and included the adrenergic agonists adrenalin/epinephrine and ephedrine and a phosphodiesterase inhibitor theophylline. Epinephrine became available as an aerosol in 1930. After 1945, isoprenaline, a non-selective beta agonist, became available for oral use but it was most widely used by inhalation. Isoprenaline was short-acting with unwanted cardiac effects. More selective beta agonists, with a longer duration of action and fewer side-effects became available, including orciprenaline in 1967, salbutamol in 1969 and terbutaline in 1970. The inhaled steroid beclomethasone was available by 1972 and budesonide by 1982. Spirometry alone and in response to exercise was used to assess efficacy and duration of action of these drugs for the acute benefits of beta2 agonists and the chronic benefits of corticosteroids. Early studies comparing oral and aerosol beta2 agonists found equivalence in bronchodilator effect but the aerosol treatment was superior in preventing exercise-induced bronchoconstriction. Inhaled drugs are now widely used including the long-acting beta2 agonists, salmeterol and formoterol, and the corticosteroids, fluticasone, ciclesonide, mometasone and triamcinolone, that act locally and have low systemic bio-availability. Repurposing drugs as inhaled therapies permitted direct delivery of low doses of drug to the site of action reducing the incidence of unwanted side-effects and permitting the prophylactic treatment of asthma.
Collapse
Affiliation(s)
- Sandra D Anderson
- Clinical Professor, Central Clinical School, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
40
|
Asaad H, Al-Sabbagh R, Al-Tabba D, Kujan O. Effect of the leukotriene receptor antagonist montelukast on orthodontic tooth movement. J Oral Sci 2018. [PMID: 28637990 DOI: 10.2334/josnusd.16-0482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Asthma is a chronic inflammatory disease, and its prevalence is relatively high among children. Optimal management of asthma often requires long-term pharmacotherapy; however, the effects of these medications on orthodontic treatment is uncertain. We evaluated the effects of the leukotriene LTD4 receptor antagonist montelukast on orthodontic tooth movement in an animal model. Eight mongrel dogs were given montelukast for periods up to 4 weeks. An orthodontic force of 150-200 g was applied to move the second and fourth premolars toward the site of the extracted third premolar. The distance between premolars was measured at baseline and at weeks 1, 2, and 4. Histological examination with hematoxylin-eosin staining was used to evaluate osteoclast activity. A slight delay in orthodontic movement and decreased osteoclast activity were observed in the montelukast-treated group, as compared with untreated controls. However, the differences were not statistically significant (P > 0.05). Our findings suggest that montelukast use will not interfere with orthodontic treatment of asthma patients. However, these findings require confirmation in clinical studies.
Collapse
Affiliation(s)
- Hossam Asaad
- Orthodontic Department, Faculty of Dentistry, Hama University
| | | | - Darem Al-Tabba
- Department of Public Health, Faculty of Veterinary Medicine, Hama University
| | - Omar Kujan
- School of Dentistry, The University of Western Australia.,Oral Pathology Department, Faculty of Dentistry, Hama University
| |
Collapse
|
41
|
The inhibition of 5-Lipoxygenase (5-LO) products leukotriene B4 (LTB 4 ) and cysteinyl leukotrienes (cysLTs) modulates the inflammatory response and improves cutaneous wound healing. Clin Immunol 2018; 190:74-83. [DOI: 10.1016/j.clim.2017.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
|
42
|
Tamada T, Ichinose M. Leukotriene Receptor Antagonists and Antiallergy Drugs. Handb Exp Pharmacol 2017; 237:153-169. [PMID: 27826703 DOI: 10.1007/164_2016_72] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As one of the candidates of the therapeutic strategy for asthma in addition to inhaled corticosteroids (ICS), leukotriene receptor antagonists (LTRAs) are known to be useful for long-term management of asthma patients complicated by allergic rhinitis (AR) or exercise-induced asthma (EIA). Currently available LTRAs are pranlukast hydrate, zafirlukast, and montelukast. These LTRAs have a bronchodilator action and inhibit airway inflammation, resulting in a significant improvement of asthma symptoms, respiratory function, inhalation frequency of as-needed inhaled β2-agonist, airway inflammation, airway hyperresponsiveness, dosage of ICSs, asthma exacerbations, and patients' QOL. Although cys-LTs are deeply associated with the pathogenesis of asthma, LTRAs alone are less effective compared with ICS. However, the effects of LTRAs in combination with ICS are the same as those of LABAs in combination with ICS in steroid-naïve asthmatic patients. Concerning antiallergy drugs other than LTRAs, some mediator-release suppressants, H1 histamine receptor antagonists (H1RAs), thromboxane A2 (TXA2) inhibitors/antagonists, and Th2 cytokine inhibitor had been used mainly in Japan until the late 1990s. However, the use of these agents rapidly decreased after ICS/long acting beta agonist (LABA) combination was introduced and recommended for the management of asthma in the early 2000s. The effectiveness of other antiallergic agents on asthma management seems to be quite limited, and the safety of oral antiallergic agents has not been demonstrated in fetuses during pregnancy. Further effectiveness studies are needed to determine the true value of these orally administered agents in combination with ICS as an anti-asthma treatment.
Collapse
Affiliation(s)
- Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
43
|
Yonker LM, Pazos MA, Lanter BB, Mou H, Chu KK, Eaton AD, Bonventre JV, Tearney GJ, Rajagopal J, Hurley BP. Neutrophil-Derived Cytosolic PLA2α Contributes to Bacterial-Induced Neutrophil Transepithelial Migration. THE JOURNAL OF IMMUNOLOGY 2017; 199:2873-2884. [PMID: 28887431 DOI: 10.4049/jimmunol.1700539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022]
Abstract
Eicosanoids are a group of bioactive lipids that are shown to be important mediators of neutrophilic inflammation; selective targeting of their function confers therapeutic benefit in a number of diseases. Neutrophilic airway diseases, including cystic fibrosis, are characterized by excessive neutrophil infiltration into the airspace. Understanding the role of eicosanoids in this process may reveal novel therapeutic targets. The eicosanoid hepoxilin A3 is a pathogen-elicited epithelial-produced neutrophil chemoattractant that directs transepithelial migration in response to infection. Following hepoxilin A3-driven transepithelial migration, neutrophil chemotaxis is amplified through neutrophil production of a second eicosanoid, leukotriene B4 (LTB4). The rate-limiting step of eicosanoid generation is the liberation of arachidonic acid by phospholipase A2, and the cytosolic phospholipase A2 (cPLA2)α isoform has been specifically shown to direct LTB4 synthesis in certain contexts. Whether cPLA2α is directly responsible for neutrophil synthesis of LTB4 in the context of Pseudomonas aeruginosa-induced neutrophil transepithelial migration has not been explored. Human and mouse neutrophil-epithelial cocultures were used to evaluate the role of neutrophil-derived cPLA2α in infection-induced transepithelial signaling by pharmacological and genetic approaches. Primary human airway basal stem cell-derived epithelial cultures and micro-optical coherence tomography, a new imaging modality that captures two- and three-dimensional real-time dynamics of neutrophil transepithelial migration, were applied. Evidence from these studies suggests that cPLA2α expressed by neutrophils, but not epithelial cells, plays a significant role in infection-induced neutrophil transepithelial migration by mediating LTB4 synthesis during migration, which serves to amplify the magnitude of neutrophil recruitment in response to epithelial infection.
Collapse
Affiliation(s)
- Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Michael A Pazos
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Bernard B Lanter
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Alexander D Eaton
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Joseph V Bonventre
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Renal Division, Brigham and Women's Hospital, Boston, MA 02115; and.,Biomedical Engineering Division, Brigham and Women's Hospital, Boston, MA 02115
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114; .,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
44
|
New Hydroxycinnamic Acid Esters as Novel 5-Lipoxygenase Inhibitors That Affect Leukotriene Biosynthesis. Mediators Inflamm 2017; 2017:6904634. [PMID: 28680195 PMCID: PMC5478869 DOI: 10.1155/2017/6904634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022] Open
Abstract
Leukotrienes are inflammatory mediators that actively participate in the inflammatory response and host defense against pathogens. However, leukotrienes also participate in chronic inflammatory diseases. 5-lipoxygenase is a key enzyme in the biosynthesis of leukotrienes and is thus a validated therapeutic target. As of today, zileuton remains the only clinically approved 5-lipoxygenase inhibitor; however, its use has been limited due to severe side effects in some patients. Hence, the search for a better 5-lipoxygenase inhibitor continues. In this study, we investigated structural analogues of caffeic acid phenethyl ester, a naturally-occurring 5-lipoxygenase inhibitor, in an attempt to enhance the inhibitory activity against 5-lipoxygenase and determine structure-activity relationships. These compounds were investigated for their ability to attenuate the biosynthesis of leukotrienes. Compounds 13 and 19, phenpropyl and diphenylethyl esters, exhibited significantly enhanced inhibitory activity when compared to the reference molecules caffeic acid phenethyl ester and zileuton.
Collapse
|
45
|
Alexander JA, Ravi K, Enders FT, Geno DM, Kryzer LA, Mara KC, Smyrk TC, Katzka DA. Montelukast Does not Maintain Symptom Remission After Topical Steroid Therapy for Eosinophilic Esophagitis. Clin Gastroenterol Hepatol 2017; 15:214-221.e2. [PMID: 27650328 DOI: 10.1016/j.cgh.2016.09.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Montelukast, a cysteinyl leukotriene type-1 receptor blocker, has been shown in small retrospective studies to reduce symptoms in patients with eosinophilic esophagitis (EoE). We performed a randomized, placebo-controlled, double-blind trial to determine whether montelukast maintains symptomatic remission induced by topical steroid therapy in patients with EoE. METHODS We performed a prospective study of adult patients with EoE (solid-food dysphagia and a peak esophageal eosinophil count of >20 cells/high-powered field) enrolled at the Mayo Clinic in Rochester, Minnesota, from April 2008 through February 2015. All patients had been treated previously for at least 6 weeks with a topical steroid until their symptoms were in remission. Steroids were discontinued and patients then were assigned randomly to groups given montelukast (20 mg/day, n = 20) or placebo (n = 21) for 26 weeks (groups were matched for age, sex, history of allergic disease, reflux symptoms, and endoscopic findings of EoE). Study participants were assessed via a structured telephone interview at weeks 2, 4, 8, 12, 16, 20, and 24. Remission was defined as the absence of solid-food dysphagia. RESULTS Based on an intention-to-treat analysis, after 26 weeks, 40.0% of subjects in the montelukast group and 23.8% in the placebo group were in remission. The odds ratio for remission in the montelukast group was 0.48 (95% confidence interval, 0.10-2.16) (P = .33). No side effects were reported from either group. CONCLUSIONS In a randomized controlled trial of the ability of montelukast to maintain remission in patients in remission from EoE after steroid therapy, we found montelukast to be well tolerated; 40% of patients remained in remission, but this proportion did not differ significantly from that of the placebo group. ClinicalTrials.gov no: NCT00511316.
Collapse
Affiliation(s)
- Jeffrey A Alexander
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota.
| | - Karthik Ravi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Felicity T Enders
- Department of Biostatistics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Debra M Geno
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lori A Kryzer
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kristin C Mara
- Department of Biostatistics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Thomas C Smyrk
- Department of Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - David A Katzka
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
46
|
von Moltke J, O'Leary CE, Barrett NA, Kanaoka Y, Austen KF, Locksley RM. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J Exp Med 2016; 214:27-37. [PMID: 28011865 PMCID: PMC5206504 DOI: 10.1084/jem.20161274] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/02/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022] Open
Abstract
von Moltke et al. demonstrate that optimal cytokine induction in group 2 innate lymphocytes results from synergy between NFAT-dependent leukotriene signaling and IL-33 signaling. This integration of signaling pathways may represent an innate substitute for the T cell receptor. Group 2 innate lymphoid cells (ILC2s) and type 2 helper T cells (Th2 cells) are the primary source of interleukin 5 (IL-5) and IL-13 during type 2 (allergic) inflammation in the lung. In Th2 cells, T cell receptor (TCR) signaling activates the transcription factors nuclear factor of activated T cells (NFAT), nuclear factor κB (NF-κB), and activator protein 1 (AP-1) to induce type 2 cytokines. ILC2s lack a TCR and respond instead to locally produced cytokines such as IL-33. Although IL-33 induces AP-1 and NF-κB, NFAT signaling has not been described in ILC2s. In this study, we report a nonredundant NFAT-dependent role for lipid-derived leukotrienes (LTs) in the activation of lung ILC2s. Using cytokine reporter and LT-deficient mice, we find that complete disruption of LT signaling markedly diminishes ILC2 activation and downstream responses during type 2 inflammation. Type 2 responses are equivalently attenuated in IL-33– and LT-deficient mice, and optimal ILC2 activation reflects potent synergy between these pathways. These findings expand our understanding of ILC2 regulation and may have important implications for the treatment of airways disease.
Collapse
Affiliation(s)
- Jakob von Moltke
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143 .,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Claire E O'Leary
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Nora A Barrett
- Department of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Yoshihide Kanaoka
- Department of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - K Frank Austen
- Department of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115
| | - Richard M Locksley
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143 .,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
47
|
Abstract
Asthma is one of the most frequent chronic respiratory diseases worldwide, with an increase in its prevalence in the last decade. Ongoing studies continue to search for better diagnostic tools and advanced treatment options in an effort to decrease the morbidity and mortality associated with it. Unfortunately, many asthmatic patients still suffer from poorly controlled asthma, which may lead to life-threatening situations. This article reviews the basics of asthma and highlights the current guidelines in making accurate diagnosis and initiating therapeutic plan.
Collapse
|
48
|
|
49
|
Azab A, Nassar A, Azab AN. Anti-Inflammatory Activity of Natural Products. Molecules 2016; 21:molecules21101321. [PMID: 27706084 PMCID: PMC6274146 DOI: 10.3390/molecules21101321] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
This article presents highlights of the published literature regarding the anti-inflammatory activities of natural products. Many review articles were published in this regard, however, most of them have presented this important issue from a regional, limited perspective. This paper summarizes the vast range of review and research articles that have reported on the anti-inflammatory effects of extracts and/or pure compounds derived from natural products. Moreover, this review pinpoints some interesting traditionally used medicinal plants that were not investigated yet.
Collapse
Affiliation(s)
- Abdullatif Azab
- Institute of Applied Research, The Galilee Society, P.O. Box 437, 20200 Shefa-Amr, Israel.
| | - Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
| | - Abed N Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
- Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
| |
Collapse
|
50
|
Weiler JM, Brannan JD, Randolph CC, Hallstrand TS, Parsons J, Silvers W, Storms W, Zeiger J, Bernstein DI, Blessing-Moore J, Greenhawt M, Khan D, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Schuller DE, Tilles SA, Wallace D. Exercise-induced bronchoconstriction update-2016. J Allergy Clin Immunol 2016; 138:1292-1295.e36. [PMID: 27665489 DOI: 10.1016/j.jaci.2016.05.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/26/2022]
Abstract
The first practice parameter on exercise-induced bronchoconstriction (EIB) was published in 2010. This updated practice parameter was prepared 5 years later. In the ensuing years, there has been increased understanding of the pathogenesis of EIB and improved diagnosis of this disorder by using objective testing. At the time of this publication, observations included the following: dry powder mannitol for inhalation as a bronchial provocation test is FDA approved however not currently available in the United States; if baseline pulmonary function test results are normal to near normal (before and after bronchodilator) in a person with suspected EIB, then further testing should be performed by using standardized exercise challenge or eucapnic voluntary hyperpnea (EVH); and the efficacy of nonpharmaceutical interventions (omega-3 fatty acids) has been challenged. The workgroup preparing this practice parameter updated contemporary practice guidelines based on a current systematic literature review. The group obtained supplementary literature and consensus expert opinions when the published literature was insufficient. A search of the medical literature on PubMed was conducted, and search terms included pathogenesis, diagnosis, differential diagnosis, and therapy (both pharmaceutical and nonpharmaceutical) of exercise-induced bronchoconstriction or exercise-induced asthma (which is no longer a preferred term); asthma; and exercise and asthma. References assessed as relevant to the topic were evaluated to search for additional relevant references. Published clinical studies were appraised by category of evidence and used to document the strength of the recommendation. The parameter was then evaluated by Joint Task Force reviewers and then by reviewers assigned by the parent organizations, as well as the general membership. Based on this process, the parameter can be characterized as an evidence- and consensus-based document.
Collapse
|