1
|
Popescu BO, Batzu L, Ruiz PJG, Tulbă D, Moro E, Santens P. Neuroplasticity in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1329-1339. [PMID: 39102007 PMCID: PMC11502561 DOI: 10.1007/s00702-024-02813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.
Collapse
Affiliation(s)
- Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania.
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.
| | - Lucia Batzu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | | | - Delia Tulbă
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes University, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Patrick Santens
- Department of Neurology, University Hospital Ghent, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Yalcin A, Gemci E, Yurumez B, Yilmaz R, Varli M, Atmis V, Akbostancı MC, Yazihan N. Serum alpha klotho levels in Parkinson's Disease. Neurol Sci 2024:10.1007/s10072-024-07809-w. [PMID: 39467935 DOI: 10.1007/s10072-024-07809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE Parkinson's Disease (PD), a neurodegenerative disorder, is associated with substantial morbidity. α-Klotho, an anti-aging protein known for its neuroprotective properties, has gained attention. This study aims to assess serum levels of α-Klotho in PD patients. METHODS This study is a cross-sectional case-control study. PD was diagnosed according to UK Parkinson Disease Society Brain Bank criteria. Serum α-Klotho level was measured using a commercially available enzyme-linked immunosorbent assay. RESULTS Of the 314 participants in the study, 157 were patients with PD and 157 were controls. Lower levels of α-Klotho were observed in PD (0.85 nmol/L) in comparison to the controls (1.47 nmol/L, p < 0.001). α-Klotho levels were also significantly lower among PD patients with dementia compared to PD patients without dementia. In logistic regression analysis, α-Klotho (OR: 0.04, p < 0.001) demonstrated a significant relationship between PD. A significant correlation was identified between α-Klotho levels and Mini-Mental State Examination scores in PD patients. The sensitivity and the specifity of α-Klotho were 90% and 65% for predicting PD. CONCLUSIONS Our findings suggest that α-klotho could potentially serve as a biomarker. However additional studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Ahmet Yalcin
- Geriatric Medicine Department, Ankara University School of Medicine, Ankara Üniversitesi Tıp Fakültesi Dekanlığı Morfoloji Yerleşkesi, A. Adnan Saygun Cad. No: 35, Altındağ/Ankara, Turkey.
| | - Emine Gemci
- Geriatric Medicine Department, Ankara University School of Medicine, Ankara Üniversitesi Tıp Fakültesi Dekanlığı Morfoloji Yerleşkesi, A. Adnan Saygun Cad. No: 35, Altındağ/Ankara, Turkey
| | - Busra Yurumez
- Geriatric Medicine Department, Ankara University School of Medicine, Ankara Üniversitesi Tıp Fakültesi Dekanlığı Morfoloji Yerleşkesi, A. Adnan Saygun Cad. No: 35, Altındağ/Ankara, Turkey
| | - Rezzak Yilmaz
- Neurology Department, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Brain Research Center, Ankara, Turkey
| | - Murat Varli
- Geriatric Medicine Department, Ankara University School of Medicine, Ankara Üniversitesi Tıp Fakültesi Dekanlığı Morfoloji Yerleşkesi, A. Adnan Saygun Cad. No: 35, Altındağ/Ankara, Turkey
| | - Volkan Atmis
- Geriatric Medicine Department, Ankara University School of Medicine, Ankara Üniversitesi Tıp Fakültesi Dekanlığı Morfoloji Yerleşkesi, A. Adnan Saygun Cad. No: 35, Altındağ/Ankara, Turkey
| | - M Cenk Akbostancı
- Neurology Department, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Brain Research Center, Ankara, Turkey
| | - Nuray Yazihan
- Physiopathology Department, Ankara University School of Medine, Ankara, Turkey
| |
Collapse
|
3
|
Mohan UR, Jacobs J. Why does invasive brain stimulation sometimes improve memory and sometimes impair it? PLoS Biol 2024; 22:e3002894. [PMID: 39453948 DOI: 10.1371/journal.pbio.3002894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Invasive brain stimulation is used to treat individuals with episodic memory loss; however, studies to date report both enhancement and impairment of memory. This Essay discusses the sources of this variability, and suggests a path towards developing customized stimulation protocols for more consistent memory enhancement.
Collapse
Affiliation(s)
- Uma R Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States of America
- Department of Neurological Surgery, Columbia University, New York City, New York, United States of America
| |
Collapse
|
4
|
Kim H, Shin JY, Ham S, Kim JH, Lee GH, Lee NE, Kim HT, Cho SH, Kim S, Lee Y. AIMP2 accumulation in brain leads to cognitive deficits and blood secretion in Parkinson's disease. J Transl Med 2024; 22:919. [PMID: 39390613 PMCID: PMC11465931 DOI: 10.1186/s12967-024-05666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Propagation of neuronal α-synuclein aggregate pathology to the cortex and hippocampus correlates with cognitive impairment in Parkinson's disease (PD) dementia and dementia with Lewy body disease. Previously, we showed accumulation of the parkin substrate aminoacyl-tRNA synthetase interacting multifunctional protein-2 (AIMP2) in the temporal lobe of postmortem brains of patients with advanced PD. However, the potential pathological role of AIMP2 accumulation in the cognitive dysfunction of patients with PD remains unknown. METHODS We performed immunofluorescence imaging to examine cellular distribution and accumulation of AIMP2 in brains of conditional AIMP2 transgenic mice and postmortem PD patients. The pathological role of AIMP2 was investigated in the AIMP2 transgenic mice by assessing Nissl-stained neuron counting in the hippocampal area and Barnes maze to determine cognitive functions. Potential secretion and cellular uptake of AIMP2 was monitored by dot blot analysis and immunofluorescence. The utility of AIMP2 as a new PD biomarker was evaluated by dot blot and ELISA measurement of plasma AIMP2 collected from PD patients and healthy control followed by ROC curve analysis. RESULTS We demonstrated that AIMP2 is toxic to the dentate gyrus neurons of the hippocampus and that conditional AIMP2 transgenic mice develop progressive cognitive impairment. Moreover, we found that neuronal AIMP2 expression levels correlated with the brain endothelial expression of AIMP2 in both AIMP2 transgenic mice and in the postmortem brains of patients with PD. AIMP2, when accumulated, was released from the neuronal cell line SH-SY5Y cells. Secreted AIMP2 was taken up by human umbilical vein endothelial cells. Consistent with the fact that AIMP2 can be released into the extracellular space, we showed that AIMP2 transgenic mice have higher levels of plasma AIMP2. Finally, ELISA-based assessment of AIMP2 in plasma samples from patients with PD and controls, and subsequent ROC curve analysis proved that high plasma AIMP2 expression could serve as a reliable molecular biomarker for PD diagnosis. CONCLUSIONS The pathological role in the hippocampus and the cell-to-cell transmissibility of AIMP2 provide new therapeutic avenues for PD treatment, and plasma AIMP2 combined with α-synuclein may improve the accuracy of PD diagnosis in the early stages.
Collapse
Affiliation(s)
- Heejeong Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, 16419, Republic of Korea
| | - Jeong-Yong Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, 16419, Republic of Korea
| | - Sangwoo Ham
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, 16419, Republic of Korea
- ToolGen Inc, Seoul, 08501, Republic of Korea
| | - Ji Hun Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, 16419, Republic of Korea
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Nae-Eung Lee
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Korea
| | - Hee-Tae Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, 04763, Korea
| | - Seok Hyun Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea
| | - Sangseong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
6
|
Wang X, Zheng Y, Cai H, Kou W, Yang C, Li S, Zhu B, Wu J, Zhang N, Feng T, Li X, Xiao F, Yu Z. α-Synuclein species in plasma neuron-derived extracellular vesicles as biomarkers for iRBD. Ann Clin Transl Neurol 2024. [PMID: 39291779 DOI: 10.1002/acn3.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Isolated REM sleep behavior disorder (iRBD) is considered as the strongest predictor of Parkinson's disease (PD). Reliable and accurate biomarkers for iRBD detection and the prediction of phenoconversion are in urgent need. This study aimed to investigate whether α-Synuclein (α-Syn) species in plasma neuron-derived extracellular vesicles (NDEVs) could differentiate between iRBD patients and healthy controls (HCs). METHODS Nanoscale flow cytometry was used to detect α-Syn-containing NDEVs in plasma. RESULTS A total of 54 iRBD patients and 53 HCs were recruited. The concentrations of total α-Syn, α-Syn aggregates, and phosphorylated α-Syn at Ser129 (pS129)-containing NDEVs in plasma of iRBD individuals were significantly higher than those in HCs (p < 0.0001 for all). In distinguishing between iRBD and HCs, the area under the receiver operating characteristic (ROC) curve (AUC) for an integrative model incorporating the levels of α-Syn, pS129, and α-Syn aggregate-containing NDEVs in plasma was 0.965. This model achieved a sensitivity of 94.3% and a specificity of 88.9%. In iRBD group, the concentrations of α-Syn aggregate-containing NDEVs exhibited a negative correlation with Sniffin' Sticks olfactory scores (r = -0.351, p = 0.039). Smokers with iRBD exhibited lower levels of α-Syn aggregates and pS129-containing NDEVs in plasma compared to nonsmokers (pα-Syn aggregates = 0.014; ppS129 = 0.003). INTERPRETATION The current study demonstrated that the levels of total α-Syn, α-Syn aggregates, and pS129-containing NDEVs in the plasma of individuals with iRBD were significantly higher compared to HCs. The levels of α-Syn species-containing NDEVs in plasma may serve as biomarkers for iRBD.
Collapse
Affiliation(s)
- Xuemei Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bingxu Zhu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Li
- Department of Neurology, Affiliated Dalian Municipal Friendship Hospital of Dalian Medical University, Dalian, China
| | - Fulong Xiao
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Chen YJ, Xie MR, Zhou SQ, Liu F. Mapping the research of mitochondria and Parkinson's disease: a bibliometric analysis. Front Neurol 2024; 15:1413762. [PMID: 39350973 PMCID: PMC11439651 DOI: 10.3389/fneur.2024.1413762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Background Parkinson's disease (PD) is a chronic, progressive neurodegenerative disorder primarily affecting the elderly. Relevant studies suggest a significant connection between the mitochondria and PD. Publications exploring this connection have steadily increased in recent years. This study employs a bibliometric approach to comprehensively analyze the current status and future directions of the research on mitochondria and PD. Method We retrieved data from the Web of Science database and used CiteSpace, VOSviewer, and "Bibliometrix" software to visually analyze various aspects of the research field. These aspects included the number of published papers, contributing countries and institutions, authors, publishing journals, cited references, and keywords. Results Our analysis identified a total of 3,291 publications involving 14,670 authors from 2,836 organizations across 78 countries. The publication volume exhibited a continuous upward trend from 1999 to 2023. The United States emerged as the leading force in this research area, contributing the highest number of high-quality publications. Notably, the United States collaborated extensively with Germany and the United Kingdom. The University of Pittsburgh stood out as the most prolific institution. Harvard University had the highest academic influence and closely cooperated with the University of Pittsburgh, Juntendo University, and McGill University. Dr. Hattori Nobutaka was identified as the most prolific author, while Dr. Youle, Richard J emerged as the most influential author based on the highest average citation frequency. The Journal of Neurochemistry was the most published journal. The most co-cited paper was titled "Hereditary early-onset Parkinson's disease caused by mutations in PINK1." The major keywords included oxidative stress, alpha-synuclein, pink1, mitophagy, and mitochondrial dysfunction. Mitofusin 2, ubiquitin, and mitochondrial quality control have been identified as new research hotspots in recent years. Conclusion Mitochondria-PD research is experiencing a steady increase in activity, fueled by increasing close collaboration between countries and different institutions. However, there is a need to further strengthen collaboration and communication between developed and developing nations. Current research has focused on the specific mechanisms of mitochondrial dysfunction and their relationship with PD. Mitofusin 2, ubiquitin, and mitochondrial quality control are positioned to be the hotspots and future research directions.
Collapse
Affiliation(s)
- Yan-Jun Chen
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
- National TCM Master Liu Zuyi Inheritance Studio, The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Ming-Rong Xie
- The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng-Qiang Zhou
- National TCM Master Liu Zuyi Inheritance Studio, The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Fang Liu
- National TCM Master Liu Zuyi Inheritance Studio, The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Mahboob A, Ali H, AlNaimi A, Yousef M, Rob M, Al-Muhannadi NA, Senevirathne DKL, Chaari A. Immunotherapy for Parkinson's Disease and Alzheimer's Disease: A Promising Disease-Modifying Therapy. Cells 2024; 13:1527. [PMID: 39329711 PMCID: PMC11429902 DOI: 10.3390/cells13181527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are two neurodegenerative diseases posing a significant disease burden due to their increasing prevalence and socio-economic cost. Traditional therapeutic approaches for these diseases exist but provide limited symptomatic relief without addressing the underlying pathologies. This review examines the potential of immunotherapy, specifically monoclonal antibodies (mAbs), as disease-modifying treatments for AD and PD. We analyze the pathological mechanisms of AD and PD, focusing on the roles of amyloid-beta (Aβ), tau (τ), and alpha-synuclein (α-syn) proteins. We discuss the latest advancements in mAb therapies targeting these proteins, evaluating their efficacy in clinical trials and preclinical studies. We also explore the challenges faced in translating these therapies from bench to bedside, including issues related to safety, specificity, and clinical trial design. Additionally, we highlight future directions for research, emphasizing the need for combination therapies, improved biomarkers, and personalized treatment strategies. This review aims to provide insights into the current state and future potential of antibody-based immunotherapy in modifying the course of AD and PD, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Anns Mahboob
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar
| | - Hasan Ali
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar
| | - AlJazi AlNaimi
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar
| | - Mahmoud Yousef
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar
| | - Mlaak Rob
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar
| | | | | | - Ali Chaari
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar
| |
Collapse
|
9
|
Vieira SRL, Mezabrovschi R, Toffoli M, Del Pozo SL, Menozzi E, Mullin S, Yalkic S, Limbachiya N, Koletsi S, Loefflad N, Lopez GJ, Gan-Or Z, Alcalay RN, Sidransky E, Schapira AHV. Consensus Guidance for Genetic Counseling in GBA1 Variants: A Focus on Parkinson's Disease. Mov Disord 2024. [PMID: 39258449 DOI: 10.1002/mds.30006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucocerebrosidase (GBA1) variants constitute numerically the most common known genetic risk factor for Parkinson's disease (PD) and are distributed worldwide. Access to GBA1 genotyping varies across the world and even regionally within countries. Guidelines for GBA1 variant counseling are evolving. We review the current knowledge of the link between GBA1 and PD, and discuss the practicalities of GBA1 testing. Lastly, we provide a consensus for an approach to counseling people with GBA1 variants, notably the communication of PD risk. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Roxana Mezabrovschi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Sara Lucas Del Pozo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Stephen Mullin
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
- Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Selen Yalkic
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Naomi Limbachiya
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Sofia Koletsi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Nadine Loefflad
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Grisel J Lopez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, The Neuro (Montreal Neurological Institute-Hospital), and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Roy N Alcalay
- Columbia University Irving Medical Center, New York, New York, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ellen Sidransky
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
10
|
Kim H, Choi SM, Lee HL, Cho SH, Kim BC. Clinical Characteristics of Patients with De Novo Parkinson's Disease and a Positive Family History. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1378. [PMID: 39336419 PMCID: PMC11433449 DOI: 10.3390/medicina60091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Background/Objectives: A family history of Parkinson's disease (PD) is an important risk factor for developing PD. Because only a few studies have investigated the clinical characteristics of PD patients based on family history, this study compared the clinical characteristics of PD patients with and without a family history of PD. Methods: The study involved 356 patients with de novo PD. The data on the patients' PD family histories were obtained from the patients and their caregivers. Motor and non-motor PD symptoms were assessed using the appropriate scales. Results: Out of the 356 PD patients, 26 (7.3%) had a family history of PD. Compared with patients without a family history of PD, those with a family history of PD tended to be younger at diagnosis (67.9 years vs. 62.2 years, respectively; p = 0.009) and exhibited significantly more severe rigidity (p = 0.036). Motor subtype was not different between the PD patients with and without a family history. PD patients with a family history experienced significantly fewer falls/cardiovascular symptoms within the Non-Motor Symptoms Scale domains (p = 0.001) compared to their counterparts, although this was not statistically significant upon adjusting for age (p = 0.119). Conclusions: In de novo PD patients, having a family history of PD is associated with a younger age at diagnosis and more severe rigidity.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (H.K.); (H.-L.L.); (S.H.C.); (B.C.K.)
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (H.K.); (H.-L.L.); (S.H.C.); (B.C.K.)
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hak-Loh Lee
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (H.K.); (H.-L.L.); (S.H.C.); (B.C.K.)
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (H.K.); (H.-L.L.); (S.H.C.); (B.C.K.)
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (H.K.); (H.-L.L.); (S.H.C.); (B.C.K.)
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
11
|
Li S, Wang Z, Liu G, Chen M. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress. Front Nutr 2024; 11:1425839. [PMID: 39149548 PMCID: PMC11326534 DOI: 10.3389/fnut.2024.1425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Catechins, a class of phytochemicals found in various fruits and tea leaves, have garnered attention for their diverse health-promoting properties, including their potential in combating neurodegenerative diseases. Among these catechins, (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, has emerged as a promising therapeutic agent due to its potent antioxidant and anti-inflammatory effects. Chronic neuroinflammation and oxidative stress are key pathological mechanisms in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). EGCG has neuroprotective efficacy due to scavenging free radicals, reducing oxidative stress and attenuating neuroinflammatory processes. This review discusses the molecular mechanisms of EGCG's anti-oxidative stress and chronic neuroinflammation, emphasizing its effects on autoimmune responses, neuroimmune system interactions, and focusing on the related effects on AD and PD. By elucidating EGCG's mechanisms of action and its impact on neurodegenerative processes, this review underscores the potential of EGCG as a therapeutic intervention for AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges as a promising natural compound for combating chronic neuroinflammation and oxidative stress, offering novel avenues for neuroprotective strategies in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Siying Li
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zaoyi Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Meixia Chen
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
12
|
Tanner CM, Ostrem JL. Parkinson's Disease. N Engl J Med 2024; 391:442-452. [PMID: 39083773 DOI: 10.1056/nejmra2401857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Affiliation(s)
- Caroline M Tanner
- From the Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco
| | - Jill L Ostrem
- From the Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco
| |
Collapse
|
13
|
Crispo JAG, Farhat N, Fortin Y, Perez-Lloret S, Sikora L, Morgan RL, Habash M, Gogna P, Kelly SE, Elliott J, Kohen DE, Bjerre LM, Mattison DR, Hessian RC, Willis AW, Krewski D. Non-Ergot Dopamine Agonists and the Risk of Heart Failure and Other Adverse Cardiovascular Reactions in Parkinson's Disease. Brain Sci 2024; 14:776. [PMID: 39199470 PMCID: PMC11352331 DOI: 10.3390/brainsci14080776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Reports suggest possible risks of adverse cardiovascular reactions, including heart failure, associated with non-ergot dopamine agonist (DA) use in Parkinson's disease (PD). The objectives of our review were to evaluate the risk of heart failure and other adverse cardiovascular reactions in PD patients who received a non-ergot DA compared with other anti-PD pharmacological interventions, placebo, or no intervention. Studies were identified via searches of six bibliographic databases. Randomized controlled trials (RCTs) and non-randomized studies (NRS) were eligible for study inclusion. Random-effect meta-analyses were performed to estimate adverse cardiovascular reaction risks. Quality of evidence was assessed using GRADE. In total, forty-four studies (thirty-six RCTs and eight NRS) satisfied our inclusion criteria. A single RCT found no significant difference in the risk of heart failure with ropinirole compared with bromocriptine (odds ratio (OR) 0.39, 95% confidence interval (CI) 0.07 to 2.04; low certainty). Conversely, three case-control studies reported a risk of heart failure with non-ergot DA treatment. The quality of evidence for the risk of heart failure was judged as low or very low. Findings suggest that non-ergot DA use may be associated with adverse cardiovascular outcomes, including heart failure. Studies are needed to better understand cardiovascular risks associated with PD treatment.
Collapse
Affiliation(s)
- James A. G. Crispo
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - Nawal Farhat
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Yannick Fortin
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Santiago Perez-Lloret
- Observatorio de Salud, Pontificia Universidad Católica Argentina, Consejo de Investigaciones Científicas y Técnicas (UCA-CONICET), Buenos Aires C1107AAZ, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires C1121ABG, Argentina
| | - Lindsey Sikora
- Health Sciences Library, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rebecca L. Morgan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mara Habash
- Aboriginal Cancer Control Unit, Cancer Care Ontario, Toronto, ON M5G 2L7, Canada
| | - Priyanka Gogna
- Department of Public Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shannon E. Kelly
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Jesse Elliott
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Dafna E. Kohen
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Lise M. Bjerre
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Department of Family Medicine, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Donald R. Mattison
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
| | - Renée C. Hessian
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, ON K1Y 4W7, Canada
| | - Allison W. Willis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Translational Center of Excellence for Neuroepidemiology and Neurological Outcomes Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
| |
Collapse
|
14
|
Stoyanova-Piroth G, Milanov I, Stambolieva K. Association between pain threshold and manifested pain assessed using a PD-specific pain scale in Parkinson's disease. Front Neurol 2024; 15:1420696. [PMID: 39131046 PMCID: PMC11312374 DOI: 10.3389/fneur.2024.1420696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Background The neurodegenerative process in Parkinson's disease (PD) affects both dopaminergic and non-dopaminergic structures, which determine the wide range of motor and non-motor symptoms (NMS), including different types of pain. Diverse mechanisms contribute to pain in PD. Abnormal nociceptive processing is considered a distinctive feature of the disease. Objective In the present study, we used a validated PD-specific pain assessment tool to investigate self-reported pain in PD patients and to analyze the association with the objective pain threshold. Methods The RIII component of the nociceptive flexor reflex was assessed in 35 patients with PD and was compared to 40 healthy controls. Self-reported pain was measured using the Bulgarian version of the King's Parkinson's Disease Pain Scale (KPPS-BG). A correlation analysis was used to investigate the relationship between the objective nociceptive threshold and PD pain as assessed by KPPS-BG. Results PD patients had a significantly lower RIII threshold than control individuals (the mean SD value was 6.24 ± 1.39 vs. 10.33 ± 1.64) when assessed in the "off" state. A statistically significant (p < 0.05) fairly negative Spearman's correlation was observed between the decreased spinal nociceptive threshold and fluctuation-related pain (-0.31). Domain 4, "nocturnal pain" (-0.21), and the KPPS-BG total score (-0.21) showed a weak negative correlation. An insignificant positive correlation was found between domain 6-"discoloration, edema/swelling"-and the RIII threshold. A higher Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III score and modified Hoehn and Yahr (H&Y) scale are associated with a decreased nociceptive flexor reflex threshold. Conclusion The results of the present study demonstrate the important role of increased spinal nociception in the occurrence of pain, which is associated with fluctuations and, to a lesser extent, nocturnal pain.
Collapse
Affiliation(s)
- Galina Stoyanova-Piroth
- St. Naum Hospital of Neurology and Psychiatry, Medical University, Sofia, Bulgaria
- ZURZACH Care, Neurorehabilitation, Rehaklinik Baden Dättwil, Baden, Switzerland
| | - Ivan Milanov
- St. Naum Hospital of Neurology and Psychiatry, Medical University, Sofia, Bulgaria
| | | |
Collapse
|
15
|
Vaish A. A Machine Learning Approach for Early Identification of Prodromal Parkinson's Disease. Cureus 2024; 16:e63240. [PMID: 39070398 PMCID: PMC11281860 DOI: 10.7759/cureus.63240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/30/2024] Open
Abstract
Parkinson's disease (PD) affects approximately 6 million people worldwide. Data analysis of early PD symptoms using machine learning (ML) models may provide an inexpensive, non-invasive, and simple method for the remote diagnosis of early PD. The aim of this project was to analyze voice, computer keystrokes, spiral drawings, and gait data involving PD patients and controls available in public databases using ML models and identify early PD characteristics that are more pronounced than others. An ML model was developed using Random Forest to analyze existing clinical data for PD patients, prodromal PD patients with REM (rapid eye movement) sleep behavior disorder (RBD) symptoms, and non-PD healthy controls. We reviewed and collected data from the UCI (University of California Irvine) Machine Learning Repository, PPMI (Parkinson's Progression Markers Initiative), and Kaggle databases. ML analysis was carried out on voice samples in PD and RBD patients, computer keystroke data, spiral drawings, and gait datasets. The ML prediction model developed may be helpful in improving risk prediction for PD, enabling early intervention and resource prioritization. The ML study suggests that voice analysis is the most robust test, followed by computer keystroke data, spiral drawings, and gait analysis, in that order. Voice is affected even in RBD patients, revealing that it is a sensitive and early measure of prodromal PD. The low accuracy of the analysis indicates that several PD-positive samples may remain undetected and unclassified. Combining all four features, that is, voice analysis, computer keystroke data, spiral drawings, and gait analysis, may improve the overall accuracy.
Collapse
Affiliation(s)
- Anisha Vaish
- Neurology, Tesla STEM (Science, Technology, Engineering & Math) High School, Redmond, USA
| |
Collapse
|
16
|
Hazart D, Rolli-Derkinderen M, Delhomme B, Derkinderen P, Oheim M, Ricard C. [The gut, a whistleblower, in the early stages of Parkinson's disease]. Med Sci (Paris) 2024; 40:544-549. [PMID: 38986099 DOI: 10.1051/medsci/2024082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
The enteric nervous system (ENS), often called the "second brain", plays a crucial role in regulating digestive functions. Dysfunctions of the ENS are associated with several diseases such as Parkinson's disease. Recent studies suggest that early digestive disorders, notably chronic constipation, may be early signs of this neurodegenerative disease. Three-dimensional imaging of the ENS offers new insights into early diagnosis, in particular through the analysis of intestinal biopsies. This new research axis raises questions about the intestinal cause of Parkinson's disease, and opens the door to a better understanding and earlier treatment of this disease.
Collapse
Affiliation(s)
- Doriane Hazart
- Université Paris Cité, SPPIN (Saint-Pères Paris Institute for the Neurosciences), CNRS UMR 8003, Paris, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, Inserm U1235, TENSGBD (The enteric nervous system in gut and brain disorders), Nantes, France
| | - Brigitte Delhomme
- Université Paris Cité, SPPIN (Saint-Pères Paris Institute for the Neurosciences), CNRS UMR 8003, Paris, France
| | - Pascal Derkinderen
- CHU Nantes, Nantes Université, TENSGBD (The enteric nervous system in gut and brain disorders), Nantes, France
| | - Martin Oheim
- Université Paris Cité, SPPIN (Saint-Pères Paris Institute for the Neurosciences), CNRS UMR 8003, Paris, France
| | - Clément Ricard
- Université Paris Cité, SPPIN (Saint-Pères Paris Institute for the Neurosciences), CNRS UMR 8003, Paris, France
| |
Collapse
|
17
|
Sasikumar DSN, Thiruselvam P, Sundararajan V, Ravindran R, Gunasekaran S, Madathil D, Kaliamurthi S, Peslherbe GH, Selvaraj G, Sudhakaran SL. Insights into dietary phytochemicals targeting Parkinson's disease key genes and pathways: A network pharmacology approach. Comput Biol Med 2024; 172:108195. [PMID: 38460310 DOI: 10.1016/j.compbiomed.2024.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
Parkinson's disease (PD) is a complex neurological disease associated with the degeneration of dopaminergic neurons. Oxidative stress is a key player in instigating apoptosis in dopaminergic neurons. To improve the survival of neurons many dietary phytochemicals have gathered significant attention recently. Thus, the present study implements a comprehensive network pharmacology approach to unravel the mechanisms of action of dietary phytochemicals that benefit disease management. A literature search was performed to identify ligands (i.e., comprising dietary phytochemicals and Food and Drug Administration pre-approved PD drugs) in the PubMed database. Targets associated with selected ligands were extracted from the search tool for interactions of chemicals (STITCH) database. Then, the construction of a gene-gene interaction (GGI) network, analysis of hub-gene, functional and pathway enrichment, associated transcription factors, miRNAs, ligand-target interaction network, docking were performed using various bioinformatics tools together with molecular dynamics (MD) simulations. The database search resulted in 69 ligands and 144 unique targets. GGI and subsequent topological measures indicate histone acetyltransferase p300 (EP300), mitogen-activated protein kinase 1 (MAPK1) or extracellular signal-regulated kinase (ERK)2, and CREB-binding protein (CREBBP) as hub genes. Neurodegeneration, MAPK signaling, apoptosis, and zinc binding are key pathways and gene ontology terms. hsa-miR-5692a and SCNA gene-associated transcription factors interact with all the 3 hub genes. Ligand-target interaction (LTI) network analysis suggest rasagiline and baicalein as candidate ligands targeting MAPK1. Rasagiline and baicalein form stable complexes with the Y205, K330, and V173 residues of MAPK1. Computational molecular insights suggest that baicalein and rasagiline are promising preclinical candidates for PD management.
Collapse
Affiliation(s)
- Devi Soorya Narayana Sasikumar
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Premkumar Thiruselvam
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Radhika Ravindran
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, TN, 600036, India
| | - Shoba Gunasekaran
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, TN, 600106, India
| | - Deepa Madathil
- Jindal Institute of Behavioral Sciences, O.P Jindal Global University, Sonipat, Haryana, 131001, India
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada
| | - Gilles H Peslherbe
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada; Bioinformatics Unit, Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) University, Chennai, TN, 600077, India.
| | - Sajitha Lulu Sudhakaran
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India.
| |
Collapse
|
18
|
Daadi EW, Daadi ES, Oh T, Li M, Kim J, Daadi MM. Combining physical & cognitive training with iPSC-derived dopaminergic neuron transplantation promotes graft integration & better functional outcome in parkinsonian marmosets. Exp Neurol 2024; 374:114694. [PMID: 38272159 DOI: 10.1016/j.expneurol.2024.114694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is a relentlessly progressive and currently incurable neurodegenerative disease with significant unmet medical needs. Since PD stems from the degeneration of midbrain dopaminergic (DA) neurons in a defined brain location, PD patients are considered optimal candidates for cell replacement therapy. Clinical trials for cell transplantation in PD are beginning to re-emerge worldwide with a new focus on induced pluripotent stem cells (iPSCs) as a source of DA neurons since they can be derived from adult somatic cells and produced in large quantities under current good manufacturing practices. However, for this therapeutic strategy to be realized as a viable clinical option, fundamental translational challenges need to be addressed including the manufacturing process, purity and efficacy of the cells, the method of delivery, the extent of host reinnervation and the impact of patient-centered adjunctive interventions. In this study we report on the impact of physical and cognitive training (PCT) on functional recovery in the nonhuman primate (NHP) model of PD after cell transplantation. We observed that at 6 months post-transplant, the PCT group returned to normal baseline in their daily activity measured by actigraphy, significantly improved in their sensorimotor and cognitive tasks, and showed enhanced synapse formation between grafted cells and host cells. We also describe a robust, simple, efficient, scalable, and cost-effective manufacturing process of engraftable DA neurons derived from iPSCs. This study suggests that integrating PCT with cell transplantation therapy could promote optimal graft functional integration and better outcome for patients with PD.
Collapse
Affiliation(s)
- Etienne W Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Elyas S Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA; Department of Cell Systems & Anatomy, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Marcel M Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA; Department of Cell Systems & Anatomy, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA; Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| |
Collapse
|
19
|
Elhadi A, Zhao D, Ali N, Sun F, Zhong S. Multi-method computational evaluation of the inhibitors against leucine-rich repeat kinase 2 G2019S mutant for Parkinson's disease. Mol Divers 2024:10.1007/s11030-024-10808-w. [PMID: 38396210 DOI: 10.1007/s11030-024-10808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2024] [Indexed: 02/25/2024]
Abstract
Leucine-rich repeat kinase 2 G2019S mutant (LRRK2 G2019S) is a potential target for Parkinson's disease therapy. In this work, the computational evaluation of the LRRK2 G2019S inhibitors was conducted via a combined approach which contains a preliminary screening of a large database of compounds via similarity and pharmacophore, a secondary selection via structure-based affinity prediction and molecular docking, and a rescoring treatment for the final selection. MD simulations and MM/GBSA calculations were performed to check the agreement between different prediction methods for these inhibitors. 331 experimental ligands were collected, and 170 were used to build the structure-activity relationship. Eight representative ligand structural models were employed in similarity searching and pharmacophore screening over 14 million compounds. The process for selecting proper molecular descriptors provides a successful sample which can be used as a general strategy in QSAR modelling. The rescoring used in this work presents an alternative useful treatment for ranking and selection.
Collapse
Affiliation(s)
- Ahmed Elhadi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Dan Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Noman Ali
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Fusheng Sun
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Shijun Zhong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.
| |
Collapse
|
20
|
Tio M, Wen R, Choo CN, Tan JB, Chua A, Xiao B, Sundaram JR, Chan CHS, Tan EK. Genetic and pharmacologic p32-inhibition rescue CHCHD2-linked Parkinson's disease phenotypes in vivo and in cell models. J Biomed Sci 2024; 31:24. [PMID: 38395904 PMCID: PMC10893700 DOI: 10.1186/s12929-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Mutations in CHCHD2 have been linked to Parkinson's disease, however, their exact pathophysiologic roles are unclear. The p32 protein has been suggested to interact with CHCHD2, however, the physiological functions of such interaction in the context of PD have not been clarified. METHODS Interaction between CHCHD2 and p32 was confirmed by co-immunoprecipitation experiments. We studied the effect of p32-knockdown in the transgenic Drosophila and Hela cells expressing the wild type and the pathogenic variants of hCHCHD2. We further investigated the rescue ability of a custom generated p32-inhibitor in these models as well as in the human fibroblast derived neural precursor cells and the dopaminergic neurons harboring hCHCHD2-Arg145Gln. RESULTS Our results showed that wildtype and mutant hCHCHD2 could bind to p32 in vitro, supported by in vivo interaction between human CHCHD2 and Drosophila p32. Knockdown of p32 reduced mutant hCHCHD2 levels in Drosophila and in vitro. In Drosophila hCHCHD2 models, inhibition of p32 through genetic knockdown and pharmacological treatment using a customized p32-inhibitor restored dopaminergic neuron numbers and improved mitochondrial morphology. These were correlated with improved locomotor function, reduced oxidative stress and decreased mortality. Consistently, Hela cells expressing mutant hCHCHD2 showed improved mitochondrial morphology and function after treatment with the p32-inhibitor. As compared to the isogenic control cells, large percentage of the mutant neural precursor cells and dopaminergic neurons harboring hCHCHD2-Arg145Gln contained fragmented mitochondria which was accompanied by lower ATP production and cell viability. The NPCs harboring hCHCHD2-Arg145Gln also had a marked increase in α-synuclein expression. The p32-inhibitor was able to ameliorate the mitochondrial fragmentation, restored ATP levels, increased cell viability and reduced α-synuclein level in these cells. CONCLUSIONS Our study identified p32 as a modulator of CHCHD2, possibly exerting its effects by reducing the toxic mutant hCHCHD2 expression and/or mitigating the downstream effects. Inhibition of the p32 pathway can be a potential therapeutic intervention for CHCHD2-linked PD and diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
| | - Rujing Wen
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Cai Ning Choo
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jian Bin Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Chua
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | | | | | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
21
|
Wang J, Xue L, Jiang J, Liu F, Wu P, Lu J, Zhang H, Bao W, Xu Q, Ju Z, Chen L, Jiao F, Lin H, Ge J, Zuo C, Tian M. Diagnostic performance of artificial intelligence-assisted PET imaging for Parkinson's disease: a systematic review and meta-analysis. NPJ Digit Med 2024; 7:17. [PMID: 38253738 PMCID: PMC10803804 DOI: 10.1038/s41746-024-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Artificial intelligence (AI)-assisted PET imaging is emerging as a promising tool for the diagnosis of Parkinson's disease (PD). We aim to systematically review the diagnostic accuracy of AI-assisted PET in detecting PD. The Ovid MEDLINE, Ovid Embase, Web of Science, and IEEE Xplore databases were systematically searched for related studies that developed an AI algorithm in PET imaging for diagnostic performance from PD and were published by August 17, 2023. Binary diagnostic accuracy data were extracted for meta-analysis to derive outcomes of interest: area under the curve (AUC). 23 eligible studies provided sufficient data to construct contingency tables that allowed the calculation of diagnostic accuracy. Specifically, 11 studies were identified that distinguished PD from normal control, with a pooled AUC of 0.96 (95% CI: 0.94-0.97) for presynaptic dopamine (DA) and 0.90 (95% CI: 0.87-0.93) for glucose metabolism (18F-FDG). 13 studies were identified that distinguished PD from the atypical parkinsonism (AP), with a pooled AUC of 0.93 (95% CI: 0.91 - 0.95) for presynaptic DA, 0.79 (95% CI: 0.75-0.82) for postsynaptic DA, and 0.97 (95% CI: 0.96-0.99) for 18F-FDG. Acceptable diagnostic performance of PD with AI algorithms-assisted PET imaging was highlighted across the subgroups. More rigorous reporting standards that take into account the unique challenges of AI research could improve future studies.
Collapse
Affiliation(s)
- Jing Wang
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Xue
- Department of Nuclear Medicine, the Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwei Zhang
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiqi Bao
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Xu
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zizhao Ju
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Ultrasound Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyang Jiao
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Huamei Lin
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
| | - Mei Tian
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Lima MMS, Targa ADS, Dos Santos Lima GZ, Cavarsan CF, Torterolo P. Macro and micro-sleep dysfunctions as translational biomarkers for Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:187-209. [PMID: 38341229 DOI: 10.1016/bs.irn.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep disturbances are highly prevalent among patients with Parkinson's disease (PD) and often appear from the early-phase disease or prodromal stages. In this chapter, we will discuss the current evidence addressing the links between sleep dysfunctions in PD, focusing most closely on those data from animal and mathematical/computational models, as well as in human-based studies that explore the electrophysiological and molecular mechanisms by which PD and sleep may be intertwined, whether as predictors or consequences of the disease. It is possible to clearly state that leucine-rich repeat kinase 2 gene (LRRK2) is significantly related to alterations in sleep architecture, particularly affecting rapid eye movement (REM) sleep and non-REM sleep, thus impacting sleep quality. Also, decreases in gamma power, observed after dopaminergic lesions, correlates negatively with the degree of injury, which brings other levels of understanding the impacts of the disease. Besides, abnormal synchronized oscillations among basal ganglia nuclei can be detrimental for information processing considering both motor and sleep-related processes. Altogether, despite clear advances in the field, it is still difficult to definitely establish a comprehensive understanding of causality among all the sleep dysfunctions with the disease itself. Although, certainly, the search for biomarkers is helping in shortening this road towards a better and faster diagnosis, as well as looking for more efficient treatments.
Collapse
Affiliation(s)
- Marcelo M S Lima
- Neurophysiology Laboratory, Department of Physiology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Adriano D S Targa
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Gustavo Z Dos Santos Lima
- Science and Technology School, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Clarissa F Cavarsan
- College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Pablo Torterolo
- Laboratory of Sleep Neurobiology, Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
23
|
Harary PM, Jgamadze D, Kim J, Wolf JA, Song H, Ming GL, Cullen DK, Chen HI. Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson's Disease and Cortical Injury. Brain Sci 2023; 13:1654. [PMID: 38137103 PMCID: PMC10741697 DOI: 10.3390/brainsci13121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.
Collapse
Affiliation(s)
- Paul M. Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Jaeha Kim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Bérard M, Martínez-Drudis L, Sheta R, El-Agnaf OMA, Oueslati A. Non-invasive systemic viral delivery of human alpha-synuclein mimics selective and progressive neuropathology of Parkinson's disease in rodent brains. Mol Neurodegener 2023; 18:91. [PMID: 38012703 PMCID: PMC10683293 DOI: 10.1186/s13024-023-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration. METHODS Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system. RESULTS Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD. CONCLUSIONS Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.
Collapse
Affiliation(s)
- Morgan Bérard
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Laura Martínez-Drudis
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
25
|
Zeng N, Wang Q, Zhang C, Zhou Y, Yan J. A review of studies on the implication of NLRP3 inflammasome for Parkinson's disease and related candidate treatment targets. Neurochem Int 2023; 170:105610. [PMID: 37704080 DOI: 10.1016/j.neuint.2023.105610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease for which the prevalence is second only to Alzheimer's disease (AD). This disease primarily affects people of middle and old age, significantly impacting their health and quality of life. The main pathological features include the degenerative nigrostriatal dopaminergic (DA) neuron loss and Lewy body (LB) formation. Currently, available PD medications primarily aim to alleviate clinical symptoms, however, there is no universally recognized therapy worldwide that effectively prevents, clinically treats, stops, or reverses the disease. Consequently, the evaluation and exploration of potential therapeutic targets for PD are of utmost importance. Nevertheless, the pathophysiology of PD remains unknown, and neuroinflammation mediated by inflammatory cytokines that prompts neuron death is fundamental for the progression of PD. The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key complex of proteins linking the neuroinflammatory cascade in PD. Moreover, mounting evidence suggests that traditional Chinese medicine (TCM) alleviates PD by suppressing the NLRP3 inflammasome. This article aims to comprehensively review the available studies on the composition and activating mechanism of the NLRP3 inflammasome, along with its significance in PD pathogenesis and potential treatment targets. We also review natural products or synthetic compounds which reduce neuroinflammation via modulating NLRP3 inflammasome activity, aiming to identify new targets for future PD diagnosis and treatment through the exploration of NLRP3 inhibitors. Additionally, this review offers valuable references for developing new PD treatment methods.
Collapse
Affiliation(s)
- Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Qi Wang
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin, 541004, China.
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
26
|
Song DY, Yuan L, Cui N, Feng C, Meng L, Wang XH, Xiang M, Liu D, Wang C, Zhang Z, Li JY, Li W. α-Synuclein induces deficiency in clathrin-mediated endocytosis through inhibiting synaptojanin1 expression. J Neurochem 2023; 167:461-484. [PMID: 37788328 DOI: 10.1111/jnc.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological disorder, mainly characterized by the pathological feature of α-synuclein (α-syn) aggregation, with the exact disease pathogenesis unclear. During the onset and progression of PD, synaptic dysfunction, including dysregulation of axonal transport, impaired exocytosis, and endocytosis are identified as crucial events of PD pathogenesis. It has been reported that over-expression of α-syn impairs clathrin-mediated endocytosis (CME) in the synapses. However, the underlying mechanisms still needs to be explored. In this study, we investigated the molecular events underlying the synaptic dysfunction caused by over-expression of wild-type human α-syn and its mutant form, involving series of proteins participating in CME. We found that excessive human α-syn causes impaired fission and uncoating of clathrin-coated vesicles during synaptic vesicle recycling, leading to reduced clustering of synaptic vesicles near the active zone and increased size of plasma membrane and number of endocytic intermediates. Furthermore, over-expressed human α-syn induced changes of CME-associated proteins, among which synaptojanin1 (SYNJ1) showed significant reduction in various brain regions. Over-expression of SYNJ1 in primary hippocampal neurons from α-syn transgenic mice recovered the synaptic vesicle density, clustering and endocytosis. Using fluorescence-conjugated transferrin, we demonstrated that SYNJ1 re-boosted the CME activity by restoring the phosphatidylinositol-4,5-bisphosphate homeostasis. Our data suggested that over-expression of α-syn disrupts synaptic function through interfering with vesicle recycling, which could be alleviated by re-availing of SYNJ1. Our study unrevealed a molecular mechanism of the synaptic dysfunction in PD pathogenesis and provided a potential therapeutic target for treating PD.
Collapse
Affiliation(s)
- Dong-Yan Song
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Na Cui
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Cong Feng
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-He Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Man Xiang
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Di Liu
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chun Wang
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia-Yi Li
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
- Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Wen Li
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
- Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Huan P, Sun X, He Z, Yang S, Wang X, Xie H, Wang L, He J. Qiji Shujiang granules alleviates dopaminergic neuronal injury of parkinson's disease by inhibiting NLRP3/Caspase-1 pathway mediated pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155019. [PMID: 37657208 DOI: 10.1016/j.phymed.2023.155019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The Qiji Shujiang granule (QJG) is a traditional Chinese drug widely used in treating PD patients. However, the potential mechanism of QJG in PD therapy is still unclear. PURPOSE This study aims to examine the neuroprotective effects of QJG and the specific mechanism by which QJG alleviates MPTP/Probenecid-induced pyroptosis and offers an alternative for PD treatment. STUDY DESIGN AND METHODS We first employed network pharmacology along with molecular docking to identify potential molecular targets and pathways. Subsequently, we validated our findings of RNA-sequencing (RNA-seq) analysis and experiments in vivo and vitro. Lentiviral systems and inhibitors were used for experiments. RESULTS The protein-protein interactions (PPI) core genes network consists of NLRP3, CASP1 (caspase-1), TP53, and MAPK8. Pathway enrichment analysis revealed that inflammatory responses related to pyroptosis were significantly enriched. The molecular docking findings showed the highest degree of centrality regarding the top three bioactive compounds following the online database. RNA-seq analysis identified that NLRP3 inflammasome was significantly downregulated in the QJG group while it was significantly upregulated in the model group. Our findings revealed that QJG dose-dependently increased the total traveled distances, enhanced the dopaminergic neurons, and accelerated the restoration of the TH protein level, showing a good antioxidant capacity through increasing the SOD levels and decreasing MDA levels. QJG significantly reduced the expression levels of NLRP3, GSDMD-N, IL-1β, and caspase-1 in striatum tissue. Furthermore, the group treated with OE-NLRP3 decreased cell viability, increased ROS and MDA levels, and promoted NLRP3, GSDMD-N, and caspase-1, in addition to IL-1β expression levels. Furthermore, OE-NLRP3+QJG treatment significantly reversed the effect. In vivo experiments, QJG dose-dependently alleviated motor impairment by increasing the total traveled distances, rescued dopaminergic neurons, inhibited oxidative stress through increasing the SOD levels and decreasing MDA levels and suppressed NLRP3-mediated pyroptosis by reducing the expression levels of NLRP3, GSDMD-N, IL-1β, and caspase-1 in MPTP induced PD Mice. Moreover, in vitro experiments, the OE-NLRP3 treated group decreased cell viability, increased ROS and MDA levels, and promoted NLRP3, GSDMD-N, caspase-1, in addition to IL-1β expression levels. Furthermore, OE-NLRP3+QJG treatment significantly reversed the effect. CONCLUSIONS This study provides pharmacological support for the use of QJG in the treatment of PD. Herein, we concluded that QJG induced the alleviation of pyroptosis by inhibiting the NLRP3/caspase-1 pathway to exert a neuroprotective effect.
Collapse
Affiliation(s)
- Pengfei Huan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue Sun
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhuqing He
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuai Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Wang
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Hui Xie
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Li Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiancheng He
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
28
|
Dharnipragada R, Denduluri LS, Naik A, Bertogliat M, Awad M, Ikramuddin S, Park MC. Frequency settings of subthalamic nucleus DBS for Parkinson's disease: A systematic review and network meta-analysis. Parkinsonism Relat Disord 2023; 116:105809. [PMID: 37604755 DOI: 10.1016/j.parkreldis.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION Deep Brain Stimulation (DBS) is an effective treatment for the motor symptoms of Parkinson's Disease. The targeted physiological structure for lead location is commonly the subthalamic nucleus (STN). The efficacy of DBS for improving motor symptoms is assessed via the Unified Parkinson's Disease Rating III Scale (UPDRS-III). In this study, we sought to compare the efficacy of frequency settings utilized for STN-DBS. METHODS Following PRISMA Guidelines, a search on PUBMED and MEDLINE was performed to include full-length randomized controlled trials evaluating STN-DBS. The frequency stimulation parameters and Unified Parkinson's Disease Rating Scale (UPDRS-III) outcomes were extracted in the search. High-frequency stimulation (HFS) was defined as ≥100 Hz and low-frequency stimulation (LFS) was defined as <100 Hz. A frequentist network meta-analysis was performed with odds ratios (OR) and pooling performed using the Mantel-Haenszel method. Statistics are presented as OR [95% CI]. RESULTS 15 studies consisting of 298 patients were included for analysis. Bilateral HFS -0.68 [-0.89; -0.46] was associated with better UPDRS-III scores compared to bilateral LFS. On the other hand, bilateral LFS with medications (MEDS) was favored over HFS with MEDS (-0.28 [-0.63; 0.07]). Bilateral LFS and MEDS, HFS and MEDS, stimulation (STIM) OFF MEDS ON, HFS, LFS, STIM OFF MEDS OFF UPDRS outcomes were ranked from best to worst outcomes. DISCUSSION The outcomes of this study suggest that bilateral HFS has better utility for those with no response to medication, while LFS has additive benefits to medication by improving unique symptoms via different neurophysiological mechanisms.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| | - Lalitha S Denduluri
- College of Liberal Arts, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, 61801, USA
| | - Mario Bertogliat
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Matthew Awad
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Michael C Park
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA; Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
29
|
Chen X, Tsika E, Levine N, Moore DJ. VPS35 and α-Synuclein fail to interact to modulate neurodegeneration in rodent models of Parkinson's disease. Mol Neurodegener 2023; 18:51. [PMID: 37542299 PMCID: PMC10403858 DOI: 10.1186/s13024-023-00641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant Parkinson's disease (PD), with a single missense mutation (Asp620Asn, D620N) known to segregate with disease in families with PD. The VPS35 gene encodes a core component of the retromer complex, involved in the endosomal sorting and recycling of transmembrane cargo proteins. VPS35-linked PD is clinically indistinguishable from sporadic PD, although it is not yet known whether VPS35-PD brains exhibit α-synuclein-positive brainstem Lewy pathology that is characteristic of sporadic cases. Prior studies have suggested a functional interaction between VPS35 and the PD-linked gene product α-synuclein in lower organisms, where VPS35 deletion enhances α-synuclein-induced toxicity. In mice, VPS35 overexpression is reported to rescue hippocampal neuronal loss in human α-synuclein transgenic mice, potentially suggesting a retromer deficiency in these mice. METHODS Here, we employ multiple well-established genetic rodent models to explore a functional or pathological interaction between VPS35 and α-synuclein in vivo. RESULTS We find that endogenous α-synuclein is dispensable for nigrostriatal pathway dopaminergic neurodegeneration induced by the viral-mediated delivery of human D620N VPS35 in mice, suggesting that α-synuclein does not operate downstream of VPS35. We next evaluated retromer levels in affected brain regions from human A53T-α-synuclein transgenic mice, but find normal levels of the core subunits VPS35, VPS26 or VPS29. We further find that heterozygous VPS35 deletion fails to alter the lethal neurodegenerative phenotype of these A53T-α-synuclein transgenic mice, suggesting the absence of retromer deficiency in this PD model. Finally, we explored the neuroprotective capacity of increasing VPS35 expression in a viral-based human wild-type α-synuclein rat model of PD. However, we find that the overexpression of wild-type VPS35 is not sufficient for protection against α-synuclein-induced nigral dopaminergic neurodegeneration, α-synuclein pathology and reactive gliosis. CONCLUSION Collectively, our data suggest a limited interaction of VPS35 and α-synuclein in neurodegenerative models of PD, and do not provide support for their interaction within a common pathophysiological pathway.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Elpida Tsika
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Vaud, 1015, Switzerland
- AC Immune SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Nathan Levine
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
30
|
Mertiens S, Sure M, Schnitzler A, Florin E. Alterations of PAC-based resting state networks in Parkinson's disease are partially alleviated by levodopa medication. Front Syst Neurosci 2023; 17:1219334. [PMID: 37588811 PMCID: PMC10427244 DOI: 10.3389/fnsys.2023.1219334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Parkinson's disease (PD) is a neurodegenerative disorder affecting the whole brain, leading to several motor and non-motor symptoms. In the past, it has been shown that PD alters resting state networks (RSN) in the brain. These networks are usually derived from fMRI BOLD signals. This study investigated RSN changes in PD patients based on maximum phase-amplitude coupling (PAC) throughout the cortex. We also tested the hypothesis that levodopa medication shifts network activity back toward a healthy state. Methods We recorded 23 PD patients and 24 healthy age-matched participants for 30 min at rest with magnetoencephalography (MEG). PD patients were measured once in the dopaminergic medication ON and once in the medication OFF state. A T1-MRI brain scan was acquired from each participant for source reconstruction. After correcting the data for artifacts and performing source reconstruction using a linearly constrained minimum variance beamformer, we extracted visual, sensorimotor (SMN), and frontal RSNs based on PAC. Results We found significant changes in all networks between healthy participants and PD patients in the medication OFF state. Levodopa had a significant effect on the SMN but not on the other networks. There was no significant change in the optimal PAC coupling frequencies between healthy participants and PD patients. Discussion Our results suggest that RSNs, based on PAC in different parts of the cortex, are altered in PD patients. Furthermore, levodopa significantly affects the SMN, reflecting the clinical alleviation of motor symptoms and leading to a network normalization compared to healthy controls.
Collapse
Affiliation(s)
- Sean Mertiens
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Sure
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Shama A, Soni T, Jawanda IK, Upadhyay G, Sharma A, Prabha V. The Latest Developments in Using Proteomic Biomarkers from Urine and Serum for Non-Invasive Disease Diagnosis and Prognosis. Biomark Insights 2023; 18:11772719231190218. [PMID: 37528936 PMCID: PMC10387783 DOI: 10.1177/11772719231190218] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Due to diagnostic improvements, medical diagnostics is demanding non-invasive or minimally invasive methods. Non-invasively obtained body fluids (eg., Urine, serum) can replace cerebral fluid, amniotic fluid, synovial fluid, bronchoalveolar lavage fluid, and others for diagnostic reasons. Many illnesses are induced by perturbations of cellular signaling pathways and associated pathway networks as a result of genetic abnormalities. These disturbances are represented by a shift in the protein composition of the fluids surrounding the tissues and organs that is, tissue interstitial fluid (TIF). These variant proteins may serve as diagnostic "signatures" for a variety of disorders. This review provides a concise summary of urine and serum biomarkers that may be used for the diagnosis and prognosis of a variety of disorders, including cancer, brain diseases, kidney diseases, and other system diseases. The studies reviewed in this article suggest that serum and urine biomarkers of various illnesses may be therapeutically useful for future diagnostics. Correct illness management is crucial for disease prognosis, hence non-invasive serum and urine biomarkers have been extensively studied for diagnosis, subclassification, monitoring disease activity, and predicting treatment results and consequences.
Collapse
Affiliation(s)
- Anurag Shama
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Garima Upadhyay
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anshika Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijay Prabha
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Dharnipragada R, Denduluri LS, Naik A, Bertogliat M, Awad M, Ikramuddin S, Park MC. WITHDRAWN: Laterality and frequency settings of subthalamic nucleus DBS for Parkinson's disease: A systematic review and network meta-analysis. Parkinsonism Relat Disord 2023:105455. [PMID: 37321937 DOI: 10.1016/j.parkreldis.2023.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| | - Lalitha S Denduluri
- College of Liberal Arts, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, 61801, USA
| | - Mario Bertogliat
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Matthew Awad
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Michael C Park
- Department of Neurology, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA; Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
33
|
Copley KE, Shorter J. Repetitive elements in aging and neurodegeneration. Trends Genet 2023; 39:381-400. [PMID: 36935218 PMCID: PMC10121923 DOI: 10.1016/j.tig.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
Repetitive elements (REs), such as transposable elements (TEs) and satellites, comprise much of the genome. Here, we review how TEs and (peri)centromeric satellite DNA may contribute to aging and neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Alterations in RE expression, retrotransposition, and chromatin microenvironment may shorten lifespan, elicit neurodegeneration, and impair memory and movement. REs may cause these phenotypes via DNA damage, protein sequestration, insertional mutagenesis, and inflammation. We discuss several TE families, including gypsy, HERV-K, and HERV-W, and how TEs interact with various factors, including transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) and the siRNA and piwi-interacting (pi)RNA systems. Studies of TEs in neurodegeneration have focused on Drosophila and, thus, further examination in mammals is needed. We suggest that therapeutic silencing of REs could help mitigate neurodegenerative disorders.
Collapse
Affiliation(s)
- Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Chang KH, Liu CH, Wang YR, Lo YS, Chang CW, Wu HC, Chen CM. Upregulation of APAF1 and CSF1R in Peripheral Blood Mononuclear Cells of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24087095. [PMID: 37108258 PMCID: PMC10139006 DOI: 10.3390/ijms24087095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Increased oxidative stress and neuroinflammation play a crucial role in the pathogenesis of Parkinson's disease (PD). In this study, the expression levels of 52 genes related to oxidative stress and inflammation were measured in peripheral blood mononuclear cells of the discovery cohort including 48 PD patients and 25 healthy controls. Four genes, including ALDH1A, APAF1, CR1, and CSF1R, were found to be upregulated in PD patients. The expression patterns of these genes were validated in a second cohort of 101 PD patients and 61 healthy controls. The results confirmed the upregulation of APAF1 (PD: 0.34 ± 0.18, control: 0.26 ± 0.11, p < 0.001) and CSF1R (PD: 0.38 ± 0.12, control: 0.33 ± 0.10, p = 0.005) in PD patients. The expression level of APAF1 was correlated with the scores of the Unified Parkinson's Disease Rating Scale (UPDRS, r = 0.235, p = 0.018) and 39-item PD questionnaire (PDQ-39, r = 0.250, p = 0.012). The expression level of CSF1R was negatively correlated with the scores of the mini-mental status examination (MMSE, r = -0.200, p = 0.047) and Montréal Cognitive Assessment (MoCA, r = -0.226, p = 0.023). These results highly suggest that oxidative stress biomarkers in peripheral blood may be useful in monitoring the progression of motor disabilities and cognitive decline in PD patients.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Hsin Liu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Ru Wang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Wei Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
35
|
Hariz M. Pros and Cons of Ablation for Functional Neurosurgery in the Neurostimulation Age. Neurosurg Clin N Am 2023; 34:291-299. [PMID: 36906335 DOI: 10.1016/j.nec.2022.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Should one recommend stereotactic ablation for Parkinson disease, tremor, dystonia, and obsessive compulsive disorder, in this era of DBS? The answer depends on several variables such as the symptoms to treat, the patient's preferences and expectations, the surgeons' competence and preference, the availability of financial means (by government health care, by private insurance), the geographical issues, and not least the current and dominating fashion at that particular time. Both ablation and stimulation can be either used alone or even combined (provided expertise in both of them) to treat various symptoms of movement and mind disorders.
Collapse
Affiliation(s)
- Marwan Hariz
- Department of Clinical Neuroscience, University Hospital, Umeå 90185, Sweden.
| |
Collapse
|
36
|
Ham S, Kim JH, Kim H, Shin JY, Lee Y. ATF4-activated parkin induction contributes to deferasirox-mediated cytoprotection in Parkinson's disease. Toxicol Res 2023; 39:191-199. [PMID: 37008698 PMCID: PMC10050497 DOI: 10.1007/s43188-022-00157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The E3 ubiquitin ligase parkin plays neuroprotective functions in the brain and the deficits of parkin's ligase function in Parkinson's disease (PD) is associated with reduced survival of dopaminergic neurons. Thus, compounds enhancing parkin expression have been developed as potential neuroprotective agents that prevent ongoing neurodegeneration in PD environments. Besides, iron chelators have been shown to have neuroprotective effects in diverse neurological disorders including PD. Although repression of iron accumulation and oxidative stress in brains has been implicated in their marked neuroprotective potential, molecular mechanisms of iron chelator's neuroprotective function are largely unexplored. Here, we show that the iron chelator deferasirox provides cytoprotection against oxidative stress through enhancing parkin expression under basal conditions. Parkin expression is required for cytoprotection against oxidative stress in SH-SY5Y cells with deferasirox treatment as confirmed by abolished deferasirox's cytoprotective effect after parkin knockdown by shRNA. Similar to the previously reported parkin inducing compound diaminodiphenyl sulfone, deferasirox-mediated parkin expression was induced by activation of the PERK-ATF4 pathway, which is associated with and stimulated by mild endoplasmic reticulum stress. The translational potential of deferasirox for PD treatment was further evaluated in cultured mouse dopaminergic neurons. There was a robust ATF4 activation and parkin expression in response to deferasirox treatment in dopaminergic neurons under basal conditions. Consequently, the enhanced parkin expression by deferasirox provided substantial neuroprotection against 6-hydroxydopamine-induced oxidative stress. Taken together, our study results revealed a novel mechanism through which an iron chelator, deferasirox induces neuroprotection. Since parkin function in the brain is compromised in PD and during aging, maintenance of parkin expression through the iron chelator treatment could be beneficial by increasing dopaminergic neuronal survival.
Collapse
Affiliation(s)
- Sangwoo Ham
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 16419 Suwon, Gyeonggi-do Republic of Korea
| | - Ji Hun Kim
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 16419 Suwon, Gyeonggi-do Republic of Korea
| | - Heejeong Kim
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 16419 Suwon, Gyeonggi-do Republic of Korea
| | - Jeong-Yong Shin
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 16419 Suwon, Gyeonggi-do Republic of Korea
| | - Yunjong Lee
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 16419 Suwon, Gyeonggi-do Republic of Korea
| |
Collapse
|
37
|
Zhou J, Li J, Papaneri AB, Cui G. AJ76 and UH232 as potential agents for diagnosing early-stage Parkinson's disease. Neuropharmacology 2023; 226:109397. [PMID: 36623805 PMCID: PMC9901527 DOI: 10.1016/j.neuropharm.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
We recently reported that the "Dopamine Neuron Challenge Test" (DNC Test), a diagnostic method that measures the levels of dopamine metabolites in cerebrospinal fluid (CSF) and plasma samples after pharmacologically inducing a transient dopamine release, can detect early-stage Parkinson's disease (PD) with high sensitivity and selectivity in mouse models. The use of haloperidol in the original DNC test to challenge dopamine neurons was less than ideal, as it may cause extrapyramidal motor symptoms. Here we report an improved DNC Test, in which the original challenging agents, haloperidol and methylphenidate, are replaced by a single challenging agent, a dopamine autoreceptor preferring antagonist AJ76 or UH232. We show that the improved DNC Test can achieve the same level of sensitivity and selectivity in detecting early PD in a mouse model without causing motor side effects. These findings significantly improve the practicality of using the DNC Test as a screening or diagnostic test for detecting early-stage PD in the high-risk population in humans.
Collapse
Affiliation(s)
- Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Jicheng Li
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Amy B Papaneri
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
38
|
Animal toxins: As an alternative therapeutic target following ischemic stroke condition. Life Sci 2023; 317:121365. [PMID: 36640901 DOI: 10.1016/j.lfs.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Globally, Ischemic stroke (IS) has become the second leading cause of mortality and chronic disability. The process of IS has triggered by the blockages of blood vessels to form clots in the brain which initiates multiple interactions with the key signaling pathways, counting excitotoxicity, acidosis, ionic imbalance, inflammation, oxidative stress, and neuronal dysfunction of cells, and ultimately cells going under apoptosis. Currently, FDA has approved only tissue plasminogen activator therapy, which is effective against IS with few limitations. However, the mechanism of excitotoxicity and acidosis has spurred the investigation of a potential candidate for IS therapy. Acid-sensing ion channels (ASICs) and Voltage-gated Ca2+ channels (VDCCs) get activated and disturb the brain's normal physiology. Animal toxins are novel inhibitors of ASICs and VDCCs channels and have provided neuroprotective insights into the pathophysiology of IS. This review will discuss the potential directions of translational ASICs and VDCCs inhibitors research for clinical therapies.
Collapse
|
39
|
Corral Nieto Y, Yakhine-Diop SMS, Moreno-Cruz P, Manrique García L, Gabrielly Pereira A, Morales-García JA, Niso-Santano M, González-Polo RA, Uribe-Carretero E, Durand S, Maiuri MC, Paredes-Barquero M, Alegre-Cortés E, Canales-Cortés S, López de Munain A, Pérez-Tur J, Pérez-Castillo A, Kroemer G, Fuentes JM, Bravo-San Pedro JM. Changes in Liver Lipidomic Profile in G2019S- LRRK2 Mouse Model of Parkinson's Disease. Cells 2023; 12:cells12050806. [PMID: 36899942 PMCID: PMC10000529 DOI: 10.3390/cells12050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The identification of Parkinson's disease (PD) biomarkers has become a main goal for the diagnosis of this neurodegenerative disorder. PD has not only been intrinsically related to neurological problems, but also to a series of alterations in peripheral metabolism. The purpose of this study was to identify metabolic changes in the liver in mouse models of PD with the scope of finding new peripheral biomarkers for PD diagnosis. To achieve this goal, we used mass spectrometry technology to determine the complete metabolomic profile of liver and striatal tissue samples from WT mice, 6-hydroxydopamine-treated mice (idiopathic model) and mice affected by the G2019S-LRRK2 mutation in LRRK2/PARK8 gene (genetic model). This analysis revealed that the metabolism of carbohydrates, nucleotides and nucleosides was similarly altered in the liver from the two PD mouse models. However, long-chain fatty acids, phosphatidylcholine and other related lipid metabolites were only altered in hepatocytes from G2019S-LRRK2 mice. In summary, these results reveal specific differences, mainly in lipid metabolism, between idiopathic and genetic PD models in peripheral tissues and open up new possibilities to better understand the etiology of this neurological disorder.
Collapse
Affiliation(s)
- Yaiza Corral Nieto
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sokhna M. S. Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Paula Moreno-Cruz
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Manrique García
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Amanda Gabrielly Pereira
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José A. Morales-García
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Rosa A. González-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Maria Chiara Maiuri
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, OSAKIDETZA, 20014 San Sebastian, Spain
- Ilundain Foundation, 20018 San Sebastian, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, 20014 San Sebastián, Spain
| | - Jordi Pérez-Tur
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Biomedicina de Valencia-CSIC, Unidad de Genética Molecular, 46010 Valencia, Spain
- Unidad Mixta de Genética y Neurología, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ana Pérez-Castillo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hopital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
- Correspondence: (J.M.F.); (J.M.B.-S.P.)
| | - José M. Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Correspondence: (J.M.F.); (J.M.B.-S.P.)
| |
Collapse
|
40
|
Ledonne A, Massaro Cenere M, Paldino E, D'Angelo V, D'Addario SL, Casadei N, Nobili A, Berretta N, Fusco FR, Ventura R, Sancesario G, Guatteo E, Mercuri NB. Morpho-Functional Changes of Nigral Dopamine Neurons in an α-Synuclein Model of Parkinson's Disease. Mov Disord 2023; 38:256-266. [PMID: 36350188 DOI: 10.1002/mds.29269] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The accumulation of α-synuclein (α-syn) fibrils in intraneuronal inclusions called Lewy bodies and Lewy neurites is a pathological signature of Parkinson's disease (PD). Although several aspects linked to α-syn-dependent pathology (concerning its spreading, aggregation, and activation of inflammatory and neurodegenerative processes) have been under intense investigation, less attention has been devoted to the real impact of α-syn overexpression on structural and functional properties of substantia nigra pars compacta (SNpc) dopamine (DA) neurons, particularly at tardive stages of α-syn buildup, despite this has obvious relevance to comprehending mechanisms beyond PD progression. OBJECTIVES We aimed to determine the consequences of a prolonged α-syn overexpression on somatodendritic morphology and functions of SNpc DA neurons. METHODS We performed immunohistochemistry, stereological DA cell counts, analyses of dendritic arborization, ex vivo patch-clamp recordings, and in vivo DA microdialysis measurements in a 12- to 13-month-old transgenic rat model overexpressing the full-length human α-syn (Snca+/+ ) and age-matched wild-type rats. RESULTS Aged Snca+/+ rats have mild loss of SNpc DA neurons and decreased basal DA levels in the SN. Residual nigral DA neurons display smaller soma and compromised dendritic arborization and, in parallel, increased firing activity, switch in firing mode, and hyperexcitability associated with hypofunction of fast activating/inactivating voltage-gated K+ channels and Ca2+ - and voltage-activated large conductance K+ channels. These intrinsic currents underlie the repolarization/afterhyperpolarization phase of action potentials, thus affecting neuronal excitability. CONCLUSIONS Besides clarifying α-syn-induced pathological landmarks, such evidence reveals compensatory functional mechanisms that nigral DA neurons could adopt during PD progression to counteract neurodegeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Mariangela Massaro Cenere
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Paldino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Vincenza D'Angelo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sebastian Luca D'Addario
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Psychology and Center "Daniel Bovet, University of Rome La Sapienza, Rome, Italy
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Annalisa Nobili
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
| | - Nicola Berretta
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Rossella Ventura
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Psychology and Center "Daniel Bovet, University of Rome La Sapienza, Rome, Italy
| | | | - Ezia Guatteo
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Motor Science and Wellness, Parthenope University, Naples, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
41
|
Correa BH, Moreira CR, Hildebrand ME, Vieira LB. The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:183-201. [PMID: 35339179 PMCID: PMC10190140 DOI: 10.2174/1570159x20666220327211156] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Calcium (Ca2+) plays a central role in regulating many cellular processes and influences cell survival. Several mechanisms can disrupt Ca2+ homeostasis to trigger cell death, including oxidative stress, mitochondrial damage, excitotoxicity, neuroinflammation, autophagy, and apoptosis. Voltage-gated Ca2+ channels (VGCCs) act as the main source of Ca2+ entry into electrically excitable cells, such as neurons, and they are also expressed in glial cells such as astrocytes and oligodendrocytes. The dysregulation of VGCC activity has been reported in both Parkinson's disease (PD) and Huntington's (HD). PD and HD are progressive neurodegenerative disorders (NDs) of the basal ganglia characterized by motor impairment as well as cognitive and psychiatric dysfunctions. This review will examine the putative role of neuronal VGCCs in the pathogenesis and treatment of central movement disorders, focusing on PD and HD. The link between basal ganglia disorders and VGCC physiology will provide a framework for understanding the neurodegenerative processes that occur in PD and HD, as well as a possible path towards identifying new therapeutic targets for the treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Bernardo H.M. Correa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Roberto Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
42
|
Shin JY, Lee B, Ham S, Kim JH, Kim H, Kim H, Jo MG, Kim HJ, Park SW, Kweon HS, Kim YJ, Yun SP, Lee Y. Pharmacological inhibition of AIMP2 aggregation attenuates α-synuclein aggregation and toxicity in Parkinson’s disease. Biomed Pharmacother 2022; 156:113908. [DOI: 10.1016/j.biopha.2022.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022] Open
|
43
|
Gallou-Guyot M, Nuic D, Mandigout S, Compagnat M, Welter ML, Daviet JC, Perrochon A. Effectiveness of home-based rehabilitation using active video games on quality of life, cognitive and motor functions in people with Parkinson's disease: a systematic review. Disabil Rehabil 2022; 44:8222-8233. [PMID: 34982599 DOI: 10.1080/09638288.2021.2022780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE We summarized the effectiveness of home-based active video game interventions on physical and cognitive functions, as well as quality of life in adults with Parkinson's disease. We also assessed the feasibility, safety, adherence, and retention of benefits of these interventions. METHOD We searched studies in eight databases from 1st March to 30th November 2020. Two authors independently performed the selection, data extraction and risk of bias evaluation (PROSPERO ID: CRD42020178138). RESULTS Nine studies were included in this systematic review (412 participants). All in all, home-based active video games were found effective in improving gait and balance functions in people with Parkinson's disease, equivalent to usual care and conventional therapy. No conclusion can be drawn on cognition and quality of life. Home-based active video games seemed feasible, safe, and were enjoyed by people with Parkinson's disease. The optimal dose, the need for supervision and the retention of benefits of these interventions are still to be determined. These results should be interpreted carefully, considering the limited number of included studies and their small sample sizes, the widespread heterogeneity of included studies and their medium average methodological quality. CONCLUSION Future research should focus on the effects of home-based active video games on impairments specific to Parkinson's disease, such as falls, freezing of gait and attention, as well as the dose, need for supervision and retention of the benefits of these interventions.IMPLICATIONS FOR REHABILITATIONHome-based active video games are effective in improving motor functions in people with PD.No conclusion can be drawn regarding cognition in people with PD.No conclusion can be drawn regarding quality of life in people with PD.Home-based active video games seem feasible and safe, and are enjoyed by people with PD.The dose, need for control and retention of the benefits still need to be determined.
Collapse
Affiliation(s)
- M Gallou-Guyot
- Laboratoire Handicap, Activités Vieillissement, Autonomie, Environnement (HAVAE, EA 6310), Faculté des Sciences et Techniques, Université de Limoges, Limoges, France
| | - D Nuic
- Institut du Cerveau, Sorbonne Université, CNRS UMR 7225, INSERM 1127, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - S Mandigout
- Laboratoire Handicap, Activités Vieillissement, Autonomie, Environnement (HAVAE, EA 6310), Faculté des Sciences et Techniques, Université de Limoges, Limoges, France
| | - M Compagnat
- Laboratoire Handicap, Activités Vieillissement, Autonomie, Environnement (HAVAE, EA 6310), Faculté des Sciences et Techniques, Université de Limoges, Limoges, France.,Pôle Neurosciences tête et cou, Service de Médecine Physique et de Réadaptation, Hôpital Rebeyrol, CHU Limoges, Limoges, France
| | - M L Welter
- Institut du Cerveau, Sorbonne Université, CNRS UMR 7225, INSERM 1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Département de Neurophysiologie, CHU Rouen, Rouen, France
| | - J C Daviet
- Laboratoire Handicap, Activités Vieillissement, Autonomie, Environnement (HAVAE, EA 6310), Faculté des Sciences et Techniques, Université de Limoges, Limoges, France.,Pôle Neurosciences tête et cou, Service de Médecine Physique et de Réadaptation, Hôpital Rebeyrol, CHU Limoges, Limoges, France
| | - A Perrochon
- Laboratoire Handicap, Activités Vieillissement, Autonomie, Environnement (HAVAE, EA 6310), Faculté des Sciences et Techniques, Université de Limoges, Limoges, France
| |
Collapse
|
44
|
Tiwari S, Singh A, Gupta P, Singh S. UBA52 Is Crucial in HSP90 Ubiquitylation and Neurodegenerative Signaling during Early Phase of Parkinson's Disease. Cells 2022; 11:cells11233770. [PMID: 36497031 PMCID: PMC9738938 DOI: 10.3390/cells11233770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Protein aggregation is one of the major pathological events in age-related Parkinson's disease (PD) pathology, predominantly regulated by the ubiquitin-proteasome system (UPS). UPS essentially requires core component ubiquitin; however, its role in PD pathology is obscure. This study aimed to investigate the role of ubiquitin-encoding genes in sporadic PD pathology. Both cellular and rat models of PD as well as SNCA C57BL/6J-Tg (Th-SNCA*A30P*A53T)39 Eric/J transgenic mice showed a decreased abundance of UBA52 in conjunction with significant downregulation of tyrosine hydroxylase (TH) and neuronal death. In silico predictions, mass spectrometric analysis, and co-immunoprecipitation findings suggested the protein-protein interaction of UBA52 with α-synuclein, HSP90 and E3-ubiquitin ligase CHIP, and its co-localization with α-synuclein in the mitochondrion. Next, in vitro ubiquitylation assay indicated an imperative requirement of the lysine-63 residue of UBA52 in CHIP-mediated HSP90 ubiquitylation. Myc-UBA52 expressed neurons inhibited alteration in PD-specific markers such as α-synuclein and TH protein along with increased proteasome activity in diseased conditions. Furthermore, Myc-UBA52 expression inhibited the altered protein abundance of HSP90 and its various client proteins, HSP75 (homolog of HSP90 in mitochondrion) and ER stress-related markers during early PD. Taken together, the data highlights the critical role of UBA52 in HSP90 ubiquitylation in parallel to its potential contribution to the modulation of various disease-related neurodegenerative signaling targets during the early phase of PD pathology.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Gupta
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
45
|
Yi S, Wang L, Wang H, Ho MS, Zhang S. Pathogenesis of α-Synuclein in Parkinson's Disease: From a Neuron-Glia Crosstalk Perspective. Int J Mol Sci 2022; 23:14753. [PMID: 36499080 PMCID: PMC9739123 DOI: 10.3390/ijms232314753] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. The classical behavioral defects of PD patients involve motor symptoms such as bradykinesia, tremor, and rigidity, as well as non-motor symptoms such as anosmia, depression, and cognitive impairment. Pathologically, the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the accumulation of α-synuclein (α-syn)-composed Lewy bodies (LBs) and Lewy neurites (LNs) are key hallmarks. Glia are more than mere bystanders that simply support neurons, they actively contribute to almost every aspect of neuronal development and function; glial dysregulation has been implicated in a series of neurodegenerative diseases including PD. Importantly, amounting evidence has added glial activation and neuroinflammation as new features of PD onset and progression. Thus, gaining a better understanding of glia, especially neuron-glia crosstalk, will not only provide insight into brain physiology events but also advance our knowledge of PD pathologies. This review addresses the current understanding of α-syn pathogenesis in PD, with a focus on neuron-glia crosstalk. Particularly, the transmission of α-syn between neurons and glia, α-syn-induced glial activation, and feedbacks of glial activation on DA neuron degeneration are thoroughly discussed. In addition, α-syn aggregation, iron deposition, and glial activation in regulating DA neuron ferroptosis in PD are covered. Lastly, we summarize the preclinical and clinical therapies, especially targeting glia, in PD treatments.
Collapse
Affiliation(s)
| | | | | | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
46
|
Docherty J, Leheste JR, Mancini J, Yao S. Preliminary Effects of Osteopathic Manipulative Medicine on Reactive Oxygen Species in Parkinson’s Disease: A Randomized Controlled Pilot Study. Cureus 2022; 14:e31504. [DOI: 10.7759/cureus.31504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
|
47
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative illness with both motor and nonmotor symptoms. Deep brain stimulation (DBS) is an established safe neurosurgical symptomatic therapy for eligible patients with advanced disease in whom medical treatment fails to provide adequate symptom control and good quality of life, or in whom dopaminergic medications induce severe side effects such as dyskinesias. DBS can be tailored to the patient's symptoms and targeted to various nodes along the basal ganglia-thalamus circuitry, which mediates the various symptoms of the illness; DBS in the thalamus is most efficient for tremors, and DBS in the pallidum most efficient for rigidity and dyskinesias, whereas DBS in the subthalamic nucleus (STN) can treat both tremors, akinesia, rigidity and dyskinesias, and allows for decrease in doses of medications even in patients with advanced stages of the disease, which makes it the preferred target for DBS. However, DBS in the STN assumes that the patient is not too old, with no cognitive decline or relevant depression, and does not exhibit severe and medically resistant axial symptoms such as balance and gait disturbances, and falls. Dysarthria is the most common side effect of DBS, regardless of the brain target. DBS has a long-lasting effect on appendicular symptoms, but with progression of disease, nondopaminergic axial features become less responsive to DBS. DBS for PD is highly specialised; to enable adequate selection and follow-up of patients, DBS requires dedicated multidisciplinary teams of movement disorder neurologists, functional neurosurgeons, specialised DBS nurses and neuropsychologists.
Collapse
Affiliation(s)
- Marwan Hariz
- Department of Clinical Neuroscience, University Hospital of Umeå, Umeå, Sweden.,UCL-Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Neuroscience, University Hospital of Umeå, Umeå, Sweden
| |
Collapse
|
48
|
Role of gut microbiota-derived branched-chain amino acids in the pathogenesis of Parkinson's disease: An animal study. Brain Behav Immun 2022; 106:307-321. [PMID: 36126853 DOI: 10.1016/j.bbi.2022.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation caused by the disorder of gut microbiota and its metabolites is associated with the pathogenesis of Parkinson's disease (PD). Thus, it is necessary to identify certain molecules derived from gut microbiota to verify whether they could become intervention targets for the treatment of PD. The branched-chain amino acids (BCAAs), as a common dietary supplement, could modulate brain function. Herein, we investigated the longitudinal shifts of microbial community in mice treated with rotenone for 0, 3 and 4 weeks by 16S rRNA gene sequencing to identify the microbial markers at different PD stages. Serum BCAAs were determined by gas chromatography-mass spectrometry. Then, rotenone-induced mice were given a high BCAA diet to evaluate the motor and non-motor functions, dopaminergic neuron loss, and inflammation levels. Using a PD mouse model, we discovered that during PD progression, the alterations of gut microbiota compositions led to the peripheral decrease of BCAAs. Based on the serum lipopolysaccharide binding protein concentrations and the levels of pro-inflammatory factors (including tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) in the colon and substantia nigra, we found that the high BCAA diet could attenuate the inflammatory levels in PD mice, and reverse motor and non-motor dysfunctions and dopaminergic neuron impairment. Together, our results emphasize the dynamic changes of gut microbiota and BCAA metabolism and propose a novel strategy for PD therapy: a high BCAA diet intervention could improve PD progression by regulating the levels of inflammation.
Collapse
|
49
|
Jawad Ul Hasnain M, Amin F, Ghani A, Ahmad S, Rahman Z, Aslam T, Pervez MT. Structural and Functional Impact of Damaging Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) on Human VPS35 Protein Using Computational Approaches. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3715-3724. [PMID: 34613918 DOI: 10.1109/tcbb.2021.3118054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Parkinson's disease is the second most common progressive neurodegenerative movement disorder. Mutations in retromer complex subunit and VPS35 represent the second most common cause of late-onset familial Parkinson's disease. The mutation in VPS35 can disrupt the normal protein functions resulting in Parkinson's disease. The aim of this study was the identification of deleterious missense Single Nucleotide Polymorphisms (nsSNPs) and their structural and functional impact on the VPS35 protein. In this study, several insilico tools were used to identify deleterious and disease-associated nsSNPs. 3D structure of VPS35 protein was constructed through MODELLER 9.2, normalized using FOLDX, and evaluated through RAMPAGE and ERRAT whereas, FOLDX was used for mutagenesis. 25 ligands were obtained from literature and docked using PyRx 0.8 software. Based on the binding affinity, five ligands i.e., PG4, MSE, GOL, EDO, and CAF were further analyzed. Molecular Dynamic simulation analysis was performed using GROMACS 5.1.4, where temperature, pressure, density, RMSD, RMSF, Rg, and SASA graphs were analyzed. The results showed that the mutations Y67H, R524W, and D620N had a structural and functional impact on the VPS35 protein. The current findings will help in appropriate drug design against the disease caused by these mutations in a large population using in-vitro study.
Collapse
|
50
|
Fazlollahi A, Zahmatyar M, Alizadeh H, Noori M, Jafari N, Nejadghaderi SA, Sullman MJM, Gharagozli K, Kolahi AA, Safiri S. Association between gout and the development of Parkinson's disease: a systematic review and meta-analysis. BMC Neurol 2022; 22:383. [PMID: 36221048 PMCID: PMC9552480 DOI: 10.1186/s12883-022-02874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND As a natural antioxidant, uric acid plays a protective role against neurodegenerative disorders, including Parkinson's disease (PD). Therefore, the risk of PD has been found to be lower in people with hyperuricemia. In this article, we conducted a systematic review and meta-analysis to investigate whether gout affects the future risk of developing PD. METHODS We searched PubMed, Scopus, the Web of Science, and Google Scholar to find relevant studies, up to March 16, 2022. Studies investigating the risk of PD, following a gout diagnosis, were included if they were cross-sectional, case-control or cohort studies. The Newcastle Ottawa Scale (NOS) checklist was used to assess the quality of all included studies. The meta-analysis was performed using STATA 17.0. RESULTS Ten studies were included, which were comprised of three case-controls, six cohort studies and one nested case-control study. We found no significant association between gout and the risk of PD among both sexes (RR = 0.94, 95% CI: 0.86-1.04), although the association was significant for females (RR = 1.09; 95% CI: 1.02-1.17). Subgroup analysis also showed no significant findings by age group, whether they were receiving treatment for gout, study design, quality assessment score, and method of gout ascertainment. In contrast, the studies that defined PD according to the use of drugs showed significant results (RR = 0.82; 95% CI: 0.76-0.89). There was a significant publication bias on the association between gout and PD. CONCLUSIONS The presence of gout had no significant effect on the risk of subsequently developing PD. Further analyses are recommended to investigate the effects of demographic and behavioral risk factors.
Collapse
Affiliation(s)
- Asra Fazlollahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Zahmatyar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Alizadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Jafari
- Department of Epidemiology and Biostatistics, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Koroush Gharagozli
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|