1
|
Gao Y, Meng X, Zhu H, Zao X, Wu D, Guo Q, Li X, Dong H, Zhang D. Exosomes Derived from the Serum of Mice That Received a Huoxue Yiqi Recipe Promote Angiogenesis Following Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40358553 DOI: 10.1021/acsami.5c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Proangiogenic therapy offers a promising strategy for treating and preventing heart failure and cardiac remodeling following a myocardial infarction (MI). Although exosome-based proangiogenic therapy has significant potential in regenerative medicine and MI treatment, its application remains limited by suboptimal therapeutic efficacy. Here, we present exosomes (HXYQR-Exo) derived from the serum of mice treated with the Huoxue Yiqi Recipe (HXYQR) to promote angiogenesis and repair cardiac tissue post-MI, with a systematic elucidation of the underlying mechanisms. Our findings show that HXYQR-Exo incorporates pharmaceutically active components of HXYQR, enhancing the proliferation, invasion, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) under hypoxic conditions. In vivo studies demonstrate significant improvements in cardiac function and angiogenesis. Mechanistic investigations reveal that these effects are mediated through the activation of the HIF-1α/VEGF, Focal Adhesion Kinase (FAK), and p38/Mitogen-Activated Protein Kinase-Activated Protein Kinase (MAPKAPK)/Heat Shock Protein 27 (HSP27) pathways. This study introduces an exosome-based approach for MI treatment and cardiac repair, offering an effective strategy to enhance exosome biological activities and functions via traditional Chinese medicine preconditioning.
Collapse
Affiliation(s)
- Yijie Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Beijing 100700, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
- National Center for Integrative Medicine; Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
| | - Haiyan Zhu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Haiyuncang, Beijing 100700, China
| | - Xiaobin Zao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Beijing 100700, China
| | - Dandan Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Beijing 100700, China
| | - Qianqian Guo
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Beijing 100700, China
| | - Xianlun Li
- National Center for Integrative Medicine; Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Beijing 100700, China
| |
Collapse
|
2
|
Ozkara G, Aslan EI, Malikova F, Aydogan C, Ser OS, Kilicarslan O, Dalgic SN, Yildiz A, Ozturk O, Yilmaz-Aydogan H. Endothelin-converting Enzyme-1b Genetic Variants Increase the Risk of Coronary Artery Ectasia. Biochem Genet 2025; 63:1806-1823. [PMID: 38625594 DOI: 10.1007/s10528-024-10810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Coronary artery ectasia (CAE), defined as a 1.5-fold or greater enlargement of a coronary artery segment compared to the adjacent normal coronary artery, is frequently associated with atherosclerotic coronary artery disease (CAD). Membrane-bound endothelin converting enzyme-1 (ECE-1) is involved in the maturation process of the most potent vasoconstrictor ET-1. Polymorphisms in the endothelin (ET) gene family have been shown associated with the development of atherosclerosis. This study aims to investigate the effects of rs213045 and rs2038089 polymorphisms in the ECE-1 gene which have been previously shown to be associated with atherosclerosis and hypertension (HT), in CAE patients. Ninety-six CAE and 175 patients with normal coronary arteries were included in the study. ECE-1b gene variations rs213045 and rs2038089 were determined by real-time PCR. The frequencies of rs213045 C > A (C338A) CC genotype (60.4% vs. 35.4%, p < 0.001) and rs2038089 T > C T allele (64.58% vs. 35.42%, p = 0.017) were higher in the CAE group compared to the control group. The multivariate regression analysis showed that the ECE-1b rs213045 CC genotype (p = 0.001), rs2038089 T allele (p = 0.017), and hypercholesterolemia (HC) (p = 0.001) are risk factors for CAE. Moreover, in nondiabetic individuals of the CAE and control groups, it was observed that the rs213045 CC genotype (p < 0.001), and rs2038089 T allele (p = 0.003) were a risk factor for CAE, but this relationship was not found in the diabetic subgroups of the study groups (p > 0.05). These results show that ECE-1b polymorphisms may be associated with the risk of CAE and this relationship may change according to the presence of type II diabetes.
Collapse
Affiliation(s)
- Gulcin Ozkara
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
- Department of Medical Biology, Bezmialem Vakif University, Faculty of Medicine, Topkapi Mahallesi, Adnan Menderes Vatan Bulvari, No:113, Istanbul, Turkey.
| | - Ezgi Irmak Aslan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Biochemistry, Istanbul Nisantasi University, Faculty of Medicine, Istanbul, Turkey
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cagatay Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozgur Selim Ser
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Onur Kilicarslan
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadiye Nur Dalgic
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Yildiz
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Qiu RR, Li L. Relationship of Serum Fibroblast Growth Factor 23, Hypoxia-Inducible Factor-1α, and Klotho with In-Stent Restenosis in Elderly Patients with Coronary Artery Disease after the Treatment of Percutaneous Coronary Intervention. Rejuvenation Res 2025; 28:45-53. [PMID: 39515782 DOI: 10.1089/rej.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
In-stent restenosis (ISR) commonly occurs in elderly patients with coronary artery disease (CAD) after percutaneous coronary intervention. Atherosclerosis in elderly patients may be the leading cause of ISR. Therefore, we aim to explore the relationship between vascular calcification-associated factors and ISR occurrence. Elderly patients were enrolled according to standard inclusion and exclusion criteria. The serum fibroblast growth factor 23 (FGF23), hypoxia-inducible factor-1α (HIF-1α), and Klotho levels were determined using an enzyme-linked immunosorbent assay. The degree of coronary artery stenosis of the patients with CAD before operation was assessed using the Gensini score. The correlation was analyzed using Pearson analysis. The prediction value was evaluated using receiver operating characteristic (ROC) curve analysis. The patients with CAD were classified into the ISR group with 97 cases and the non-ISR (NISR) group with 349 cases. The Gensini score, serum FGF23, and HIF-1α levels increased while Klotho levels decreased in patients with CAD of the ISR group compared with those of the NISR group. Pearson analysis showed that FGF23 and HIF-1α positively correlated while Klotho negatively correlated to the Gensini score. ROC analysis showed all three factors could effectively predict the occurrence of ISR. Furthermore, the joint had a more effective prediction value for ISR occurrence. The dynamic analysis presented that the serum FGF23 and HIF-1α levels dramatically increased while Klotho levels decreased in patients with CAD after 1-year follow-up. Serum FGF23 and HIF-1α positively correlated while serum Klotho negatively correlated to ISR. Conclusively, these three factors effectively predicted the occurrence of ISR.
Collapse
Affiliation(s)
- Rong-Rong Qiu
- Department of Cardiology, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, China
| | - Lu Li
- Department of Cardiology, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, China
| |
Collapse
|
4
|
Arslan GD, Dogan L, Dogan Z, Kiziltoprak H. Relationship between choroidal structure and myocardial collateral flow regulation in acute and chronic coronary heart disease. Int Ophthalmol 2025; 45:132. [PMID: 40159520 DOI: 10.1007/s10792-025-03515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE This study aimed to evaluate the relationship between coronary collateral filling, collateral size, and choroidal parameters in patients with acute and chronic coronary heart disease (CHD). METHODS Thirty-eight patients with acute CHD and 38 with chronic CHD who underwent diagnostic angiography in a cardiology clinic were included in this observational cross-sectional study. The control group comprised 32 healthy participants, and we examined both eyes of all participants. Diagnostic coronary angiograms were used to score the coronary collaterals, and choroidal parameters were measured in patients with CHD. RESULTS Choroidal vascular index (CVI) and subfoveal choroidal thickness (SFCT) were significantly lower in the chronic CHD group than in the acute CHD and control groups (p < 0.05). In the multinominal logistic regression analysis, collateral size had a significant association with both CVI (OR, 0.751; 95% CI, 0.596-0.947), and SFCT (OR, 0.986; 95% CI, 0.976-0.996) in patients with chronic CHD (p < 0.05). However, in the acute CHD group, no significant relationship was observed among choroidal parameters, collateral size, and filling. CONCLUSION Patients with chronic CHD had the lowest mean CVI and SFCT among the three groups, and this may be helpful in indicating chronic myocardial ischaemia. Moreover, an association was observed between larger collateral size and reduced CVI and SFCT in patients with chronic CHD, which may potentially be triggered by decreased angiogenic factors.
Collapse
Affiliation(s)
- Gurcan Dogukan Arslan
- Department of Ophthalmology, Istanbul Medicine Hospital, Goztepe District, 2366th Street, Bagcilar, 34214, Istanbul, Turkey.
| | - Levent Dogan
- Department of Ophthalmology, Tatvan State Hospital, Bitlis, Turkey
| | - Zeki Dogan
- Department of Cardiology, Istanbul Medicine Hospital, Istanbul, Turkey
| | - Hasan Kiziltoprak
- Department of Ophthalmology, Istanbul Medicine Hospital, Goztepe District, 2366th Street, Bagcilar, 34214, Istanbul, Turkey
| |
Collapse
|
5
|
Arjamaa O. Hypoxia in myocardial infarction and natriuretic peptides. Open Heart 2025; 12:e003130. [PMID: 40122569 PMCID: PMC11934622 DOI: 10.1136/openhrt-2024-003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Mechanical stress on the heart is commonly considered the sole stimulus explaining the synthesis and release of circulating natriuretic peptides and their derivatives. While one of the most critical paradigms in cardiology is that mechanical load increases oxygen consumption, clinical studies on these peptides have neglected the relationship between mechanical stress and oxygen metabolism. At the cellular level, cardiac myocytes have a ubiquitous oxygen-sensing pathway mediated by a nuclear transcription factor, the hypoxia-inducible factor (HIF). Published studies indicate that the human myocardium starts expressing HIF during infarction. In myocardial cell cultures, natriuretic peptides are synthesised and released under hypoxic conditions through immediate and sufficient actions of HIF. CONCLUSION Myocardial oxygen metabolism directly regulates the plasma levels of natriuretic peptides in heart diseases. The function of oxygen gradients should be correlated with circulating natriuretic peptides to achieve better sensitivity in plasma measurements of natriuretic peptides in myocardial infarction.
Collapse
Affiliation(s)
- Olli Arjamaa
- University of Turku Biodiversity Unit, Turku, Finland
| |
Collapse
|
6
|
Tartaglia JT, Eisenberg CA, DeMarco JC, Puccio G, Tartaglia CE, Hamby CV. Mobilization of Endogenous CD34+/CD133+ Endothelial Progenitor Cells by Enhanced External Counter Pulsation for Treatment of Refractory Angina. Int J Mol Sci 2024; 25:10030. [PMID: 39337516 PMCID: PMC11432706 DOI: 10.3390/ijms251810030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Adult stem cell therapy via intramyocardial injection of autologous CD34+ stem cells has been shown to improve exercise capacity and reduce angina frequency and mortality in patients with refractory angina (RA). However, the cost of such therapy is a limitation to its adoption in clinical practice. Our goal was to determine whether the less costly, less invasive, and widely accessible, FDA-approved alternative treatment for RA patients, known as enhanced external counterpulsation (EECP), mobilizes endogenous CD34+ stem cells and whether such mobilization is associated with the clinical benefits seen with intramyocardial injection. We monitored changes in circulating levels of CD34+/CD133+ and CD34+/KDR+ cells in RA patients undergoing EECP therapy and in a comparator cohort of RA patients undergoing an exercise regimen known as cardiac rehabilitation. Changes in exercise capacity in both cohorts were monitored by measuring treadmill times (TT), double product (DP) scores, and Canadian Cardiovascular Society (CCS) angina scores between pre- and post-treatment treadmill stress tests. Circulating levels of CD34+/CD133+ cells increased in patients undergoing EECP and were significant (β = -2.38, p = 0.012) predictors of improved exercise capacity in these patients. CD34+/CD133+ cells isolated from RA patients could differentiate into endothelial cells, and their numbers increased during EECP therapy. Our results support the hypothesis that mobilized CD34+/CD133+ cells repair vascular damage and increase collateral circulation in RA patients. They further support clinical interventions that can mobilize adult CD34+ stem cells as therapy for patients with RA and other vascular diseases.
Collapse
Affiliation(s)
- Joseph T. Tartaglia
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.T.T.); (C.A.E.)
| | - Carol A. Eisenberg
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.T.T.); (C.A.E.)
| | | | | | | | - Carl V. Hamby
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Chong L, Dushaj N, Rakoubian A, Yarbro J, Kobayashi S, Liang Q. Unraveling the Roles of HIF-1, HO-1, GLUT-1 and GLUT-4 in Myocardial Protection. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100016. [PMID: 40376262 PMCID: PMC12080592 DOI: 10.53941/ijddp.2024.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Cardiomyocytes are highly dependent on oxygen for optimal function. Disruption of oxygen availability, as in the case of ischemic heart disease, can significantly impair heart function. Moreover, comorbidities like diabetes, hyperlipidemia, and hypertension can exacerbate ischemic cardiac injury. However, cardiomyocytes possess inherent protective mechanisms that can be activated to enhance myocardial survival under such conditions. Understanding the functions and regulatory mechanisms of these cardioprotective genes is crucial for advancing our knowledge of cardiovascular health and for developing therapeutic strategies. This review examines the intricate mechanisms of cardioprotection, with a focus on key genes and proteins, including hypoxia-inducible factor-1 (HIF-1), heme oxygenase-1 (HO-1), glucose transporter 1 (GLUT-1), and GLUT-4. In addition, the review explores the roles and regulation of these factors in the heart under ischemic stress, shedding light on their relevance in conditions like diabetes, hypertension, and hyperlipidemia/atherosclerosis. Moreover, it highlights the complex interplay among their mechanisms and suggests opportunities for developing targeted therapiesfor the treatment of ischemic heart disease, hypertension, and hyperlipidemia.
Collapse
Affiliation(s)
- Lionel Chong
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Nicholas Dushaj
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Ani Rakoubian
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Johnathan Yarbro
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| |
Collapse
|
8
|
Lee SM, Yoon BH, Lee JW, Jeong IJY, Kim I, Pack CG, Kim YH, Ha CH. Circulating miRNA-4701-3p as a predictive biomarker of cardiovascular disease which induces angiogenesis by inhibition of TOB2. Microvasc Res 2024; 155:104698. [PMID: 38801943 DOI: 10.1016/j.mvr.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Angiogenesis is mainly regulated by the delivery of VEGF-dependent signaling to cells. However, the angiogenesis mechanism regulated by VEGF-induced miRNA is still not understood. After VEGF treatment in HUVECs, we screened the changed miRNAs through small-RNA sequencing and found VEGF-induced miR-4701-3p. Furthermore, the GFP reporter gene was used to reveal that TOB2 expression was regulated by miR-4701-3p, and it was found that TOB2 and miR-4701-3p modulation could cause angiogenesis in an in-vitro angiogenic assay. Through the luciferase assay, it was confirmed that the activation of the angiogenic transcription factor MEF2 was regulated by the suppression and overexpression of TOB2 and miR-4701-3p. As a result, MEF2 downstream gene mRNAs that induce angiogenic function were regulated. We used the NCBI GEO datasets to reveal that the expression of TOB2 and MEF2 was significantly changed in cardiovascular disease. Finally, it was confirmed that the expression of circulating miR-4701-3p in the blood of myocardial infarction patients was remarkably increased. In patients with myocardial infarction, circulating miR-4701-3p was increased regardless of age, BMI, and sex, and showed high AUC levels in specificity and sensitivity analysis (AUROC) (AUC = 0.8451, 95 % CI 0.78-0.90). Our data showed TOB2-mediated modulation of MEF2 and its angiogenesis by VEGF-induced miR-4701-3p in vascular endothelial cells. In addition, through bioinformatics analysis using GEO data, changes in TOB2 and MEF2 were revealed in cardiovascular disease. We suggest that circulating miR-4701-3p has high potential as a biomarker for myocardial infarction.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bo Hyun Yoon
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - I Jin-Yong Jeong
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Inki Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Hak Kim
- Cardiology Division, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Chang Hoon Ha
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Mialet-Perez J, Belaidi E. Interplay between hypoxia inducible Factor-1 and mitochondria in cardiac diseases. Free Radic Biol Med 2024; 221:13-22. [PMID: 38697490 DOI: 10.1016/j.freeradbiomed.2024.04.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ischemic heart diseases and cardiomyopathies are characterized by hypoxia, energy starvation and mitochondrial dysfunction. HIF-1 acts as a cellular oxygen sensor, tuning the balance of metabolic and oxidative stress pathways to provide ATP and sustain cell survival. Acting on mitochondria, HIF-1 regulates different processes such as energy substrate utilization, oxidative phosphorylation and mitochondrial dynamics. In turn, mitochondrial homeostasis modifications impact HIF-1 activity. This underlies that HIF-1 and mitochondria are tightly interconnected to maintain cell homeostasis. Despite many evidences linking HIF-1 and mitochondria, the mechanistic insights are far from being understood, particularly in the context of cardiac diseases. Here, we explore the current understanding of how HIF-1, reactive oxygen species and cell metabolism are interconnected, with a specific focus on mitochondrial function and dynamics. We also discuss the divergent roles of HIF in acute and chronic cardiac diseases in order to highlight that HIF-1, mitochondria and oxidative stress interaction deserves to be deeply investigated. While the strategies aiming at stabilizing HIF-1 have provided beneficial effects in acute ischemic injury, some deleterious effects were observed during prolonged HIF-1 activation. Thus, deciphering the link between HIF-1 and mitochondria will help to optimize HIF-1 modulation and provide new therapeutic perspectives for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- Jeanne Mialet-Perez
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France
| | - Elise Belaidi
- Univ. Lyon 1, Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, 69367, Lyon, France.
| |
Collapse
|
10
|
Guan H, Chen Y, Liu X, Huang L. Research and application of hydrogel-encapsulated mesenchymal stem cells in the treatment of myocardial infarction. Colloids Surf B Biointerfaces 2024; 239:113942. [PMID: 38729022 DOI: 10.1016/j.colsurfb.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Myocardial infarction (MI) stands out as a highly lethal disease that poses a significant threat to global health. Worldwide, heart failure resulting from MI remains a leading cause of human mortality. Mesenchymal stem cell (MSC) therapy has emerged as a promising therapeutic approach, leveraging its intrinsic healing properties. Nevertheless, pervasive issues, including a low cell retention rate, suboptimal survival rate, and incomplete differentiation of MSCs, present formidable challenges for further research. The introduction and advancement of biomaterials have offered a novel avenue for the exploration of MSC therapy in MI, marking considerable progress thus far. Notably, hydrogels, among the representative biomaterials, have garnered extensive attention within the biomedical field. This review delves into recent advancements, specifically focusing on the application of hydrogels to augment MSC therapy for cardiac tissue regeneration in MI.
Collapse
Affiliation(s)
- Haien Guan
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Yuehua Chen
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Xuanyu Liu
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China.
| |
Collapse
|
11
|
Ping X, Li Q, Ding M, Wang X, Tang C, Yu Z, Yi Q, He Y, Zheng L. Effects of hypoxic compound exercise to promote HIF-1α expression on cardiac pumping function, sleep activity behavior, and exercise capacity in Drosophila. FASEB J 2024; 38:e23499. [PMID: 38430222 DOI: 10.1096/fj.202302269r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Alteration of HIF-1α expression levels under hypoxic conditions affects the sequence of its downstream target genes thereby producing different effects. In order to investigate whether the effect of hypoxic compound exercise (HE) on HIF-1α expression alters cardiac pumping function, myocardial structure, and exercise capacity, we developed a suitable model of hypoxic exercise using Drosophila, a model organism, and additionally investigated the effect of hypoxic compound exercise on nocturnal sleep and activity behavior. The results showed that hypoxic compound exercise at 6% oxygen concentration for five consecutive days, lasting 1 h per day, significantly improved the cardiac stress resistance of Drosophila. The hypoxic complex exercise promoted the whole-body HIF-1α expression in Drosophila, and improved the jumping ability, climbing ability, moving speed, and moving distance. The expression of HIF-1α in the heart was increased after hypoxic exercise, which made a closer arrangement of myofilaments, an increase in the diameter of cardiac tubules, and an increase in the pumping function of the heart. The hypoxic compound exercise improved the sleep quality of Drosophila by increasing its nocturnal sleep time, the number of deep sleeps, and decreasing its nocturnal awakenings and activities. Therefore, we conclude that hypoxic compound exercise promoted the expression of HIF-1α to enhance the exercise capacity and heart pumping function of Drosophila, and improved the quality of sleep.
Collapse
Affiliation(s)
- Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qin Yi
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Yupeng He
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
12
|
Kolesova H, Hrabalova P, Bohuslavova R, Abaffy P, Fabriciova V, Sedmera D, Pavlinkova G. Reprogramming of the developing heart by Hif1a-deficient sympathetic system and maternal diabetes exposure. Front Endocrinol (Lausanne) 2024; 15:1344074. [PMID: 38505753 PMCID: PMC10948485 DOI: 10.3389/fendo.2024.1344074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. Methods and results In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. Discussion Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.
Collapse
Affiliation(s)
- Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Developmental Cardiology, Institute of Physiology Czech Academy of Sciences (CAS), Prague, Czechia
| | - Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Developmental Cardiology, Institute of Physiology Czech Academy of Sciences (CAS), Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| |
Collapse
|
13
|
Trinh VH, Nguyen Huu T, Sah DK, Choi JM, Yoon HJ, Park SC, Jung YS, Lee SR. Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants (Basel) 2024; 13:199. [PMID: 38397797 PMCID: PMC10886030 DOI: 10.3390/antiox13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| |
Collapse
|
14
|
Russo MA, Garaci E, Frustaci A, Fini M, Costantini C, Oikonomou V, Nunzi E, Puccetti P, Romani L. Host-microbe tryptophan partitioning in cardiovascular diseases. Pharmacol Res 2023; 198:106994. [PMID: 37972721 DOI: 10.1016/j.phrs.2023.106994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The functional interdependencies between the molecular components of a biological process demand for a network medicine platform that integrates systems biology and network science, to explore the interactions among biological components in health and disease. Access to large-scale omics datasets (genomics, transcriptomics, proteomics, metabolomics, metagenomics, phenomics, etc.) has significantly advanced our opportunity along this direction. Studies utilizing these techniques have begun to provide us with a deeper understanding of how the interaction between the intestinal microbes and their host affects the cardiovascular system in health and disease. Within the framework of a multiomics network approach, we highlight here how tryptophan metabolism may orchestrate the host-microbes interaction in cardiovascular diseases and the implications for precision medicine and therapeutics, including nutritional interventions.
Collapse
Affiliation(s)
- Matteo Antonio Russo
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Enrico Garaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Andrea Frustaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Massimo Fini
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Vasileios Oikonomou
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Luigina Romani
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy; Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
15
|
Anttila T, Herajärvi J, Laaksonen H, Mustonen C, Honkanen HP, Y Dimova E, Piuhola J, Koivunen P, Juvonen T, Anttila V. Remote ischemic preconditioning and hypoxia-induced biomarkers in acute myocardial infarction: study on a porcine model. SCAND CARDIOVASC J 2023; 57:2251730. [PMID: 37641930 DOI: 10.1080/14017431.2023.2251730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Objectives. Remote ischemic preconditioning (RIPC) mitigates acute myocardial infarction (AMI). We hypothesized that RIPC reduces the size and severity of AMI and explored molecular mechanisms behind this phenomenon. Design. In two series of experiments, piglets underwent 60 min of the circumflex coronary artery occlusion, resulting in AMI. Piglets were randomly assigned into the RIPC groups (n = 7 + 7) and the control groups (n = 7 + 7). The RIPC groups underwent four 5-min hind limb ischemia-reperfusion cycles before AMI. In series I, the protective efficacy of RIPC was investigated by using biomarkers and echocardiography with a follow-up of 24 h. In series II, the heart of each piglet was harvested for TTC-staining to measure infarct size. Muscle biopsies were collected from the hind limb to explore molecular mechanisms of RIPC using qPCR and Western blot analysis. Results. The levels of CK-MBm (p = 0.032) and TnI (p = 0.007) were lower in the RIPC group. Left ventricular ejection fraction in the RIPC group was greater at the end of the follow-up. The myocardial infarct size in the RIPC group was smaller (p = 0.033). Western blot indicated HIF1α stabilization in the skeletal muscle of the RIPC group. PCR analyses showed upregulation of the HIF target mRNAs for glucose transporter (GLUT1), glucose transporter 4 (GLUT4), phosphofructokinase 1 (PFK1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase 1 (ENO1), lactate dehydrogenase (LDHA) and endothelial nitric oxidate synthase (eNOS). Conclusions. Biochemical, physiologic, and histologic evidence confirms that RIPC decreases the size of AMI. The HIF pathway is likely involved in the mechanism of the RIPC.
Collapse
Affiliation(s)
- Tuomas Anttila
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Johanna Herajärvi
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Henna Laaksonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Caius Mustonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Hannu-Pekka Honkanen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Jarkko Piuhola
- Department of Cardiology, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Tatu Juvonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vesa Anttila
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Teng H, Wu D, Lu L, Gao C, Wang H, Zhao Y, Wang L. Design and synthesis of 3,4-seco-lupane triterpene derivatives to resist myocardial ischemia-reperfusion injury by inhibiting oxidative stress-mediated mitochondrial dysfunction via the PI3K/AKT/HIF-1α axis. Biomed Pharmacother 2023; 167:115452. [PMID: 37688986 DOI: 10.1016/j.biopha.2023.115452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
In this study, 86 new seco-lupane triterpenoid derivatives were designed, synthesized, and characterized, and their protective activities against ischemia-reperfusion injury were investigated in vitro and in vivo. Structure-activity relationship studies revealed that most target compounds could protect cardiomyocytes against hypoxia/reoxygenation-induced injury in vitro, with compound 85 being the most active and exhibiting more potent protective activity than clinical first-line drugs. Furthermore, all thiophene derivatives exhibited stronger protective activity than furan, pyridine, and pyrazine derivatives, and the protective activity gradually increased with the extension of the alkyl chain and changed in the substituent. The data from the in-vitro and in-vivo experiments revealed that compound 85 protected mitochondria from damage by inhibiting excessive production of oxidative stressors, such as intracellular ROS, which in turn inhibited the apoptosis and necrotize of cardiomyocytes and reduced infarct size, thereby protecting normal cardiac function. It was associated with enhanced activation of the PI3K/AKT-mediated HIF-1α signaling pathway. Therefore, compound 85 acts as an oxidative stress inhibitor, blocks ROS production, protects mitochondria and cells from myocardial ischemia/reperfusion (MI/R) injury, and represents an effective new drug for treating MI/R injury.
Collapse
Affiliation(s)
- Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Di Wu
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Luo Lu
- Drug Evaluation Center of Jilin Province, Changchun, Jilin, China
| | - Chunyu Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Haohao Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Liyan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
18
|
Yang X, Wang J, Dai X, Ma N, Cheng H, Guo H, Chen S, Huang Y, Wu J. The mechanism and targeted intervention of the HIF-1 pathway in improving atherosclerotic heart's sensitivity to ischemic postconditioning. Free Radic Biol Med 2023; 208:494-509. [PMID: 37660838 DOI: 10.1016/j.freeradbiomed.2023.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND IPoC possesses a preventive effect against IR injury in healthy myocardium, but IPoC's protective effect on atherosclerotic myocardium is controversial. The current investigation aims to determine whether IPoC remains protective in atherosclerotic myocardium subjected to ischemia-reperfusion (IR) injury; to explore the specific mechanisms by which IPoC exerts cardioprotection; to explore whether HIF-1 upregulation combined with IPoC could further the provide cardioprotection; and to gaze at the specific mechanism whereby combined treatment expert the cardioprotection. METHODS ApoE-/- mice fed with a high-fat diet (HFD) were used to develop a model of atherosclerosis. The myocardial IR model was induced by occlusion of the left anterior descending (LAD) artery for 45 min, followed by reperfusion for 120 min. The protection of IPoC in both healthy and atherosclerotic myocardium was evaluated by measuring oxidative stress, apoptosis, infarct size, pathology, mitochondrial dysfunction and morphology of myocardium. The specific mechanism by which IPoC exerts cardioprotection in healthy and atherosclerotic myocardium was observed by measuring the expression of proteins involved in HIF-1, APMK and RISK pathways. The effect of HIF-1α overexpression on the cardioprotection by IPoC was observed by intravenous AAV9 -HIF-1α injection. RESULTS In healthy ischemic myocardium, IPoC exerted myocardial protective effects (antioxidant, anti-apoptosis, and improved mitochondrial function) through the activation of HIF-1, AMPK and RISK pathways. In atherosclerotic ischemic myocardium, IPoC exerted cardioprotection only through the activation of HIF-1 pathway; however, HIF-1 overexpression combined IPoC restored the activation of AMPK and RISK pathways, thereby further alleviating the myocardial IR injury. CONCLUSIONS In the atherosclerotic state, the HIF-1 pathway is the intrinsic mechanism by which IPoC exerts cardioprotective effects. The combination of HIF-1 upregulation and IPoC has a significant effect in reducing myocardial injury, which is worth being promoted and advocated. In addition, HIF-1-AMPK and HIF-1-RISK may be two endogenous cardioprotective signalling pathways with great value, which deserve to be thoroughly investigated in the future.
Collapse
Affiliation(s)
- Xue Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaowen Dai
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hu Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hai Guo
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Siyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yidan Huang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
19
|
Baloglu E. HIF-2α Controls Expression and Intracellular Trafficking of the α2-Subunit of Na,K-ATPase in Hypoxic H9c2 Cardiomyocytes. Biomedicines 2023; 11:2879. [PMID: 38001879 PMCID: PMC10669276 DOI: 10.3390/biomedicines11112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
The Na,K-ATPase (NKA) pump plays essential roles for optimal function of the heart. NKA activity decreases in necropsy materials from ischemic heart disease, heart failure and in experimental models. Cellular adaptation to hypoxia is regulated by hypoxia-induced transcription factors (HIF); we tested whether HIFs are involved in regulating the expression and intracellular dynamics of the α2-isoform of NKA (α2-NKA). HIF-1α and HIF-2α expression was suppressed in H9c2 cardiomyocytes by adenoviral infection, where cells were kept in 1% O2 for 24 h. The silencing efficiency of HIFs was tested on the mRNA and protein expression. We measured the mRNA expression of α2-NKA in HIF-silenced and hypoxia-exposed cells. The membrane and intracellular expression of α2-NKA was measured after labelling the cell surface with NHS-SS-biotin, immunoprecipitation and Western blotting. Hypoxia increased the mRNA expression of α2-NKA 5-fold compared to normoxic cells in an HIF-2α-sensitive manner. The plasma membrane expression of α2-NKA increased in hypoxia by 2-fold and was fully prevented by HIF-2α silencing. Intracellular expression of α2-NKA was not affected. These results showed for the first time that in hypoxic cardiomyocytes α2-NKA is transcriptionally and translationally regulated by HIF-2α. The molecular mechanism behind this regulation needs further investigation.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
20
|
Gurler B, Gencay G, Baloglu E. Hypoxia and HIF-1α Regulate the Activity and Expression of Na,K-ATPase Subunits in H9c2 Cardiomyoblasts. Curr Issues Mol Biol 2023; 45:8277-8288. [PMID: 37886965 PMCID: PMC10605391 DOI: 10.3390/cimb45100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The optimal function of the Na,K-ATPase (NKA) pump is essential for the heart. In ischemic heart disease, NKA activity decreases due to the decreased expression of the pump subunits. Here, we tested whether the hypoxia-inducible transcription factor (HIF-1α), the key signaling molecule regulating the adaptation of cells to hypoxia, is involved in controlling the expression and cellular dynamics of α1- and β1-NKA isoforms and of NKA activity in in-vitro hypoxic H9c2 cardiomyoblasts. HIF-1α was silenced through adenoviral infection, and cells were kept in normoxia (19% O2) or hypoxia (1% O2) for 24 h. We investigated the mRNA and protein expression of α1-, β1-NKA using RT-qPCR and Western blot in whole-cell lysates, cell membranes, and cytoplasmic fractions after labeling the cell surface with NHS-SS-biotin and immunoprecipitation. NKA activity and intracellular ATP levels were also measured. We found that in hypoxia, silencing HIF-1α prevented the decreased mRNA expression of α1-NKA but not of β1-NKA. Hypoxia decreased the plasma membrane expression of α1-NKA and β1- NKA compared to normoxic cells. In hypoxic cells, HIF-1α silencing prevented this effect by inhibiting the internalization of α1-NKA. Total protein expression was not affected. The decreased activity of NKA in hypoxic cells was fully prevented by silencing HIF-1α independent of cellular ATP levels. This study is the first to show that in hypoxic H9c2 cardiomyoblasts, HIF-1α controls the internalization and membrane insertion of α1-NKA subunit and of NKA activity. The mechanism behind this regulation needs further investigation.
Collapse
Affiliation(s)
- Beyza Gurler
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Gizem Gencay
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| |
Collapse
|
21
|
Mak MCE, Gurung R, Foo RSY. Applications of Genome Editing Technologies in CAD Research and Therapy with a Focus on Atherosclerosis. Int J Mol Sci 2023; 24:14057. [PMID: 37762360 PMCID: PMC10531628 DOI: 10.3390/ijms241814057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases, particularly coronary artery disease (CAD), remain the leading cause of death worldwide in recent years, with myocardial infarction (MI) being the most common form of CAD. Atherosclerosis has been highlighted as one of the drivers of CAD, and much research has been carried out to understand and treat this disease. However, there remains much to be better understood and developed in treating this disease. Genome editing technologies have been widely used to establish models of disease as well as to treat various genetic disorders at their root. In this review, we aim to highlight the various ways genome editing technologies can be applied to establish models of atherosclerosis, as well as their therapeutic roles in both atherosclerosis and the clinical implications of CAD.
Collapse
Affiliation(s)
| | - Rijan Gurung
- Cardiovascular Research Institute, Cardiovascular and Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD6, #08-01, Singapore 117599, Singapore; (M.C.E.M.); (R.S.Y.F.)
| | | |
Collapse
|
22
|
Zhao L, Lee AS, Sasagawa K, Sokol J, Wang Y, Ransom RC, Zhao X, Ma C, Steininger HM, Koepke LS, Borrelli MR, Brewer RE, Lee LL, Huang X, Ambrosi TH, Sinha R, Hoover MY, Seita J, Weissman IL, Wu JC, Wan DC, Xiao J, Longaker MT, Nguyen PK, Chan CK. A Combination of Distinct Vascular Stem/Progenitor Cells for Neovascularization and Ischemic Rescue. Arterioscler Thromb Vasc Biol 2023; 43:1262-1277. [PMID: 37051932 PMCID: PMC10281192 DOI: 10.1161/atvbaha.122.317943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia. METHODS The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions. RESULTS Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice. CONCLUSIONS These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.
Collapse
Affiliation(s)
- Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.Z., Y.W., J.X.)
| | - Andrew S. Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China (A.S.L.)
- Institute for Cancer Research, Shenzhen Bay Laboratory, China (A.S.L.)
| | - Koki Sasagawa
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Jan Sokol
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
- Center for Integrative Medical Sciences and Advanced Data Science Project, RIKEN, Tokyo, Japan (J.S.)
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.Z., Y.W., J.X.)
| | - Ryan C. Ransom
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Xin Zhao
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Chao Ma
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Holly M. Steininger
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Lauren S. Koepke
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Mimi R. Borrelli
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Rachel E. Brewer
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Lorene L.Y. Lee
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Xianxi Huang
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Thomas H. Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Malachia Y. Hoover
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
- Department of Developmental Biology (I.L.W., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.Z., Y.W., J.X.)
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China (A.S.L.)
- Institute for Cancer Research, Shenzhen Bay Laboratory, China (A.S.L.)
- Center for Integrative Medical Sciences and Advanced Data Science Project, RIKEN, Tokyo, Japan (J.S.)
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Developmental Biology (I.L.W., C.K.F.C.), Stanford University School of Medicine, CA
| | - Joseph C. Wu
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.Z., Y.W., J.X.)
| | - Michael T. Longaker
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Patricia K. Nguyen
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Charles K.F. Chan
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Developmental Biology (I.L.W., C.K.F.C.), Stanford University School of Medicine, CA
| |
Collapse
|
23
|
Baloglu E. Hypoxic Stress-Dependent Regulation of Na,K-ATPase in Ischemic Heart Disease. Int J Mol Sci 2023; 24:ijms24097855. [PMID: 37175562 PMCID: PMC10177966 DOI: 10.3390/ijms24097855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
In cardiomyocytes, regular activity of the Na,K-ATPase (NKA) and its Na/K pump activity is essential for maintaining ion gradients, excitability, propagation of action potentials, electro-mechanical coupling, trans-membrane Na+ and Ca2+ gradients and, thus, contractility. The activity of NKA is impaired in ischemic heart disease and heart failure, which has been attributed to decreased expression of the NKA subunits. Decreased NKA activity leads to intracellular Na+ and Ca2+ overload, diastolic dysfunction and arrhythmias. One signal likely related to these events is hypoxia, where hypoxia-inducible factors (HIF) play a critical role in the adaptation of cells to low oxygen tension. HIF activity increases in ischemic heart, hypertension, heart failure and cardiac fibrosis; thus, it might contribute to the impaired function of NKA. This review will mainly focus on the regulation of NKA in ischemic heart disease in the context of stressed myocardium and the hypoxia-HIF axis and argue on possible consequences of treatment.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
24
|
Wu Z, Wang X, Liang H, Liu F, Li Y, Zhang H, Wang C, Wang Q. Identification of Signature Genes of Dilated Cardiomyopathy Using Integrated Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24087339. [PMID: 37108502 PMCID: PMC10139023 DOI: 10.3390/ijms24087339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by left ventricular or biventricular enlargement with systolic dysfunction. To date, the underlying molecular mechanisms of dilated cardiomyopathy pathogenesis have not been fully elucidated, although some insights have been presented. In this study, we combined public database resources and a doxorubicin-induced DCM mouse model to explore the significant genes of DCM in full depth. We first retrieved six DCM-related microarray datasets from the GEO database using several keywords. Then we used the "LIMMA" (linear model for microarray data) R package to filter each microarray for differentially expressed genes (DEGs). Robust rank aggregation (RRA), an extremely robust rank aggregation method based on sequential statistics, was then used to integrate the results of the six microarray datasets to filter out the reliable differential genes. To further improve the reliability of our results, we established a doxorubicin-induced DCM model in C57BL/6N mice, using the "DESeq2" software package to identify DEGs in the sequencing data. We cross-validated the results of RRA analysis with those of animal experiments by taking intersections and identified three key differential genes (including BEX1, RGCC and VSIG4) associated with DCM as well as many important biological processes (extracellular matrix organisation, extracellular structural organisation, sulphur compound binding, and extracellular matrix structural components) and a signalling pathway (HIF-1 signalling pathway). In addition, we confirmed the significant effect of these three genes in DCM using binary logistic regression analysis. These findings will help us to better understand the pathogenesis of DCM and may be key targets for future clinical management.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Liang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangfang Liu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingxuan Li
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunying Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Qiao Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
25
|
Wang T, Li T, Niu X, Hu L, Cheng J, Guo D, Ren H, Zhao R, Ji Z, Liu P, Li Y, Guo Y. ADSC-derived exosomes attenuate myocardial infarction injury by promoting miR-205-mediated cardiac angiogenesis. Biol Direct 2023; 18:6. [PMID: 36849959 PMCID: PMC9972746 DOI: 10.1186/s13062-023-00361-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Acute myocardial infarction is a major health problem and is the leading cause of death worldwide. Myocardial apoptosis induced by myocardial infarction injury is involved in the pathophysiology of heart failure. Therapeutic stem cell therapy has the potential to be an effective and favorable treatment for ischemic heart disease. Exosomes derived from stem cells have been shown to effectively repair MI injury-induced cardiomyocyte damage. However, the cardioprotective benefits of adipose tissue-derived mesenchymal stem cell (ADSC)-Exos remain unknown. This study aimed to investigate the protective effects of exosomes from ADSC on the hearts of MI-treated mice and to explore the underlying mechanisms. METHODS Cellular and molecular mechanisms were investigated using cultured ADSCs. On C57BL/6J mice, we performed myocardial MI or sham operations and assessed cardiac function, fibrosis, and angiogenesis 4 weeks later. Mice were intramyocardially injected with ADSC-Exos or vehicle-treated ADSCs after 25 min following the MI operation. RESULTS Echocardiographic experiments showed that ADSC-Exos could significantly improve left ventricular ejection fraction, whereas ADSC-Exos administration could significantly alleviate MI-induced cardiac fibrosis. Additionally, ADSC-Exos treatment has been shown to reduce cardiomyocyte apoptosis while increasing angiogenesis. Molecular experiments found that exosomes extracted from ADSCs can promote the proliferation and migration of microvascular endothelial cells, facilitate angiogenesis, and inhibit cardiomyocytes apoptosis through miRNA-205. We then transferred isolated exosomes from ADSCs into MI-induced mice and observed decreased cardiac fibrosis, increased angiogenesis, and improved cardiac function. We also observed increased apoptosis and decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in HMEC-1 transfected with a miRNA-205 inhibitor. CONCLUSION In summary, these findings show that ADSC-Exos can alleviate cardiac injury and promote cardiac function recovery in MI-treated mice via the miRNA-205 signaling pathway. ADSC-Exos containing miRNA205 have a promising therapeutic potential in MI-induced cardiac injury.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Li
- Ultrasound Diagnostic and Treatment Center, Xijing Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - He Ren
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ran Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaole Ji
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyun Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanjie Guo
- Heart Hospital, Xi'an International Medical Center, Xi'an, 710038, China. .,Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
26
|
Fang T, Ma C, Zhang Z, Sun L, Zheng N. Roxadustat, a HIF-PHD inhibitor with exploitable potential on diabetes-related complications. Front Pharmacol 2023; 14:1088288. [PMID: 36843948 PMCID: PMC9950780 DOI: 10.3389/fphar.2023.1088288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases caused by absolute or relative deficiency of insulin secretion and characterized by chronic hyperglycemia. Its complications affect almost every tissue of the body, usually leading to blindness, renal failure, amputation, etc. and in the final stage, it mostly develops into cardiac failure, which is the main reason why diabetes mellitus manifests itself as a high clinical lethality. The pathogenesis of diabetes mellitus and its complications involves various pathological processes including excessive production of mitochondrial reactive oxygen species (ROS) and metabolic imbalance. Hypoxia-inducible Factor (HIF) signaling pathway plays an important role in both of the above processes. Roxadustat is an activator of Hypoxia-inducible Factor-1α, which increases the transcriptional activity of Hypoxia-inducible Factor-1α by inhibiting hypoxia-inducible factor prolyl hydroxylase (HIF-PHD). Roxadustat showed regulatory effects on maintaining metabolic stability in the hypoxic state of the body by activating many downstream signaling pathways such as vascular endothelial growth factor (VEGF), glucose transporter protein-1 (GLUT1), lactate dehydrogenase (LDHA), etc. This review summarizes the current research findings of roxadustat on the diseases of cardiomyopathy, nephropathy, retinal damage and impaired wound healing, which also occur at different stages of diabetes and greatly contribute to the damage caused by diabetes to the organism. We attempts to uncover a more comprehensive picture of the therapeutic effects of roxadustat, and inform its expanding research about diabetic complications treatment.
Collapse
Affiliation(s)
- Tingting Fang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Congcong Ma
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Zhanming Zhang
- Pharmaceutical Sciences, China Medical University-The Queen’s University of Belfast Joint College, Shenyang, Liaoning, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China,*Correspondence: Ningning Zheng,
| |
Collapse
|
27
|
Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol 2023; 81:202-208. [PMID: 36127212 DOI: 10.1016/j.jjcc.2022.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022]
Abstract
Oxygen is essential for living organisms. Molecular oxygen binds to hemoglobin and is delivered to every organ in the body. In several cardiovascular diseases or anemia, local oxygen tension drops below its physiological level and tissue hypoxia develops. In such conditions, the expression of hypoxia-responsive genes increases to alleviate the respective condition. The hypoxia-responsive genes include the genes coding erythropoietin (EPO), vascular endothelial growth factor-A, and glycolytic enzymes. Hypoxia-inducible factor (HIF)-1α, HIF-2α, and HIF-3α are transcription factors that regulate the hypoxia-responsive genes. The HIF-α proteins are continuously degraded by an oxygen-dependent degrading pathway involving HIF-prolyl hydroxylases (HIF-PHs) and von Hippel-Lindau tumor suppressor protein. However, upon hypoxia, this degradation ceases and the HIF-α proteins form heterodimers with HIF-1β (a constitutive subunit of HIF), which results in the induction of hypoxia responsive genes. HIF-1α and HIF-2α are potential therapeutic targets for renal anemia, where EPO production is impaired due to chronic kidney diseases. Small molecule HIF-PH inhibitors are currently used to activate HIF-α signaling and to increase plasma hemoglobin levels by restoring EPO production. In this review, we will discuss the current understanding of the roles of the HIF-α signaling pathway in cardiovascular diseases. This will include the roles of HIF-1α in cardiomyocytes as well as in stromal cells including macrophages.
Collapse
Affiliation(s)
- Tatsuyuki Sato
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
28
|
Rakhshan K, Sharifi M, Ramezani F, Azizi Y, Aboutaleb N. ERK/HIF-1α/VEGF pathway: a molecular target of ELABELA (ELA) peptide for attenuating cardiac ischemia-reperfusion injury in rats by promoting angiogenesis. Mol Biol Rep 2022; 49:10509-10519. [PMID: 36129600 DOI: 10.1007/s11033-022-07818-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (I/R) injury is caused by a chain of events such as endothelial dysfunction. This study was conducted to investigate protective effects of ELABELA against myocardial I/R in Wistar rats and clarify its possible mechanisms. METHODS AND RESULTS: MI model was established based on the left anterior descending coronary artery ligation for 30 min. Then, 5 µg/kg of ELA peptide was intraperitoneally infused in rats once per day for 4 days. Western blot assay was used to assay the expression of t-ERK1/2, and p-ERK1/2 in different groups. The amount of myocardial capillary density, the expression levels of VEGF and HIF-1α were evaluated using immunohistochemistry assay. Masson's trichrome staining was utilized to assay cardiac interstitial fibrosis. The results showed that establishment of MI significantly enhanced cardiac interstitial fibrosis and changed p-ERK1/2/ t-ERK1/2 ratio. Likewise, ELA post-treatment markedly increased myocardial capillary density, the expression of several angiogenic factors (VEGF-A, HIF-1α), and reduced cardiac interstitial fibrosis by activation of ERK1/2 signaling pathways. CONCLUSION Collectively, ELA peptide has ability to reduce myocardial I/R injury by promoting angiogenesis and reducing cardiac interstitial fibrosis through activating ERK/HIF-1α/VEGF pathway.
Collapse
Affiliation(s)
- Kamran Rakhshan
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Wang T, Xiao Y, Zhang J, Jing F, Zeng G. Dynamic regulation of HIF-1 signaling in the rhesus monkey heart after ischemic injury. BMC Cardiovasc Disord 2022; 22:407. [PMID: 36089604 PMCID: PMC9464399 DOI: 10.1186/s12872-022-02841-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Hypoxia inducible factor-1 (HIF-1) plays a key role in modulating post-infarct healing after myocardial ischemic injury through transcriptional regulation of hundreds of genes involved in diverse cardiac remodeling processes. However, the dynamic changes in HIF-1 target gene expression in the ischemic heart after myocardial infarction (MI) have not been well characterized. Methods We employed a rhesus monkey model of MI induced by left anterior descending artery ligation and examined the expression pattern of HIF-1 target genes in the ischemic heart at 1, 7, and 28 days after injury by bulk RNA-sequencing analysis. Results Myocardial transcriptomic analysis demonstrated a temporal-specific regulation of genes associated with the inflammatory response, cell proliferation, fibrosis and mitochondrial metabolism during the pathological progression of MI. HIF-1 target genes involved in processes related to glycolysis, angiogenesis, and extracellular matrix (ECM) remodeling also exhibited distinct expression patterns during MI progression. Copper concentrations were gradually decreased in the heart after ischemic injury, which was positively correlated with the expression of HIF-1-mediated angiogenic and glycolytic genes but negatively correlated with the expression of HIF-1-mediated ECM remodeling genes. Moreover, genes related to intracellular copper trafficking and storage were suppressed along with the loss of myocardial copper in the ischemic heart. Conclusions This study demonstrated a dynamic, functional-specific regulation of HIF-1 target gene expression during the progression of MI. The fine-tuning of HIF-1 signaling in the ischemic heart may be relate to the alteration in myocardial copper homeostasis. These findings provide transcriptomic insights into the distinct roles of HIF-1 signaling in the heart after ischemic injury, which will help determine the beneficial cutoff point for HIF-1 targeted therapy in ischemic heart diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02841-0.
Collapse
|
30
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
31
|
Li Z, Jiang W, Fan H, Yan F, Dong R, Bai T, Xu K. Reallocation of cutaneous and global blood circulation during sauna bathing through a closed-loop model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106917. [PMID: 35640388 DOI: 10.1016/j.cmpb.2022.106917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Sauna bathing (SB) is an important strategy in cardiovascular protection, but there is no mathematical explanation for the reallocation of blood circulation during heat-induced superficial vasodilation. We sought to reveal such reallocation via a simulated hemodynamic model. METHODS A closed-loop cardiovascular model with a series of electrical parameters was constructed. The body surface was divided into seven blocks and each block was modeled by a lumped resistance. These resistances were adjusted to increase skin blood flow (SBF), with the aim of reflecting heat-induced vasodilation during SB. Finally, the blood pressure was compared before and after SB, and the blood flow inside the aorta and visceral arteries were also analyzed. RESULTS With increasing SBF in this model, the systolic, diastolic, and mean blood pressure in the arterial trunk decreased by 13-29, 18-36, and 19-37 mmHg, respectively. Despite the increase in the peak and mean blood flow in the arterial trunk, the diastolic blood flow reversal in the thoracic and abdominal aortas increased significantly. Nevertheless, the blood supply to the heart, liver, stomach, spleen, kidney, and intestine decreased by at least 25%. Moreover, the pulmonary blood flow increased significantly. CONCLUSION Simulated heat-induced cutaneous vasodilation in this model lowers blood pressure, induces visceral ischemia, and promotes pulmonary circulation, suggesting that the present closed-loop model may be able to describe the effect of sauna bathing on blood circulation. However, the increase of retrograde flow in the aortas found in this model deserves further examination.
Collapse
Affiliation(s)
- Zhongyou Li
- Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China
| | - Wentao Jiang
- Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China.
| | - Haidong Fan
- Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China
| | - Fei Yan
- Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Ruiqi Dong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Taoping Bai
- Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China
| | - Kairen Xu
- Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China
| |
Collapse
|
32
|
Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X, Qu A. The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther 2022; 238:108186. [PMID: 35413308 DOI: 10.1016/j.pharmthera.2022.108186] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. During the development of cardiovascular diseases, hypoxia plays a crucial role. Hypoxia-inducible factors (HIFs) are the key transcription factors for adaptive hypoxic responses, which orchestrate the transcription of numerous genes involved in angiogenesis, erythropoiesis, glycolytic metabolism, inflammation, and so on. Recent studies have dissected the precise role of cell-specific HIFs in the pathogenesis of hypertension, atherosclerosis, aortic aneurysms, pulmonary arterial hypertension, and heart failure using tissue-specific HIF-knockout or -overexpressing animal models. More importantly, several compounds developed as HIF inhibitors or activators have been in clinical trials for the treatment of renal cancer or anemia; however, little is known on the therapeutic potential of these inhibitors for cardiovascular diseases. The purpose of this review is to summarize the recent advances on HIFs in the pathogenesis and pathophysiology of cardiovascular diseases and to provide evidence of potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xinyao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| |
Collapse
|
33
|
Chao NN, Li JL, Ding W, Qin TW, Zhang Y, Xie HQ, Luo JC. Fabrication and characterization of a pro-angiogenic hydrogel derived from the human placenta. Biomater Sci 2022; 10:2062-2075. [PMID: 35315457 DOI: 10.1039/d1bm01891d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Various hydrogels derived from the xenogeneic extracellular matrix (ECM) have been utilised to promote the repair and reconstruction of numerous tissues; however, there are few studies on hydrogels derived from allogeneic specimens. Human placenta derived hydrogels have been used in the therapy of ischaemic myocardium; however, their physicochemical properties and effects on cellular behaviour remain elusive. As the human placenta retains pro-angiogenic growth factors, it is hypothesized that the placenta hydrogels possess the potential to improve angiogenesis. In this study, a soluble decellularized human placenta matrix generated using a modified method could be stored in a powder form and could be used to form a hydrogel in vitro. Effective decellularization was evaluated by analysing the DNA content and histology images. The placenta hydrogel exhibited a fibrous porous morphology and was injectable. Fourier transform infrared (FTIR) spectroscopy revealed that the placenta hydrogel contained both collagen and sulfated glycosaminoglycans (GAGs). In addition, immunofluorescence imaging and enzyme-linked immunosorbent assay (ELISA) showed that the placenta hydrogel retained pro-angiogenic growth factors, including VEGF and bFGF, and transforming growth factor-β1 (TGF-β1). Further in vitro and in vivo analyses confirmed that the placenta hydrogel exerted better pro-angiogenic effects than a collagen type I hydrogel. Histological data also showed that the placenta hydrogels did not elicit a grave inflammatory response. In conclusion, the results suggest that placenta hydrogels may be deemed an attractive scaffold for regenerative medicine applications, especially in promoting vessel formation.
Collapse
Affiliation(s)
- Ning-Ning Chao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China. .,Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia-Le Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Geng B, Wang X, Park KH, Lee KE, Kim J, Chen P, Zhou X, Tan T, Yang C, Zou X, Janssen PM, Cao L, Ye L, Wang X, Cai C, Zhu H. UCHL1 protects against ischemic heart injury via activating HIF-1α signal pathway. Redox Biol 2022; 52:102295. [PMID: 35339825 PMCID: PMC8961225 DOI: 10.1016/j.redox.2022.102295] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin carboxyl-terminal esterase L1 (UCHL1) has been thought to be a neuron specific protein and shown to play critical roles in Parkinson's Disease and stroke via de-ubiquiting and stabilizing key pathological proteins, such as α-synuclein. In the present study, we found that UCHL1 was significantly increased in both mouse and human cardiomyocytes following myocardial infarction (MI). When LDN-57444, a pharmacological inhibitor of UCHL1, was used to treat mice subjected to MI surgery, we found that administration of LDN-57444 compromised cardiac function when compared with vehicle treated hearts, suggesting a potential protective role of UCHL1 in response to MI. When UCHL1 was knockout by CRISPR/Cas 9 gene editing technique in human induced pluripotent stem cells (hiPSCs), we found that cardiomyocytes derived from UCHL1−/− hiPSCs were more susceptible to hypoxia/re-oxygenation induced injury as compared to wild type cardiomyocytes. To study the potential targets of UCHL1, a BioID based proximity labeling approach followed by mass spectrum analysis was performed. The result suggested that UCHL1 could bind to and stabilize HIF-1α following MI. Indeed, expression of HIF-1α was lower in UCHL1−/− cells as determined by Western blotting and HIF-1α target genes were also suppressed in UCHL1−/− cells as quantified by real time RT-PCR. Recombinant UCHL1 (rUCHL1) protein was purified by E. Coli fermentation and intraperitoneally (I.P.) delivered to mice. We found that administration of rUCHL1 could significantly preserve cardiac function following MI as compared to control group. Finally, adeno associated virus mediated cardiac specific UCHL1 delivery (AAV9-cTNT-m-UCHL1) was performed in neonatal mice. UCHL1 overexpressing hearts were more resistant to MI injury as compare to the hearts infected with control virus. In summary, our data revealed a novel protective role of UCHL1 on MI via stabilizing HIF-1α and promoting HIF-1α signaling.
Collapse
Affiliation(s)
- Bingchuan Geng
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Xiaoliang Wang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kyung Eun Lee
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jongsoo Kim
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Peng Chen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Xinyu Zhou
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Tao Tan
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Chunlin Yang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Paul M Janssen
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, 57069, USA
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
35
|
Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C, Patergnani S. The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. BIOLOGY 2022; 11:biology11020300. [PMID: 35205167 PMCID: PMC8869508 DOI: 10.3390/biology11020300] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The regulation of hypoxia has recently emerged as having a central impact in mitochondrial function and dysfunction in various diseases, including the major disorders threatening worldwide: cardiovascular diseases and cancer. Despite the studies in this matter, its effective role in protection and disease progression even though its direct molecular mechanism in both disorders is still to be elucidated. This review aims to cover the current knowledge about the effect of hypoxia on mitochondrial function and dysfunction, and inflammation, in cardiovascular diseases and cancer, and reports further therapeutic strategies based on the modulation of hypoxic pathways. Abstract Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer. Taken together, observations propose that hypoxia, mitochondrial abnormality, oxidative stress, inflammation in CVDs, and cancer are closely linked. Based upon these facts, this review aims to deeply discuss these intimate relationships and to summarize current significant findings corroborating the molecular mechanisms and potential therapies involved in hypoxia and mitochondrial dysfunction in CVDs and cancer.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Mariasole Perrone
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Asrat E. Kahsay
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mario Della Sala
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, Ospedale Mater Salutis di Legnago, 37045 Verona, Italy;
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Correspondence: (C.G.); (S.P.)
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
- Correspondence: (C.G.); (S.P.)
| |
Collapse
|
36
|
Zhao G, Feng Y, Xue L, Cui M, Zhang Q, Xu F, Peng N, Jiang Z, Gao D, Zhang X. Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity. Acta Biomater 2022; 139:190-203. [PMID: 33836222 DOI: 10.1016/j.actbio.2021.03.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) remains the leading cause of death globally, often leading to impaired cardiac function and pathological myocardial microenvironment. Electrical conduction abnormalities of the infarcted myocardium not only induce adverse myocardial remodeling but also prevent tissue repair. Restoring the myocardial electrical integrity, particularly the anisotropic electrical signal propagation within the injured area after infarction is crucial for an effective function recovery. Herein, optimized reduced graphene oxide (rGO) functionalized electrospun silk fibroin (rGO/silk) biomaterials presenting anisotropic conductivity and enhanced suturablity were developed and investigated as cardiac patches for their potential in improving the post-MI myocardial function of rat models. The results show that the anisotropic conductive rGO/silk patches exhibit remarkable therapeutic effect on repairing the infarcted myocardium compared to the nonconductive silk and isotropic conductive rGO/silk patches as determined by the enhanced pumping function, reduced susceptibility to arrhythmias, thickened left ventricular walls and improved survival of functional cardiomyocytes. Their notable effect on promoting the angiogenesis of capillaries in the infarcted myocardium has also been demonstrated. This study highlights an effective and biomimetic reconstruction of the electrical myocardial microenvironment based on the anisotropic conductive rGO/silk biomaterials as a promising option for promoting the repair of infarcted myocardium. STATEMENT OF SIGNIFICANCE: The dysfunctional electrical microenvironment in the infarcted myocardium not only aggravates the adverse myocardial remodeling but also limits the effect of cardiac regenerative medicine. Although various conductive biomaterials have been employed to restore the electrical network in the infarcted myocardium in vivo, the anisotropic nature of the myocardial electrical microenvironment which enables directional electrical signal propagation were neglected. In this study, an anisotropic conductive rGO/silk biomaterial system is developed to improve the myocardial function post infarction by restoring the anisotropic electrical microenvironment in the infarcted myocardium. The promoted effects of anisotropic conductive grafts on repairing infarcted hearts are demonstrated with improved pumping function, cardiomyocyte survival, resistance to ventricular fibrillation, and angiogenesis of capillary network.
Collapse
Affiliation(s)
- Guoxu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China; School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi, PR China
| | - Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital, School of Medical, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, PR China
| | - Li Xue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Mengjie Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Qi Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Niancai Peng
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Zhuangde Jiang
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medical, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, PR China.
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China.
| |
Collapse
|
37
|
Nuclear Molecular Imaging of Cardiac Remodeling after Myocardial Infarction. Pharmaceuticals (Basel) 2022; 15:ph15020183. [PMID: 35215296 PMCID: PMC8875369 DOI: 10.3390/ph15020183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
The role of molecular imaging technologies in detecting, evaluating, and monitoring cardiovascular disease and their treatment is expanding rapidly. Gradually replacing the conventional anatomical or physiological approaches, molecular imaging strategies using biologically targeted markers provide unique insight into pathobiological processes at molecular and cellular levels and allow for cardiovascular disease evaluation and individualized therapy. This review paper will discuss currently available and developing molecular-based single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging strategies to evaluate post-infarction cardiac remodeling. These approaches include potential targeted methods of evaluating critical biological processes, such as inflammation, angiogenesis, and scar formation.
Collapse
|
38
|
Hypoxia signaling and oxygen metabolism in cardio-oncology. J Mol Cell Cardiol 2022; 165:64-75. [PMID: 34979102 DOI: 10.1016/j.yjmcc.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/05/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022]
Abstract
Cardio-oncology is a rapidly growing field in cardiology that focuses on the management of cardiovascular toxicities associated with cancer-directed therapies. Tumor hypoxia is a central driver of pathologic tumor growth, metastasis, and chemo-resistance. In addition, conditions that mimic hypoxia (pseudo-hypoxia) play a causal role in the pathogenesis of numerous types of cancer, including renal cell carcinoma. Therefore, therapies targeted at hypoxia signaling pathways have emerged over the past several years. Though efficacious, these therapies are associated with significant cardiovascular toxicities, ranging from hypertension to cardiomyopathy. This review focuses on oxygen metabolism in tumorigenesis, the role of targeting hypoxia signaling in cancer therapy, and the relevance of oxygen metabolism in cardio-oncology. This review will specifically focus on hypoxia signaling mediated by hypoxia-inducible factors and the prolyl hydroxylase oxygen-sensing enzymes, the cardiovascular effects of specific cancer targeted therapies mediated on VEGF and HIF signaling, hypoxic signaling in cardiovascular disease, and the role of oxygen in anthracycline cardiotoxicity. The implications of these therapies on myocardial biology and cardiac function are discussed, underlining the fine balance of hypoxia signaling in cardiac homeostasis. Understanding these cardiovascular toxicities will be important to optimize treatment for cancer patients while mitigating potentially severe cardiovascular side effects.
Collapse
|
39
|
Zhang B, Yu P, Su E, Jia J, Zhang C, Xie S, Huang Z, Dong Y, Ding J, Zou Y, Jiang H, Ge J. Sodium tanshinone IIA sulfonate improves adverse ventricular remodeling post MI by reducing myocardial necrosis, modulating inflammation and promoting angiogenesis. Curr Pharm Des 2021; 28:751-759. [PMID: 34951571 DOI: 10.2174/1381612828666211224152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows therapeutic values. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI. METHODS Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson's trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB. RESULTS Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1β and tumor necrosis factor-α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor-1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days. CONCLUSION STS improved pathological remodeling post-MI, and the associated therapeutic effects may result from a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis.
Collapse
Affiliation(s)
- Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Enyong Su
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jianguo Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chunyu Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shiyao Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhenhui Huang
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Ying Dong
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Jinguo Ding
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
40
|
Zhan C, Zhang Y, Liu X, Wu R, Zhang K, Shi W, Shen L, Shen K, Fan X, Ye F, Shen B. MIKB: A manually curated and comprehensive knowledge base for myocardial infarction. Comput Struct Biotechnol J 2021; 19:6098-6107. [PMID: 34900127 PMCID: PMC8626632 DOI: 10.1016/j.csbj.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
Myocardial infarction knowledge base (MIKB; http://www.sysbio.org.cn/mikb/; latest update: December 31, 2020) is an open-access and manually curated database dedicated to integrating knowledge about MI to improve the efficiency of translational MI research. MIKB is an updated and expanded version of our previous MI Risk Knowledge Base (MIRKB), which integrated MI-related risk factors and risk models for providing help in risk assessment or diagnostic prediction of MI. The updated MIRKB includes 9701 records with 2054 single factors, 209 combined factors, 243 risk models, 37 MI subtypes and 3406 interactions between single factors and MIs collected from 4817 research articles. The expanded functional module, i.e. MIGD, is a database including not only MI associated genetic variants, but also the other multi-omics factors and the annotations for their functional alterations. The goal of MIGD is to provide a multi-omics level understanding of the molecular pathogenesis of MI. MIGD includes 1782 omics factors, 28 MI subtypes and 2347 omics factor-MI interactions as well as 1253 genes and 6 chromosomal alterations collected from 2647 research articles. The functions of MI associated genes and their interaction with drugs were analyzed. MIKB will be continuously updated and optimized to provide precision and comprehensive knowledge for the study of heterogeneous and personalized MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Yingbo Zhang
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xingyun Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Rongrong Wu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Ke Zhang
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Wenjing Shi
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Ke Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Xuemeng Fan
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Fei Ye
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan 610212, China
| |
Collapse
|
41
|
Li B, Yu J, Liu P, Zeng T, Zeng X. Astragaloside IV protects cardiomyocytes against hypoxia injury via HIF-1α and the JAK2/STAT3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1435. [PMID: 34733987 PMCID: PMC8506767 DOI: 10.21037/atm-21-4080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023]
Abstract
Background Hypoxia is an important cause of myocardial injury due to the heart’s high susceptibility to hypoxia. Astragaloside IV (AS-IV) is the main component of Astragalus membranaceus and could exert cardiac protective role. Here, the effect of AS-IV on hypoxia-injured H9c2 cardiomyocytes was elucidated. Methods First, H9c2 cells were exposed to hypoxia and/or AS-IV treatment. Cell apoptosis, death, and viability as well as hypoxia-inducible factor 1α (HIF-1α) expression and apoptotic proteins were analyzed. Next, transfection of si-HIF-1α into H9c2 cells was carried out to test whether upregulation and stabilization of HIF-1α influences the effect of AS-IV on hypoxia-treated H9c2 cells. Furthermore, the regulatory role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling on HIF-1α levels was examined. Results Hypoxia suppressed viability and promoted the apoptosis and death of H9c2 cells. AS-IV eliminated hypoxia-induced H9c2 injury. Moreover, HIF-1α signaling was further activated and stabilized by AS-IV in hypoxia-challenged H9c2 cells. Downregulation of HIF-1α suppressed the function of AS-IV in hypoxia-challenged H9c2 cells. AS-IV promoted JAK2/STAT3 signaling in hypoxia-induced injury. The beneficial functions of AS-IV in hypoxia-exposed H9c2 cells were linked to HIF-1α upregulation and JAK2/STAT3 signaling activation. Conclusions AS-IV relieved H9c2 cardiomyocyte injury after hypoxia, possibly by activating JAK2/STAT3-mediated HIF-1α signaling.
Collapse
Affiliation(s)
- Bei Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junjian Yu
- Cardiovascular and Thoracis Surgery Department 2, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Peipei Liu
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Taohui Zeng
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xueliang Zeng
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
42
|
Maric D, Paterek A, Delaunay M, López IP, Arambasic M, Diviani D. A-Kinase Anchoring Protein 2 Promotes Protection against Myocardial Infarction. Cells 2021; 10:2861. [PMID: 34831084 PMCID: PMC8616452 DOI: 10.3390/cells10112861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of maladaptive cardiac remodeling and heart failure. In the damaged heart, loss of function is mainly due to cardiomyocyte death and remodeling of the cardiac tissue. The current study shows that A-kinase anchoring protein 2 (AKAP2) orchestrates cellular processes favoring cardioprotection in infarcted hearts. Induction of AKAP2 knockout (KO) in cardiomyocytes of adult mice increases infarct size and exacerbates cardiac dysfunction after MI, as visualized by increased left ventricular dilation and reduced fractional shortening and ejection fraction. In cardiomyocytes, AKAP2 forms a signaling complex with PKA and the steroid receptor co-activator 3 (Src3). Upon activation of cAMP signaling, the AKAP2/PKA/Src3 complex favors PKA-mediated phosphorylation and activation of estrogen receptor α (ERα). This results in the upregulation of ER-dependent genes involved in protection against apoptosis and angiogenesis, including Bcl2 and the vascular endothelial growth factor a (VEGFa). In line with these findings, cardiomyocyte-specific AKAP2 KO reduces Bcl2 and VEGFa expression, increases myocardial apoptosis and impairs the formation of new blood vessels in infarcted hearts. Collectively, our findings suggest that AKAP2 organizes a transcriptional complex that mediates pro-angiogenic and anti-apoptotic responses that protect infarcted hearts.
Collapse
Affiliation(s)
- Darko Maric
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland
| | - Aleksandra Paterek
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Marion Delaunay
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Irene Pérez López
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Miroslav Arambasic
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| |
Collapse
|
43
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
44
|
Gastrin mediates cardioprotection through angiogenesis after myocardial infarction by activating the HIF-1α/VEGF signalling pathway. Sci Rep 2021; 11:15836. [PMID: 34349170 PMCID: PMC8339006 DOI: 10.1038/s41598-021-95110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
Acute myocardial infarction (MI) is one of the leading causes of death in humans. Our previous studies showed that gastrin alleviated acute myocardial ischaemia-reperfusion injury. We hypothesize that gastrin might protect against heart injury after MI by promoting angiogenesis. An MI model was simulated by ligating the anterior descending coronary artery in adult male C57BL/6J mice. Gastrin was administered twice daily by intraperitoneal injection for 2 weeks after MI. We found that gastrin reduced mortality, improved myocardial function with reduced infarct size and promoted angiogenesis. Gastrin increased HIF-1α and VEGF expression. Downregulation of HIF-1α expression by siRNA reduced the proliferation, migration and tube formation of human umbilical vein endothelial cells. These results indicate that gastrin restores cardiac function after MI by promoting angiogenesis via the HIF-1α/VEGF pathway.
Collapse
|
45
|
Hepatic cell mobilization for protection against ischemic myocardial injury. Sci Rep 2021; 11:15830. [PMID: 34349157 PMCID: PMC8339068 DOI: 10.1038/s41598-021-94170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
The heart is capable of activating protective mechanisms in response to ischemic injury to support myocardial survival and performance. These mechanisms have been recognized primarily in the ischemic heart, involving paracrine signaling processes. Here, we report a distant cardioprotective mechanism involving hepatic cell mobilization to the ischemic myocardium in response to experimental myocardial ischemia–reperfusion (MI-R) injury. A parabiotic mouse model was generated by surgical skin-union of two mice and used to induce bilateral MI-R injury with unilateral hepatectomy, establishing concurrent gain- and loss-of-hepatic cell mobilization conditions. Hepatic cells, identified based on the cell-specific expression of enhanced YFP, were found in the ischemic myocardium of parabiotic mice with intact liver (0.2 ± 0.1%, 1.1 ± 0.3%, 2.7 ± 0.6, and 0.7 ± 0.4% at 1, 3, 5, and 10 days, respectively, in reference to the total cell nuclei), but not significantly in the ischemic myocardium of parabiotic mice with hepatectomy (0 ± 0%, 0.1 ± 0.1%, 0.3 ± 0.2%, and 0.08 ± 0.08% at the same time points). The mobilized hepatic cells were able to express and release trefoil factor 3 (TFF3), a protein mitigating MI-R injury as demonstrated in TFF3−/− mice (myocardium infarcts 17.6 ± 2.3%, 20.7 ± 2.6%, and 15.3 ± 3.8% at 1, 5, and 10 days, respectively) in reference to wildtype mice (11.7 ± 1.9%, 13.8 ± 2.3%, and 11.0 ± 1.8% at the same time points). These observations suggest that MI-R injury can induce hepatic cell mobilization to support myocardial survival by releasing TFF3.
Collapse
|
46
|
Nolly MB, Vargas LA, Correa MV, Lofeudo JM, Pinilla AO, Rueda JOV, Guerrero-Gimenez ME, Swenson ER, Damiani MT, Alvarez BV. Carbonic anhydrase IX and hypoxia-inducible factor 1 attenuate cardiac dysfunction after myocardial infarction. Pflugers Arch 2021; 473:1273-1285. [PMID: 34231059 DOI: 10.1007/s00424-021-02592-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/11/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. Prognosis and mortality rate are directly related to infarct size and post-infarction pathological heart remodeling, which can lead to heart failure. Hypoxic MI-affected areas increase the expression of hypoxia-inducible factor (HIF-1), inducing infarct size reduction and improving cardiac function. Hypoxia translocates HIF-1 to the nucleus, activating carbonic anhydrase IX (CAIX) transcription. CAIX regulates myocardial intracellular pH, critical for heart performance. Our objective was to investigate CAIX participation and relation with sodium bicarbonate transporters 1 (NBC1) and HIF-1 in cardiac remodeling after MI. We analyzed this pathway in an "in vivo" rat coronary artery ligation model and isolated cardiomyocytes maintained under hypoxia. Immunohistochemical studies revealed an increase in HIF-1 levels after 2 h of infarction. Similar results were observed in 2-h infarcted cardiac tissue (immunoblotting) and in hypoxic cardiomyocytes with a nuclear distribution (confocal microscopy). Immunohistochemical studies showed an increase CAIX in the infarcted area at 2 h, mainly distributed throughout the cell and localized in the plasma membrane at 24 h. Similar results were observed in 2 h in infarcted cardiac tissue (immunoblotting) and in hypoxic cardiomyocytes (confocal microscopy). NBC1 expression increased in cardiac tissue after 2 h of infarction (immunoblotting). CAIX and NBC1 interaction increases in cardiac tissue subjected to MI for 2h when CAIX is present (immunoprecipitation). These results suggest that CAIX interacts with NBC1 in our infarct model as a mechanism to prevent acidic damage in hypoxic tissue, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Mariela Beatriz Nolly
- Laboratorio de Bioquímica e Inmunidad, IMBECU-CONICET-UNCuyo, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Lorena Alejandra Vargas
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - María Verónica Correa
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, CIC-PBA, La Plata, 1900, Buenos Aires, Argentina
| | - Juan Manuel Lofeudo
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - Andrés Oscar Pinilla
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - Jorge Omar Velez Rueda
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - Martin E Guerrero-Gimenez
- Laboratorio de Oncología, IMBECU-CONICET-UNCuyo, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Erik Richard Swenson
- Medical Service, VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Maria Teresa Damiani
- Laboratorio de Bioquímica e Inmunidad, IMBECU-CONICET-UNCuyo, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Bernardo Victor Alvarez
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
47
|
Ullah K, Wu R. Hypoxia-Inducible Factor Regulates Endothelial Metabolism in Cardiovascular Disease. Front Physiol 2021; 12:670653. [PMID: 34290616 PMCID: PMC8287728 DOI: 10.3389/fphys.2021.670653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) form a physical barrier between the lumens and vascular walls of arteries, veins, capillaries, and lymph vessels; thus, they regulate the extravasation of nutrients and oxygen from the circulation into the perivascular space and participate in mechanisms that maintain cardiovascular homeostasis and promote tissue growth and repair. Notably, their role in tissue repair is facilitated, at least in part, by their dependence on glycolysis for energy production, which enables them to resist hypoxic damage and promote angiogenesis in ischemic regions. ECs are also equipped with a network of oxygen-sensitive molecules that collectively activate the response to hypoxic injury, and the master regulators of the hypoxia response pathway are hypoxia-inducible factors (HIFs). HIFs reinforce the glycolytic dependence of ECs under hypoxic conditions, but whether HIF activity attenuates or exacerbates the progression and severity of cardiovascular dysfunction varies depending on the disease setting. This review summarizes how HIF regulates the metabolic and angiogenic activity of ECs under both normal and hypoxic conditions and in a variety of diseases that are associated with cardiovascular complications.
Collapse
Affiliation(s)
- Karim Ullah
- Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rongxue Wu
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
48
|
Customized 3D-printed occluders enabling the reproduction of consistent and stable heart failure in swine models. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Enhanced BDNF Actions Following Acute Hypoxia Facilitate HIF-1α-Dependent Upregulation of Cav3-T-Type Ca 2+ Channels in Rat Cardiomyocytes. MEMBRANES 2021; 11:membranes11070470. [PMID: 34202148 PMCID: PMC8307968 DOI: 10.3390/membranes11070470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has recently been recognized as a cardiovascular regulator particularly in the diseased condition, including coronary artery disease, heart failure, cardiomyopathy, and hypertension. Here, we investigate the role of BDNF on the T-type Ca2+ channel, Cav3.1 and Cav3.2, in rat neonatal cardiomyocytes exposed to normoxia (21% O2) and acute hypoxia (1% O2) in vitro for up to 3 h. The exposure of cardiomyocytes to hypoxia (1 h, 3 h) caused a significant upregulation of the mRNAs for hypoxia-inducible factor 1α (Hif1α), Cav3.1, Cav3.2 and Bdnf, but not tropomyosin-related kinase receptor B (TrkB). The upregulation of Cav3.1 and Cav3.2 caused by hypoxia was completely halted by small interfering RNA (siRNA) targeting Hif1a (Hif1a-siRNA) or Bdnf (Bdnf-siRNA). Immunocytochemical staining data revealed a distinct upregulation of Cav3.1- and Cav3.2-proteins caused by hypoxia in cardiomyocytes, which was markedly suppressed by Bdnf-siRNA. These results unveiled a novel regulatory action of BDNF on the T-type Ca2+ channels expression through the HIF-1α-dependent pathway in cardiomyocytes.
Collapse
|
50
|
Zhao K, Yang CX, Li P, Sun W, Kong XQ. Epigenetic role of N6-methyladenosine (m6A) RNA methylation in the cardiovascular system. J Zhejiang Univ Sci B 2021; 21:509-523. [PMID: 32633106 DOI: 10.1631/jzus.b1900680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As the most prevalent and abundant transcriptional modification in the eukaryotic genome, the continuous and dynamic regulation of N6-methyladenosine (m6A) has been shown to play a vital role in physiological and pathological processes of cardiovascular diseases (CVDs), such as ischemic heart failure (HF), myocardial hypertrophy, myocardial infarction (MI), and cardiomyogenesis. Regulation is achieved by modulating the expression of m6A enzymes and their downstream cardiac genes. In addition, this process has a major impact on different aspects of internal biological metabolism and several other external environmental effects associated with the development of CVDs. However, the exact molecular mechanism of m6A epigenetic regulation has not been fully elucidated. In this review, we outline recent advances and discuss potential therapeutic strategies for managing m6A in relation to several common CVD-related metabolic disorders and external environmental factors. Note that an appropriate understanding of the biological function of m6A in the cardiovascular system will pave the way towards exploring the mechanisms responsible for the development of other CVDs and their associated symptoms. Finally, it can provide new insights for the development of novel therapeutic agents for use in clinical practice.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chuan-Xi Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang-Qing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|