1
|
Sansom SE, Shimasaki T, Dangana T, Lin MY, Schoeny ME, Fukuda C, Moore NM, Yelin RD, Bassis CM, Rhee Y, Cisneros EC, Bell P, Lolans K, Aboushaala K, Young VB, Hayden MK. Comparison of Daily Versus Admission and Discharge Surveillance Cultures for Multidrug-Resistant Organism Detection in an Intensive Care Unit. J Infect Dis 2024; 230:807-815. [PMID: 38546721 DOI: 10.1093/infdis/jiae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Admission and discharge screening of patients for asymptomatic gut colonization with multidrug-resistant organisms (MDROs) is a common approach to active surveillance, but its sensitivity for detecting colonization is uncertain. METHODS Daily rectal or fecal swab samples and associated clinical data were collected over 12 months from patients in one 25-bed medical intensive care unit (ICU) in Chicago, IL and tested for the following MDROs: vancomycin-resistant enterococci; third-generation cephalosporin-resistant Enterobacterales, including extended-spectrum β-lactamase-producing Enterobacterales; and carbapenem-resistant Enterobacterales. MDRO detection by (1) admission and discharge surveillance cultures or (2) clinical cultures were compared to daily surveillance cultures. Samples underwent 16S rRNA gene sequencing to measure the relative abundance of operational taxonomic units (OTUs) corresponding to each MDRO. RESULTS Compared with daily surveillance cultures, admission/discharge cultures detected 91% of prevalent MDRO colonization and 63% of MDRO acquisitions among medical ICU patients. Few (7%) MDRO carriers were identified by clinical cultures alone. Higher relative abundance of MDRO-associated OTUs and specific antibiotic exposures were independently associated with higher probability of MDRO detection by culture. CONCLUSIONS Admission and discharge surveillance cultures underestimated MDRO acquisitions in an ICU. These limitations should be considered when designing sampling strategies for epidemiologic studies that use culture-based surveillance.
Collapse
Affiliation(s)
- Sarah E Sansom
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Teppei Shimasaki
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Thelma Dangana
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Michael Y Lin
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Christine Fukuda
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicholas M Moore
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Rachel D Yelin
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Christine M Bassis
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoona Rhee
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Enrique Cornejo Cisneros
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Pamela Bell
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Karen Lolans
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Khaled Aboushaala
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mary K Hayden
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
2
|
Cocker D, Birgand G, Zhu N, Rodriguez-Manzano J, Ahmad R, Jambo K, Levin AS, Holmes A. Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions. Nat Rev Microbiol 2024; 22:636-649. [PMID: 39048837 DOI: 10.1038/s41579-024-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively. Additionally, innovations in artificial intelligence, data linkage and intelligent systems can be used to better predict and reduce AMR and improve healthcare resilience. In this Review, we examine the mechanisms by which healthcare functions as a driver, reservoir and amplifier of AMR, contextualized within a One Health framework. We also explore the opportunities and innovative solutions that can be used to combat AMR throughout the patient journey. We provide a perspective on the current evidence for the effectiveness of interventions designed to mitigate healthcare-associated AMR and promote healthcare resilience within high-income and resource-limited settings, as well as the challenges associated with their implementation.
Collapse
Affiliation(s)
- Derek Cocker
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Gabriel Birgand
- Centre d'appui pour la Prévention des Infections Associées aux Soins, Nantes, France
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Cibles et medicaments des infections et de l'immunitée, IICiMed, Nantes Universite, Nantes, France
| | - Nina Zhu
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jesus Rodriguez-Manzano
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Raheelah Ahmad
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Health Services Research & Management, City University of London, London, UK
- Dow University of Health Sciences, Karachi, Pakistan
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anna S Levin
- Department of Infectious Disease, School of Medicine & Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alison Holmes
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
3
|
Hornuss D, Göpel S, Walker SV, Tobys D, Häcker G, Seifert H, Higgins PG, Xanthopoulou K, Gladstone BP, Cattaneo C, Mischnik A, Rohde AM, Imirzalioglu C, Trauth J, Fritzenwanker M, Falgenhauer J, Gastmeier P, Behnke M, Kramme E, Käding N, Rupp J, Peter S, Schmauder K, Eisenbeis S, Kern WV, Tacconelli E, Rieg S. Epidemiological trends and susceptibility patterns of bloodstream infections caused by Enterococcus spp. in six German university hospitals: a prospectively evaluated multicentre cohort study from 2016 to 2020 of the R-Net study group. Infection 2024; 52:1995-2004. [PMID: 38684586 PMCID: PMC11499396 DOI: 10.1007/s15010-024-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE To analyse recent epidemiological trends of bloodstream infections (BSI) caused by Enterococcus spp. In adult patients admitted to tertiary care centres in Germany. METHODS Epidemiological data from the multicentre R-NET study was analysed. Patients presenting with E. faecium or E. faecalis in blood cultures in six German tertiary care university hospitals between October 2016 and June 2020 were prospectively evaluated. In vancomycin-resistant enterococci (VRE), the presence of vanA/vanB was confirmed via molecular methods. RESULTS In the 4-year study period, 3001 patients with BSI due to Enterococcus spp. were identified. E. faecium was detected in 1830 patients (61%) and E. faecalis in 1229 patients (41%). Most BSI occurred in (sub-) specialties of internal medicine. The pooled incidence density of enterococcal BSI increased significantly (4.0-4.5 cases per 10,000 patient days), which was primarily driven by VRE BSI (0.5 to 1.0 cases per 10,000 patient days). In 2020, the proportion of VRE BSI was > 12% in all study sites (range, 12.8-32.2%). Molecular detection of resistance in 363 VRE isolates showed a predominance of the vanB gene (77.1%). CONCLUSION This large multicentre study highlights an increase of BSI due to E. faecium, which was primarily driven by VRE. The high rates of hospital- and ICU-acquired VRE BSI point towards an important role of prior antibiotic exposure and invasive procedures as risk factors. Due to limited treatment options and high mortality rates of VRE BSI, the increasing incidence of VRE BSI is of major concern.
Collapse
Affiliation(s)
- Daniel Hornuss
- Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
- DZIF German Centre for Infection Research, Brunswick, Germany.
| | - Siri Göpel
- DZIF German Centre for Infection Research, Brunswick, Germany
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Sarah V Walker
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute Für Clinical Microbiology and Hospital Hygiene, RKH Regionale Kliniken Holding Und Services GmbH, Ludwigsburg, Germany
| | - David Tobys
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Georg Häcker
- Institute for Medical Microbiology and Hygiene, University Medical Centre Freiburg, Freiburg, Germany
| | - Harald Seifert
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Translational Research, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Paul G Higgins
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kyriaki Xanthopoulou
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Beryl Primrose Gladstone
- DZIF German Centre for Infection Research, Brunswick, Germany
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Chiara Cattaneo
- Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, 79106, Freiburg, Germany
- DZIF German Centre for Infection Research, Brunswick, Germany
- Department of Neonatology and Pediatric Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, University Children's Hospital, Hamburg, Germany
| | - Alexander Mischnik
- DZIF German Centre for Infection Research, Brunswick, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Anna M Rohde
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute for Hygiene and Environmental Medicine, National Reference Centre for the Surveillance of Nosocomial Infections, Charité-University Hospital, Berlin, Germany
| | - Can Imirzalioglu
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Janina Trauth
- DZIF German Centre for Infection Research, Brunswick, Germany
- Department of Internal Medicine (Infectious Diseases), Uniklinikum Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Moritz Fritzenwanker
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Jane Falgenhauer
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Petra Gastmeier
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute for Hygiene and Environmental Medicine, National Reference Centre for the Surveillance of Nosocomial Infections, Charité-University Hospital, Berlin, Germany
| | - Michael Behnke
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute for Hygiene and Environmental Medicine, National Reference Centre for the Surveillance of Nosocomial Infections, Charité-University Hospital, Berlin, Germany
| | - Evelyn Kramme
- DZIF German Centre for Infection Research, Brunswick, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Nadja Käding
- DZIF German Centre for Infection Research, Brunswick, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Jan Rupp
- DZIF German Centre for Infection Research, Brunswick, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Silke Peter
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Kristina Schmauder
- DZIF German Centre for Infection Research, Brunswick, Germany
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Simone Eisenbeis
- DZIF German Centre for Infection Research, Brunswick, Germany
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Winfried V Kern
- Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Evelina Tacconelli
- DZIF German Centre for Infection Research, Brunswick, Germany
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Policlinico GB Rossi, Verona, Italy
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, 79106, Freiburg, Germany
- DZIF German Centre for Infection Research, Brunswick, Germany
| |
Collapse
|
4
|
Hausman BS, Memic S, Cadnum JL, Zink EG, Wilson BM, Donskey CJ. Effect of Ceftaroline, Ceftazidime/Avibactam, Ceftolozane/Tazobactam, and Meropenem/Vaborbactam on Establishment of Colonization by Vancomycin-Resistant Enterococci and Klebsiella pneumoniae in Mice. Pathog Immun 2024; 9:194-204. [PMID: 39345792 PMCID: PMC11432534 DOI: 10.20411/pai.v9i2.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Background The potential for promotion of intestinal colonization with healthcare-associated pathogens by new antibiotics used to treat infections due to multidrug-resistant Gram-negative bacilli is unclear. Methods Mice treated for 3 days with daily subcutaneous phosphate-buffered saline (control), ceftazidime/avibactam, ceftolozane/tazobactam, ceftaroline, and meropenem/vaborbactam were challenged with 10,000 colony-forming units (CFU) of vancomycin-resistant Enterococcus (VRE) resistant to each of the antibioics or carbapenemase-producing Klebsiella pneumoniae 1 day after the final treatment dose. The concentrations of VRE or K. pneumoniae in stool were measured on days 1, 3, 6, and 15 after challenge. Results Control mice had transient low levels of VRE or K. pneumoniae (<3 log10 CFU/g) detected in stool with negative cultures on days 6 and 15 after challenge. In comparison to control mice, each of the antibiotics promoted establishment of high-density colonization with VRE (mean concentration, >8 log10 CFU/g of stool on day 1 after challenge) that persisted at >4 log10 CFU/g of stool through day 15 (P<0.01). In comparison to control mice, meropenem/vaborbactam and ceftaroline promoted high-density colonization with K. pneumoniae (peak concentration, >8 log10 CFU/g of stool) (P<0.01), ceftolozane/tazobactam promoted colonization to a lesser degree (peak concentration, >5 log10 CFU/g of stool), and ceftazidime/avibactam did not promote colonization (P>0.05). Conclusions Our results suggest that several beta-lactam antibiotics recently developed for treatment of infections with resistant Gram-negative bacilli have the potential to promote colonization by healthcare-associated pathogens. Additional studies are needed to examine the impact of these agents in patients.
Collapse
Affiliation(s)
- Bryan S Hausman
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Samir Memic
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Jennifer L Cadnum
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Elizabeth G Zink
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Brigid M Wilson
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Curtis J Donskey
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
5
|
Nelson ME, Little JL, Kristich CJ. Pbp4 provides transpeptidase activity to the FtsW-PbpB peptidoglycan synthase to drive cephalosporin resistance in Enterococcus faecalis. Antimicrob Agents Chemother 2024; 68:e0055524. [PMID: 39058024 PMCID: PMC11373202 DOI: 10.1128/aac.00555-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Enterococci exhibit intrinsic resistance to cephalosporins, mediated in part by the class B penicillin-binding protein (bPBP) Pbp4 that exhibits low reactivity toward cephalosporins and thus can continue crosslinking peptidoglycan despite exposure to cephalosporins. bPBPs partner with cognate SEDS (shape, elongation, division, and sporulation) glycosyltransferases to form the core catalytic complex of peptidoglycan synthases that synthesize peptidoglycan at discrete cellular locations, although the SEDS partner for Pbp4 is unknown. SEDS-bPBP peptidoglycan synthases of enterococci have not been studied, but some SEDS-bPBP pairs can be predicted based on sequence similarity. For example, FtsW (SEDS)-PbpB (bPBP) is predicted to form the catalytic core of the peptidoglycan synthase that functions at the division septum (the divisome). However, PbpB is readily inactivated by cephalosporins, raising the question-how could the FtsW-PbpB synthase continue functioning to enable growth in the presence of cephalosporins? In this work, we report that the FtsW-PbpB peptidoglycan synthase is required for cephalosporin resistance of Enterococcus faecalis, despite the fact that PbpB is inactivated by cephalosporins. Moreover, Pbp4 associates with the FtsW-PbpB synthase and the TPase activity of Pbp4 is required to enable growth in the presence of cephalosporins in an FtsW-PbpB-synthase-dependent manner. Overall, our results implicate a model in which Pbp4 directly interacts with the FtsW-PbpB peptidoglycan synthase to provide TPase activity during cephalosporin treatment, thereby maintaining the divisome SEDS-bPBP peptidoglycan synthase in a functional state competent to synthesize crosslinked peptidoglycan. These results suggest that two bPBPs coordinate within the FtsW-PbpB peptidoglycan synthase to drive cephalosporin resistance in E. faecalis.
Collapse
Affiliation(s)
- Madison E Nelson
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jaime L Little
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Bullen NP, Johnson CN, Andersen SE, Arya G, Marotta SR, Lee YJ, Weigele PR, Whitney JC, Duerkop BA. An enterococcal phage protein inhibits type IV restriction enzymes involved in antiphage defense. Nat Commun 2024; 15:6955. [PMID: 39138193 PMCID: PMC11322646 DOI: 10.1038/s41467-024-51346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in vancomycin-resistant E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.
Collapse
Affiliation(s)
- Nathan P Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Cydney N Johnson
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Shelby E Andersen
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Garima Arya
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Sonia R Marotta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, MA, 01938, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Ipswich, MA, 01938, USA
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Bullen NP, Johnson CN, Andersen SE, Arya G, Marotta SR, Lee YJ, Weigele PR, Whitney JC, Duerkop BA. An enterococcal phage protein broadly inhibits type IV restriction enzymes involved in antiphage defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567456. [PMID: 38014348 PMCID: PMC10680825 DOI: 10.1101/2023.11.16.567456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.
Collapse
Affiliation(s)
- Nathan P. Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Shelby E. Andersen
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Garima Arya
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Sonia R. Marotta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, MA, USA, 01938
| | - Peter R. Weigele
- Research Department, New England Biolabs, Ipswich, MA, USA, 01938
| | - John C. Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| |
Collapse
|
8
|
Vialetto E, Miele S, Goren MG, Yu J, Yu Y, Collias D, Beamud B, Osbelt L, Lourenço M, Strowig T, Brisse S, Barquist L, Qimron U, Bikard D, Beisel C. Systematic interrogation of CRISPR antimicrobials in Klebsiella pneumoniae reveals nuclease-, guide- and strain-dependent features influencing antimicrobial activity. Nucleic Acids Res 2024; 52:6079-6091. [PMID: 38661215 PMCID: PMC11162776 DOI: 10.1093/nar/gkae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials using multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae as models. Comparing different Cas nucleases, DNA-targeting nucleases outperformed RNA-targeting nucleases based on the tested targets. Focusing on AsCas12a that exhibited robust targeting across different strains, we found that the elucidated modes of escape varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains, which were linked to an interplay between improper gRNA folding and strain-specific DNA repair and survival. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.
Collapse
Affiliation(s)
- Elena Vialetto
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Solange Miele
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Moran G Goren
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Yanying Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Beatriz Beamud
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Lisa Osbelt
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- University of Würzburg, Medical Faculty, 97080 Würzburg, Germany
| | - Udi Qimron
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - David Bikard
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- University of Würzburg, Medical Faculty, 97080 Würzburg, Germany
| |
Collapse
|
9
|
Sangiorgio G, Calvo M, Migliorisi G, Campanile F, Stefani S. The Impact of Enterococcus spp. in the Immunocompromised Host: A Comprehensive Review. Pathogens 2024; 13:409. [PMID: 38787261 PMCID: PMC11124283 DOI: 10.3390/pathogens13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The immunocompromised host is usually vulnerable to infectious diseases due to broad-spectrum treatments and immunological dysregulation. The Enterococcus genus consists of normal gut commensals, which acquire a leading role in infective processes among individuals with compromised immune systems. These microorganisms may express a potential virulence and resistance spectrum, enabling their function as severe pathogens. The Enterococcus spp. infections in immunocompromised hosts appear to be difficult to resolve due to the immunological response impairment and the possibility of facing antimicrobial-resistant strains. As regards the related risk factors, several data demonstrated that prior antibiotic exposure, medical device insertion, prolonged hospitalization and surgical interventions may lead to Enterococcus overgrowth, antibiotic resistance and spread among critical healthcare settings. Herein, we present a comprehensive review of Enterococcus spp. in the immunocompromised host, summarizing the available knowledge about virulence factors, antimicrobial-resistance mechanisms and host-pathogen interaction. The review ultimately yearns for more substantial support to further investigations about enterococcal infections and immunocompromised host response.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| |
Collapse
|
10
|
Pensinger DA, Dobrila HA, Stevenson DM, Hryckowian ND, Amador-Noguez D, Hryckowian AJ. Exogenous butyrate inhibits butyrogenic metabolism and alters virulence phenotypes in Clostridioides difficile. mBio 2024; 15:e0253523. [PMID: 38289141 PMCID: PMC10936429 DOI: 10.1128/mbio.02535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 02/13/2024] Open
Abstract
The gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile, but the molecular basis of this colonization resistance is incompletely understood. A prominent class of gut microbiome-produced metabolites important for colonization resistance against C. difficile is short-chain fatty acids (SCFAs). In particular, one SCFA (butyrate) decreases the fitness of C. difficile in vitro and is correlated with C. difficile-inhospitable gut environments, both in mice and in humans. Here, we demonstrate that butyrate-dependent growth inhibition in C. difficile occurs under conditions where C. difficile also produces butyrate as a metabolic end product. Furthermore, we show that exogenous butyrate is internalized into C. difficile cells and is incorporated into intracellular CoA pools where it is metabolized in a reverse (energetically unfavorable) direction to crotonyl-CoA and (S)-3-hydroxybutyryl-CoA and/or 4-hydroxybutyryl-CoA. This internalization of butyrate and reverse metabolic flow of a butyrogenic pathway(s) in C. difficile coincides with alterations in toxin release and sporulation. Together, this work highlights butyrate as a marker of a C. difficile-inhospitable environment to which C. difficile responds by releasing its diarrheagenic toxins and producing environmentally resistant spores necessary for transmission between hosts. These findings provide foundational data for understanding the molecular and genetic basis of how C. difficile growth is inhibited by butyrate and how butyrate alters C. difficile virulence in the face of a highly competitive and dynamic gut environment.IMPORTANCEThe gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile, but the molecular basis of this colonization resistance is incompletely understood, which hinders the development of novel therapeutic interventions for C. difficile infection (CDI). We investigated how C. difficile responds to butyrate, an end-product of gut microbiome community metabolism which inhibits C. difficile growth. We show that exogenously produced butyrate is internalized into C. difficile, which inhibits C. difficile growth by interfering with its own butyrate production. This growth inhibition coincides with increased toxin release from C. difficile cells and the production of environmentally resistant spores necessary for transmission between hosts. Future work to disentangle the molecular mechanisms underlying these growth and virulence phenotypes will likely lead to new strategies to restrict C. difficile growth in the gut and minimize its pathogenesis during CDI.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Horia A. Dobrila
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Sheriff EK, Andersen SE, Chatterjee A, Duerkop BA. Complete genome sequence of enterococcal phage G01. Microbiol Resour Announc 2024; 13:e0121723. [PMID: 38294211 DOI: 10.1128/mra.01217-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Here, we report the annotated genome of enterococcal phage G01. The G01 genome is 41,189 bp in length and contains 67 predicted open reading frames. Host range analysis revealed G01 can infect 28.6% (6/21) of Enterococcus faecalis strains tested and appears to not require the enterococcal phage infection protein PIPEF.
Collapse
Affiliation(s)
- Emma K Sheriff
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shelby E Andersen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Djorić D, Atkinson SN, Kristich CJ. Reciprocal regulation of enterococcal cephalosporin resistance by products of the autoregulated yvcJ-glmR-yvcL operon enhances fitness during cephalosporin exposure. PLoS Genet 2024; 20:e1011215. [PMID: 38512984 PMCID: PMC10986989 DOI: 10.1371/journal.pgen.1011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
13
|
Giersch K, Tanida K, Both A, Nörz D, Heim D, Rohde H, Aepfelbacher M, Lütgehetmann M. Adaptation and validation of a quantitative vanA/vanB DNA screening assay on a high-throughput PCR system. Sci Rep 2024; 14:3523. [PMID: 38347048 PMCID: PMC10861526 DOI: 10.1038/s41598-024-54037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Vancomycin resistant enterococci (VRE) are a leading cause of ICU-acquired bloodstream infections in Europe. The bacterial load in enteral colonization may be associated with a higher probability of transmission. Here, we aimed to establish a quantitative vanA/vanB DNA real-time PCR assay on a high-throughput system. Limits of detection (LOD), linear range and precision were determined using serial bacterial dilutions. LOD was 46.9 digital copies (dcp)/ml for vanA and 60.8 dcp/ml for vanB. The assay showed excellent linearity between 4.7 × 101 and 3.5 × 105 dcp/ml (vanA) and 6.7 × 102 and 6.7 × 105 dcp/ml (vanB). Sensitivity was 100% for vanA and vanB, with high positive predictive value (PPV) for vanA (100%), but lower PPV for vanB (34.6%) likely due to the presence of vanB DNA positive anerobic bacteria in rectal swabs. Using the assay on enriched VRE broth vanB PPV increased to 87.2%. Quantification revealed median 2.0 × 104 dcp/ml in PCR positive but VRE culture negative samples and median 9.1 × 104 dcp/ml in VRE culture positive patients (maximum: 107 dcp/ml). The automated vanA/B_UTC assay can be used for vanA/vanB detection and quantification in different diagnostic settings and may support future clinical studies assessing the impact of bacterial load on risk of infection and transmission.
Collapse
Affiliation(s)
- Katja Giersch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Konstantin Tanida
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Anna Both
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Dominik Nörz
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Denise Heim
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
14
|
Bellut H, Arrayago M, Amara M, Roujansky A, Micaelo M, Bruneel F, Bedos JP. Real-life use of ceftobiprole for severe infections in a French intensive care unit. Infect Dis Now 2024; 54:104790. [PMID: 37774796 DOI: 10.1016/j.idnow.2023.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Ceftobiprole (CBP) is an anti-methicillin-resistant Staphylococcus aureus (MRSA) cephalosporin with a wide spectrum of activity. We aimed to describe our experience of real-life use of CBP for the treatment of severe infections of critically ill patients with multiple infected sites and related trough CBP concentrations. We performed a retrospective, observational, monocentric study in our intensive care unit (ICU) that included all patients treated with CBP for documented infections between January 2016 and December 2021. We collected demographic, clinical, and microbiological data. When available, we report the CBP trough concentrations. The primary endpoint was clinical cure at the end of treatment. The secondary endpoints were in-hospital mortality and documentation of the carriage of multidrug-resistant (MDR) bacteria not present before CBP treatment. Between January 2016 and December 2021, 47 patients were treated in the ICU with CBP. The main indication for treatment was pneumonia (51%) and most patients presented with associated bacteremia (72%). All infections were polymicrobial. A clinical cure was achieved for nearly 80% of the patients. Only five patients presented new carriage of MDR bacteria. In-hospital mortality was 32%. Out of 21 strains of Enterobacterales for which the MIC was available, 33% were considered to be resistant to CBP according to the EUCAST 2023 clinical breakpoint. Trough CBP concentrations were reported for 16 patients. In our real-life experience, treatment of ICU patients with CBP for polymicrobial severe infections resulted in most cases in a clinical cure. Monitoring of trough concentrations is critical, especially in cases of high MIC.
Collapse
Affiliation(s)
- Hugo Bellut
- Service de réanimation, Hôpital A. Mignot, CH Versailles, 177 Rue de Versailles, 78157 Le Chesnay, France.
| | - Marine Arrayago
- Service de réanimation, Hôpital A. Mignot, CH Versailles, 177 Rue de Versailles, 78157 Le Chesnay, France
| | - Marlène Amara
- Service de biologie, unité de microbiologie, Hôpital A. Mignot, CH Versailles, 177 Rue de Versailles, 78157 Le Chesnay, France
| | - Ariane Roujansky
- Service de réanimation, Hôpital A. Mignot, CH Versailles, 177 Rue de Versailles, 78157 Le Chesnay, France
| | - Maité Micaelo
- Service de biologie, unité de microbiologie, Hôpital A. Mignot, CH Versailles, 177 Rue de Versailles, 78157 Le Chesnay, France
| | - Fabrice Bruneel
- Service de réanimation, Hôpital A. Mignot, CH Versailles, 177 Rue de Versailles, 78157 Le Chesnay, France
| | - Jean-Pierre Bedos
- Service de réanimation, Hôpital A. Mignot, CH Versailles, 177 Rue de Versailles, 78157 Le Chesnay, France
| |
Collapse
|
15
|
Premachandra A, Moine P. Antibiotics in anesthesia and critical care. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:6. [PMID: 38304898 PMCID: PMC10777233 DOI: 10.21037/atm-22-5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Sepsis is life-threatening organ dysfunction due to a dysregulated host response to an underlying acute infection. Sepsis is a major worldwide healthcare problem. An annual estimated 48.9 million incident cases of sepsis is reported, with 11 million (20%) sepsis-related deaths. Administration of appropriate antimicrobials is one of the most effective therapeutic interventions to reduce mortality. The severity of illness informs the urgency of antimicrobial administration. Nevertheless, even used properly, they cause adverse effects and contribute to the development of antibiotic resistance. Both inadequate and unnecessarily broad empiric antibiotics are associated with higher mortality and also select for antibiotic-resistant germs. In this narrative review, we will first discuss important factors and potential confounders which may influence the occurrence of surgical site infection (SSI) and which should be considered in the provision of perioperative antibiotic prophylaxis (PAP). Then, we will summarize recent advances and perspectives to optimize antibiotic therapy in the intensive care unit (ICU). Finally, the major role of the microbiota and the impact of antimicrobials on it will be discussed. While expert recommendations help guide daily practice in the operating theatre and ICU, a thorough knowledge of pharmacokinetic/pharmacodynamic (PK/PD) rules is critical to optimize the management of complex patients and minimize the emergence of multidrug-resistant organisms.
Collapse
Affiliation(s)
- Antoine Premachandra
- Department of Intensive Care, Hôpital Raymond Poincaré, Groupe Hospitalo-Universitaire GHU AP-HP, University Versailles Saint Quentin-University Paris-Saclay, Garches, France
| | - Pierre Moine
- Department of Intensive Care, Hôpital Raymond Poincaré, Groupe Hospitalo-Universitaire GHU AP-HP, University Versailles Saint Quentin-University Paris-Saclay, Garches, France
- Laboratory of Infection & Inflammation - U1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) - University Paris-Saclay - Institut National de la Santé et de la Recherche Médicale (INSERM), Garches, France
- Fédération Hospitalo-Universitaire FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), Garches, France
| |
Collapse
|
16
|
Rogers R, Rice LB. State-of-the-Art Review: Persistent Enterococcal Bacteremia. Clin Infect Dis 2024; 78:e1-e11. [PMID: 38018162 DOI: 10.1093/cid/ciad612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 11/30/2023] Open
Abstract
Persistent enterococcal bacteremia is a commonly encountered and morbid syndrome without a strong evidence base for optimal management practices. Here we highlight reports on the epidemiology of enterococcal bacteremia to better describe and define persistent enterococcal bacteremia, discuss factors specific to Enterococcus species that may contribute to persistent infections, and describe a measured approach to diagnostic and therapeutic strategies for patients with these frequently complicated infections. The diagnosis of persistent enterococcal bacteremia is typically clinically evident in the setting of repeatedly positive blood culture results; instead, the challenge is to determine in an accurate, cost-effective, and minimally invasive manner whether any underlying nidus of infection (eg, endocarditis or undrained abscess) is present and contributing to the persistent bacteremia. Clinical outcomes for patients with persistent enterococcal bacteremia remain suboptimal. Beyond addressing host immune status if relevant and pursuing source control for all patients, management decisions primarily involve the selection of the proper antimicrobial agent(s). Options for antimicrobial therapy are often limited in the setting of intrinsic and acquired antimicrobial resistance among enterococcal clinical isolates. The synergistic benefit of combination antimicrobial therapy has been demonstrated for enterococcal endocarditis, but it is not clear at present whether a similar approach will provide any clinical benefit to some or all patients with persistent enterococcal bacteremia.
Collapse
Affiliation(s)
- Ralph Rogers
- Division of Infectious Diseases and Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B Rice
- Division of Infectious Diseases and Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Tokano M, Tarumoto N, Sakai J, Imai K, Kodana M, Kawamura T, Maeda T, Maesaki S. Vancomycin-resistant Enterococcus faecium in Japan, 2007-2015: a molecular epidemiology analysis focused on examining strain characteristics over time. Microbiol Spectr 2024; 12:e0244423. [PMID: 38100166 PMCID: PMC10783050 DOI: 10.1128/spectrum.02444-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/05/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Our study emphasizes the efficacy of whole-genome sequencing (WGS) in addressing outbreaks of vancomycin-resistant enterococci. WGS enables the identification and tracking of resistant bacterial strains, early detection and management of novel infectious disease outbreaks, and the appropriate selection and use of antibiotics. Furthermore, our approach deepens our understanding of how resistant bacteria transfer genes and adapt to their environments or hosts. For modern medicine, these insights have significant implications for controlling infections and effectively managing antibiotic use in the current era, where antibiotic resistance is progressing.
Collapse
Affiliation(s)
- Mieko Tokano
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Saitama, Japan
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Saitama, Japan
| | - Jun Sakai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Saitama, Japan
| | - Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Saitama, Japan
- Department of Clinical Laboratory, Saitama Medical University, Moroyama, Saitama, Japan
| | - Masahiro Kodana
- Department of Clinical Laboratory, Saitama Medical University, Moroyama, Saitama, Japan
| | - Toru Kawamura
- Department of Clinical Laboratory, Saitama Medical University, Moroyama, Saitama, Japan
| | - Takuya Maeda
- Department of Clinical Laboratory, Saitama Medical University, Moroyama, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Saitama, Japan
| |
Collapse
|
18
|
Cho NA, Strayer K, Dobson B, McDonald B. Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness. Gut Microbes 2024; 16:2351478. [PMID: 38780485 PMCID: PMC11123462 DOI: 10.1080/19490976.2024.2351478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
For many years, it has been hypothesized that pathological changes to the gut microbiome in critical illness is a driver of infections, organ dysfunction, and other adverse outcomes in the intensive care unit (ICU). The advent of contemporary microbiome methodologies and multi-omics tools have allowed researchers to test this hypothesis by dissecting host-microbe interactions in the gut to better define its contribution to critical illness pathogenesis. Observational studies of patients in ICUs have revealed that gut microbial communities are profoundly altered in critical illness, characterized by markedly reduced alpha diversity, loss of commensal taxa, and expansion of potential pathogens. These key features of ICU gut dysbiosis have been associated with adverse outcomes including life-threatening hospital-acquired (nosocomial) infections. Current research strives to define cellular and molecular mechanisms connecting gut dysbiosis with infections and other outcomes, and to identify opportunities for therapeutic modulation of host-microbe interactions. This review synthesizes evidence from studies of critically ill patients that have informed our understanding of intestinal dysbiosis in the ICU, mechanisms linking dysbiosis to infections and other adverse outcomes, as well as clinical trials of microbiota-modifying therapies. Additionally, we discuss novel avenues for precision microbial therapeutics to combat nosocomial infections and other life-threatening complications of critical illness.
Collapse
Affiliation(s)
- Nicole A Cho
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathryn Strayer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Breenna Dobson
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Mascari CA, Little JL, Kristich CJ. PASTA-kinase-mediated signaling drives accumulation of the peptidoglycan synthesis protein MurAA to promote cephalosporin resistance in Enterococcus faecalis. Mol Microbiol 2023; 120:811-829. [PMID: 37688380 PMCID: PMC10872757 DOI: 10.1111/mmi.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The bacterial PASTA kinase, IreK, is required for intrinsic cephalosporin resistance in the Gram-positive opportunistic pathogen, Enterococcus faecalis. IreK activity is enhanced in response to cell wall stress, such as cephalosporin exposure. The downstream consequences of IreK activation are not well understood in E. faecalis, but recent work in other low-GC Gram-positive bacteria demonstrated PASTA kinase-dependent regulation of MurAA, an enzyme that performs the first committed step in the peptidoglycan synthesis pathway. Here, we used genetic suppressor selections to identify MurAA as a downstream target of IreK signaling in E. faecalis. Using complementary genetic and biochemical approaches, we demonstrated that MurAA abundance is regulated by IreK signaling in response to physiologically relevant cell wall stress to modulate substrate flux through the peptidoglycan synthesis pathway. Specifically, the IreK substrate, IreB, promotes proteolysis of MurAA through a direct physical interaction in a manner responsive to phosphorylation by IreK. MurAB, a homolog of MurAA, also promotes MurAA proteolysis and interacts directly with IreB. Our results therefore establish a connection between the cell wall stress sensor IreK and one critical physiological output to modulate peptidoglycan synthesis and drive cephalosporin resistance.
Collapse
Affiliation(s)
- Carly A. Mascari
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Jaime L. Little
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
20
|
de Nies L, Kobras CM, Stracy M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol 2023; 21:789-804. [PMID: 37542123 DOI: 10.1038/s41579-023-00936-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient's resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient's microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient's microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.
Collapse
Affiliation(s)
- Laura de Nies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Wang J, Foxman B, Rao K, Cassone M, Gibson K, Mody L, Snitkin ES. Association of patient clinical and gut microbiota features with vancomycin-resistant enterococci environmental contamination in nursing homes: a retrospective observational study. THE LANCET. HEALTHY LONGEVITY 2023; 4:e600-e607. [PMID: 37924841 DOI: 10.1016/s2666-7568(23)00188-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Preventing transmission is crucial for reducing infections with multidrug-resistant organisms (MDROs) in nursing homes. To identify resident characteristics associated with MDRO spread, we investigated associations between patient characteristics and contamination of their proximate room surfaces with vancomycin-resistant enterococci (VRE). METHODS In this retrospective observational study, we used demographic and clinical data (including data on comorbidities, physical independence, catheter use within the past 30 days, and antibiotic exposure within the past 30 days) and surveillance cultures of patient body sites and room surfaces at enrolment and during weekly follow-up visits within the first month, and monthly thereafter (up to 6 months), in six US nursing homes collected in a previous clinical trial (September, 2016, to August, 2018). We did 16S rRNA gene sequencing on perirectal surveillance swabs to investigate the association between the gut microbiota and the culture status of participants and their rooms. FINDINGS We included 245 participants (mean age 72·5 years [SD 13·6]; 111 [45%] were men, 134 [55%] were women, 132 [54%] were non-Hispanic white, and 112 [46%] were African American). We collected 2802 participant samples and 5592 environmental samples. At baseline, VRE colonisation was present in 49 (20%) participants, with environmental surfaces being contaminated in 36 (73%) of these patients. Hand contamination among VRE-colonised participants was more common in those with environmental contamination compared with those without (50 [51%] of 99 vs seven [13%] of 55; p<0·0001). We found a correlation between hand contamination and both groin and perirectal colonisation and contamination of various high-touch room surfaces (Cohen's κ 0·43). We found participant microbiota composition to be associated with antibiotic receipt within the past 30 days (high-risk antibiotics p=0·011 and low-risk antibiotics p=0·0004) and participant VRE colonisation status, but not environmental contamination among VRE-colonised participants (participant only vs uncolonised p=0·071, both participant and environment vs uncolonised p=0·025, and participant only vs participant and environment p=0·29). Multivariable analysis to identify independent factors associated with VRE-colonised participants contaminating their environment identified antibiotic exposure (adjusted odds ratio 2·75 [95% CI 1·22-6·16]) and male sex (2·75 [1·24-6·08]) as being associated with increased risk of environmental contamination, and physical dependence as being associated with a reduced risk of environmental contamination (0·91 [0·83-0·99]). INTERPRETATION Our data support antibiotic use and interaction with proximal surfaces by physically independent nursing home residents as under-appreciated drivers of environmental contamination among VRE-colonised residents. Integrating resident hand-hygiene education and antimicrobial stewardship will strengthen efforts to reduce MDROs in nursing homes. FUNDING US Centers for Disease Control and Prevention, National Institute of Health, Canadian Institutes of Health Research, and University of Michigan.
Collapse
Affiliation(s)
- Joyce Wang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Krishna Rao
- Division of Infectious Diseases, Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marco Cassone
- Division of Geriatrics and Palliative Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen Gibson
- Division of Geriatrics and Palliative Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lona Mody
- Division of Geriatrics and Palliative Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Geriatric Research Education and Clinical Center, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Infectious Diseases, Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Sartelli M, Barie PS, Coccolini F, Abbas M, Abbo LM, Abdukhalilova GK, Abraham Y, Abubakar S, Abu-Zidan FM, Adebisi YA, Adamou H, Afandiyeva G, Agastra E, Alfouzan WA, Al-Hasan MN, Ali S, Ali SM, Allaw F, Allwell-Brown G, Amir A, Amponsah OKO, Al Omari A, Ansaloni L, Ansari S, Arauz AB, Augustin G, Awazi B, Azfar M, Bah MSB, Bala M, Banagala ASK, Baral S, Bassetti M, Bavestrello L, Beilman G, Bekele K, Benboubker M, Beović B, Bergamasco MD, Bertagnolio S, Biffl WL, Blot S, Boermeester MA, Bonomo RA, Brink A, Brusaferro S, Butemba J, Caínzos MA, Camacho-Ortiz A, Canton R, Cascio A, Cassini A, Cástro-Sanchez E, Catarci M, Catena R, Chamani-Tabriz L, Chandy SJ, Charani E, Cheadle WG, Chebet D, Chikowe I, Chiara F, Cheng VCC, Chioti A, Cocuz ME, Coimbra R, Cortese F, Cui Y, Czepiel J, Dasic M, de Francisco Serpa N, de Jonge SW, Delibegovic S, Dellinger EP, Demetrashvili Z, De Palma A, De Silva D, De Simone B, De Waele J, Dhingra S, Diaz JJ, Dima C, Dirani N, Dodoo CC, Dorj G, Duane TM, Eckmann C, Egyir B, Elmangory MM, Enani MA, Ergonul O, Escalera-Antezana JP, Escandon K, Ettu AWOO, Fadare JO, Fantoni M, Farahbakhsh M, Faro MP, Ferreres A, Flocco G, Foianini E, Fry DE, Garcia AF, Gerardi C, Ghannam W, Giamarellou H, Glushkova N, Gkiokas G, Goff DA, Gomi H, Gottfredsson M, Griffiths EA, Guerra Gronerth RI, Guirao X, Gupta YK, Halle-Ekane G, Hansen S, Haque M, Hardcastle TC, Hayman DTS, Hecker A, Hell M, Ho VP, Hodonou AM, Isik A, Islam S, Itani KMF, Jaidane N, Jammer I, Jenkins DR, Kamara IF, Kanj SS, Jumbam D, Keikha M, Khanna AK, Khanna S, Kapoor G, Kapoor G, Kariuki S, Khamis F, Khokha V, Kiggundu R, Kiguba R, Kim HB, Kim PK, Kirkpatrick AW, Kluger Y, Ko WC, Kok KYY, Kotecha V, Kouma I, Kovacevic B, Krasniqi J, Krutova M, Kryvoruchko I, Kullar R, Labi KA, Labricciosa FM, Lakoh S, Lakatos B, Lansang MAD, Laxminarayan R, Lee YR, Leone M, Leppaniemi A, Hara GL, Litvin A, Lohsiriwat V, Machain GM, Mahomoodally F, Maier RV, Majumder MAA, Malama S, Manasa J, Manchanda V, Manzano-Nunez R, Martínez-Martínez L, Martin-Loeches I, Marwah S, Maseda E, Mathewos M, Maves RC, McNamara D, Memish Z, Mertz D, Mishra SK, Montravers P, Moro ML, Mossialos E, Motta F, Mudenda S, Mugabi P, Mugisha MJM, Mylonakis E, Napolitano LM, Nathwani D, Nkamba L, Nsutebu EF, O’Connor DB, Ogunsola S, Jensen PØ, Ordoñez JM, Ordoñez CA, Ottolino P, Ouedraogo AS, Paiva JA, Palmieri M, Pan A, Pant N, Panyko A, Paolillo C, Patel J, Pea F, Petrone P, Petrosillo N, Pintar T, Plaudis H, Podda M, Ponce-de-Leon A, Powell SL, Puello-Guerrero A, Pulcini C, Rasa K, Regimbeau JM, Rello J, Retamozo-Palacios MR, Reynolds-Campbell G, Ribeiro J, Rickard J, Rocha-Pereira N, Rosenthal VD, Rossolini GM, Rwegerera GM, Rwigamba M, Sabbatucci M, Saladžinskas Ž, Salama RE, Sali T, Salile SS, Sall I, Kafil HS, Sakakushev BE, Sawyer RG, Scatizzi M, Seni J, Septimus EJ, Sganga G, Shabanzadeh DM, Shelat VG, Shibabaw A, Somville F, Souf S, Stefani S, Tacconelli E, Tan BK, Tattevin P, Rodriguez-Taveras C, Telles JP, Téllez-Almenares O, Tessier J, Thang NT, Timmermann C, Timsit JF, Tochie JN, Tolonen M, Trueba G, Tsioutis C, Tumietto F, Tuon FF, Ulrych J, Uranues S, van Dongen M, van Goor H, Velmahos GC, Vereczkei A, Viaggi B, Viale P, Vila J, Voss A, Vraneš J, Watkins RR, Wanjiru-Korir N, Waworuntu O, Wechsler-Fördös A, Yadgarova K, Yahaya M, Yahya AI, Xiao Y, Zakaria AD, Zakrison TL, Zamora Mesia V, Siquini W, Darzi A, Pagani L, Catena F. Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action. World J Emerg Surg 2023; 18:50. [PMID: 37845673 PMCID: PMC10580644 DOI: 10.1186/s13017-023-00518-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice.
Collapse
|
23
|
Ousmane S, Kollo IA, Jambou R, Boubacar R, Arzika AM, Maliki R, Amza A, Liu Z, Lebas E, Colby E, Zhong L, Chen C, Hinterwirth A, Doan T, Lietman TM, O’Brien KS. Wastewater-Based Surveillance of Antimicrobial Resistance in Niger: An Exploratory Study. Am J Trop Med Hyg 2023; 109:725-729. [PMID: 37640288 PMCID: PMC10551091 DOI: 10.4269/ajtmh.23-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Wastewater-based surveillance is increasingly recognized as an important approach to monitoring population-level antimicrobial resistance (AMR). In this exploratory study, we examined the use of metagenomics to evaluate AMR using untreated wastewater samples routinely collected by the Niger national polio surveillance program. Forty-eight stored samples from two seasons each year over 4 years (2016-2019) in three regions were selected for inclusion in this study and processed using unbiased DNA deep sequencing. Normalized number of reads of genetic determinants for different antibiotic classes were compared over time, by season, and by location. Correlations in resistance were examined among classes. Changes in reads per million per year were demonstrated for several classes, including decreases over time in resistance determinants for phenicols (-3.3, 95% CI: -8.7 to -0.1, P = 0.029) and increases over time for aminocoumarins (3.8, 95% CI: 0.0 to 11.4, P = 0.043), fluoroquinolones (6.8, 95% CI: 0.0 to 20.5, P = 0.048), and beta-lactams (0.85, 95% CI: 0.1 to 1.7, P = 0.006). Sulfonamide resistance was higher in the post-rainy season compared with the dry season (5.2-fold change, 95% CI: 3.4 to 7.9, P < 0.001). No differences were detected when comparing other classes by season or by site for any antibiotic class. Positive correlations were identified in genetic determinants of resistance among several antibiotic classes. These results demonstrate the potential utility of leveraging existing wastewater sample collection in this setting for AMR surveillance.
Collapse
Affiliation(s)
- Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | | | - Ronan Jambou
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Rakia Boubacar
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Ahmed M. Arzika
- Centre de Recherche et Interventions en Santé Publique, Birni N’Gaoure, Niger
| | - Ramatou Maliki
- Centre de Recherche et Interventions en Santé Publique, Birni N’Gaoure, Niger
| | - Abdou Amza
- Programme Nationale de Santé Oculaire, Niamey, Niger
| | - Zijun Liu
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Elodie Lebas
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Emily Colby
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Lina Zhong
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Cindi Chen
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Armin Hinterwirth
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
| | - Thomas M. Lietman
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
- Institute for Global Health Sciences, University of California, San Francisco, California
| | - Kieran S. O’Brien
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
- Institute for Global Health Sciences, University of California, San Francisco, California
| |
Collapse
|
24
|
VanZeeland NE, Schultz KM, Klug CS, Kristich CJ. Multisite Phosphorylation Regulates GpsB Function in Cephalosporin Resistance of Enterococcus faecalis. J Mol Biol 2023; 435:168216. [PMID: 37517789 PMCID: PMC10528945 DOI: 10.1016/j.jmb.2023.168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Enterococci are normal human commensals and major causes of hospital-acquired infections. Enterococcal infections can be difficult to treat because enterococci harbor intrinsic and acquired antibiotic resistance, such as resistance to cephalosporins. In Enterococcus faecalis, the transmembrane kinase IreK, a member of the bacterial PASTA kinase family, is essential for cephalosporin resistance. The activity of IreK is boosted by the cytoplasmic protein GpsB, which promotes IreK autophosphorylation and signaling to drive cephalosporin resistance. A previous phosphoproteomics study identified eight putative IreK-dependent phosphorylation sites on GpsB, but the functional importance of GpsB phosphorylation was unknown. Here we used genetic and biochemical approaches to define three sites of phosphorylation on GpsB that functionally impact IreK activity and cephalosporin resistance. Phosphorylation at two sites (S80 and T84) serves to impair the ability of GpsB to activate IreK in vivo, suggesting phosphorylation of these sites acts as a means of negative feedback for IreK. The third site of phosphorylation (T133) occurs in a segment of GpsB termed the C-terminal extension that is unique to enterococcal GpsB homologs. The C-terminal extension is highly mobile in solution, suggesting it is largely unstructured, and phosphorylation of T133 appears to enable efficient phosphorylation at S80 / T84. Overall our results are consistent with a model in which multisite phosphorylation of GpsB impairs its ability to activate IreK, thereby diminishing signal transduction through the IreK-dependent pathway and modulating phenotypic cephalosporin resistance.
Collapse
Affiliation(s)
- Nicole E VanZeeland
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Pensinger DA, Dobrila HA, Stevenson DM, Davis NM, Amador-Noguez D, Hryckowian AJ. Exogenous butyrate inhibits butyrogenic metabolism and alters expression of virulence genes in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548018. [PMID: 37461482 PMCID: PMC10350080 DOI: 10.1101/2023.07.06.548018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile but the molecular basis of this colonization resistance is incompletely understood. A prominent class of gut microbiome-produced metabolites important for colonization resistance against C. difficile is short chain fatty acids (SCFAs). In particular, one SCFA (butyrate) decreases the fitness of C. difficile in vitro and is correlated with C. difficile-inhospitable gut environments, both in mice and in humans. Here, we demonstrate that butyrate-dependent growth inhibition in C. difficile occurs under conditions where C. difficile also produces butyrate as a metabolic end product. Furthermore, we show that exogenous butyrate is internalized into C. difficile cells, is incorporated into intracellular CoA pools where it is metabolized in a reverse (energetically unfavorable) direction to crotonyl-CoA and (S)-3-hydroxybutyryl-CoA and/or 4-hydroxybutyryl-CoA. This internalization of butyrate and reverse metabolic flow of butyrogenic pathway(s) in C. difficile coincides with alterations in toxin production and sporulation. Together, this work highlights butyrate as a signal of a C. difficile inhospitable environment to which C. difficile responds by producing its diarrheagenic toxins and producing environmentally-resistant spores necessary for transmission between hosts. These findings provide foundational data for understanding the molecular and genetic basis of how C. difficile growth is inhibited by butyrate and how butyrate serves as a signal to alter C. difficile virulence in the face of a highly competitive and dynamic gut environment.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Horia A. Dobrila
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole M. Davis
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
26
|
MacKenzie P, Färber J, Post M, Esser T, Bechmann L, Kropf S, Croner R, Geginat G. Previous antibiotic therapy as independent risk factor for the presence of vancomycin-resistant enterococci in surgical inpatients. Results from a matched case-control study. BMC Infect Dis 2023; 23:274. [PMID: 37131139 PMCID: PMC10155433 DOI: 10.1186/s12879-023-08238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Investigation of risk factors for the presence of vancomycin-resistant enterococci (VRE) in inpatients on surgical wards and associated intensive care units of a German tertiary care hospital. METHODS A single-centre retrospective matched case-control study was performed with surgical inpatients admitted between July 2013 and December 2016. Patients with in-hospital detection of VRE later than 48 h after admission were included and comprised 116 VRE-positive cases and 116 VRE-negative matched controls. VRE isolates of cases were typed by multi-locus sequence typing. RESULTS ST117 was identified as the dominant VRE sequence type. Next to length of stay in hospital or on an intensive care unit and previous dialysis the case-control study revealed previous antibiotic therapy as a risk factor for the in-hospital detection of VRE. The antibiotics piperacillin/tazobactam, meropenem, and vancomycin were associated with the highest risks. After taking into account length of stay in hospital as possible confounder other potential contact-related risk factors such as previous sonography, radiology, central venous catheter, and endoscopy were not significant. CONCLUSIONS Previous dialysis and previous antibiotic therapy were identified as independent risk factors for the presence of VRE in surgical inpatients.
Collapse
Affiliation(s)
- Philip MacKenzie
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jacqueline Färber
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Post
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Torben Esser
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lukas Bechmann
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Institute for Biometry and Medical Informatics, Otto-von-Guericke University, Magdeburg, Germany
| | - Roland Croner
- Department of General, Visceral, Vascular and Transplant Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gernot Geginat
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Institut für medizinische Mikrobiologie und Krankenhaushygiene, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|
27
|
Yan MY, He YH, Ruan GJ, Xue F, Zheng B, Lv Y. The prevalence and molecular epidemiology of vancomycin-resistant Enterococcus (VRE) carriage in patients admitted to intensive care units in Beijing, China. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:351-357. [PMID: 35922268 DOI: 10.1016/j.jmii.2022.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Vancomycin-resistant Enterococcus (VRE) can be carried in the gut for a long period and its carriage status is associated with subsequent infections. This study aimed to investigate the frequency of intestinal VRE carriage in intensive care patients in Beijing. METHODS A multicenter, retrospective cross-sectional study was conducted at six hospitals in Beijing, China. All patients admitted to intensive care units (ICUs) between April 2 and May 1, 2017, were enrolled, and their clinical data were gathered by reviewing electronic medical records. Rectal swabs collected from patients were stored at -80 °C in the Institute of Clinical Pharmacology, Peking University First Hospital, and they were selectively cultured for VRE, then the identified strains were analyzed by polymerase chain reaction (PCR) to detect the glycopeptide resistance gene and were characterized by multilocus sequence typing (MLST). RESULTS Of 148 patients recruited, 46 (31.1%) carried VRE, with the majority (n = 42) being Enterococcus faecium. In total, 78.3% of the VRE were vanA positive and 15.2% vanM positive, while 6.5% undetected glycopeptide resistance gene. The predominant ST was ST78 (47.6%) followed by ST192 (14.3%), ST555 (9.5%), and ST789 (9.5%). Multivariate analysis showed that factors associated VRE carriage were patients aged >65 years (odds ratio [OR], 3.786; 95% confidence interval [CI], 1.402-10.222) and recent third-generation cephalosporins use (OR, 6.360; 95% CI, 1.873-21.601). CONCLUSIONS The overall proportion of VRE carriage in patients admitted to ICUs was markedly high in Beijing, China. The vanM gene has been spread widely but vanA gene was the dominant resistance determinant in VRE in Beijing.
Collapse
Affiliation(s)
- Meng-Yao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Yuan-Hui He
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Gen-Jie Ruan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China.
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China.
| |
Collapse
|
28
|
Chanderraj R, Baker JM, Kay SG, Brown CA, Hinkle KJ, Fergle DJ, McDonald RA, Falkowski NR, Metcalf JD, Kaye KS, Woods RJ, Prescott HC, Sjoding MW, Dickson RP. In critically ill patients, anti-anaerobic antibiotics increase risk of adverse clinical outcomes. Eur Respir J 2023; 61:13993003.00910-2022. [PMID: 36229047 PMCID: PMC9909213 DOI: 10.1183/13993003.00910-2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/16/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Critically ill patients routinely receive antibiotics with activity against anaerobic gut bacteria. However, in other disease states and animal models, gut anaerobes are protective against pneumonia, organ failure and mortality. We therefore designed a translational series of analyses and experiments to determine the effects of anti-anaerobic antibiotics on the risk of adverse clinical outcomes among critically ill patients. METHODS We conducted a retrospective single-centre cohort study of 3032 critically ill patients, comparing patients who did and did not receive early anti-anaerobic antibiotics. We compared intensive care unit outcomes (ventilator-associated pneumonia (VAP)-free survival, infection-free survival and overall survival) in all patients and changes in gut microbiota in a subcohort of 116 patients. In murine models, we studied the effects of anaerobe depletion in infectious (Klebsiella pneumoniae and Staphylococcus aureus pneumonia) and noninfectious (hyperoxia) injury models. RESULTS Early administration of anti-anaerobic antibiotics was associated with decreased VAP-free survival (hazard ratio (HR) 1.24, 95% CI 1.06-1.45), infection-free survival (HR 1.22, 95% CI 1.09-1.38) and overall survival (HR 1.14, 95% CI 1.02-1.28). Patients who received anti-anaerobic antibiotics had decreased initial gut bacterial density (p=0.00038), increased microbiome expansion during hospitalisation (p=0.011) and domination by Enterobacteriaceae spp. (p=0.045). Enterobacteriaceae were also enriched among respiratory pathogens in anti-anaerobic-treated patients (p<2.2×10-16). In murine models, treatment with anti-anaerobic antibiotics increased susceptibility to Enterobacteriaceae pneumonia (p<0.05) and increased the lethality of hyperoxia (p=0.0002). CONCLUSIONS In critically ill patients, early treatment with anti-anaerobic antibiotics is associated with increased mortality. Mechanisms may include enrichment of the gut with respiratory pathogens, but increased mortality is incompletely explained by infections alone. Given consistent clinical and experimental evidence of harm, the widespread use of anti-anaerobic antibiotics should be reconsidered.
Collapse
Affiliation(s)
- Rishi Chanderraj
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Medicine Service, Infectious Diseases Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Jennifer M Baker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen G Kay
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher A Brown
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Institute for Research on Innovation and Science, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kevin J Hinkle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel J Fergle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roderick A McDonald
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicole R Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph D Metcalf
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Keith S Kaye
- Division of Infectious Diseases, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Medicine Service, Infectious Diseases Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hallie C Prescott
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
- VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Michael W Sjoding
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Limiting the Spread of Multidrug-Resistant Bacteria in Low-to-Middle-Income Countries: One Size Does Not Fit All. Pathogens 2023; 12:pathogens12010144. [PMID: 36678492 PMCID: PMC9866331 DOI: 10.3390/pathogens12010144] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The spread of multidrug-resistant organisms (MDRO) is associated with additional costs as well as higher morbidity and mortality rates. Risk factors related to the spread of MDRO can be classified into four categories: bacterial, host-related, organizational, and epidemiological. Faced with the severity of the MDRO predicament and its individual and collective consequences, many scientific societies have developed recommendations to help healthcare teams control the spread of MDROs. These international recommendations include a series of control measures based on surveillance cultures and the application of barrier measures, ranging from patients' being isolated in single rooms, to the reinforcement of hand hygiene and implementation of additional contact precautions, to the cohorting of colonized patients in a dedicated unit with or without a dedicated staff. In addition, most policies include the application of an antimicrobial stewardship program. Applying international policies to control the spread of MDROs presents several challenges, particularly in low-to-middle-income countries (LMICs). Through a review of the literature, this work evaluates the real risks of dissemination linked to MDROs and proposes an alternative policy that caters to the means of LMICs. Indeed, sufficient evidence exists to support the theory that high compliance with hand hygiene and antimicrobial stewardship reduces the risk of MDRO transmission. LMICs would therefore be better off adopting such low-cost policies without necessarily having to implement costly isolation protocols or impose additional contact precautions.
Collapse
|
30
|
Xu XL, Zhao Y, Chen MM, Li Y, Li Y, Wu SJ, Zhang JL, Zhang XS, Yu K, Lian ZX. Shifts in intestinal microbiota and improvement of sheep immune response to resist Salmonella infection using Toll-like receptor 4 (TLR4) overexpression. Front Microbiol 2023; 14:1075164. [PMID: 36876076 PMCID: PMC9974671 DOI: 10.3389/fmicb.2023.1075164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Toll-like receptor 4 (TLR4) identifies Gram-negative bacteria or their products and plays a crucial role in host defense against invading pathogens. In the intestine, TLR4 recognizes bacterial ligands and interacts with the immune system. Although TLR4 signaling is a vital component of the innate immune system, the influence of TLR4 overexpression on innate immune response and its impact on the composition of the intestinal microbiota is unknown. Methods Here, we obtained macrophages from sheep peripheral blood to examine phagocytosis and clearance of Salmonella Typhimurium (S. Typhimurium) in macrophages. Meanwhile, we characterized the complex microbiota inhabiting the stools of TLR4 transgenic (TG) sheep and wild-type (WT) sheep using 16S ribosomal RNA (rRNA) deep sequencing. Results The results showed that TLR4 overexpression promoted the secretion of more early cytokines by activating downstream signaling pathways after stimulation by S. Typhimurium. Furthermore, diversity analysis demonstrated TLR4 overexpression increased microbial community diversity and regulated the composition of intestinal microbiota. More importantly, TLR4 overexpression adjusted the gut microbiota composition and maintained intestinal health by reducing the ratio of Firmicutes/Bacteroidetes and inflammation and oxidative stress-producing bacteria (Ruminococcaceae, Christensenellaceae) and upregulating the abundance of Bacteroidetes population and short-chain fatty acid (SCFA)-producing bacteria, including Prevotellaceae. These dominant bacterial genera changed by TLR4 overexpression revealed a close correlation with the metabolic pathways of TG sheep. Discussion Taken together, our findings suggested that TLR4 overexpression can counteract S. Typhimurium invasion as well as resist intestinal inflammation in sheep by regulating intestinal microbiota composition and enhancing anti-inflammatory metabolites.
Collapse
Affiliation(s)
- Xue-Ling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Ming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Su-Jun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jin-Long Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Institute of Animal Sciences, Tianjin, China
| | - Xiao-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Institute of Animal Sciences, Tianjin, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Matzaras R, Nikopoulou A, Protonotariou E, Christaki E. Gut Microbiota Modulation and Prevention of Dysbiosis as an Alternative Approach to Antimicrobial Resistance: A Narrative Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:479-494. [PMID: 36568836 PMCID: PMC9765331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: The importance of gut microbiota in human health is being increasingly studied. Imbalances in gut microbiota have been associated with infection, inflammation, and obesity. Antibiotic use is the most common and significant cause of major alterations in the composition and function of the gut microbiota and can result in colonization with multidrug-resistant bacteria. Methods: The purpose of this review is to present existing evidence on how microbiota modulation and prevention of gut dysbiosis can serve as tools to combat antimicrobial resistance. Results: While the spread of antibiotic-resistant pathogens requires antibiotics with novel mechanisms of action, the number of newly discovered antimicrobial classes remains very low. For this reason, the application of alternative modalities to combat antimicrobial resistance is necessary. Diet, probiotics/prebiotics, selective oropharyngeal or digestive decontamination, and especially fecal microbiota transplantation (FMT) are under investigation with FMT being the most studied. But, as prevention is better than cure, the implementation of antimicrobial stewardship programs and strict infection control measures along with newly developed chelating agents could also play a crucial role in decreasing colonization with multidrug resistant organisms. Conclusion: New alternative tools to fight antimicrobial resistance via gut microbiota modulation, seem to be effective and should remain the focus of further research and development.
Collapse
Affiliation(s)
- Rafail Matzaras
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece
| | - Anna Nikopoulou
- Department of Internal Medicine, G. Papanikolaou
General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Efthimia Protonotariou
- Department of Microbiology, AHEPA University Hospital,
Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Christaki
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece,To whom all correspondence should be addressed:
Eirini Christaki, University General Hospital of Ioannina, St. Niarchou,
Ioannina, Greece; ; ORCID:
https://www.orcid.org/0000-0002-8152-6367
| |
Collapse
|
32
|
Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. Nat Commun 2022; 13:7718. [PMID: 36513659 PMCID: PMC9748033 DOI: 10.1038/s41467-022-35380-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant organisms (MDRO) are a major threat to public health. MDRO infections, including those caused by vancomycin-resistant Enterococcus (VRE), frequently begin by colonization of the intestinal tract, a crucial step that is impaired by the intestinal microbiota. However, the specific members of the microbiota that suppress MDRO colonization and the mechanisms of such protection are largely unknown. Here, using metagenomics and mouse models that mimic the patients' exposure to antibiotics, we identified commensal bacteria associated with protection against VRE colonization. We further found a consortium of five strains that was sufficient to restrict VRE gut colonization in antibiotic treated mice. Transcriptomics in combination with targeted metabolomics and in vivo assays indicated that the bacterial consortium inhibits VRE growth through nutrient depletion, specifically by reducing the levels of fructose, a carbohydrate that boosts VRE growth in vivo. Finally, in vivo RNA-seq analysis of each strain of the consortium in combination with ex vivo and in vivo assays demonstrated that a single bacterium (Olsenella sp.) could recapitulate the effect of the consortium. Our results indicate that nutrient depletion by specific commensals can reduce VRE intestinal colonization, which represents a novel non-antibiotic based strategy to prevent infections caused by this multidrug-resistant organism.
Collapse
|
33
|
GpsB Promotes PASTA Kinase Signaling and Cephalosporin Resistance in Enterococcus faecalis. J Bacteriol 2022; 204:e0030422. [PMID: 36094306 PMCID: PMC9578390 DOI: 10.1128/jb.00304-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Enterococci are opportunistic pathogens that can cause severe bacterial infections. Treatment of these infections is challenging because enterococci possess intrinsic and acquired mechanisms of resistance to commonly used antibiotics, including cephalosporins. The transmembrane serine/threonine PASTA kinase, IreK, is an important determinant of enterococcal cephalosporin resistance. Upon exposure to cephalosporins, IreK becomes autophosphorylated, which stimulates its kinase activity to phosphorylate downstream substrates and drive cephalosporin resistance. However, the molecular mechanisms that modulate IreK autophosphorylation in response to cell wall stress, such as that induced by cephalosporins, remain unknown. A cytoplasmic protein, GpsB, promotes signaling by PASTA kinase homologs in other bacterial species, but the function of enterococcal GpsB has not been previously investigated. We used in vitro and in vivo approaches to test the hypothesis that enterococcal GpsB promotes IreK signaling in response to cephalosporins to drive cephalosporin resistance. We found that GpsB promotes IreK activity both in vivo and in vitro. This effect is required for cephalosporins to trigger IreK autophosphorylation and activation of an IreK-dependent signaling pathway, and thereby is also required for enterococcal intrinsic cephalosporin resistance. Moreover, analyses of GpsB mutants and a ΔireK gpsB double mutant suggest that GpsB has an additional function, beyond regulation of IreK activity, which is required for optimal growth and full cephalosporin resistance. Collectively, our data provide new insights into the mechanism of signal transduction by the PASTA kinase IreK and the mechanism of enterococcal intrinsic cephalosporin resistance. IMPORTANCE Enterococci are opportunistic pathogens that can cause severe bacterial infections. Treatment of these infections is challenging because enterococci possess intrinsic and acquired resistance to commonly used antibiotics. In particular, enterococci are intrinsically resistant to cephalosporin antibiotics, a trait that requires the activity of a transmembrane serine/threonine kinase, IreK, which belongs to the bacterial PASTA kinase family. The mechanisms by which PASTA kinases are regulated in cells are poorly understood. Here, we report that the cytoplasmic protein GpsB directly promotes IreK signaling in enterococci to drive cephalosporin resistance. Thus, we provide new insights into PASTA kinase regulation and control of enterococcal cephalosporin resistance, and suggest that GpsB could be a promising target for new therapeutics to disable cephalosporin resistance.
Collapse
|
34
|
Enterococcus faecium Clade Competition in the Presence of β-Lactam Antibiotics in a Mouse GI Tract Colonization Model. Antimicrob Agents Chemother 2022; 66:e0090322. [PMID: 36255277 PMCID: PMC9664857 DOI: 10.1128/aac.00903-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we showed that Enterococcus faecium clade B strains outcompeted health care-associated clade A1 strains in murine gastrointestinal colonization. Here, parenterally administered piperacillin-tazobactam and ceftriaxone significantly promoted colonization by clade A1 over clade B strains except that ceftriaxone, at the dose used, did not favor the least β-lactam-resistant A1 strain. The advantage that β-lactam administration gives to more highly ampicillin-resistant E. faecium over ampicillin-susceptible strains mirrors what occurs in hospitalized patients administered these antibiotics.
Collapse
|
35
|
Patrier J, Villageois-Tran K, Szychowiak P, Ruckly S, Gschwind R, Wicky PH, Gueye S, Armand-Lefevre L, Marzouk M, Sonneville R, Bouadma L, Petitjean M, Lamara F, de Montmollin E, Timsit JF, Ruppé E. Oropharyngeal and intestinal concentrations of opportunistic pathogens are independently associated with death of SARS-CoV-2 critically ill adults. Crit Care 2022; 26:300. [PMID: 36192756 PMCID: PMC9527714 DOI: 10.1186/s13054-022-04164-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The composition of the digestive microbiota may be associated with outcome and infections in patients admitted to the intensive care unit (ICU). The dominance by opportunistic pathogens (such as Enterococcus) has been associated with death. However, whether this association remains all throughout the hospitalization are lacking. METHODS We performed a single-center observational prospective cohort study in critically ill patients admitted with severe SARS-CoV-2 infection. Oropharyngeal and rectal swabs were collected at admission and then twice weekly until discharge or death. Quantitative cultures for opportunistic pathogens were performed on oropharyngeal and rectal swabs. The composition of the intestinal microbiota was assessed by 16S rDNA sequencing. Oropharyngeal and intestinal concentrations of opportunistic pathogens, intestinal richness and diversity were entered into a multivariable Cox model as time-dependent covariates. The primary outcome was death at day 90. RESULTS From March to September 2020, 95 patients (765 samples) were included. The Simplified Acute Physiology Score 2 (SAPS 2) at admission was 33 [24; 50] and a Sequential Organ Failure Assessment score (SOFA score) at 6 [4; 8]. Day 90 all-cause mortality was 44.2% (42/95). We observed that the oropharyngeal and rectal concentrations of Enterococcus spp., Staphylococcus aureus and Candida spp. were associated with a higher risk of death. This association remained significant after adjustment for prognostic covariates (age, chronic disease, daily antimicrobial agent use and daily SOFA score). A one-log increase in Enterococcus spp., S. aureus and Candida spp. in oropharyngeal or rectal swabs was associated with a 17% or greater increase in the risk of death. CONCLUSION We found that elevated oropharyngeal/intestinal Enterococcus spp. S. aureus and Candida spp. concentrations, assessed by culture, are associated with mortality, independent of age, organ failure, and antibiotic therapy, opening prospects for simple and inexpensive microbiota-based markers for the prognosis of critically ill SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Juliette Patrier
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France
| | - Khanh Villageois-Tran
- grid.411599.10000 0000 8595 4540AP-HP, Service de Microbiologie, Hôpital Beaujon, 75018 Paris, France ,grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Piotr Szychowiak
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France ,grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Stéphane Ruckly
- grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France ,grid.508487.60000 0004 7885 7602OUTCOME REA Research Network, IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Rémi Gschwind
- grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Paul-Henri Wicky
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France
| | - Signara Gueye
- grid.411119.d0000 0000 8588 831XAP-HP, Service de Bactériologie, Hôpital Bichat-Claude Bernard, 75018 Paris, France
| | - Laurence Armand-Lefevre
- grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France ,grid.411119.d0000 0000 8588 831XAP-HP, Service de Bactériologie, Hôpital Bichat-Claude Bernard, 75018 Paris, France
| | - Mehdi Marzouk
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France
| | - Romain Sonneville
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France ,grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France ,grid.508487.60000 0004 7885 7602OUTCOME REA Research Network, IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Lila Bouadma
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France ,grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France ,grid.508487.60000 0004 7885 7602OUTCOME REA Research Network, IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Marie Petitjean
- grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Fariza Lamara
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France ,grid.508487.60000 0004 7885 7602OUTCOME REA Research Network, IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Etienne de Montmollin
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France ,grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France ,grid.508487.60000 0004 7885 7602OUTCOME REA Research Network, IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Jean-Francois Timsit
- grid.411119.d0000 0000 8588 831XAP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), 75018 Paris, France ,grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France ,grid.508487.60000 0004 7885 7602OUTCOME REA Research Network, IAME, INSERM, Université de Paris, 75018 Paris, France
| | - Etienne Ruppé
- grid.508487.60000 0004 7885 7602IAME, INSERM, Université de Paris, 75018 Paris, France ,grid.411119.d0000 0000 8588 831XAP-HP, Service de Bactériologie, Hôpital Bichat-Claude Bernard, 75018 Paris, France
| | | |
Collapse
|
36
|
Lactobacillus supports Clostridiales to restrict gut colonization by multidrug-resistant Enterobacteriaceae. Nat Commun 2022; 13:5617. [PMID: 36153315 PMCID: PMC9509339 DOI: 10.1038/s41467-022-33313-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
Infections by multidrug-resistant Enterobacteriaceae (MRE) are life-threatening to patients. The intestinal microbiome protects against MRE colonization, but antibiotics cause collateral damage to commensals and open the way to colonization and subsequent infection. Despite the significance of this problem, the specific commensals and mechanisms that restrict MRE colonization remain largely unknown. Here, by performing a multi-omic prospective study of hospitalized patients combined with mice experiments, we find that Lactobacillus is key, though not sufficient, to restrict MRE gut colonization. Lactobacillus rhamnosus and murinus increase the levels of Clostridiales bacteria, which induces a hostile environment for MRE growth through increased butyrate levels and reduced nutrient sources. This mechanism of colonization resistance, an interaction between Lactobacillus spp. and Clostridiales involving cooperation between microbiota members, is conserved in mice and patients. These results stress the importance of exploiting microbiome interactions for developing effective probiotics that prevent infections in hospitalized patients. Multidrug-resistant Enterobacteriaceae (MRE) represent a major threat for patients’ health. Here, the authors describe how cooperation between gut commensal bacteria (Lactobacillus spp. And Clostridiales) restrict MRE colonization in mice and patients
Collapse
|
37
|
Sayed AM, Abutaleb NS, Kotb A, Ezzat HG, Seleem MN, Mayhoub AS, Elsebaie MM. Arylpyrazole as selective anti‐enterococci; Synthesis and biological evaluation of novel derivatives for their antimicrobial efficacy. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ahmed M. Sayed
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine Purdue University West Lafayette US
- Department of Biomedical Sciences and Pathobiology, Virginia‐Maryland College of Veterinary Medicine Virginia Polytechnic Institute and State University Blacksburg United States
- Department of Microbiology and Immunology, Faculty of Pharmacy Zagazig University Zagazig Egypt
| | - Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
| | - Hany G. Ezzat
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine Purdue University West Lafayette US
- Department of Biomedical Sciences and Pathobiology, Virginia‐Maryland College of Veterinary Medicine Virginia Polytechnic Institute and State University Blacksburg United States
- Center for Emerging, Zoonotic and Arthropod‐borne Pathogens Virginia Polytechnic Institute and State University Blacksburg US
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
- University of Science and Technology, Nanoscience Program Zewail City of Science and Technology, Ahmed Zewail Street Giza Egypt
| | - Mohamed M. Elsebaie
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
| |
Collapse
|
38
|
No Effect of Lactobacillus rhamnosus GG on Eradication of Colonization by Vancomycin-Resistant Enterococcus faecium or Microbiome Diversity in Hospitalized Adult Patients. Microbiol Spectr 2022; 10:e0234821. [PMID: 35475684 PMCID: PMC9241610 DOI: 10.1128/spectrum.02348-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The purpose of this trial was to evaluate the efficacy of a 4-week supplementation of Lactobacillus rhamnosus GG (LGG) in eliminating the gastrointestinal carrier state of vancomycin-resistant Enterococcus faecium (VREfm) in hospitalized adults. The primary outcome of the study was the number of patients with cleared VREfm colonization after the 4-week intervention. Secondary outcomes were clearance of VREfm colonization at weeks 8, 16, and 24, number of VREfm infections (isolated from nonintestinal foci), and changes in fecal microbiome diversity after the intervention. The trial was a multicenter, randomized, double-blind, placebo-controlled trial in hospitalized adult VREfm carriers. Patients were enrolled and randomized to receive 60 billion CFU of LGG daily or placebo for 4 weeks. For a subgroup of patients, rectal swabs for VREfm were collected also at 8, 16, and 24 weeks and analyzed using shotgun metagenomics. Patients ingesting a minimum of 50% of the probiotic during the 4-week intervention were included in subsequent outcome analyses (48 of 81 patients). Twelve of 21 patients in the LGG group (57%) compared to 15 of 27 patients in the placebo group (56%) cleared their VREfm carriage. Eighteen patients completed the entire 24-week intervention with the same minimum compliancy. Of these, almost 90% in both groups cleared their VREfm carriage. We found a statistically significant difference between VREfm clearers and nonclearers regarding metronidazole and vancomycin usage as well as length of hospitalization after inclusion. The microbiome analyses revealed no significant difference in alpha diversity between the LGG and the placebo group. Beta diversity differed between the groups and the different time points. This study did not show an effect of LGG in eradication of VREfm after a 4-week intervention. IMPORTANCE Whereas other studies exploring the effect of L. rhamnosus in clearing VREfm from the intestine included children and adults, with a wider age range, our study consisted of a geriatric patient cohort. The natural clearance of VREfm in this study was almost 60% after 4 weeks, thus much higher than described previously. Also, this study characterizes the microbiome of VREfm patients in detail. This article showed no effect of the probiotic L. rhamnosus in clearing VREfm from the intestine of patients.
Collapse
|
39
|
A dose-finding safety and feasibility study of oral activated charcoal and its effects on the gut microbiota in healthy volunteers not receiving antibiotics. PLoS One 2022; 17:e0269986. [PMID: 35700156 PMCID: PMC9197061 DOI: 10.1371/journal.pone.0269986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Oral activated charcoal (OAC), a potent adsorbent with no systemic absorption, has been used for centuries to treat poisoning. Recent studies have suggested its potential efficacy in protecting the colonic microbiota against detrimental effects of antibiotics. In a dose-finding safety and feasibility clinical trial, 12 healthy volunteers not receiving antibiotics drank 4 different preparations made of 2 possible OAC doses (12 or 25 grams) mixed in 2 possible solutions (water or apple juice), 3 days a week for 2 weeks. Pre- and post-OAC stool samples underwent 16S rRNA gene sequencing and exact amplicon sequence variants were used to characterize the colonic microbiota. The preferred preparation was 12 grams of OAC in apple juice, with excellent safety and tolerability. OAC did not influence the gut microbiota in our healthy volunteers. These findings provide the critical preliminary data for future trials of OAC in patients receiving antibiotics.
Collapse
|
40
|
Greentree DH, Rice LB, Donskey CJ. Houston, We Have a Problem: Reports of Clostridioides difficile Isolates with Reduced Vancomycin Susceptibility. Clin Infect Dis 2022; 75:1661-1664. [PMID: 35653393 DOI: 10.1093/cid/ciac444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
During the past 4 decades, oral vancomycin has been a mainstay of Clostridioides difficile infection (CDI) therapy with no reports of treatment failure due to emergence of vancomycin resistance. However, C. difficile isolates with high-level phenotypic resistance to vancomycin have recently been reported in 3 distinct geographic regions. There is an urgent need for surveillance to determine if strains with reduced vancomycin susceptibility are circulating in other areas. In a Cleveland area hospital, screening of 176 CDI stool specimens yielded no C. difficile isolates with reduced vancomycin susceptibility and highlighted the potential for false-positive results due to contamination with vancomycin-resistant enterococci. Additional studies are needed to clarify whether reduced vancomycin susceptibility is an emerging problem that will alter clinical practice. Clinicians should alert their health department if they observe a substantial increase in the frequency of vancomycin treatment failure in patients diagnosed with CDI with no alternative explanation for diarrhea.
Collapse
Affiliation(s)
| | - Louis B Rice
- Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Curtis J Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
41
|
Zhang ZJ, Lehmann CJ, Cole CG, Pamer EG. Translating Microbiome Research From and To the Clinic. Annu Rev Microbiol 2022; 76:435-460. [DOI: 10.1146/annurev-micro-041020-022206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive research has elucidated the influence of the gut microbiota on human health and disease susceptibility and resistance. We review recent clinical and laboratory-based experimental studies associating the gut microbiota with certain human diseases. We also highlight ongoing translational advances that manipulate the gut microbiota to treat human diseases and discuss opportunities and challenges in translating microbiome research from and to the bedside. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zhenrun J. Zhang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Cody G. Cole
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Eric G. Pamer
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine and Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
42
|
Pianko MJ, Golob JL. Host-microbe interactions and outcomes in multiple myeloma and hematopoietic stem cell transplantation. Cancer Metastasis Rev 2022; 41:367-382. [PMID: 35488106 PMCID: PMC9378527 DOI: 10.1007/s10555-022-10033-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Microbiota are essential to normal immune development and there is growing recognition of its importance to human health and disease and deepening understanding of the complexity of host-microbe interactions in the human gut and other tissues. Commensal microbes not only can influence host immunity locally through impacts of bioactive microbial metabolites and direct interactions with epithelial cells and innate immune receptors but also can exert systemic immunomodulatory effects via impacts on host immune cells capable of trafficking beyond the gut. Emerging data suggest microbiota influence the development of multiple myeloma (MM), a malignancy of the immune system derived from immunoglobulin-producing bone marrow plasma cells, through the promotion of inflammation. Superior treatment outcomes for MM correlate with a higher abundance of commensal microbiota capable of influencing inflammatory responses through the production of butyrate. In patients with hematologic malignancies, higher levels of diversity of the gut microbiota correlate with superior outcomes after hematopoietic stem cell transplantation. Correlative data support the impact of commensal microbiota on survival, risk of infection, disease relapse, and graft-versus-host disease (GVHD) after transplant. In this review, we will discuss the current understanding of the role of host-microbe interactions and the inflammatory tumor microenvironment of multiple myeloma, discuss data describing the key role of microbiota in hematopoietic stem cell transplantation for treatment of hematologic malignancies, and highlight several possible concepts for interventions directed at the gut microbiota to influence treatment outcomes.
Collapse
Affiliation(s)
- Matthew J Pianko
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan L Golob
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Contejean A, Abbara S, Chentouh R, Alviset S, Grignano E, Gastli N, Casetta A, Willems L, Canouï E, Charlier C, Pène F, Charpentier J, Reboul-Marty J, Batista R, Bouscary D, Kernéis S. Antimicrobial stewardship in high-risk febrile neutropenia patients. Antimicrob Resist Infect Control 2022; 11:52. [PMID: 35346373 PMCID: PMC8961889 DOI: 10.1186/s13756-022-01084-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 2011 4th European Conference on Infections in Leukemia (ECIL4) guidelines recommend antibiotics de-escalation/discontinuation in selected febrile neutropenia (FN) patients. We aimed to assess the impact of an antimicrobial stewardship (AMS) program based on these guidelines on antibiotics use and clinical outcomes in high-risk FN patients. METHODS We conducted an observational study in the hematology department of Cochin University Hospital in Paris, France. An ECIL4-based antibiotics de-escalation and discontinuation strategy was implemented jointly by the hematologists and the AMS team. The pre-intervention (January-October 2018) and post-intervention (January-October 2019) periods were compared. We retrospectively collected clinical and microbiological data. We compiled antibiotics consumptions via hospital pharmacy data and standardized them by calculating defined daily doses per 1000 patient-days. We analyzed the two-monthly antibiotic consumption using an interrupted time series method and built a composite endpoint for clinical outcomes based on transfer to the intensive care unit (ICU) and/or hospital death. RESULTS Overall, 273 hospital stays (164 patients) in the pre-intervention and 217 (148 patients) in the post-intervention periods were analyzed. Patients were mainly hospitalized for intensive chemotherapy for acute leukemia or autologous stem-cell transplant for myeloma. Patients were slightly younger in the pre-intervention compared to the post-intervention period (median age 60.4 vs 65.2 years, p = 0.049), but otherwise comparable. After implementation of the AMS program, glycopeptide and carbapenem use decreased by 85% (p = 0.03) and 72% (p = 0.04), respectively. After adjustment on confounders, the risk of transfer to the ICU/death decreased significantly after implementation of the AMS program (post-intervention period: odds-ratio = 0.29, 95% Confidence Interval: 0.15-0.53, p < 0.001). CONCLUSION Implementation of a multidisciplinary AMS program for high-risk neutropenic patients was associated with lower carbapenem and glycopeptide use and improved clinical outcomes.
Collapse
Affiliation(s)
- Adrien Contejean
- Faculté de Médecine, Université de Paris, 75006, Paris, France. .,Service d'hématologie, AP-HP, APHP.CUP, Hôpital Cochin, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France. .,Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France.
| | - Salam Abbara
- UVSQ, Inserm, CESP, Anti-infective Evasion and Pharmacoepidemiology Team, Université Paris-Saclay, 78180, Montigny-le-Bretonneux, France.,Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), 75015, Paris, France
| | - Ryme Chentouh
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Sophie Alviset
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Eric Grignano
- Service d'hématologie, AP-HP, APHP.CUP, Hôpital Cochin, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Nabil Gastli
- Laboratoire de bactériologie, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Anne Casetta
- Equipe opérationnelle d'hygiène hospitalière, AP-HP, Hôpital Cochin, 75014, Paris, France
| | - Lise Willems
- Service d'hématologie, AP-HP, APHP.CUP, Hôpital Cochin, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Etienne Canouï
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Caroline Charlier
- Faculté de Médecine, Université de Paris, 75006, Paris, France.,Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France.,Institut Pasteur, Biology of Infection Unit, INSERM U1117, French National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Frédéric Pène
- Faculté de Médecine, Université de Paris, 75006, Paris, France.,Service de médecine intensive réanimation, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Julien Charpentier
- Service de médecine intensive réanimation, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Jeanne Reboul-Marty
- Département d'information médicale, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Rui Batista
- Pharmacie hospitalière, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France
| | - Didier Bouscary
- Faculté de Médecine, Université de Paris, 75006, Paris, France.,Service d'hématologie, AP-HP, APHP.CUP, Hôpital Cochin, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Solen Kernéis
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, 75014, Paris, France.,Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), 75015, Paris, France.,INSERM, IAME, Université de Paris, 75006, Paris, France
| |
Collapse
|
44
|
Bianchini S, Rigotti E, Monaco S, Nicoletti L, Auriti C, Castagnola E, Conti G, Galli L, Giuffrè M, La Grutta S, Lancella L, Lo Vecchio A, Maglietta G, Petrosillo N, Pietrasanta C, Principi N, Tesoro S, Venturini E, Piacentini G, Lima M, Staiano A, Esposito S. Surgical Antimicrobial Prophylaxis in Abdominal Surgery for Neonates and Paediatrics: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics (Basel) 2022; 11:279. [PMID: 35203881 PMCID: PMC8868062 DOI: 10.3390/antibiotics11020279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Surgical site infections (SSIs), i.e., surgery-related infections that occur within 30 days after surgery without an implant and within one year if an implant is placed, complicate surgical procedures in up to 10% of cases, but an underestimation of the data is possible since about 50% of SSIs occur after the hospital discharge. Gastrointestinal surgical procedures are among the surgical procedures with the highest risk of SSIs, especially when colon surgery is considered. Data that were collected from children seem to indicate that the risk of SSIs can be higher than in adults. This consensus document describes the use of preoperative antibiotic prophylaxis in neonates and children that are undergoing abdominal surgery and has the purpose of providing guidance to healthcare professionals who take care of children to avoid unnecessary and dangerous use of antibiotics in these patients. The following surgical procedures were analyzed: (1) gastrointestinal endoscopy; (2) abdominal surgery with a laparoscopic or laparotomy approach; (3) small bowel surgery; (4) appendectomy; (5) abdominal wall defect correction interventions; (6) ileo-colic perforation; (7) colorectal procedures; (8) biliary tract procedures; and (9) surgery on the liver or pancreas. Thanks to the multidisciplinary contribution of experts belonging to the most important Italian scientific societies that take care of neonates and children, this document presents an invaluable reference tool for perioperative antibiotic prophylaxis in the paediatric and neonatal populations.
Collapse
Affiliation(s)
- Sonia Bianchini
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.B.); (S.M.); (L.N.)
| | - Erika Rigotti
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37124 Verona, Italy; (E.R.); (G.P.)
| | - Sara Monaco
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.B.); (S.M.); (L.N.)
| | - Laura Nicoletti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.B.); (S.M.); (L.N.)
| | - Cinzia Auriti
- Neonatology and Neonatal Intensive Care Unit, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Elio Castagnola
- Infectious Diseases Unit, IRCCS Giannina Gaslini, 16147 Genoa, Italy;
| | - Giorgio Conti
- Pediatric ICU and Trauma Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy;
| | - Luisa Galli
- Pediatric Infectious Disease Unit, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (E.V.)
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90141 Palermo, Italy;
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy;
| | - Laura Lancella
- Paediatric and Infectious Disease Unit, Academic Department of Pediatrics, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (A.L.V.); (A.S.)
| | - Giuseppe Maglietta
- Research and Innovation Unit, University Hospital of Parma, 43126 Parma, Italy;
| | | | - Carlo Pietrasanta
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Mother, Child and Infant, NICU, 20122 Milan, Italy;
| | | | - Simonetta Tesoro
- Division of Anesthesia, Analgesia and Intensive Care, Department of Surgical and Biomedical Sciences, University of Perugia, 06129 Perugia, Italy;
| | - Elisabetta Venturini
- Pediatric Infectious Disease Unit, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (E.V.)
| | - Giorgio Piacentini
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37124 Verona, Italy; (E.R.); (G.P.)
| | - Mario Lima
- Paediatric Surgery, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (A.L.V.); (A.S.)
| | - Susanna Esposito
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.B.); (S.M.); (L.N.)
| | | |
Collapse
|
45
|
Gontjes KJ, Gibson KE, Lansing BJ, Mantey J, Jones KM, Cassone M, Wang J, Mills JP, Mody L, Patel PK. Association of Exposure to High-risk Antibiotics in Acute Care Hospitals With Multidrug-Resistant Organism Burden in Nursing Homes. JAMA Netw Open 2022; 5:e2144959. [PMID: 35103795 PMCID: PMC8808331 DOI: 10.1001/jamanetworkopen.2021.44959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
IMPORTANCE Little is known about the contribution of hospital antibiotic prescribing to multidrug-resistant organism (MDRO) burden in nursing homes (NHs). OBJECTIVES To characterize antibiotic exposures across the NH patient's health care continuum (preceding health care exposure and NH stay) and to investigate whether recent antibiotic exposure is associated with MDRO colonization and room environment contamination at NH study enrollment. DESIGN, SETTING, AND PARTICIPANTS This is a secondary analysis of a prospective cohort study (conducted from 2013-2016) that enrolled NH patients and followed them up for as long as 6 months. The study was conducted in 6 NHs in Michigan among NH patients who were enrolled within 14 days of admission. Clinical metadata abstraction, multi-anatomical site screening, and room environment surveillance for MDROs were conducted at each study visit. Data were analyzed between May 2019 and November 2021. EXPOSURES Antibiotic data were abstracted from NH electronic medical records by trained research staff and characterized by class, route, indication, location of therapy initiation, risk for Clostridioides difficile infection (C diffogenic agents), and 2019 World Health Organization Access, Watch, and Reserve (AWARE) antibiotic stewardship framework categories. MAIN OUTCOMES AND MEASURES The primary outcomes were MDRO colonization and MDRO room environment contamination at NH study enrollment, measured using standard microbiology methods. Multivariable logistic regression was used to identify whether antibiotic exposure within 60 days was associated with MDRO burden at NH study enrollment. Additionally, antibiotic exposure data were characterized using descriptive statistics. RESULTS A total of 642 patients were included (mean [SD] age, 74.7 [12.2] years; 369 [57.5%] women; 402 [62.6%] White; median [IQR] NH days to enrollment, 6.0 [3.0-7.0]). Of these, 422 (65.7%) received 1191 antibiotic exposures: 368 (57.3%) received 971 hospital-associated prescriptions, and 119 (18.5%) received 198 NH-associated prescriptions. Overall, 283 patients (44.1%) received at least 1 C diffogenic agent, and 322 (50.2%) received at least 1 high-risk WHO AWARE antibiotic (watch or reserve agent). More than half of NH patients (364 [56.7%]) and room environments (437 [68.1%]) had MDRO-positive results at enrollment. In multivariable analysis, recent antibiotic exposure was positively associated with baseline MDRO colonization (odds ratio [OR], 1.70; 95% CI, 1.22-2.38) and MDRO environmental contamination (OR, 1.67; 95% CI, 1.17-2.39). Exploratory stratification by C diffogenic agent exposure increased the effect size (MDRO colonization: OR, 1.99; 95% CI, 1.33-2.96; MDRO environmental contamination: OR, 1.86; 95% CI, 1.24-2.79). Likewise, exploratory stratification by exposure to high-risk WHO AWARE antibiotics increased the effect size (MDRO colonization: OR, 2.32; 95% CI, 1.61-3.36; MDRO environmental contamination: OR, 1.86; 95% CI, 1.26-2.75). CONCLUSIONS AND RELEVANCE The findings of this study suggest that high-risk, hospital-based antibiotics are a potentially high-value target to reduce MDROs in postacute care NHs. This study underscores the potential utility of integrated hospital and NH stewardship programming on regional MDRO epidemiology.
Collapse
Affiliation(s)
- Kyle J. Gontjes
- Division of Geriatric & Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor
| | - Kristen E. Gibson
- Division of Geriatric & Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Bonnie J. Lansing
- Division of Geriatric & Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Julia Mantey
- Division of Geriatric & Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Karen M. Jones
- Division of Geriatric & Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Marco Cassone
- Division of Geriatric & Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Joyce Wang
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor
| | - John P. Mills
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Lona Mody
- Division of Geriatric & Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Geriatrics Research Education and Clinical Center, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Payal K. Patel
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Division of Infectious Diseases, Department of Internal Medicine, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
46
|
Vehreschild MJGT, Ducher A, Louie T, Cornely OA, Feger C, Dane A, Varastet M, Vitry F, de Gunzburg J, Andremont A, Mentré F, Wilcox MH. An open randomized multicentre Phase 2 trial to assess the safety of DAV132 and its efficacy to protect gut microbiota diversity in hospitalized patients treated with fluoroquinolones. J Antimicrob Chemother 2022; 77:1155-1165. [PMID: 35016205 PMCID: PMC8969469 DOI: 10.1093/jac/dkab474] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DAV132 (colon-targeted adsorbent) has prevented antibiotic-induced effects on microbiota in healthy volunteers. OBJECTIVES To assess DAV132 safety and biological efficacy in patients. PATIENTS AND METHODS An open-label, randomized [stratification: fluoroquinolone (FQ) indication] multicentre trial comparing DAV132 (7.5 g, 3 times a day, orally) with No-DAV132 in hospitalized patients requiring 5-21 day treatment with FQs and at risk of Clostridioides difficile infection (CDI). FQ and DAV132 were started simultaneously, DAV132 was administered for 48 h more, and patients were followed up for 51 days. The primary endpoint was the rate of adverse events (AEs) independently adjudicated as related to DAV132 and/or FQ. The planned sample size of 260 patients would provide a 95% CI of ±11.4%, assuming a 33% treatment-related AE rate. Plasma and faecal FQ concentrations, intestinal microbiota diversity, intestinal colonization with C. difficile, MDR bacteria and yeasts, and ex vivo resistance to C. difficile faecal colonization were assessed. RESULTS Two hundred and forty-three patients (median age 71 years; 96% with chronic comorbidity) were included (No-DAV132, n = 120; DAV132, n = 123). DAV132- and/or FQ-related AEs did not differ significantly: 18 (14.8%) versus 13 (10.8%) in DAV132 versus No-DAV132 patients (difference 3.9%; 95% CI: -4.7 to 12.6). Day 4 FQ plasma levels were unaffected. DAV132 was associated with a >98% reduction in faecal FQ levels (Day 4 to end of treatment; P < 0.001), less impaired microbiota diversity (Shannon index; P = 0.003), increased ex vivo resistance to C. difficile colonization (P = 0.0003) and less frequent FQ-induced VRE acquisition (P = 0.01). CONCLUSIONS In FQ-treated hospitalized patients, DAV132 was well tolerated, and FQ plasma concentrations unaffected. DAV132 preserved intestinal microbiota diversity and C. difficile colonization resistance.
Collapse
Affiliation(s)
- Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Thomas Louie
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Celine Feger
- Da Volterra, Paris, France.,EMIBiotech, Paris, France
| | | | | | | | | | - Antoine Andremont
- Da Volterra, Paris, France.,Université de Paris, IAME, INSERM U1137, Paris, France
| | - France Mentré
- Université de Paris, IAME, INSERM U1137, Paris, France
| | - Mark H Wilcox
- Leeds Institute of Medical Research, University of Leeds and Leeds Teaching Hospitals, Leeds, UK
| |
Collapse
|
47
|
Szychowiak P, Villageois-Tran K, Patrier J, Timsit JF, Ruppé É. The role of the microbiota in the management of intensive care patients. Ann Intensive Care 2022; 12:3. [PMID: 34985651 PMCID: PMC8728486 DOI: 10.1186/s13613-021-00976-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the gut microbiota is highly dynamic and changes according to various conditions. The gut microbiota mainly includes difficult-to-cultivate anaerobic bacteria, hence knowledge about its composition has significantly arisen from culture-independent methods based on next-generation sequencing (NGS) such as 16S profiling and shotgun metagenomics. The gut microbiota of patients hospitalized in intensive care units (ICU) undergoes many alterations because of critical illness, antibiotics, and other ICU-specific medications. It is then characterized by lower richness and diversity, and dominated by opportunistic pathogens such as Clostridioides difficile and multidrug-resistant bacteria. These alterations are associated with an increased risk of infectious complications or death. Specifically, at the time of writing, it appears possible to identify distinct microbiota patterns associated with severity or infectivity in COVID-19 patients, paving the way for the potential use of dysbiosis markers to predict patient outcomes. Correcting the microbiota disturbances to avoid their consequences is now possible. Fecal microbiota transplantation is recommended in recurrent C. difficile infections and microbiota-protecting treatments such as antibiotic inactivators are currently being developed. The growing interest in the microbiota and microbiota-associated therapies suggests that the control of the dysbiosis could be a key factor in the management of critically ill patients. The present narrative review aims to provide a synthetic overview of microbiota, from healthy individuals to critically ill patients. After an introduction to the different techniques used for studying the microbiota, we review the determinants involved in the alteration of the microbiota in ICU patients and the latter's consequences. Last, we assess the means to prevent or correct microbiota alteration.
Collapse
Affiliation(s)
- Piotr Szychowiak
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Régional Universitaire de Tours, 37000, Tours, France
| | - Khanh Villageois-Tran
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Laboratoire de Bactériologie, AP-HP, Hôpital Beaujon, 92110, Paris, France
| | - Juliette Patrier
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Réanimation Médicale Et Infectieuse, AP-HP, Hôpital Bichat, 75018, Paris, France
| | - Jean-François Timsit
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Réanimation Médicale Et Infectieuse, AP-HP, Hôpital Bichat, 75018, Paris, France
| | - Étienne Ruppé
- Université de Paris, IAME, INSERM, 75018, Paris, France.
- Laboratoire de Bactériologie, AP-HP, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
48
|
Biehl LM, Higgins PG, Stemler J, Gilles M, Peter S, Dörfel D, Vogel W, Kern WV, Gölz H, Bertz H, Rohde H, Klupp EM, Schafhausen P, Salmanton-García J, Stecher M, Wille J, Liss B, Xanthopoulou K, Zweigner J, Seifert H, Vehreschild MJGT. Impact of single-room contact precautions on acquisition and transmission of vancomycin-resistant enterococci on haematological and oncological wards, multicentre cohort-study, Germany, January-December 2016. Euro Surveill 2022; 27:2001876. [PMID: 35027104 PMCID: PMC8759111 DOI: 10.2807/1560-7917.es.2022.27.2.2001876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/18/2021] [Indexed: 06/14/2023] Open
Abstract
BackgroundEvidence supporting the effectiveness of single-room contact precautions (SCP) in preventing in-hospital acquisition of vancomycin-resistant enterococci (haVRE) is limited.AimWe assessed the impact of SCP on haVRE and their transmission.MethodsWe conducted a prospective, multicentre cohort study in German haematological/oncological departments during 2016. Two sites performed SCP for VRE patients and two did not (NCP). We defined a 5% haVRE-risk difference as non-inferiority margin, screened patients for VRE, and characterised isolates by whole genome sequencing and core genome MLST (cgMLST). Potential confounders were assessed by competing risk regression analysis.ResultsWe included 1,397 patients at NCP and 1,531 patients at SCP sites. Not performing SCP was associated with a significantly higher proportion of haVRE; 12.2% (170/1,397) patients at NCP and 7.4% (113/1,531) patients at SCP sites (relative risk (RR) 1.74; 95% confidence interval (CI): 1.35-2.23). The difference (4.8%) was below the non-inferiority margin. Competing risk regression analysis indicated a stronger impact of antimicrobial exposure (subdistribution hazard ratio (SHR) 7.46; 95% CI: 4.59-12.12) and underlying disease (SHR for acute leukaemia 2.34; 95% CI: 1.46-3.75) on haVRE than NCP (SHR 1.60; 95% CI: 1.14-2.25). Based on cgMLST and patient movement data, we observed 131 patient-to-patient VRE transmissions at NCP and 85 at SCP sites (RR 1.76; 95% CI: 1.33-2.34).ConclusionsWe show a positive impact of SCP on haVRE in a high-risk population, although the observed difference was below the pre-specified non-inferiority margin. Importantly, other factors including antimicrobial exposure seem to be more influential.
Collapse
Affiliation(s)
- Lena M Biehl
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, Germany
| | - Paul G Higgins
- German Centre for Infection Research, partner site Bonn-Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jannik Stemler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, Germany
| | - Meyke Gilles
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research, partner site Tübingen, Germany
| | - Daniela Dörfel
- Department of Haematology, Oncology and Immunology, Siloah hospital, Hannover, Germany
| | - Wichard Vogel
- Department of Oncology, Haematology, Immunology and Rheumatology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Winfried V Kern
- Division of Infectious Diseases, Department of Medicine II, University Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hanna Gölz
- Institute for Medical Microbiology and Hygiene, University Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Haematology, Oncology and Stem Cell Transplantation, University Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Germany
- German Centre for Infection Research, partner site Hamburg-Lübeck-Borstel, Germany
| | - Eva-Maria Klupp
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Germany
| | - Philippe Schafhausen
- Department of Oncology and Haematology, Hubertus Wald Tumorzentrum/University Cancer Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jon Salmanton-García
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Blasius Liss
- Department I of Internal Medicine, Helios University Hospital Wuppertal, Wuppertal, Germany
- Department of Internal medicine I, School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Janine Zweigner
- Department of Hospital Hygiene and Infection Control, University Hospital of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Harald Seifert
- German Centre for Infection Research, partner site Bonn-Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Maria J G T Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, Germany
| |
Collapse
|
49
|
Lactic Acid Bacteria Antagonism of Acid-tolerant and Antibiotic-resistant Non-staphylococcal Pathogenic Species Isolated from a Fermented Cereal Beverage using Baird-Parker Agar. NUTRITION AND FOOD SCIENCES RESEARCH 2022. [DOI: 10.52547/nfsr.9.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Kakiuchi S, Livorsi DJ, Perencevich EN, Diekema DJ, Ince D, Prasidthrathsint K, Kinn P, Percival K, Heintz BH, Goto M. Days of Antibiotic Spectrum Coverage (DASC): A Novel Metric for Inpatient Antibiotic Consumption. Clin Infect Dis 2021; 75:567-576. [PMID: 34910130 DOI: 10.1093/cid/ciab1034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Days of Therapy (DOT), the most widely used benchmarking metric for antibiotic consumption, may not fully measure stewardship efforts to promote use of narrow-spectrum agents and may inadvertently discourage the use of combination regimens when single-agent alternatives have greater adverse effects. To overcome DOT's limitations, we developed a novel metric, Days of Antibiotic Spectrum Coverage (DASC), and compared hospitals' performances using this novel metric with DOT. METHODS We evaluated 77 antibiotics in 16 categories of antibacterial activity to develop our spectrum scoring system. DASC was then calculated as cumulative daily spectrum scores. To compare hospital benchmarking using DOT and DASC, we conducted a retrospective cohort study of adult patients admitted to acute care units within the Veterans Health Administration system in 2018. Antibiotic administration data were aggregated to calculate each hospital's DOT and DASC per 1,000 days present (DP) for ranking. RESULTS The spectrum score for each antibiotic ranged from 2 to 15. There was little correlation between DOT per 1,000 DP and DASC per DOT, indicating that lower antibiotic consumption at a hospital does not necessarily mean more frequent use of narrow-spectrum antibiotics. The differences in each hospital's ranking between DOT and DASC per 1,000 DP ranged from -29.0% to 25.0%, respectively, with 27 (21.8%) hospitals having differences >10%. CONCLUSIONS We propose a novel composite metric for antibiotic stewardship, DASC, that combines consumption and spectrum as a potential replacement for DOT. Further studies are needed to evaluate whether benchmarking using the DASC will improve evaluations of stewardship.
Collapse
Affiliation(s)
- Satoshi Kakiuchi
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Center for Access & Delivery Research & Evaluation (CADRE), Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Daniel J Livorsi
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Center for Access & Delivery Research & Evaluation (CADRE), Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Eli N Perencevich
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Center for Access & Delivery Research & Evaluation (CADRE), Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Daniel J Diekema
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Dilek Ince
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Patrick Kinn
- Department of Pharmaceutical Care, University of Iowa, Iowa City, IA, USA
| | - Kelly Percival
- Department of Pharmaceutical Care, University of Iowa, Iowa City, IA, USA
| | - Brett H Heintz
- Pharmacy Service, Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Michihiko Goto
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Center for Access & Delivery Research & Evaluation (CADRE), Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
| |
Collapse
|