1
|
Omwansu W, Musembi R, Derese S. Structural characterization of codon 129 polymorphism in prion peptide segments (PrP127-132) using the Markov State Models. J Mol Graph Model 2025; 135:108927. [PMID: 39746241 DOI: 10.1016/j.jmgm.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
The human prion protein gene (PRNP) consists of two common alleles that encode either methionine or valine residues at codon 129. Polymorphism at codon 129 of the prion protein (PRNP) gene is closely associated with genetic variations and susceptibility to specific variants of prion diseases. The presence of these different alleles, known as the PRNP codon 129 polymorphism, plays a significant role in disease susceptibility and progression. For instance, the prion fragment 127-132 (PrP127-132) has been implicated in the development of variant Creutzfeldt-Jakob disease (vCJD), due to the presence of methionine or valine at codon 129. This study aims to unravel the early structural changes brought by the presence of polymorphism at codon 129. Using molecular dynamics (MD) simulations, we present evidence highlighting a spectrum of structural transitions, uncovering the nuanced conformational heterogeneity governing the polymorphic behavior of the PrP127-132 chain. The Markov state model (MSM) analysis was able to predict several metastable states of these chains and established a kinetic network that describes transitions between these states. Additionally, the MSM analysis showed extra stability of the PrP-M129 polymorph due to less random-coiled motions, the formation of a salt bridge, and an increase in the number of native contacts. The pathogenicity of PrP-V129 can be attributed to enhanced random motion and the absence of a salt bridge.
Collapse
Affiliation(s)
- Wycliffe Omwansu
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Robinson Musembi
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Solomon Derese
- Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
2
|
Li M, Bryant DN, Gresch S, Milstein MS, Christenson PR, Lichtenberg SS, Larsen PA, Oh SH. QuICSeedR: an R package for analyzing fluorophore-assisted seed amplification assay data. Bioinformatics 2024; 41:btae752. [PMID: 39718778 PMCID: PMC11742141 DOI: 10.1093/bioinformatics/btae752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
MOTIVATION Fluorophore-assisted seed amplification assays (F-SAAs), such as real-time quaking-induced conversion (RT-QuIC) and fluorophore-assisted protein misfolding cyclic amplification (F-PMCA), have become indispensable tools for studying protein misfolding in neurodegenerative diseases. However, analyzing data generated by these techniques often requires complex and time-consuming manual processes. In addition, the lack of standardization in F-SAA data analysis presents a significant challenge to the interpretation and reproducibility of F-SAA results across different laboratories and studies. There is a need for automated, standardized analysis tools that can efficiently process F-SAA data while ensuring consistency and reliability across different research settings. RESULTS Here, we present QuICSeedR (pronounced as "quick seeder"), an R package that addresses these challenges by providing a comprehensive toolkit for the automated processing, analysis, and visualization of F-SAA data. Importantly, QuICSeedR also establishes the foundation for building an F-SAA data management and analysis framework, enabling more consistent and comparable results across different research groups. AVAILABILITY AND IMPLEMENTATION QuICSeedR is freely available at: https://CRAN.R-project.org/package=QuICSeedR. Data and code used in this manuscript are provided in Supplementary Materials.
Collapse
Affiliation(s)
- Manci Li
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, United States
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Damani N Bryant
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Sarah Gresch
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Marissa S Milstein
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Peter R Christenson
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, United States
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Stuart S Lichtenberg
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, United States
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
3
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
5
|
Gao C, Xiong R, Zhang ZY, Peng H, Gu YK, Xu W, Yang WT, Liu Y, Gao J, Yin Y. Hybrid nanostructures for neurodegenerative disease theranostics: the art in the combination of biomembrane and non-biomembrane nanostructures. Transl Neurodegener 2024; 13:43. [PMID: 39192378 DOI: 10.1186/s40035-024-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) remains challenging, and existing therapeutic approaches demonstrate little efficacy. NDD drug delivery can be achieved through the utilization of nanostructures, hence enabling multimodal NDD theranostics. Nevertheless, both biomembrane and non-biomembrane nanostructures possess intrinsic shortcomings that must be addressed by hybridization to create novel nanostructures with versatile applications in NDD theranostics. Hybrid nanostructures display improved biocompatibility, inherent targeting capabilities, intelligent responsiveness, and controlled drug release. This paper provides a concise overview of the latest developments in hybrid nanostructures for NDD theranostics and emphasizes various engineering methodologies for the integration of diverse nanostructures, including liposomes, exosomes, cell membranes, and non-biomembrane nanostructures such as polymers, metals, and hydrogels. The use of a combination technique can significantly augment the precision, intelligence, and efficacy of hybrid nanostructures, therefore functioning as a more robust theranostic approach for NDDs. This paper also addresses the issues that arise in the therapeutic translation of hybrid nanostructures and explores potential future prospects in this field.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Ran Xiong
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhi-Yu Zhang
- Department of Health Management, Second Affliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Hua Peng
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Yuan-Kai Gu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Wei Xu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wei-Ting Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China.
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
6
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Begum A, Boppana MS, Rajavasireddy NS, Tummala N, Solís Mayorga MB. Unusually Late Onset of Creutzfeldt-Jakob Disease Following COVID-19 Infection in India: A Case Report. Cureus 2024; 16:e63702. [PMID: 39092356 PMCID: PMC11293889 DOI: 10.7759/cureus.63702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Numerous studies have demonstrated the rise in neurological and psychiatric issues linked to post-COVID-19 infections. The most prevalent symptoms include encephalopathy, seizures, depression, anxiety, and ischemic or hemorrhagic stroke. The occurrence of Creutzfeldt-Jakob disease (CJD) after COVID-19 was unusual, but recent studies have shown a connection between COVID-19 and prion disease. Most cases of CJD present within weeks or a few months after the onset of COVID-19. The late onset of Creutzfeldt-Jakob disease following the COVID-19 infection raises questions about the potential pathophysiological mechanisms underlying this association. Although the exact link remains elusive, this case adds to the growing body of evidence suggesting a possible relationship between COVID-19 and neurodegenerative diseases. Further research is warranted to elucidate the underlying mechanisms and optimize management strategies for post-COVID-19 neurological complications. We present to you an 83-year-old man with a history of COVID-19 infection who presents with memory impairment, mood instability, and declining cognitive function. Despite initial improvement, his condition rapidly deteriorated, ultimately leading to a diagnosis of probable Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- Afreen Begum
- Medicine, Employee State Insurance Corporation (ESIC) Medical College and Hospital, Hyderabad, IND
| | | | | | | | | |
Collapse
|
8
|
Sharma N, Sharma JK, Chander A, Shergill K, Yadav M. A rare case of Sporadic Creutzfeldt-Jakob disease at a remote mountain hospital in the Indian Himalayan Region. Autops Case Rep 2024; 14:e2024502. [PMID: 39021461 PMCID: PMC11253907 DOI: 10.4322/acr.2024.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024]
Abstract
Sporadic Creutzfeldt-Jakob disease (CJD) is a rare neurodegenerative spongiform encephalopathy that causes neuronal derangement secondary to prion protein. Its initial diagnosis is often complex and challenging due to non-specific clinical presentation, lack of awareness, and low clinical suspicion. This disease is invariably fatal, and most patients die within 12 months of presentation. Definite diagnosis of prion disease requires neuropathological analysis, usually done at autopsy. Here, we present the autopsy findings of a 57-year-old male patient, illustrating the complexity of diagnosing this disease early in the clinical course and the need for a broad differential diagnosis at the onset.
Collapse
Affiliation(s)
- Nitu Sharma
- Military Hospital Ambala Cantt, Department of Pathology, Ambala Cantt, India
| | | | - Ashima Chander
- Army College of Medical Sciences, Base Hospital Delhi Cantt, New Delhi, India
| | - Khushdeep Shergill
- Military Hospital Ambala Cantt, Department of Pathology, Ambala Cantt, India
| | - Meghna Yadav
- Military Hospital Bareilly, Department of Pathology, Bareilly, India
| |
Collapse
|
9
|
Chang MH, Park JH, Lee HK, Choi JY, Koh YH. SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications of Metformin. Biomedicines 2024; 12:1223. [PMID: 38927430 PMCID: PMC11200543 DOI: 10.3390/biomedicines12061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Abnormal aggregation of α-synuclein is the hallmark of neurodegenerative diseases, classified as α-synucleinopathies, primarily occurring sporadically. Their onset is associated with an interaction between genetic susceptibility and environmental factors such as neurotoxins, oxidative stress, inflammation, and viral infections. Recently, evidence has suggested an association between neurological complications in long COVID (sometimes referred to as 'post-acute sequelae of COVID-19') and α-synucleinopathies, but its underlying mechanisms are not completely understood. In this study, we first showed that SARS-CoV-2 Spike protein 1 (S1) induces α-synuclein aggregation associated with activation of microglial cells in the rodent model. In vitro, we demonstrated that S1 increases aggregation of α-synuclein in BE(2)M-17 dopaminergic neurons via BV-2 microglia-mediated inflammatory responses. We also identified that S1 directly affects aggregation of α-synuclein in dopaminergic neurons through increasing mitochondrial ROS, though only under conditions of sufficient α-Syn accumulation. In addition, we observed a synergistic effect between S1 and the neurotoxin MPP+ S1 treatment. Combined with a low dose of MPP+, it boosted α-synuclein aggregation and mitochondrial ROS production compared to S1 or the MPP+ treatment group. Furthermore, we evaluated the therapeutic effects of metformin. The treatment of metformin suppressed the S1-induced inflammatory response and α-synucleinopathy. Our findings demonstrate that S1 promotes α-synucleinopathy via both microglia-mediated inflammation and mitochondrial ROS, and they provide pathological insights, as well as a foundation for the clinical management of α-synucleinopathies and the onset of neurological symptoms after the COVID-19 outbreak.
Collapse
Affiliation(s)
| | | | | | | | - Young Ho Koh
- Division of Brain Diseases Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea; (M.H.C.); (J.H.P.); (H.K.L.); (J.Y.C.)
| |
Collapse
|
10
|
Zheng H, Sun H, Cai Q, Tai HC. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges. Int J Mol Sci 2024; 25:4969. [PMID: 38732197 PMCID: PMC11084794 DOI: 10.3390/ijms25094969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils). Compared to filamentous aggregates, soluble aggregates are more toxic and exhibit prion-like transmission, providing seeds for templated misfolding. Curiously, in its native state, tau is a highly soluble, heat-stable protein that does not form fibrils by itself, not even when hyperphosphorylated. In vitro studies have found that negatively charged molecules such as heparin, RNA, or arachidonic acid are generally required to induce tau aggregation. Two recent breakthroughs have provided new insights into tau aggregation mechanisms. First, as an intrinsically disordered protein, tau is found to undergo liquid-liquid phase separation (LLPS) both in vitro and inside cells. Second, cryo-electron microscopy has revealed diverse fibrillar tau conformations associated with different neurodegenerative disorders. Nonetheless, only the fibrillar core is structurally resolved, and the remainder of the protein appears as a "fuzzy coat". From this review, it appears that further studies are required (1) to clarify the role of LLPS in tau aggregation; (2) to unveil the structural features of soluble tau aggregates; (3) to understand the involvement of fuzzy coat regions in oligomer and fibril formation.
Collapse
Affiliation(s)
| | | | | | - Hwan-Ching Tai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Desai M, Hemant, Deo A, Naik J, Dhamale P, Kshirsagar A, Bose T, Majumdar A. Mrj is a chaperone of the Hsp40 family that regulates Orb2 oligomerization and long-term memory in Drosophila. PLoS Biol 2024; 22:e3002585. [PMID: 38648719 PMCID: PMC11034981 DOI: 10.1371/journal.pbio.3002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.
Collapse
Affiliation(s)
- Meghal Desai
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hemant
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Ankita Deo
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Jagyanseni Naik
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Prathamesh Dhamale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Avinash Kshirsagar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Tania Bose
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
12
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
13
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
14
|
Liu F, Lü W, Liu L. New implications for prion diseases therapy and prophylaxis. Front Mol Neurosci 2024; 17:1324702. [PMID: 38500676 PMCID: PMC10944861 DOI: 10.3389/fnmol.2024.1324702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Prion diseases are rare, fatal, progressive neurodegenerative disorders that affect both animal and human. Human prion diseases mainly present as Creutzfeldt-Jakob disease (CJD). However, there are no curable therapies, and animal prion diseases may negatively affect the ecosystem and human society. Over the past five decades, scientists are devoting to finding available therapeutic or prophylactic agents for prion diseases. Numerous chemical compounds have been shown to be effective in experimental research on prion diseases, but with the limitations of toxicity, poor efficacy, and low pharmacokinetics. The earliest clinical treatments of CJD were almost carried out with anti-infectious agents that had little amelioration of the course. With the discovery of pathogenic misfolding prion protein (PrPSc) and increasing insights into prion biology, amounts of novel technologies have attempted to eliminate PrPSc. This review presents new perspectives on clinical and experimental prion diseases, including immunotherapy, gene therapy, small-molecule drug, and stem cell therapy. It further explores the prospects and challenge associated with these emerging therapeutic approaches for prion diseases.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqi Lü
- Department of Psychiatry and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Lin C, He J, Tong X, Song L. Copper homeostasis-associated gene PRNP regulates ferroptosis and immune infiltration in breast cancer. PLoS One 2023; 18:e0288091. [PMID: 37535656 PMCID: PMC10399738 DOI: 10.1371/journal.pone.0288091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer (BRCA) is one of the most common cancers in women. Copper (Cu) is an essential trace element implicated in many physiological processes and human diseases, including BRCA. In this study, we performed bioinformatics analysis and experiments to determine differentially expressed copper homeostasis-associated genes in BRCA. Based on two Gene Expression Omnibus (GEO) datasets, the copper homeostasis-associated gene, prion protein (PRNP), a highly conserved ubiquitous glycoprotein, was significantly down-regulated in BRCA compared to normal tissues. Moreover, PRNP expression predicted a better prognosis in BRCA patients. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that PRNP was potentially linked with several cancer-associated signaling pathways, including regulation of inflammatory response and oxidative phosphorylation. To validate the biological functions of PRNP, we overexpressed PRNP in BRCA cell lines, MDA-MB-231 and BT-549. CCK8 assay showed that PRNP overexpression significantly increased the sensitivity of gefitinib in BRCA cells. Overexpression of PRNP resulted in increased reactive oxygen species (ROS) production upon gefitinib treatment and ferroptosis selective inhibitor, ferrostatin-1 attenuated the enhanced ROS production effect of PRNP in BRCA cells. PRNP expression was positively correlated with macrophages, Th1 cells, neutrophils, and B cells, while negatively correlated with NK CD56 bright cells and Th17 cells in BRCA. Single-cell analysis showed that PRNP was highly expressed in M1 phenotype macrophages, essential tumor-suppressing cells in the tumor stroma. Therefore, our findings suggest that PRNP may participate in ROS-mediated ferroptosis and is a potential novel therapeutic target of chemotherapy and immunotherapy in BRCA.
Collapse
Affiliation(s)
- Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan. P. R. China
| | - Jiaqing He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaopei Tong
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Liying Song
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
16
|
Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell 2023; 186:693-714. [PMID: 36803602 DOI: 10.1016/j.cell.2022.12.032] [Citation(s) in RCA: 465] [Impact Index Per Article: 232.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 02/18/2023]
Abstract
Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, 3500 Hasselt, Belgium.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, 3500 Hasselt, Belgium.
| |
Collapse
|
17
|
Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225:1038-1048. [PMID: 36410538 DOI: 10.1016/j.ijbiomac.2022.11.166] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-β) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.
Collapse
|
18
|
Halder P, Mitra P. Human prion protein: exploring the thermodynamic stability and structural dynamics of its pathogenic mutants. J Biomol Struct Dyn 2022; 40:11274-11290. [PMID: 34338141 DOI: 10.1080/07391102.2021.1957715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Human familial prion diseases are known to be associated with different single-point mutants of the gene coding for prion protein with a primary focus at several locations of the globular domain. We have identified 12 different single-point pathogenic mutants of human prion protein (HuPrP) with the help of extensive perturbations/mutation technique at multiple locations of HuPrP sequence related to potentiality towards conformational disorders. Among these, some of the mutants include pathogenic variants that corroborate well with the literature reported proteins while majority include some unique single-point mutants that are either not explicitly studied early or studied for variants with different residues at the specific position. Primarily, our study sheds light on the unfolding mechanism of the above mentioned mutants in depth. Besides, we could identify some mutants under investigation that demonstrates not only unfolding of the helical structures but also extension and generation of the β-sheet structures and or simultaneously have highly exposed hydrophobic surface which is assumed to be linked with the production of aggregate/fibril structures of the prion protein. Among the identified mutants, Q212E needs special attention due to its maximum exposure of hydrophobic core towards solvent and E200Q is found to be important due to its maximum extent of β-content. We are also able to identify different respective structural conformations of the proteins according to their degree of structural unfolding and those conformations can be extracted and further studied in detail. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Puspita Halder
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
19
|
Lee KY. Common immunopathogenesis of central nervous system diseases: the protein-homeostasis-system hypothesis. Cell Biosci 2022; 12:184. [PMCID: PMC9668226 DOI: 10.1186/s13578-022-00920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractThere are hundreds of central nervous system (CNS) diseases, but there are few diseases for which the etiology or pathogenesis is understood as well as those of other organ-specific diseases. Cells in the CNS are selectively protected from external and internal insults by the blood–brain barrier. Thus, the neuroimmune system, including microglia and immune proteins, might control external or internal insults that the adaptive immune system cannot control or mitigate. The pathologic findings differ by disease and show a state of inflammation that reflects the relationship between etiological or inflammation-inducing substances and corresponding immune reactions. Current immunological concepts about infectious diseases and infection-associated immune-mediated diseases, including those in the CNS, can only partly explain the pathophysiology of disease because they are based on the idea that host cell injury is caused by pathogens. Because every disease involves etiological or triggering substances for disease-onset, the protein-homeostasis-system (PHS) hypothesis proposes that the immune systems in the host control those substances according to the size and biochemical properties of the substances. In this article, I propose a common immunopathogenesis of CNS diseases, including prion diseases, Alzheimer’s disease, and genetic diseases, through the PHS hypothesis.
Collapse
|
20
|
Makarava N, Katorcha E, Chang JCY, Lau JTY, Baskakov IV. Deficiency in ST6GAL1, one of the two α2,6-sialyltransferases, has only a minor effect on the pathogenesis of prion disease. Front Mol Biosci 2022; 9:1058602. [PMID: 36452458 PMCID: PMC9702343 DOI: 10.3389/fmolb.2022.1058602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 10/22/2023] Open
Abstract
Prion diseases are a group of fatal neurodegenerative diseases caused by misfolding of the normal cellular form of the prion protein or PrPC, into a disease-associated self-replicating state or PrPSc. PrPC and PrPSc are posttranslationally modified with N-linked glycans, in which the terminal positions occupied by sialic acids residues are attached to galactose predominantly via α2-6 linkages. The sialylation status of PrPSc is an important determinant of prion disease pathogenesis, as it dictates the rate of prion replication and controls the fate of prions in an organism. The current study tests whether a knockout of ST6Gal1, one of the two mammalian sialyltransferases that catalyze the sialylation of glycans via α2-6 linkages, reduces the sialylation status of PrPSc and alters prion disease pathogenesis. We found that a global knockout of ST6Gal1 in mice significantly reduces the α2-6 sialylation of the brain parenchyma, as determined by staining with Sambucus Nigra agglutinin. However, the sialylation of PrPSc remained stable and the incubation time to disease increased only modestly in ST6Gal1 knockout mice (ST6Gal1-KO). A lack of significant changes in the PrPSc sialylation status and prion pathogenesis is attributed to the redundancy in sialylation and, in particular, the plausible involvement of a second member of the sialyltransferase family that sialylate via α2-6 linkages, ST6Gal2.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jennifer Chen-Yu Chang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph T. Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
22
|
Nikolić L, Ferracin C, Legname G. Recent advances in cellular models for discovering prion disease therapeutics. Expert Opin Drug Discov 2022; 17:985-996. [PMID: 35983689 DOI: 10.1080/17460441.2022.2113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Prion diseases are a group of rare and lethal rapidly progressive neurodegenerative diseases arising due to conversion of the physiological cellular prion protein into its pathological counterparts, denoted as "prions". These agents are resistant to inactivation by standard decontamination procedures and can be transmitted between individuals, consequently driving the irreversible brain damage typical of the diseases. AREAS COVERED Since its infancy, prion research has mainly depended on animal models for untangling the pathogenesis of the disease as well as for the drug development studies. With the advent of prion-infected cell lines, relevant animal models have been complemented by a variety of cell-based models presenting a much faster, ethically acceptable alternative. EXPERT OPINION To date, there are still either no effective prophylactic regimens or therapies for human prion diseases. Therefore, there is an urgent need for more relevant cellular models that best approximate in vivo models. Each cellular model presented and discussed in detail in this review has its own benefits and limitations. Once embarking in a drug screening campaign for the identification of molecules that could interfere with prion conversion and replication, one should carefully consider the ideal cellular model.
Collapse
Affiliation(s)
- Lea Nikolić
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy,
| | - Chiara Ferracin
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- D.Phil., Full Professor of Biochemistry, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
23
|
Bashirzade AA, Zabegalov KN, Volgin AD, Belova AS, Demin KA, de Abreu MS, Babchenko VY, Bashirzade KA, Yenkoyan KB, Tikhonova MA, Amstislavskaya TG, Kalueff AV. Modeling neurodegenerative disorders in zebrafish. Neurosci Biobehav Rev 2022; 138:104679. [PMID: 35490912 DOI: 10.1016/j.neubiorev.2022.104679] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 12/15/2022]
Abstract
Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa. Here, we review the role of zebrafish models in recapitulating major human and rodent neurodegenerative conditions, demonstrating this species as a highly relevant experimental model for research on neurodegenerative diseases, and discussing how these fish models can further clarify the underlying genetic, neurochemical, neuroanatomical and behavioral pathogenic mechanisms.
Collapse
Affiliation(s)
- Alim A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | | | - Andrey D Volgin
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Alisa S Belova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia; Almazov Medical Research Center, St. Petersburg, Russia
| | | | - Vladislav Ya Babchenko
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Kseniya A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M Heratsi Yerevan State Medical University, Yerevan, Armenia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia
| | - Maria A Tikhonova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Allan V Kalueff
- The Russian Academy of Sciences, Moscow, Russia; Ural Federal University, Yekaterinburg, Russia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia.
| |
Collapse
|
24
|
Choi M, Moon S, Eom HJ, Lim SM, Kim YH, Nam S. High Expression of PRNP Predicts Poor Prognosis in Korean Patients with Gastric Cancer. Cancers (Basel) 2022; 14:cancers14133173. [PMID: 35804944 PMCID: PMC9264980 DOI: 10.3390/cancers14133173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) has the highest occurrence and fourth-highest mortality rate of all cancers in Korea. Although survival rates are improving with the development of diagnosis and treatment methods, the five-year survival rate for stage 4 GC in Korea remains <10%. Therefore, it is important to identify candidate prognostic factors for predicting poor prognosis. PRNP is a gene encoding the prion protein PrP, which has been noted for its role in the nervous system and is known to be upregulated in various cancers and associated with both cell proliferation and metastasis. However, the value of PRNP as a prognostic factor for Korean GC patients remains unclear. Here, we analyzed the relationship between PRNP expression and survival in three independent datasets for Korean patients with GC as well as the TCGA-STAD dataset. Survival analysis indicates that high levels of PRNP expression are associated with poor overall survival of patients with GC. Gene set enrichment analysis showed that PRNP is associated with epithelial mesenchymal transition and Hedgehog signaling. In addition, proliferation of GC cell lines was inhibited after siRNA-mediated knockdown of PRNP. In conclusion, our study suggests a potential role for PRNP as a candidate prognostic factor for patients with GC.
Collapse
Affiliation(s)
- Minseok Choi
- College of Medicine, Gachon University, Incheon 21565, Korea;
| | - SeongRyeol Moon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Korea;
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea
| | - Hyo Jin Eom
- Research and Development Department, Corestem Inc., Seongnam 13486, Korea;
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, Seongnam 13486, Korea;
| | | | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Korea;
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-458-2737; Fax: +82-32-458-2875
| |
Collapse
|
25
|
Wang AL, Chao OY, Nikolaus S, Lamounier-Zepter V, Hollenberg CP, Lubec G, Trossbach SV, Korth C, Huston JP. Disrupted-in-schizophrenia 1 Protein Misassembly Impairs Cognitive Flexibility and Social Behaviors in a Transgenic Rat Model. Neuroscience 2022; 493:41-51. [PMID: 35461978 DOI: 10.1016/j.neuroscience.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Alterations in cognitive functions, social behaviors and stress reactions are commonly diagnosed in chronic mental illnesses (CMI). Animal models expressing mutant genes associated to CMI represent either rare mutations or those contributing only minimally to genetic risk. Non-genetic causes of CMI can be modeled by disturbing downstream signaling pathways, for example through inducing protein misassembly or aggregation. The Disrupted-in-Schizophrenia 1 (DISC1) gene was identified to be disrupted and thereby haploinsufficient in a large pedigree where it associated to CMI. The DISC1 protein misassembles to an insoluble protein in a subset of CMI patients and this has been modeled in a rat (tgDISC1 rat) where the full-length, non mutant human transgene was overexpressed and cognitive impairments were observed. Here, we investigated the scope of effects of DISC1 protein misassembly by investigating spatial memory, social behavior and stress resilience. In water maze tasks, the tgDISC1 rats showed intact spatial learning and memory, but were deficient in flexible adaptation to spatial reversal learning compared to littermate controls. They also displayed less social interaction. Additionally, there was a trend towards increased corticosterone levels after restraint stress in the tgDISC1 rats. Our findings suggest that DISC1 protein misassembly leads to disturbances of cognitive flexibility and social behaviors, and might also be involved in stress sensitization. Since the observed behavioral features resemble symptoms of CMI, the tgDISC1 rat may be a valuable model for the investigation of cognitive, social and - possibly - also stress-related symptoms of major mental illnesses.
Collapse
Affiliation(s)
- An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA.
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany.
| | | | - Cornelis P Hollenberg
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria.
| | - Svenja V Trossbach
- Department of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Carsten Korth
- Department of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
26
|
Azevedo R, Jacquemin C, Villain N, Fenaille F, Lamari F, Becher F. Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells 2022; 11:1279. [PMID: 35455959 PMCID: PMC9031030 DOI: 10.3390/cells11081279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative diseases are incurable, heterogeneous, and age-dependent disorders that challenge modern medicine. A deeper understanding of the pathogenesis underlying neurodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and disease-modifying therapy and reduce these diseases' burden. Specifically, post-translational modifications (PTMs) play a significant role in neurodegeneration. Due to its proximity to the brain parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes in the brain. Mass spectrometry (MS) analysis in neurodegenerative diseases focusing on PTMs and in the context of biomarker discovery has improved and opened venues for analyzing more complex matrices such as brain tissue and blood. Notably, phosphorylated tau protein, truncated α-synuclein, APP and TDP-43, and many other modifications were extensively characterized by MS. Great potential is underlying specific pathological PTM-signatures for clinical application. This review focuses on PTM-modified proteins involved in neurodegenerative diseases and highlights the most important and recent breakthroughs in MS-based biomarker discovery.
Collapse
Affiliation(s)
- Rita Azevedo
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Chloé Jacquemin
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Nicolas Villain
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
- Institut du Cerveau (ICM), Pitié-Salpêtrière Hospital, 75013 Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, AP-HP Sorbonne Université, CEDEX 13, 75651 Paris, France
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Foudil Lamari
- Department of Metabolic Biochemistry (AP-HP Sorbonne), Pitié-Salpêtrière Hospital, CEDEX 13, 75651 Paris, France;
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| |
Collapse
|
27
|
Carnosic Acid and Carnosol Display Antioxidant and Anti-Prion Properties in In Vitro and Cell-Free Models of Prion Diseases. Antioxidants (Basel) 2022; 11:antiox11040726. [PMID: 35453411 PMCID: PMC9027925 DOI: 10.3390/antiox11040726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are transmissible encephalopathies associated with the conversion of the physiological form of the prion protein (PrPC) to the disease-associated (PrPSc). Despite intense research, no therapeutic or prophylactic agent is available. The catechol-type diterpene Carnosic acid (CA) and its metabolite Carnosol (CS) from Rosmarinus officinalis have well-documented anti-oxidative and neuroprotective effects. Since oxidative stress plays an important role in the pathogenesis of prion diseases, we investigated the potential beneficial role of CA and CS in a cellular model of prion diseases (N2a22L cells) and in a cell-free prion amplification assay (RT-QuIC). The antioxidant effects of the compounds were confirmed when N2a22L were incubated with CA or CS. Furthermore, CA and CS reduced the accumulation of the disease-associated form of PrP, detected by Western Blotting, in N2a22L cells. This effect was validated in RT-QuIC assays, indicating that it is not associated with the antioxidant effects of CA and CS. Importantly, cell-free assays revealed that these natural products not only prevent the formation of PrP aggregates but can also disrupt already formed aggregates. Our results indicate that CA and CS have pleiotropic effects against prion diseases and could evolve into useful prophylactic and/or therapeutic agents against prion and other neurodegenerative diseases.
Collapse
|
28
|
Synthetic Sulfated Polymers Control Amyloid Aggregation of Ovine Prion Protein and Decrease Its Toxicity. Polymers (Basel) 2022; 14:polym14071478. [PMID: 35406350 PMCID: PMC9002794 DOI: 10.3390/polym14071478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Amyloid aggregation, including aggregation and propagation of prion protein, is a key factor in numerous human diseases, so-called amyloidosis, with a very poor ability for treatment or prevention. The present work describes the effect of sulfated or sulfonated polymers (sodium dextran sulfate, polystyrene sulfonate, polyanethole sulfonate, and polyvinyl sulfate) on different stages of amyloidogenic conversion and aggregation of the prion protein, which is associated with prionopathies in humans and animals. All tested polymers turned out to induce amyloid conversion of the ovine prion protein. As suggested from molecular dynamics simulations, this effect probably arises from destabilization of the native prion protein structure by the polymers. Short polymers enhanced its further aggregation, whereas addition of high-molecular poly(styrene sulfonate) inhibited amyloid fibrils formation. According to the seeding experiments, the protein–polymer complexes formed after incubation with poly(styrene sulfonate) exhibited significantly lower amyloidogenic capacity compared with the control fibrils of the free prion protein. The cytotoxicity of soluble oligomers was completely inhibited by treatment with poly(styrene sulfonate). To summarize, sulfonated polymers are a promising platform for the formulation of a new class of anti-prion and anti-amyloidosis therapeutics.
Collapse
|
29
|
Costa AS, Ferri E, Guerini FR, Rossi PD, Arosio B, Clerici M. VAMP2 Expression and Genotype Are Possible Discriminators in Different Forms of Dementia. Front Aging Neurosci 2022; 14:858162. [PMID: 35360211 PMCID: PMC8964122 DOI: 10.3389/fnagi.2022.858162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular alterations often overlap with neurodegeneration, resulting in mixed forms of dementia (MD) that are hard to differentiate from Alzheimer’s Disease (AD). The 26 bp intergenic polymorphism of VAMP2, a key component of SNARE complex, as well as its mRNA and protein levels are associated with neurological diseases. We evaluated ApoE4 and VAMP2 26 bp Ins/Del genotype distribution in 177 AD, 132 MD, 115 Mild Cognitive Impairment (MCI) and 250 individuals without cognitive decline (CT), as well as VAMP2 gene expression in a subset of 73 AD, 122 MD, 103 MCI and 140 CT. Forty-two MCI evolved to AD (22 MCI-AD) or MD (20 MCI-MD) over time. VAMP2 mRNA was higher in MD compared to AD (p = 0.0013) and CT (p = 0.0017), and in MCI-MD compared to MCI-AD (p < 0.001) after correcting for age, gender, MMSE and ApoE4 +/− covariates (pc = 0.004). A higher VAMP2 expression was observed in subjects carrying the minor allele Del compared to those carrying the Ins/Ins genotype (p = 0.012). Finally, Del/Del genotype was more frequently carried by MD/MCI-MD compared to CT (pc = 0.036). These results suggest that VAMP2 mRNA expression can discriminate mixed form of dementia from AD, possibly being a biomarker of AD evolution in MCI patients.
Collapse
Affiliation(s)
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- *Correspondence: Franca Rosa Guerini,
| | - Paolo Dionigi Rossi
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
30
|
La Penna G, Morante S. Aggregates Sealed by Ions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2340:309-341. [PMID: 35167080 DOI: 10.1007/978-1-0716-1546-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chapter draws a line connecting some recent results where the role of ions is found essential in sealing more or less pre-organized assemblies of macromolecules. We draw some dots along the line that starts from the effect of the ionic atmosphere and ends with the chemical bonds formed by multivalent ions acting as bridges between macromolecules. Many of these dots involve structurally disordered peptides and disordered regions of proteins. A broad perspective of the role of multivalent ions in assisting the assembly process, shifting population in polymorphic states, and sealing protein aggregates, is suggested.
Collapse
Affiliation(s)
- Giovanni La Penna
- Institute for Chemistry of Organo-Metallic Compounds, National Research Council of Italy, Florence, Italy.
| | - Silvia Morante
- Department of Physics, University of Roma Tor Vergata, Roma, Italy
| |
Collapse
|
31
|
Uliassi E, Nikolic L, Bolognesi ML, Legname G. Therapeutic strategies for identifying small molecules against prion diseases. Cell Tissue Res 2022; 392:337-347. [PMID: 34989851 DOI: 10.1007/s00441-021-03573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders, for which there are no effective therapeutic and diagnostic agents. The main pathological hallmark has been identified as conformational changes of the cellular isoform prion protein (PrPC) to a misfolded isoform of the prion protein (PrPSc). Targeting PrPC and its conversion to PrPSc is still the central dogma in prion drug discovery, particularly in in silico and in vitro screening endeavors, leading to the identification of many small molecules with therapeutic potential. Nonetheless, multiple pathological targets are critically involved in the intricate pathogenesis of prion diseases. In this context, multi-target-directed ligands (MTDLs) emerge as valuable therapeutic approach for their potential to effectively counteract the complex etiopathogenesis by simultaneously modulating multiple targets. In addition, diagnosis occurs late in the disease process, and consequently a successful therapeutic intervention cannot be provided. In this respect, small molecule theranostics, which combine imaging and therapeutic properties, showed tremendous potential to cure and diagnose in vivo prion diseases. Herein, we review the major advances in prion drug discovery, from anti-prion small molecules identified by means of in silico and in vitro screening approaches to two rational strategies, namely MTDLs and theranostics, that have led to the identification of novel compounds with an expanded anti-prion profile.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy
| | - Lea Nikolic
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
32
|
Bhat A, Dalvi H, Jain H, Rangaraj N, Singh SB, Srivastava S. Perspective insights of repurposing the pleiotropic efficacy of statins in neurodegenerative disorders: An expository appraisal. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100012. [PMID: 34909647 PMCID: PMC8663947 DOI: 10.1016/j.crphar.2020.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 10/26/2022] Open
Abstract
Neurodegenerative disorders which affects a larger population pose a great clinical challenge. These disorders impact the quality of life of an individual by damaging the neurons, which are the unit cells of the brain. Clinicians are faced with the grave challenge of inhibiting the progression of these diseases as available treatment options fail to meet the clinical demand. Thus, treating the disease/disorder symptomatically is the Hobson's choice. The goal of the researchers is to introduce newer therapies in this segment and introducing a new molecule will take long years of development. Hence, drug repurposing/repositioning can be a better substitute in comparison to time consuming and expensive drug discovery and development cycle. Presently, a paradigm shift towards the re-purposing of drugs can be witnessed. Statins which have been previously approved as anti-hyperlipidemic agents are in the limelight of research for re-purposed drugs. Owing to their anti-inflammatory and antioxidant nature, statins act as neuroprotective in several brain disorders. Further they attenuate the amyloid plaques and protein aggregation which are the triggering factors in the Alzheimer's and Parkinson's respectively. In case of Huntington disease and Multiple sclerosis they help in improving the psychomotor symptoms and stimulate remyelination thus acting as neuroprotective. This article reviews the potential of statins in treating neurodegenerative disorders along with a brief discussion on the safety concerns associated with use of statins and human clinical trial data linked with re-tasking statins for neurodegenerative disorders along with the regulatory perspectives involved with the drug repositioning.
Collapse
Affiliation(s)
- Aditi Bhat
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Harshita Dalvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Harsha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nagarjun Rangaraj
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
33
|
Destabilization of the Alzheimer's amyloid-β peptide by a proline-rich β-sheet breaker peptide: a molecular dynamics simulation study. J Mol Model 2021; 27:356. [PMID: 34796404 DOI: 10.1007/s00894-021-04968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
The amyloid-β peptide exists in the form of fibrils in the plaques found in the brains of patients with Alzheimer's disease. One of the therapeutic strategies is the design of molecules which can destabilize these fibrils. We present a designed peptide KLVFFP5 with two segments: the self-recognition sequence KLVFF and a β-sheet breaker proline pentamer. Molecular dynamics simulations and docking results showed that this peptide could bind to the protofibrils and destabilize them by establishing hydrophobic contacts and hydrogen bonds with a higher affinity than the KLVFF peptide. In the presence of the KLVFFP5 peptide, the β-sheet content of the protofibrils was reduced significantly; the hydrogen bonding network and the salt bridges were disrupted to a greater extent than the KLVFF peptide. Our results indicate that the KLVFFP5 peptide is an effective β-sheet disruptor which can be considered in the therapy of Alzheimer's disease.
Collapse
|
34
|
Pankiewicz JE, Lizińczyk AM, Franco LA, Diaz JR, Martá-Ariza M, Sadowski MJ. Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype. Acta Neuropathol Commun 2021; 9:157. [PMID: 34565486 PMCID: PMC8474943 DOI: 10.1186/s40478-021-01261-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Prion diseases or prionoses are a group of rapidly progressing and invariably fatal neurodegenerative diseases. The pathogenesis of prionoses is associated with self-replication and connectomal spread of PrPSc, a disease specific conformer of the prion protein. Microglia undergo activation early in the course of prion pathogenesis and exert opposing roles in PrPSc mediated neurodegeneration. While clearance of PrPSc and apoptotic neurons have disease-limiting effect, microglia-driven neuroinflammation bears deleterious consequences to neuronal networks. Apolipoprotein (apo) E is a lipid transporting protein with pleiotropic functions, which include controlling of the phagocytic and inflammatory characteristics of activated microglia in neurodegenerative diseases. Despite the significance of microglia in prion pathogenesis, the role of apoE in prionoses has not been established. We showed here that infection of wild type mice with 22L mouse adapted scrapie strain is associated with significant increase in the total brain apoE protein and mRNA levels and also with a conspicuous cell-type shift in the apoE expression. There is reduced expression of apoE in activated astrocytes and marked upregulation of apoE expression by activated microglia. We also showed apoE ablation exaggerates PrPSc mediated neurodegeneration. Apoe−/− mice have shorter disease incubation period, increased load of spongiform lesion, pronounced neuronal loss, and exaggerated astro and microgliosis. Astrocytes of Apoe−/− mice display salient upregulation of transcriptomic markers defining A1 neurotoxic astrocytes while microglia show upregulation of transcriptomic markers characteristic for microglial neurodegenerative phenotype. There is impaired clearance of PrPSc and dying neurons by microglia in Apoe−/− mice along with increased level of proinflammatory cytokines. Our work indicates that apoE absence renders clearance of PrPSc and dying neurons by microglia inefficient, while the excess of neuronal debris promotes microglial neurodegenerative phenotype aggravating the vicious cycle of neuronal death and neuroinflammation.
Collapse
|
35
|
Priemer DS, Folkerth RD. Dementia in the Forensic Setting: Diagnoses Obtained Using a Condensed Protocol at the Office of Chief Medical Examiner, New York City. J Neuropathol Exp Neurol 2021; 80:724-730. [PMID: 34388235 DOI: 10.1093/jnen/nlab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Individuals with dementia may come to forensic autopsy, partly because of non-natural deaths (e.g. fall-related), and/or concerns of abuse/neglect. At the New York City Office of Chief Medical Examiner (NYC OCME), brains from such cases are submitted for neurodegenerative disease (ND) work-up. Seventy-eight sequential cases were evaluated using a recently published condensed protocol for the NIA-AA guidelines for the neuropathologic assessment of Alzheimer disease (AD), a cost-cutting innovation in diagnostic neuropathology. ND was identified in 74 (94.9%) brains; the most common were AD (n = 41 [52.5%]), primary age-related tauopathy (n = 26 [33.3%]), and Lewy body disease ([LBD], n = 25 [32.1%]). Others included age-related tau astrogliopathy, hippocampal sclerosis of aging, progressive supranuclear palsy, multiple system atrophy, amyotrophic lateral sclerosis, argyrophilic grain disease, and Creutzfeldt-Jakob disease. 26.8% of AD cases involved a non-natural, dementia-related death, versus 40.0% for LBD. Finally, 70 (89.7%) cases had chronic cerebrovascular disease, 53 (67.9%) being moderate-to-severe. We present a diverse distribution of NDs notable for a high rate of diagnoses associated with falls (e.g. LBD), a potential difference from the hospital neuropathology experience. We also report a high burden of cerebrovascular disease in demented individuals seen at the NYC OCME. Finally, we demonstrate that the aforementioned condensed protocol is applicable for a variety of ND diagnoses.
Collapse
Affiliation(s)
- David S Priemer
- From the Department of Pathology, Uniformed Services University F. Edward Hébert School of Medicine and Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA (DSP); and Department of Forensic Medicine, New York University Grossman School of Medicine and New York City Office of Chief Medical Examiner, New York City, New York, USA (RDF)
| | - Rebecca D Folkerth
- From the Department of Pathology, Uniformed Services University F. Edward Hébert School of Medicine and Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA (DSP); and Department of Forensic Medicine, New York University Grossman School of Medicine and New York City Office of Chief Medical Examiner, New York City, New York, USA (RDF)
| |
Collapse
|
36
|
Balczon R, Lin MT, Lee JY, Abbasi A, Renema P, Voth SB, Zhou C, Koloteva A, Michael Francis C, Sodha NR, Pittet JF, Wagener BM, Bell J, Choi CS, Ventetuolo CE, Stevens T. Pneumonia initiates a tauopathy. FASEB J 2021; 35:e21807. [PMID: 34384141 PMCID: PMC8443149 DOI: 10.1096/fj.202100718r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Pneumonia causes short‐ and long‐term cognitive dysfunction in a high proportion of patients, although the mechanism(s) responsible for this effect are unknown. Here, we tested the hypothesis that pneumonia‐elicited cytotoxic amyloid and tau variants: (1) are present in the circulation during infection; (2) lead to impairment of long‐term potentiation; and, (3) inhibit long‐term potentiation dependent upon tau. Cytotoxic amyloid and tau species were recovered from the blood and the hippocampus following pneumonia, and they were present in the extracorporeal membrane oxygenation oxygenators of patients with pneumonia, especially in those who died. Introduction of immunopurified blood‐borne amyloid and tau into either the airways or the blood of uninfected animals acutely and chronically impaired hippocampal information processing. In contrast, the infection did not impair long‐term potentiation in tau knockout mice and the amyloid‐ and tau‐dependent disruption in hippocampal signaling was less severe in tau knockout mice. Moreover, the infection did not elicit cytotoxic amyloid and tau variants in tau knockout mice. Therefore, pneumonia initiates a tauopathy that contributes to cognitive dysfunction.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Mike T Lin
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Ji Young Lee
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Internal Medicine, University of South Alabama, Mobile, AL, USA
| | - Adeel Abbasi
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Phoibe Renema
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Sarah B Voth
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Anna Koloteva
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - C Michael Francis
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Neel R Sodha
- Department of Surgery, Brown University, Providence, RI, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Bell
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Chung-Sik Choi
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Corey E Ventetuolo
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.,Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI, USA
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Internal Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
37
|
Abstract
Introduction: Prion diseases are a class of rare and fatal neurodegenerative diseases for which no cure is currently available. They are characterized by conformational conversion of cellular prion protein (PrPC) into the disease-associated 'scrapie' isoform (PrPSc). Under an etiological point of view, prion diseases can be divided into acquired, genetic, and idiopathic form, the latter of which are the most frequent.Areas covered: Therapeutic approaches targeting prion diseases are based on the use of chemical and nature-based compounds, targeting either PrPC or PrPSc or other putative player in pathogenic mechanism. Other proposed anti-prion treatments include passive and active immunization strategies, peptides, aptamers, and PrPC-directed RNA interference techniques. The treatment efficacy has been mainly assessed in cell lines or animal models of the disease testing their ability to reduce prion accumulation.Expert opinion: The assessed strategies focussing on the identification of an efficient anti-prion therapy faced various issues, which go from permeation of the blood brain barrier to immunological tolerance of the host. Indeed, the use of combinatory approaches, which could boost a synergistic anti-prion effect and lower the potential side effects of single treatments and may represent an extreme powerful and feasible way to tackle prion disease.
Collapse
Affiliation(s)
- Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
38
|
Pikatza-Menoio O, Elicegui A, Bengoetxea X, Naldaiz-Gastesi N, López de Munain A, Gerenu G, Gil-Bea FJ, Alonso-Martín S. The Skeletal Muscle Emerges as a New Disease Target in Amyotrophic Lateral Sclerosis. J Pers Med 2021; 11:671. [PMID: 34357138 PMCID: PMC8307751 DOI: 10.3390/jpm11070671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Oihane Pikatza-Menoio
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Amaia Elicegui
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Xabier Bengoetxea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Gorka Gerenu
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Physiology, University of the Basque Country UPV-EHU, 48940 Leioa, Spain
| | - Francisco Javier Gil-Bea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Sonia Alonso-Martín
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| |
Collapse
|
39
|
Chetty D, Abrahams S, van Coller R, Carr J, Kenyon C, Bardien S. Movement of prion-like α-synuclein along the gut-brain axis in Parkinson's disease: A potential target of curcumin treatment. Eur J Neurosci 2021; 54:4695-4711. [PMID: 34043864 DOI: 10.1111/ejn.15324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
A pathological hallmark of the neurodegenerative disorder, Parkinson's disease (PD), is aggregation of toxic forms of the presynaptic protein, α-synuclein in structures known as Lewy bodies. α-Synuclein pathology is found in both the brain and gastrointestinal tracts of affected individuals, possibly due to the movement of this protein along the vagus nerve that connects the brain to the gut. In this review, we discuss current insights into the spread of α-synuclein pathology along the gut-brain axis, which could be targeted for therapeutic interventions. The prion-like propagation of α-synuclein, and the clinical manifestations of gastrointestinal dysfunction in individuals living with PD, are discussed. There is currently insufficient evidence that surgical alteration of the vagus nerve, or removal of gut-associated lymphoid tissues, such as the appendix and tonsils, are protective against PD. Furthermore, we propose curcumin as a potential candidate to prevent the spread of α-synuclein pathology in the body by curcumin binding to α-synuclein's non-amyloid β-component (NAC) domain. Curcumin is an active component of the food spice turmeric and is known for its antioxidant, anti-inflammatory, and potentially neuroprotective properties. We hypothesize that once α-synuclein is bound to curcumin, both molecules are subsequently excreted from the body. Therefore, dietary supplementation with curcumin over one's lifetime has potential as a novel approach to complement existing PD treatment and/or prevention strategies. Future studies are required to validate this hypothesis, but if successful, this could represent a significant step towards improved nutrient-based therapeutic interventions and preventative strategies for this debilitating and currently incurable disorder.
Collapse
Affiliation(s)
- Devina Chetty
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shameemah Abrahams
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Riaan van Coller
- Faculty of Health Sciences, School of Medicine, Department of Neurology, University of Pretoria, Pretoria, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Colin Kenyon
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
40
|
Reina M, Celaya CA, Muñiz J. C
36
and C
35
E (E=N and B) Fullerenes as Potential Nanovehicles for Neuroprotective Drugs: A Comparative DFT Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202101227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Miguel Reina
- Departamento de Química Inorgánica y Nuclear Facultad de Química Universidad Nacional Autónoma de México Circuito Exterior S.N. Ciudad Universitaria, P.O. Box 70–360 Coyoacán C.P. 04510 Ciudad de México México
| | - Christian A. Celaya
- Departamento de Química Inorgánica y Nuclear Facultad de Química Universidad Nacional Autónoma de México Circuito Exterior S.N. Ciudad Universitaria, P.O. Box 70–360 Coyoacán C.P. 04510 Ciudad de México México
- Instituto de Energías Renovables Universidad Nacional Autonoma de México Piv. Xochicalcos/n. Col. Centro Temixco, C.P. 62580 Morelos, México
| | - Jesús Muñiz
- Instituto de Energías Renovables Universidad Nacional Autonoma de México Piv. Xochicalcos/n. Col. Centro Temixco, C.P. 62580 Morelos, México
| |
Collapse
|
41
|
Galkin AP, Sysoev EI. Stress Response Is the Main Trigger of Sporadic Amyloidoses. Int J Mol Sci 2021; 22:4092. [PMID: 33920986 PMCID: PMC8071232 DOI: 10.3390/ijms22084092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyloidoses are a group of diseases associated with the formation of pathological protein fibrils with cross-β structures. Approximately 5-10% of the cases of these diseases are determined by amyloidogenic mutations, as well as by transmission of infectious amyloids (prions) between organisms. The most common group of so-called sporadic amyloidoses is associated with abnormal aggregation of wild-type proteins. Some sporadic amyloidoses are known to be induced only against the background of certain pathologies, but in some cases the cause of amyloidosis is unclear. It is assumed that these diseases often occur by accident. Here we present facts and hypotheses about the association of sporadic amyloidoses with vascular pathologies, trauma, oxidative stress, cancer, metabolic diseases, chronic infections and COVID-19. Generalization of current data shows that all sporadic amyloidoses can be regarded as a secondary event occurring against the background of diseases provoking a cellular stress response. Various factors causing the stress response provoke protein overproduction, a local increase in the concentration or modifications, which contributes to amyloidogenesis. Progress in the treatment of vascular, metabolic and infectious diseases, as well as cancers, should lead to a significant reduction in the risk of sporadic amyloidoses.
Collapse
Affiliation(s)
- Alexey P. Galkin
- St. Petersburg Branch, Vavilov Institute of General Genetics, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeniy I. Sysoev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
42
|
Dahy FE, Novaes CTG, Bandeira GA, Ramin LF, de Oliveira ACP, Smid J. Sporadic Creutzfeldt-Jakob disease in two clinically and virologically controlled Brazilian HIV patients who progressed rapidly to dementia: case reports and literature review. Rev Inst Med Trop Sao Paulo 2021; 63:e23. [PMID: 33787743 PMCID: PMC7997664 DOI: 10.1590/s1678-9946202163023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders are the main cause of cognitive decline and dementia in people living with HIV (PLHIV). However, extensive workup should be done in patients with rapidly progressive dementia (RPD) and HIV, especially when secondary infection in the central nervous system (CNS) is ruled out. Sporadic Creutzfeldt-Jakob disease (sCJD) is the main cause of RPD in non-HIV patients. It is a fatal neurodegenerative condition caused by prions that mainly affects elderly patients. Our objective is to describe two cases of PLHIV presenting with controlled infections and sCJD, and to review the literature. Our patients were younger than expected for sCJD and one of them had a longer disease course. As aging is expected to occur earlier in PLHIV, sCJD must be excluded in younger PLHIV presenting with RPD and without CNS infection.
Collapse
Affiliation(s)
- Flávia Esper Dahy
- Instituto de Infectologia Emílio Ribas, São Paulo, São Paulo,
Brazil
| | - Christina T. G. Novaes
- Universidade de São Paulo, Hospital das Clínicas, Departamento
de Doenças Infecciosas, São Paulo, São Paulo, Brazil
| | - Gabriela A. Bandeira
- Universidade de São Paulo, Hospital das Clínicas, Departamento
de Radiologia, São Paulo, São Paulo, Brazil
| | - Laís F. Ramin
- Universidade de São Paulo, Hospital das Clínicas, Departamento
de Radiologia, São Paulo, São Paulo, Brazil
| | | | - Jerusa Smid
- Instituto de Infectologia Emílio Ribas, São Paulo, São Paulo,
Brazil
- Universidade de São Paulo, Hospital das Clínicas, Departamento
de Neurologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Kanchi PK, Dasmahapatra AK. Enhancing the binding of the β-sheet breaker peptide LPFFD to the amyloid-β fibrils by aromatic modifications: A molecular dynamics simulation study. Comput Biol Chem 2021; 92:107471. [PMID: 33706107 DOI: 10.1016/j.compbiolchem.2021.107471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Alzheimer's is a fatal neurodegenerative disease for which there is no cure at present. The disease is characterized by the presence of plaques in the brains of a patient, which are composed mainly of aggregates of the amyloid-β peptide in the form of β-sheet fibrils. Here, we investigated the possibility of exploiting the superior binding ability of aromatic amino acids to a particular model of the amyloid-β fibrils. which is a difficult target for drug design. The β-sheet breaker peptide LPFFD was modified with aromatic amino acids and its binding to these fibrils was studied. We found that the orientation and the electrostatic complementarity of the modified peptide with respect to the fibrils played a crucial role in determining whether its binding was improved by the aromatic amino acids. The modified LPFFD peptides were able to bind to those fibril residues. which are important in the aggregation of amyloid-β peptides and thus can potentially inhibit the further aggregation of the amyloid-beta peptides by blocking their interactions. We found that the tryptophan modified LPFFD peptides had the best binding affinities. In most cases, the aromatic amino acids in the N-terminus of the modified peptides made more contacts with the fibrils than those in the C-terminus. We also found that increasing the aromatic content did not significantly improve the binding of the LPFFD peptide to the fibrils. Our study can serve as a basis for the design of novel peptide-based drugs for Alzheimer's disease in which aromatic interactions play an important role.
Collapse
Affiliation(s)
- Pavan Krishna Kanchi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
44
|
Tarutani A, Miyata H, Nonaka T, Hasegawa K, Yoshida M, Saito Y, Murayama S, Robinson AC, Mann DMA, Tomita T, Hasegawa M. Human tauopathy-derived tau strains determine the substrates recruited for templated amplification. Brain 2021; 144:2333-2348. [PMID: 33693528 PMCID: PMC8418341 DOI: 10.1093/brain/awab091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/14/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022] Open
Abstract
Tauopathies are a subset of neurodegenerative diseases characterized by abnormal tau inclusions. Specifically, three-repeat tau and four-repeat tau in Alzheimer’s disease, three-repeat tau in Pick’s disease (PiD) and four-repeat tau in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) form amyloid-like fibrous structures that accumulate in neurons and/or glial cells. Amplification and cell-to-cell transmission of abnormal tau based on the prion hypothesis are believed to explain the onset and progression of tauopathies. Recent studies support not only the self-propagation of abnormal tau, but also the presence of conformationally distinct tau aggregates, namely tau strains. Cryogenic electron microscopy analyses of patient-derived tau filaments have revealed disease-specific ordered tau structures. However, it remains unclear whether the ultrastructural and biochemical properties of tau strains are inherited during the amplification of abnormal tau in the brain. In this study, we investigated template-dependent amplification of tau aggregates using a cellular model of seeded aggregation. Tau strains extracted from human tauopathies caused strain-dependent accumulation of insoluble filamentous tau in SH-SY5Y cells. The seeding activity towards full-length four-repeat tau substrate was highest in CBD-tau seeds, followed by PSP-tau and Alzheimer’s disease (AD)-tau seeds, while AD-tau seeds showed higher seeding activity than PiD-tau seeds towards three-repeat tau substrate. Abnormal tau amplified in cells inherited the ultrastructural and biochemical properties of the original seeds. These results strongly suggest that the structural differences of patient-derived tau strains underlie the diversity of tauopathies, and that seeded aggregation and filament formation mimicking the pathogenesis of sporadic tauopathy can be reproduced in cultured cells. Our results indicate that the disease-specific conformation of tau aggregates determines the tau isoform substrate that is recruited for templated amplification, and also influences the prion-like seeding activity.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.,Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruka Miyata
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kazuko Hasegawa
- Division of Neurology, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Mari Yoshida
- Department of Neuropathology, Aichi Medical University, Aichi, 480-1195, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.,Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| |
Collapse
|
45
|
Amini S, Salehi H, Setayeshmehr M, Ghorbani M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
- Student Research Committee Baqiyatallah University of Medical Sciences Tehran Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
46
|
Rahman MU, Rehman AU, Arshad T, Chen HF. Disaggregation mechanism of prion amyloid for tweezer inhibitor. Int J Biol Macromol 2021; 176:510-519. [PMID: 33607137 DOI: 10.1016/j.ijbiomac.2021.02.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
The aggregation of amyloid has been an important event in the pathology of amyloidogenicity. A number of small molecules have been designed for Amyloidosis treatment. Molecular tweezer CLR01, a potential drug for misfolded β-amyloids inhibition, was reportedly bind directly to Lysine residues and interrupt oligomerization. However, the disaggregation mechanism of amyloid for this inhibitor is unclear. Here we used long timescale of molecular dynamic simulation to reveal the mechanism of disaggregation for pentamer prion amyloid. Molecular docking and molecular dynamics simulation demonstrate that CLR01 is attached with Lysine222 nitrogen by π-cation interaction of its nine aromatic rings and formation of salt bridge/hydrogen bond of one of the two rotatable peripheral anionic phosphate groups. Upon CLR01 binding, we found a major shifting occurs in initial conformation of the oligomer and stretch out the N-terminal chain A from the rest of the amyloid which seems to be the first stage of disaggregated the fibrils slowly yet efficiently. Moreover, the CLR01 remodelled the pentamer Prion220-272 into a compact structure which might be the resistant conformation for further oligomerization. Our work will contribute to better understand the interaction and deterioration mechanism of molecular tweezer for prions and similar amyloids, and offer significant insights into therapeutic development for Amyloidosis treatment.
Collapse
Affiliation(s)
- Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Taaha Arshad
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Center for Bioinformation Technology, Shanghai 200235, China.
| |
Collapse
|
47
|
Brás IC, Outeiro TF. Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 2021; 10:cells10020375. [PMID: 33673034 PMCID: PMC7917664 DOI: 10.3390/cells10020375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The accumulation of misfolded alpha-synuclein (aSyn) throughout the brain, as Lewy pathology, is a phenomenon central to Parkinson’s disease (PD) pathogenesis. The stereotypical distribution and evolution of the pathology during disease is often attributed to the cell-to-cell transmission of aSyn between interconnected brain regions. The spreading of conformationally distinct aSyn protein assemblies, commonly referred as strains, is thought to result in a variety of clinically and pathologically heterogenous diseases known as synucleinopathies. Although tremendous progress has been made in the field, the mechanisms involved in the transfer of these assemblies between interconnected neural networks and their role in driving PD progression are still unclear. Here, we present an update of the relevant discoveries supporting or challenging the prion-like spreading hypothesis. We also discuss the importance of aSyn strains in pathology progression and the various putative molecular mechanisms involved in cell-to-cell protein release. Understanding the pathways underlying aSyn propagation will contribute to determining the etiology of PD and related synucleinopathies but also assist in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Inês C. Brás
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-(0)-551-391-3544; Fax: +49-(0)-551-392-2693
| |
Collapse
|
48
|
Luthra R, Roy A. Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol 2021; 23:123-139. [PMID: 33573549 DOI: 10.2174/1389201022666210211123539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Diseases with a significant loss of neurons, structurally and functionally are termed as neurodegenerative diseases. Due to the present therapeutic interventions and progressive nature of diseases, a variety of side effects have risen up, thus leading the patients to go for an alternative medication. The role of medicinal plants in such cases has been beneficial because of their exhibition via different cellular and molecular mechanisms. Alleviation in inflammatory responses, suppression of the functionary aspect of pro-inflammatory cytokines like a tumor, improvement in antioxidative properties is among few neuroprotective mechanisms of traditional plants. Variation in transcription and transduction pathways play a vital role in the preventive measures of plants in such diseases. Neurodegenerative diseases are generally caused by depletion of proteins, oxidative and inflammatory stress, environmental changes and so on, with aging being the most important cause. Natural compounds can be used in order to treat neurodegenerative diseases Medicinal plants such as Ginseng, Withania somnifera, Bacopa monnieri, Ginkgo biloba, etc. are some of the medicinal plants for prevention of neurological symptoms. This review deals with the use of different medicinal plants for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
49
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
50
|
Gonzalez-Martinez A, Quintas S, Redondo N, Casado-Fernández L, Vivancos J. Sporadic Creutzfeldt-Jakob disease with tau pathology mimicking new-onset refractory non-convulsive status epilepticus: Case report and review of the literature. Eur J Neurol 2020; 28:1385-1391. [PMID: 33135248 DOI: 10.1111/ene.14624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE The aim of our study is to review the relationship between NCSE and sCJD. Creutzfeldt-Jakob disease (CJD) is the most common form of human prion disease. Electroencephalography (EEG)-detected changes such as periodic sharp wave complexes, superimposable to those seen in non-convulsive epileptic status (NCSE), have only rarely been described at CJD onset, especially in sporadic CJD (sCJD) cases. METHODS We describe clinical, EEG, cerebrospinal fluid (CSF) and neuroimaging findings of a confirmed case of sCJD with tau pathology, initially diagnosed as NCSE. We performed a literature review in PubMed of previous publications on both sCJD and NCSE. RESULTS An 82-year-old woman with no medical history presented with a 2-week rapidly progressive neurological disorder, with motor aphasia, myoclonus, pyramidalism, and left posterior alien hand. EEG showed periodic sharp waves on right frontal regions, so anti-epileptic treatment was started. CSF results were normal. Brain magnetic resonance imaging demonstrated hyperintensity of the right cerebral cortex in diffusion sequences. Due to suspected new-onset refractory status epilepticus (NORSE), corticosteroid treatment was started, without clinical improvement. Necropsy results confirmed sCJD with tau pathology. The literature review identified 14 references including a total of 18 cases with NCSE as the presenting symptom of sCJD; the clinical and results in complementary tests were compiled into a table. CONCLUSIONS Sporadic CJD should be considered in the differential diagnosis of patients with rapid cognitive decline and EEG changes consistent with NCSE. The wide heterogeneity in the etiology of NCSE, including autoimmune disorders, especially NORSE, suggests immunotherapy should be initiated based on a good risk-benefit balance. Some cases of sCJD, such as the present case with tau pathology, may mimic this clinico-electrical course.
Collapse
Affiliation(s)
| | - Sonia Quintas
- Neurology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Nuria Redondo
- Neurology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | | | - José Vivancos
- Neurology Department, Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|