1
|
Maltseva M, Keeshan A, Cooper C, Langlois MA. Immune imprinting: The persisting influence of the first antigenic encounter with rapidly evolving viruses. Hum Vaccin Immunother 2024; 20:2384192. [PMID: 39149872 PMCID: PMC11328881 DOI: 10.1080/21645515.2024.2384192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024] Open
Abstract
Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Augello M, Wagenhäuser I, Krone M, Dauby N, Ferrara P, Sabbatucci M, Ruta S, Rezahosseini O, Velikov P, Gkrania-Klotsas E, Montes J, Franco-Paredes C, Goodman AL, Küçükkaya S, Tuells J, Harboe ZB, Epaulard O. Should SARS-CoV-2 serological testing be used in the decision to deliver a COVID-19 vaccine booster? A pro-con assessment. Vaccine 2024; 42:126184. [PMID: 39097440 DOI: 10.1016/j.vaccine.2024.126184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Anti-SARS-CoV-2 vaccination has saved millions of lives in the past few years. To maintain a high level of protection, particularly in at-risk populations, booster doses are recommended to counter the waning of circulating antibody levels over time and the continuous emergence of immune escape variants of concern (VOCs). As anti-spike serology is now widely available, it may be considered a useful tool to identify individuals needing an additional vaccine dose, i.e., to screen certain populations to identify those whose plasma antibody levels are too low to provide protection. However, no recommendations are currently available on this topic. We reviewed the relevant supporting and opposing arguments, including areas of uncertainty, and concluded that in most populations, spike serology should not be used to decide about the administration of a booster dose. The main counterarguments are as follows: correlates of protection are imperfectly characterised, essentially owing to the emergence of VOCs; spike serology has an intrinsic inability to comprehensively reflect the whole immune memory; and booster vaccines are now VOC-adapted, while the commonly available commercial serological assays explore antibodies against the original virus.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Isabell Wagenhäuser
- University Hospital Würzburg, Infection Control and Antimicrobial Stewardship Unit, Würzburg, Germany
| | - Manuel Krone
- University Hospital Würzburg, Infection Control and Antimicrobial Stewardship Unit, Würzburg, Germany
| | - Nicolas Dauby
- Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Environmental health and occupational health, School of Public Health, Université Libre de Bruxelles (ULB), Brussel, Belgium
| | - Pietro Ferrara
- Center for Public Health Research, University of Milan - Bicocca, Monza, Italy; IRCCS Istituto Auxologico Italiano, Laboratory of Public Health, Milan, Italy
| | | | - Simona Ruta
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Omid Rezahosseini
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, Hillerød, Denmark
| | - Petar Velikov
- Clinic for Pediatric Infectious Diseases, Infectious Disease Hospital "Prof. Ivan Kirov", Sofia, Bulgaria; Department of Global Public Health, University of Tsukuba, Tsukuba, Japan
| | | | - Jose Montes
- Investigación en Resistencia Antibiótica (INVERA), Buenos Aires, Argentina; Fundación del Centro de Estudios Infectológicos (FUNCEI), Buenos Aires, Argentina
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA; Hospital Infantil de Mexico, Mexico City, Mexico
| | - Anna L Goodman
- Centre for Infection Diagnostics research, Department of Infection at at King's College London and Guys' and St Thomas NHS Foundation trust, London, UK
| | - Sertaç Küçükkaya
- Department of Medical Microbiology, Istanbul Faculty of Medicine, İstanbul University, Istanbul, Turkey
| | - Jose Tuells
- Departamento de Enfermería Comunitaria, Medicina Preventiva y Salud Pública e historia de la ciencia, Universidad de Alicante, Alicante, Spain
| | | | - Olivier Epaulard
- Université Grenoble Alpes, Infectiologie, CHU Grenoble Alpes, Grenoble, France.
| |
Collapse
|
3
|
Moreno A, Manning K, Azeem MI, Nooka AK, Ellis M, Manalo RJ, Switchenko JM, Wali B, Kaufman JL, Hofmeister CC, Joseph NS, Lonial S, Dhodapkar KM, Dhodapkar MV, Suthar MS. Divergence of variant antibodies following SARS-CoV-2 booster vaccines in myeloma and impact of hybrid immunity. NPJ Vaccines 2024; 9:201. [PMID: 39465249 PMCID: PMC11514147 DOI: 10.1038/s41541-024-00999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Hematological malignancies are associated with an increased risk of complications during SARS-CoV-2 infections. Primary series or monovalent booster vaccines reduce disease severity, hospitalization, and death among multiple myeloma patients. We characterized virus-neutralizing and spike-binding antibody profiles following monovalent (WA1) or bivalent (WA1/BA.5) SARS-CoV-2 booster vaccination in MM patients. Bivalent vaccination improved the breadth of binding antibodies but not neutralization activity against contemporary variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.
Collapse
Affiliation(s)
- Alberto Moreno
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly Manning
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Maryam I Azeem
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Ajay K Nooka
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Madison Ellis
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Renee Julia Manalo
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
| | | | - Bushra Wali
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Jonathan L Kaufman
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Craig C Hofmeister
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Nisha S Joseph
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Kavita M Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Madhav V Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia.
- Winship Cancer Institute, Atlanta, Georgia.
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University, Atlanta, Georgia.
- Emory National Primate Research Center, Atlanta, Georgia.
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
4
|
Martinez EJ, Chang WC, Chen WH, Hajduczki A, Thomas PV, Jensen JL, Choe M, Sankhala RS, Peterson CE, Rees PA, Kimner J, Soman S, Kuklis C, Mendez-Rivera L, Dussupt V, King J, Corbett C, Mayer SV, Fernandes A, Murzello K, Cookenham T, Hvizdos J, Kummer L, Hart T, Lanzer K, Gambacurta J, Reagan M, Duso D, Vasan S, Collins ND, Michael NL, Krebs SJ, Gromowski GD, Modjarrad K, Kaundinya J, Joyce MG. SARS-CoV-2 ferritin nanoparticle vaccines produce hyperimmune equine sera with broad sarbecovirus activity. iScience 2024; 27:110624. [PMID: 39351195 PMCID: PMC11440237 DOI: 10.1016/j.isci.2024.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern (VoC) and the threat of future zoonotic sarbecovirus spillover emphasizes the need for broadly protective next-generation vaccines and therapeutics. We utilized SARS-CoV-2 spike ferritin nanoparticle (SpFN), and SARS-CoV-2 receptor binding domain ferritin nanoparticle (RFN) immunogens, in an equine model to elicit hyperimmune sera and evaluated its sarbecovirus neutralization and protection capacity. Immunized animals rapidly elicited sera with the potent neutralization of SARS-CoV-2 VoC, and SARS-CoV-1 pseudoviruses, and potent binding against receptor binding domains from sarbecovirus clades 1b, 1a, 2, 3, and 4. Purified equine polyclonal IgG provided protection against Omicron XBB.1.5 virus in the K18-hACE2 transgenic mouse model. These results suggest that SARS-CoV-2-based nanoparticle vaccines can rapidly produce a broad and protective sarbecovirus response in the equine model and that equine serum has therapeutic potential against emerging SARS-CoV-2 VoC and diverse sarbecoviruses, presenting a possible alternative or supplement to monoclonal antibody immunotherapies.
Collapse
Affiliation(s)
- Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jordan Kimner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Courtney Corbett
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
5
|
Hannawi S, Wu XH, Villalobos RE, Burhan E, Lallaine Borra MD, Gupta RK, Aquitania GP, Ang BWC, Mae A Zabat G, Roa CC, Zoleta-De Jesus L, Yu DD, Wang M, Wu Y, Song WJ, Ying B, Qin CF. Efficacy, immunogenicity, and safety of a monovalent mRNA vaccine, ABO1020, in adults: A randomized, double-blind, placebo-controlled, phase 3 trial. MED 2024; 5:1282-1292.e3. [PMID: 39025066 DOI: 10.1016/j.medj.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND ABO1020 is a monovalent COVID-19 mRNA vaccine. Results from a phase 1 trial showed ABO1020 was safe and well tolerated, and phase 3 trials to evaluate the efficacy, immunogenicity, and safety of ABO1020 in healthy adults are urgently needed. METHODS We conducted a multinational, randomized, placebo-controlled, double-blind, phase 3 trial among healthy adults (ClinicalTrials.gov: NCT05636319). Participants were randomly assigned (1:1) to receive either 2 doses of ABO1020 (15 μg per dose) or placebo, administered 28 days apart. The primary endpoint was the vaccine efficacy in preventing symptomatic COVID-19 cases that occurred at least 14 days post-full vaccination. The second endpoint included the neutralizing antibody titers against Omicron BA.5 and XBB and safety assessments. FINDINGS A total of 14,138 participants were randomly assigned to receive either vaccine or placebo (7,069 participants in each group). A total of 366 symptomatic COVID-19 cases were confirmed 14 days after the second dose among 93 participants in the ABO1020 group and 273 participants in the placebo group, yielding a vaccine efficacy of 66.18% (95% confidence interval: 57.21-73.27, p < 0.0001). A single dose or two doses of ABO1020 elicited potent neutralizing antibodies against both BA.5 and XBB.1.5. The safety profile of ABO1020 was characterized by transient, mild-to-moderate fever, pain at the injection site, and headache. CONCLUSION ABO1020 was well tolerated and conferred 66.18% protection against symptomatic COVID-19 in adults. FUNDING National Key Research and Development Project of China, Innovation Fund for Medical Sciences from the CAMS, National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Suad Hannawi
- Internal Medicine Department, Al Kuwait-Dubai (Al Baraha) Hospital, Dubai, United Arab Emirates
| | - Xiao-Hong Wu
- National Institutes for Food and Drug Control, Beijing, China
| | | | - Erlina Burhan
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Persahabatan Hospital, Jakarta, Indonesia
| | | | - Rakesh Kumar Gupta
- Department of Pulmonology, Lifecare Hospital, Abu Dhabi, United Arab Emirates
| | | | - Blake Warren C Ang
- Internal Medicine Department, Manuel J. Santos Hospital, Butuan, Philippines
| | - Gelza Mae A Zabat
- William T. Chua Center for Clinical Research, Health Cube Medical Clinics, Mandaluyong, Philippines
| | - Camilo C Roa
- Department of Medicine, Medical Center Manila, Manila, Philippines
| | | | - Dan-Dan Yu
- Abogen Biosciences, Suzhou Abogen Biosciences, Suzhou, China
| | - Meng Wang
- Abogen Biosciences, Suzhou Abogen Biosciences, Suzhou, China
| | - Yan Wu
- Abogen Biosciences, Suzhou Abogen Biosciences, Suzhou, China
| | - Wen-Jie Song
- Abogen Biosciences, Suzhou Abogen Biosciences, Suzhou, China
| | - Bo Ying
- Abogen Biosciences, Suzhou Abogen Biosciences, Suzhou, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Fabiani M, Mateo-Urdiales A, Sacco C, Fotakis EA, Battilomo S, Petrone D, Del Manso M, Bella A, Riccardo F, Stefanelli P, Palamara AT, Pezzotti P. Effectiveness against severe COVID-19 of a seasonal booster dose of bivalent (original/Omicron BA.4-5) mRNA vaccines in persons aged ≥60 years: Estimates over calendar time and by time since administration during prevalent circulation of different Omicron subvariants, Italy, 2022-2023. Vaccine 2024; 42:126026. [PMID: 38834428 DOI: 10.1016/j.vaccine.2024.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Evaluating how a COVID-19 seasonal vaccination program performed might help to plan future campaigns. This study aims to estimate the relative effectiveness (rVE) against severe COVID-19 of a seasonal booster dose over calendar time and by time since administration. We conducted a retrospective cohort analysis among 13,083,855 persons aged ≥60 years who were eligible to receive a seasonal booster at the start of the 2022-2023 vaccination campaign in Italy. We estimated rVE against severe COVID-19 (hospitalization or death) of a seasonal booster dose of bivalent (original/Omicron BA.4-5) mRNA vaccines by two-month calendar interval and at different times post-administration. We used multivariable Cox regression models, including vaccination as time-dependent exposure, to estimate adjusted hazard ratios (HR) and rVEs as [(1-HR)X100]. The rVE of a seasonal booster decreased from 64.9% (95% CI: 59.8-69.4) in October-November 2022 to 22.0% (95% CI: 15.4-28.0) in April-May 2023, when the majority of vaccinated persons (67%) had received the booster at least 4-6 months earlier. During the epidemic phase with prevalent circulation of the Omicron BA.5 subvariant, rVE of a seasonal booster received ≤90 days earlier was 83.0% (95% CI: 79.1-86.1), compared to 37.4% (95% CI: 25.5-47.5) during prevalent circulation of the Omicron XBB subvariant. During the XBB epidemic phase, rVE was estimated at 15.8% (95% CI: 9.1-20.1) 181-369 days post-administration of the booster dose. In all the analyses we observed similar trends of rVE between persons aged 60-79 and those ≥80 years, although estimates were somewhat lower for the oldest group. A seasonal booster dose received during the vaccination campaign provided additional protection against severe COVID-19 up to April-May 2023, after which the incidence of severe COVID-19 was much reduced. The results also suggest that the Omicron XBB subvariant might have partly escaped the immunity provided by the seasonal booster targeting the original and Omicron BA.4-5 strains of SARS-CoV-2.
Collapse
Affiliation(s)
- Massimo Fabiani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Alberto Mateo-Urdiales
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Sacco
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy; European Programme on Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Emmanouil Alexandros Fotakis
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy; European Programme on Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Serena Battilomo
- General Directorate of Health Information System and Statistics, Italian Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Daniele Petrone
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy
| | - Martina Del Manso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonino Bella
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy
| | - Flavia Riccardo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy
| | - Patrizio Pezzotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
7
|
Jeong H, Rollon R, Kim S, Gil J, Casel M, Jang H, Choi J, Jang S, Lazarte J, Kim H, Kim J, Choi Y. Enhancing Omicron Sublineage Neutralization: Insights From Bivalent and Monovalent COVID-19 Booster Vaccines and Recent SARS-CoV-2 Omicron Variant Infections. Influenza Other Respir Viruses 2024; 18:e70000. [PMID: 39377176 PMCID: PMC11459205 DOI: 10.1111/irv.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Omicron variants have rapidly diversified into sublineages with mutations that enhance immune evasion, posing challenges for vaccination and antibody responses. This study aimed to compare serum cross-neutralizing antibody responses against various SARS-CoV-2 Omicron sublineages (BA.1, BA.5, XBB.1.17.1, FK.1.1, and JN.1) in recipients of monovalent COVID-19 boosters, bivalent booster recipients, and individuals who had recovered from Omicron BA.5 infections. METHODS We conducted a micro-neutralization assay on serum samples from monovalent BNT162b2 booster recipients (N = 54), bivalent BNT162b2 booster recipients (N = 24), and SARS-CoV-2 Omicron BA.5-recovered individuals (N = 13). The history of SARS-CoV-2 Omicron infection was assessed using ELISA against the SARS-CoV-2 NP protein. RESULTS Bivalent booster recipients exhibited significantly enhanced neutralization efficacy against Omicron sublineages compared to those who had received monovalent booster vaccinations. Omicron BA.5-recovered individuals displayed similar neutralizing antibodies (NAbs) to the bivalent booster recipients. Despite the improved neutralization in bivalent recipients and BA.5-recovered individuals, there were limitations in neutralization against the recently emerged Omicron subvariants: XBB.1.17.1 FK.1.1, and JN.1. In both monovalent and bivalent booster recipients, a history of Omicron breakthrough infection was associated with relatively higher geometric mean titers of NAbs against Omicron BA.1, BA.5, and XBB.1.17.1 variants. CONCLUSION This study underscores the intricate interplay between vaccination strategies, immune imprinting, and the dynamic landscape of SARS-CoV-2 variants. Although bivalent boosters enhance neutralization, addressing the challenge of emerging sublineages like XBB.1.17.1, FK.1.1, and JN.1 may necessitate the development of tailored vaccines, underscoring the need for ongoing adaptation to effectively combat this highly mutable virus.
Collapse
Affiliation(s)
- Hye Won Jeong
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Department of Internal MedicineChungbuk National University HospitalCheongjuRepublic of Korea
| | - Rare Rollon
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Se‐Mi Kim
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Juryeon Gil
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Mark Anthony Casel
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Hyunwoo Jang
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Seung‐Gyu Jang
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Josea Carmel Lazarte
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Hee‐Sung Kim
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Department of Internal MedicineChungbuk National University HospitalCheongjuRepublic of Korea
| | - Jun Hyoung Kim
- Department of Internal MedicineChungbuk National University HospitalCheongjuRepublic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| |
Collapse
|
8
|
Fryer HA, Geers D, Gommers L, Zaeck LM, Tan NH, Jones-Freeman B, Goorhuis A, Postma DF, Visser LG, Hogarth PM, Koopmans MPG, GeurtsvanKessel CH, O'Hehir RE, van der Kuy PHM, de Vries RD, van Zelm MC. Fourth dose bivalent COVID-19 vaccines outperform monovalent boosters in eliciting cross-reactive memory B cells to Omicron subvariants. J Infect 2024; 89:106246. [PMID: 39127451 DOI: 10.1016/j.jinf.2024.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. Here, we characterized the RBD-specific memory B cell (Bmem) response following a fourth dose with a BA.1 or BA.5 bivalent vaccine, in direct comparison with a WH1 monovalent fourth dose. Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines were sampled before and one month after a fourth dose with a monovalent or a BA.1 or BA.5 bivalent vaccine. Serum neutralizing antibodies (NAb) were quantified, as well as RBD-specific Bmem with an in-depth spectral flow cytometry panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5 variants. Both bivalent vaccines elicited higher NAb titers against Omicron subvariants compared to the monovalent vaccine. Following either vaccine type, recipients had slightly increased WH1 RBD-specific Bmem numbers. Both bivalent vaccines significantly increased WH1 RBD-specific Bmem binding of all Omicron subvariants tested by flow cytometry, while recognition of Omicron subvariants was not enhanced following monovalent vaccination. IgG1+ Bmem dominated the response, with substantial IgG4+ Bmem only detected in recipients of an mRNA vaccine for their primary dose. Thus, Omicron-based bivalent vaccines can significantly boost NAb and Bmem specific for ancestral WH1 and Omicron variants and improve recognition of descendent subvariants by pre-existing, WH1-specific Bmem beyond that of a monovalent vaccine. This provides new insights into the capacity of variant-based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2 variants and potentially protect against severe disease. ONE-SENTENCE SUMMARY: Omicron BA.1 and BA.5 bivalent COVID-19 boosters, used as a fourth dose, increase RBD-specific Bmem cross-recognition of Omicron subvariants, both those encoded by the vaccines and antigenically distinct subvariants, further than a monovalent booster.
Collapse
Affiliation(s)
- Holly A Fryer
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Daryl Geers
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lennert Gommers
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Luca M Zaeck
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ngoc H Tan
- Dept. Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Bernadette Jones-Freeman
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Douwe F Postma
- Department of Internal Medicine and Infectious Diseases, University Medical Center Groningen, Groningen, the Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - P Mark Hogarth
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Marion P G Koopmans
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Robyn E O'Hehir
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - P Hugo M van der Kuy
- Dept. Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Rory D de Vries
- Dept. Viroscience, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Menno C van Zelm
- Dept. Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia; Dept. Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Gagne M, Flynn BJ, Andrew SF, Marquez J, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Pessaint L, Todd JPM, Doria-Rose NA, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, O'Dell S, Wali B, Ellis M, Godbole S, Laboune F, Henry AR, Teng IT, Wang D, Wang L, Zhou Q, Zouantchangadou S, Van Ry A, Lewis MG, Andersen H, Kwong PD, Curiel DT, Roederer M, Nason MC, Foulds KE, Suthar MS, Diamond MS, Douek DC, Seder RA. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat Immunol 2024; 25:1913-1927. [PMID: 39227514 PMCID: PMC11436372 DOI: 10.1038/s41590-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonid A Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zohar E Ziff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erin Maule
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yogita Jethmalani
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bushra Wali
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehul S Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines & Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Kanokudom S, Chansaenroj J, Suntronwong N, Wongsrisang L, Aeemjinda R, Vichaiwattana P, Thatsanathorn T, Chantima W, Pakchotanon P, Duangchinda T, Sudhinaraset N, Honsawek S, Poovorawan Y. Safety and antibody responses of Omicron BA.4/5 bivalent booster vaccine among hybrid immunity with diverse vaccination histories: A cohort study. Vaccine X 2024; 20:100538. [PMID: 39211731 PMCID: PMC11359987 DOI: 10.1016/j.jvacx.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
This cohort study, conducted between July and August 2023, evaluated the adverse events (AEs) and immune response to a bivalent mRNA-1273.222 (containing sequences of the original Wuhan-H1 strain and the Omicron BA.4/5 variant) booster vaccine in 122 participants. The study included individuals with diverse vaccination histories, and their responses were assessed based on anti-receptor binding domain (RBD) IgG levels and neutralizing antibodies against the wild-type, Omicron BA.5, and XBB.1.16 variants. Following administration of the BA.4/5 bivalent vaccine, AEs were generally mild to moderate and well-tolerated within a few days. There were no reports of vomiting and no serious AEs or death. The findings demonstrated robust immune responses, with significant increases in anti-RBD IgG levels, particularly in groups that had received 3 -6 doses before the booster dose. The BA.4/5 bivalent booster effectively induced neutralizing antibodies against the vaccine strains, providing robust neutralization, including the XBB.1.16 strain. The study also highlighted that individuals with hybrid immunity, especially those assumed infected with the BA.5 strain or who had been infected twice, showed higher levels of robust neutralizing activity against Omicron XBB.1.16. Overall, these results indicate that the BA.4/5 bivalent booster vaccines can induce potent and good antibody responses in emerging Omicron subvariants, supporting its efficacy as a booster in individuals with diverse vaccination histories.
Collapse
Affiliation(s)
- Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lakkhana Wongsrisang
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ratchadawan Aeemjinda
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittisak Honsawek
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Fellow of the Royal Society of Thailand (FRS [T]), The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
11
|
Cromer D, Reynaldi A, Mitchell A, Schlub TE, Juno JA, Wheatley AK, Kent SJ, Khoury DS, Davenport MP. Predicting COVID-19 booster immunogenicity against future SARS-CoV-2 variants and the benefits of vaccine updates. Nat Commun 2024; 15:8395. [PMID: 39333473 PMCID: PMC11436652 DOI: 10.1038/s41467-024-52194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
The ongoing evolution of the SARS-CoV-2 virus has led to a move to update vaccine antigens in 2022 and 2023. These updated antigens were chosen and approved based largely on in vitro neutralisation titres against recent SARS-CoV-2 variants. However, unavoidable delays in vaccine manufacture and distribution meant that the updated booster vaccine was no longer well-matched to the circulating SARS-CoV-2 variant by the time of its deployment. Understanding whether the updating of booster vaccine antigens improves immune responses to subsequent SARS-CoV-2 circulating variants is a major priority in justifying future vaccine updates. Here we analyse all available data on the immunogenicity of variants containing SARS-CoV-2 vaccines and their ability to neutralise later circulating SARS-CoV-2 variants. We find that updated booster antigens give a 1.4-fold [95% CI: 1.07-1.82] greater increase in neutralising antibody levels when compared with a historical vaccine immunogen. We then use this to predict the relative protection that can be expected from an updated vaccine even when the circulating variant has evolved away from the updated vaccine immunogen. These findings help inform the rollout of future booster vaccination programmes.
Collapse
Affiliation(s)
- Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Ainslie Mitchell
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Wang Y, Ma Q, Li M, Mai Q, Ma L, Zhang H, Zhong H, Mai K, Cheng N, Feng P, Guan P, Wu S, Zhang L, Dai J, Zhang B, Pan W, Yang Z. A decavalent composite mRNA vaccine against both influenza and COVID-19. mBio 2024; 15:e0066824. [PMID: 39105586 PMCID: PMC11389412 DOI: 10.1128/mbio.00668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has had a persistent and significant impact on global public health for 4 years. Recently, there has been a resurgence of seasonal influenza transmission worldwide. The co-circulation of SARS-CoV-2 and seasonal influenza viruses results in a dual burden on communities. Additionally, the pandemic potential of zoonotic influenza viruses, such as avian Influenza A/H5N1 and A/H7N9, remains a concern. Therefore, a combined vaccine against all these respiratory diseases is in urgent need. mRNA vaccines, with their superior efficacy, speed in development, flexibility, and cost-effectiveness, offer a promising solution for such infectious diseases and potential future pandemics. In this study, we present FLUCOV-10, a novel 10-valent mRNA vaccine created from our proven platform. This vaccine encodes hemagglutinin (HA) proteins from four seasonal influenza viruses and two avian influenza viruses with pandemic potential, as well as spike proteins from four SARS-CoV-2 variants. A two-dose immunization with the FLUCOV-10 elicited robust immune responses in mice, producing IgG antibodies, neutralizing antibodies, and antigen-specific cellular immune responses against all the vaccine-matched viruses of influenza and SARS-CoV-2. Remarkably, the FLUCOV-10 immunization provided complete protection in mouse models against both homologous and heterologous strains of influenza and SARS-CoV-2. These results highlight the potential of FLUCOV-10 as an effective vaccine candidate for the prevention of influenza and COVID-19.IMPORTANCEAmidst the ongoing and emerging respiratory viral threats, particularly the concurrent and sequential spread of SARS-CoV-2 and influenza, our research introduces FLUCOV-10. This novel mRNA-based combination vaccine, designed to counteract both influenza and COVID-19, by incorporating genes for surface glycoproteins from various influenza viruses and SARS-CoV-2 variants. This combination vaccine was highly effective in preclinical trials, generating strong immune responses and ensuring protection against both matching and heterologous strains of influenza viruses and SARS-CoV-2. FLUCOV-10 represents a significant step forward in our ability to address respiratory viral threats, showcasing potential as a singular, adaptable vaccine solution for global health challenges.
Collapse
MESH Headings
- Animals
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- mRNA Vaccines
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
- Mice, Inbred BALB C
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A virus/immunology
- Influenza A virus/genetics
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Man Li
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
| | - Qianyi Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Ma
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - Hong Zhang
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
| | | | - Kailin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nan Cheng
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - Pei Feng
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Peikun Guan
- Guangzhou National Laboratory, Guangzhou, China
| | - Shengzhen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Zhang
- Technology Centre, Guangzhou Customs, Guangzhou, China
| | - Jun Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Technology Centre, Guangzhou Customs, Guangzhou, China
| | - Biliang Zhang
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
- State Key Laboratory of Respiratory Disease, Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| |
Collapse
|
13
|
Canetti M, Barda N, Lustig Y, Weiss-Ottolenghi Y, Indenbaum V, Peretz Y, Zuckerman N, Asraf K, Amit S, Kreiss Y, Regev-Yochay G. Risk factors and correlates of protection against XBB SARS-CoV-2 infection among health care workers. Vaccine 2024; 42:126308. [PMID: 39255646 DOI: 10.1016/j.vaccine.2024.126308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
Correlates of protection for recent emerging SARS-CoV-2 variants have not been determined. In this test-negative case-control study, we report lower odds of infection with XBB variants among those boosted during the last six months. Additionally, we demonstrate that XBB-specific neutralizing antibodies are independent correlates of protection.
Collapse
Affiliation(s)
- Michal Canetti
- The Sheba Pandemic Preparedness Research Institute, Sheba Medical Center, Ramat Gan, Israel.; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Barda
- The Sheba Pandemic Preparedness Research Institute, Sheba Medical Center, Ramat Gan, Israel.; ARC Innovation Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Software and Information Systems Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Epidemiology, Biostatistics, and Community Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yaniv Lustig
- The Sheba Pandemic Preparedness Research Institute, Sheba Medical Center, Ramat Gan, Israel.; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; Central Virology Laboratory, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat Gan, Israel
| | - Yael Weiss-Ottolenghi
- The Sheba Pandemic Preparedness Research Institute, Sheba Medical Center, Ramat Gan, Israel.; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; The Infection Prevention & Control Unit, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Victoria Indenbaum
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; Central Virology Laboratory, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat Gan, Israel
| | - Yovel Peretz
- The Sheba Pandemic Preparedness Research Institute, Sheba Medical Center, Ramat Gan, Israel.; The Infection Prevention & Control Unit, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Neta Zuckerman
- Central Virology Laboratory, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat Gan, Israel
| | - Keren Asraf
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; The Dworman Automated-Mega Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Sharon Amit
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; Clinical Microbiology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yitshak Kreiss
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; General Management, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Gili Regev-Yochay
- The Sheba Pandemic Preparedness Research Institute, Sheba Medical Center, Ramat Gan, Israel.; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; The Infection Prevention & Control Unit, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
| |
Collapse
|
14
|
Benlarbi M, Ding S, Bélanger É, Tauzin A, Poujol R, Medjahed H, El Ferri O, Bo Y, Bourassa C, Hussin J, Fafard J, Pazgier M, Levade I, Abrams C, Côté M, Finzi A. Temperature-dependent Spike-ACE2 interaction of Omicron subvariants is associated with viral transmission. mBio 2024; 15:e0090724. [PMID: 38953636 PMCID: PMC11323525 DOI: 10.1128/mbio.00907-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The continued evolution of severe acute respiratory syndrome 2 (SARS-CoV-2) requires persistent monitoring of its subvariants. Omicron subvariants are responsible for the vast majority of SARS-CoV-2 infections worldwide, with XBB and BA.2.86 sublineages representing more than 90% of circulating strains as of January 2024. To better understand parameters involved in viral transmission, we characterized the functional properties of Spike glycoproteins from BA.2.75, CH.1.1, DV.7.1, BA.4/5, BQ.1.1, XBB, XBB.1, XBB.1.16, XBB.1.5, FD.1.1, EG.5.1, HK.3, BA.2.86 and JN.1. We tested their capacity to evade plasma-mediated recognition and neutralization, binding to angiotensin-converting enzyme 2 (ACE2), their susceptibility to cold inactivation, Spike processing, as well as the impact of temperature on Spike-ACE2 interaction. We found that compared to the early wild-type (D614G) strain, most Omicron subvariants' Spike glycoproteins evolved to escape recognition and neutralization by plasma from individuals who received a fifth dose of bivalent (BA.1 or BA.4/5) mRNA vaccine and improve ACE2 binding, particularly at low temperatures. Moreover, BA.2.86 had the best affinity for ACE2 at all temperatures tested. We found that Omicron subvariants' Spike processing is associated with their susceptibility to cold inactivation. Intriguingly, we found that Spike-ACE2 binding at low temperature was significantly associated with growth rates of Omicron subvariants in humans. Overall, we report that Spikes from newly emerged Omicron subvariants are relatively more stable and resistant to plasma-mediated neutralization, present improved affinity for ACE2 which is associated, particularly at low temperatures, with their growth rates.IMPORTANCEThe persistent evolution of SARS-CoV-2 gave rise to a wide range of variants harboring new mutations in their Spike glycoproteins. Several factors have been associated with viral transmission and fitness such as plasma-neutralization escape and ACE2 interaction. To better understand whether additional factors could be of importance in SARS-CoV-2 variants' transmission, we characterize the functional properties of Spike glycoproteins from several Omicron subvariants. We found that the Spike glycoprotein of Omicron subvariants presents an improved escape from plasma-mediated recognition and neutralization, Spike processing, and ACE2 binding which was further improved at low temperature. Intriguingly, Spike-ACE2 interaction at low temperature is strongly associated with viral growth rate, as such, low temperatures could represent another parameter affecting viral transmission.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Julie Hussin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Mila—Quebec AI institute, Montreal, Quebec, Canada
| | - Judith Fafard
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Cameron Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
15
|
Gagne M, Flynn BJ, Honeycutt CC, Flebbe DR, Andrew SF, Provost SJ, McCormick L, Van Ry A, McCarthy E, Todd JPM, Bao S, Teng IT, Marciano S, Rudich Y, Li C, Jain S, Wali B, Pessaint L, Dodson A, Cook A, Lewis MG, Andersen H, Zahradník J, Suthar MS, Nason MC, Foulds KE, Kwong PD, Roederer M, Schreiber G, Seder RA, Douek DC. Variant-proof high affinity ACE2 antagonist limits SARS-CoV-2 replication in upper and lower airways. Nat Commun 2024; 15:6894. [PMID: 39134521 PMCID: PMC11319446 DOI: 10.1038/s41467-024-51046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
SARS-CoV-2 has the capacity to evolve mutations that escape vaccine- and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool that would maintain its efficacy despite the ongoing emergence of new variants. Here, we challenge male rhesus macaques with SARS-CoV-2 Delta-the most pathogenic variant in a highly susceptible animal model. At the time of challenge, we also treat the macaques with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment equivalently suppresses virus replication in both upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 does not block the development of virus-specific T- and B-cell responses and does not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samantha J Provost
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Fred Hutch Cancer Center, Seattle, WA, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Saran Bao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shir Marciano
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shilpi Jain
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Bushra Wali
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | | | | | | | | | | | - Jiří Zahradník
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Moore KM, Foster SL, Kar M, Floyd KA, Elrod EJ, Williams ME, Velden JV, Ellis M, Malik A, Wali B, Lapp S, Metz A, Bosinger SE, Menachery VD, Seder RA, Amara RR, Kohlmeier JE, Grakoui A, Suthar MS. Eosinophils protect against SARS-CoV-2 following a vaccine breakthrough infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607190. [PMID: 39211190 PMCID: PMC11361157 DOI: 10.1101/2024.08.08.607190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Waning immunity and the emergence of immune evasive SARS-CoV-2 variants jeopardize vaccine efficacy leading to breakthrough infections. We have previously shown that innate immune cells play a critical role in controlling SARS-CoV-2. To investigate the innate immune response during breakthrough infections, we modeled breakthrough infections by challenging low-dose vaccinated mice with a vaccine-mismatched SARS-CoV-2 Beta variant. We found that low-dose vaccinated infected mice had a 2-log reduction in lung viral burden, but increased immune cell infiltration in the lung parenchyma, characterized by monocytes, monocyte-derived macrophages, and eosinophils. Single cell RNA-seq revealed viral RNA was highly associated with eosinophils that corresponded to a unique IFN-γ biased signature. Antibody-mediated depletion of eosinophils in vaccinated mice resulted in increased virus replication and dissemination in the lungs, demonstrating that eosinophils in the lungs are protective during SARS-CoV-2 breakthrough infections. These results highlight the critical role for the innate immune response in vaccine mediated protection against SARS-CoV-2.
Collapse
|
17
|
Richardson SI, Mzindle N, Motlou T, Manamela NP, van der Mescht MA, Lambson BE, Everatt J, Amoako DG, Balla S, von Gottberg A, Wolter N, de Beer Z, de Villiers TR, Bodenstein A, van den Berg G, Abdullah F, Rossouw TM, Boswell MT, Ueckermann V, Bhiman JN, Moore PL. SARS-CoV-2 BA.4/5 infection triggers more cross-reactive FcγRIIIa signaling and neutralization than BA.1, in the context of hybrid immunity. J Virol 2024; 98:e0067824. [PMID: 38953380 PMCID: PMC11265454 DOI: 10.1128/jvi.00678-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.
Collapse
Affiliation(s)
- Simone I. Richardson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nonkululeko Mzindle
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thopisang Motlou
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bronwen E. Lambson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Josie Everatt
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Gyamfi Amoako
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Sashkia Balla
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Anne von Gottberg
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Jinal N. Bhiman
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Penny L. Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
18
|
Griffin DWJ, Dymock M, Wong G, Morrissey CO, Lewin SR, Cheng AC, Howard K, Marsh JA, Subbarao K, Hagenauer M, Roney J, Cunningham A, Snelling T, McMahon JH. Bringing optimised COVID-19 vaccine schedules to immunocompromised populations (BOOST-IC): study protocol for an adaptive randomised controlled clinical trial. Trials 2024; 25:485. [PMID: 39020446 PMCID: PMC11253462 DOI: 10.1186/s13063-024-08315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Immunocompromised hosts (ICH) experience more breakthrough infections and worse clinical outcomes following infection with COVID-19 than immunocompetent people. Prophylactic monoclonal antibody therapies can be challenging to access, and escape variants emerge rapidly. Immunity conferred through vaccination remains a central prevention strategy for COVID-19. COVID-19 vaccines do not elicit optimal immunity in ICH but boosting, through additional doses of vaccine improves humoral and cellular immune responses. This trial aims to assess the immunogenicity and safety of different COVID-19 vaccine booster strategies against SARS-CoV-2 for ICH in Australia. METHODS Bringing optimised COVID-19 vaccine schedules to immunocompromised populations (BOOST-IC) is an adaptive randomised trial of one or two additional doses of COVID-19 vaccines 3 months apart in people living with HIV, solid organ transplant (SOT) recipients, or those who have haematological malignancies (chronic lymphocytic leukaemia, non-Hodgkin lymphoma or multiple myeloma). Key eligibility criteria include having received 3 to 7 doses of Australian Therapeutic Goods Administration (TGA)-approved COVID-19 vaccines at least 3 months earlier, and having not received SARS-CoV-2-specific monoclonal antibodies in the 3 months prior to receiving the study vaccine. The primary outcome is the geometric mean concentration of anti-spike SARS-CoV-2 immunoglobulin G (IgG) 28 days after the final dose of the study vaccine. Key secondary outcomes include anti-spike SARS-CoV-2 IgG titres and the proportion of people seroconverting 6 and 12 months after study vaccines, local and systemic reactions in the 7 days after vaccination, adverse events of special interest, COVID-19 infection, mortality and quality of life. DISCUSSION This study will enhance the understanding of COVID-19 vaccine responses in ICH, and enable the development of safe, and optimised vaccine schedules in people with HIV, SOT, or haematological malignancy. TRIAL REGISTRATION ClinicalTrials.gov NCT05556720. Registered on 23rd August 2022.
Collapse
Affiliation(s)
- David W J Griffin
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia.
| | - Michael Dymock
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Germaine Wong
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Allen C Cheng
- Department of Infectious Diseases, Monash Medical Centre, Melbourne, Australia
- Monash University School of Clinical Sciences at Monash Health, Clayton, Australia
| | - Kirsten Howard
- Sydney School of Public Health, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
- Menzies Centre for Health Policy and Economics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Julie A Marsh
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Centre for Child Health Research, School of Medicine, The University of Western Australia, Perth, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research On Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michelle Hagenauer
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Janine Roney
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Anthony Cunningham
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Tom Snelling
- Sydney School of Public Health, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Department of Infectious Diseases, Monash Medical Centre, Melbourne, Australia
| |
Collapse
|
19
|
Zhang Y, Chamblee M, Xu J, Qu P, Shamseldin MM, Yoo SJ, Misny J, Thongpan I, Kc M, Hall JM, Gupta YA, Evans JP, Lu M, Ye C, Hsu CC, Liang X, Martinez-Sobrido L, Yount JS, Boyaka PN, Liu SL, Dubey P, Peeples ME, Li J. Three SARS-CoV-2 spike protein variants delivered intranasally by measles and mumps vaccines are broadly protective. Nat Commun 2024; 15:5589. [PMID: 38961063 PMCID: PMC11222507 DOI: 10.1038/s41467-024-49443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Panke Qu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Egypt
| | - Sung J Yoo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jack Misny
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mahesh Kc
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse M Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yash A Gupta
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John P Evans
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | | | - Jacob S Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Shan-Lu Liu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Muñoz-Gómez MJ, Ryan P, Quero-Delgado M, Martin-Vicente M, Cuevas G, Valencia J, Jiménez E, Blanca-López N, Lara-Álvarez MÁ, Hernández-Rivas JÁ, Redondo G, Mas V, Sepúlveda-Crespo D, Vázquez M, Torres-Macho J, Martínez I, Resino S. Immune response against the SARS-CoV-2 spike protein in cancer patients after COVID-19 vaccination during the Omicron wave: a prospective study. J Infect Public Health 2024; 17:102473. [PMID: 38865774 DOI: 10.1016/j.jiph.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cancer patients often have weakened immune systems, resulting in a lower response to vaccines, especially those receiving immunosuppressive oncological treatment (OT). We aimed to assess the impact of OT on the humoral and T-cell response to the B.1 lineage and Omicron variant following COVID-19 vaccination in patients with solid and hematological neoplasms. METHODS We conducted a prospective study on cancer patients, stratified into OT and non-OT groups, who received a two-dose series of the COVID-19 mRNA vaccine and a booster six months later. The outcomes measured were the humoral (anti-SARS-CoV-2 S IgG titers and ACE2-S interaction inhibition capacity) and cellular (SARS-CoV-2 S-specific T-cell spots per million PBMCs) responses against the B.1 lineage and Omicron variant. These responses were evaluated four weeks after the second dose (n = 98) and eight weeks after the booster dose (n = 71). RESULTS The humoral response after the second vaccine dose against the B.1 lineage and Omicron variant was significantly weaker in the OT group compared to the non-OT group (q-value<0.05). A booster dose of the mRNA-1273 vaccine significantly improved the humoral response in the OT group, making it comparable to the non-OT group. The mRNA-1273 vaccine, designed for the original Wuhan strain, elicited a weaker humoral response against the Omicron variant compared to the B.1 lineage, regardless of oncological treatment or vaccine dose. In contrast, T-cell responses against SARS-CoV-2, including the Omicron variant, were already present after the second vaccine dose and were not significantly affected by oncological treatments. CONCLUSIONS Cancer patients, particularly those receiving immunosuppressive oncological treatments, should require booster doses and adapted COVID-19 vaccines for new SARS-CoV-2 variants like Omicron. Future studies should evaluate the durability of the immune response and the efficacy of individualized regimens.
Collapse
Affiliation(s)
- María José Muñoz-Gómez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Hospital Universitario Infanta Leonor, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Marta Quero-Delgado
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - María Martin-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | - Jorge Valencia
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Hospital Universitario Infanta Leonor, Madrid, Spain.
| | - Eva Jiménez
- Hospital Universitario Infanta Leonor, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | | | - Miguel Ángel Lara-Álvarez
- Hospital Universitario Infanta Leonor, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - José Ángel Hernández-Rivas
- Hospital Universitario Infanta Leonor, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | | | - Vicente Mas
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain.
| | - Daniel Sepúlveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mónica Vázquez
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan Torres-Macho
- Hospital Universitario Infanta Leonor, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Lee B, Bae GE, Jeong IH, Kim JH, Kwon MJ, Kim J, Kim B, Lee JW, Nam JH, Huh HJ, Kang ES. Age-Related Differences in Neutralizing Antibody Responses against SARS-CoV-2 Delta and Omicron Variants in 151 SARS-CoV-2-Naïve Metropolitan Residents Boosted with BNT162b2. J Appl Lab Med 2024; 9:741-751. [PMID: 38531067 DOI: 10.1093/jalm/jfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Although age negatively correlates with vaccine-induced immune responses, whether the vaccine-induced neutralizing effect against variants of concern (VOCs) substantially differs across age remains relatively poorly explored. In addition, the utility of commercial binding assays developed with the wild-type SARS-CoV-2 for predicting the neutralizing effect against VOCs should be revalidated. METHODS We analyzed 151 triple-vaccinated SARS-CoV-2-naïve individuals boosted with BNT162b2 (Pfizer-BioNTech). The study population was divided into young adults (age < 30), middle-aged adults (30 ≤ age < 60), and older adults (age ≥ 60). The plaque reduction neutralization test (PRNT) titers against Delta (B.1.617.2) and Omicron (B.1.1.529) variants were compared across age. Antibody titers measured with commercial binding assays were compared with PRNT titers. RESULTS Age-related decline in neutralizing titers was observed for both Delta and Omicron variants. Neutralizing titers for Omicron were lower than those against Delta in all ages. The multiple linear regression model demonstrated that duration from third dose to sample collection and vaccine types were also significant factors affecting vaccine-induced immunity along with age. The correlation between commercial binding assays and PRNT was acceptable for all age groups with the Delta variant, but relatively poor for middle-aged and older adults with the Omicron variant due to low titers. CONCLUSIONS This study provides insights into the age-related dynamics of vaccine-induced immunity against SARS-CoV-2 VOCs, corroborating the need for age-specific vaccination strategies in the endemic era where new variants continue to evolve. Moreover, commercial binding assays should be used cautiously when estimating neutralizing titers against VOCs, particularly Omicron.
Collapse
Affiliation(s)
- Beomki Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Go Eun Bae
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Hwa Jeong
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Dong-A University Hospital, Busan, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jayoung Kim
- Department of Laboratory Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - June-Woo Lee
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jeong-Hyun Nam
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Xu S, Sy LS, Hong V, Holmquist KJ, Qian L, Farrington P, Bruxvoort KJ, Klein NP, Fireman B, Han B, Lewin BJ. Ischemic Stroke After Bivalent COVID-19 Vaccination: Self-Controlled Case Series Study. JMIR Public Health Surveill 2024; 10:e53807. [PMID: 38916940 PMCID: PMC11234065 DOI: 10.2196/53807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The potential association between bivalent COVID-19 vaccination and ischemic stroke remains uncertain, despite several studies conducted thus far. OBJECTIVE This study aimed to evaluate the risk of ischemic stroke following bivalent COVID-19 vaccination during the 2022-2023 season. METHODS A self-controlled case series study was conducted among members aged 12 years and older who experienced ischemic stroke between September 1, 2022, and March 31, 2023, in a large health care system. Ischemic strokes were identified using International Classification of Diseases, Tenth Revision codes in emergency departments and inpatient settings. Exposures were Pfizer-BioNTech or Moderna bivalent COVID-19 vaccination. Risk intervals were prespecified as 1-21 days and 1-42 days after bivalent vaccination; all non-risk-interval person-time served as the control interval. The incidence of ischemic stroke was compared in the risk interval and control interval using conditional Poisson regression. We conducted overall and subgroup analyses by age, history of SARS-CoV-2 infection, and coadministration of influenza vaccine. When an elevated risk was detected, we performed a chart review of ischemic strokes and analyzed the risk of chart-confirmed ischemic stroke. RESULTS With 4933 ischemic stroke events, we found no increased risk within the 21-day risk interval for the 2 vaccines and by subgroups. However, risk of ischemic stroke was elevated within the 42-day risk interval among individuals aged younger than 65 years with coadministration of Pfizer-BioNTech bivalent and influenza vaccines on the same day; the relative incidence (RI) was 2.13 (95% CI 1.01-4.46). Among those who also had a history of SARS-CoV-2 infection, the RI was 3.94 (95% CI 1.10-14.16). After chart review, the RIs were 2.34 (95% CI 0.97-5.65) and 4.27 (95% CI 0.97-18.85), respectively. Among individuals aged younger than 65 years who received Moderna bivalent vaccine and had a history of SARS-CoV-2 infection, the RI was 2.62 (95% CI 1.13-6.03) before chart review and 2.24 (95% CI 0.78-6.47) after chart review. Stratified analyses by sex did not show a significantly increased risk of ischemic stroke after bivalent vaccination. CONCLUSIONS While the point estimate for the risk of chart-confirmed ischemic stroke was elevated in a risk interval of 1-42 days among individuals younger than 65 years with coadministration of Pfizer-BioNTech bivalent and influenza vaccines on the same day and among individuals younger than 65 years who received Moderna bivalent vaccine and had a history of SARS-CoV-2 infection, the risk was not statistically significant. The potential association between bivalent vaccination and ischemic stroke in the 1-42-day analysis warrants further investigation among individuals younger than 65 years with influenza vaccine coadministration and prior SARS-CoV-2 infection. Furthermore, the findings on ischemic stroke risk after bivalent COVID-19 vaccination underscore the need to evaluate monovalent COVID-19 vaccine safety during the 2023-2024 season.
Collapse
Affiliation(s)
- Stanley Xu
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, United States
| | - Lina S Sy
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, United States
| | - Vennis Hong
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, United States
| | - Kimberly J Holmquist
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, United States
| | - Lei Qian
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, United States
| | - Paddy Farrington
- School of Mathematics and Statistics, The Open University, United Kingdom
| | - Katia J Bruxvoort
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicola P Klein
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Bruce Fireman
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Bing Han
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, United States
| | - Bruno J Lewin
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, United States
| |
Collapse
|
23
|
Dubaie B, Aldayel A, Alwethinani S, Alhuthil R, Alhamlan F, Alghamdi S, Alsuhaibani M, Aljumaah S, AlYabes O, AlBanyan E, Al-Hajjar S. Omicron variants of SARS-CoV-2: Epidemiological and clinical insights from a tertiary care center in Saudi Arabia. J Infect Public Health 2024; 17:961-966. [PMID: 38608457 DOI: 10.1016/j.jiph.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The actual burden of the Omicron variants remains unclear. Therefore, this study aims to analyze the epidemiological and clinical features of Omicron-infected patients and investigate factors influencing hospital admission. METHODS This retrospective single-center study included individuals with positive SARS-CoV-2 infection, specifically the Omicron variants (XBB, EG or JN), identified through real-time reverse-transcriptase polymerase chain reaction assays from January 2022 to December 2023. RESULTS A total of 305 Omicron-infected patients were included; (53.11 %) were females and (46.89 %) were males, with a median age of 39 years [interquartile range (IQR): 30, 53]. Underlying diseases, including endocrine/metabolic disorders (22.30 %), hypertension (12.79 %), chronic respiratory disease (10.49 %), and malignancy (9.18 %) were prevalent, while (40.98 %) were medically free. The XBB variant was predominant (73.11 %), followed by JN (20.33 %), and EG variant (6.56 %). The seasonality analysis demonstrates XBB variants' domination in 2022, with a surge to 40 cases in December. The trend continued in 2023, peaking at 76 XBB cases in March. May 2023 reported 38 XBB cases and the emergence of 17 EG instances. Notably, in December, only one XBB case was reported, and 62 instances emerged with the JN variant. Overall, 233 out of 305 cases were reported during flu season (September to March) (76.39 %). Moreover, hospitalization occurred in (16.39 %), with a (1.31 %) mortality rate (all deaths in the JN variant). Multivariable analysis confirmed renal disease, chronic respiratory disease, endocrine/metabolism issues, and polymicrobial infection as positive predictors of hospitalization (p < 0.05). While COVID-19 vaccination significantly reduced hospitalization odds (Odds Ratio: 0.20, p = 0.001). CONCLUSIONS These findings contribute valuable insights into Omicron epidemiology and factors influencing hospitalization. The dynamic fluctuations in Omicron variants, particularly XBB, EG, and JN, over 2022 and 2023, with JN emerging as the dominant circulating variant globally, underscore the need for continuous vigilance and urgency for updated vaccine formulations.
Collapse
Affiliation(s)
- Bayan Dubaie
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdulaziz Aldayel
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Shehana Alwethinani
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Raghad Alhuthil
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Fatimah Alhamlan
- Department of Infection & Immunity, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Salem Alghamdi
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, alfaisal University, Riyadh, Saudi Arabia
| | - Mohammed Alsuhaibani
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, alfaisal University, Riyadh, Saudi Arabia
| | - Suliman Aljumaah
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, alfaisal University, Riyadh, Saudi Arabia
| | - Ohoud AlYabes
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, alfaisal University, Riyadh, Saudi Arabia
| | - Esam AlBanyan
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, alfaisal University, Riyadh, Saudi Arabia
| | - Sami Al-Hajjar
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
24
|
Hattab D, Amer MFA, Al-Alami ZM, Bakhtiar A. SARS-CoV-2 journey: from alpha variant to omicron and its sub-variants. Infection 2024; 52:767-786. [PMID: 38554253 PMCID: PMC11143066 DOI: 10.1007/s15010-024-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
The COVID-19 pandemic has affected hundreds of millions of individuals and caused more than six million deaths. The prolonged pandemic duration and the continual inter-individual transmissibility have contributed to the emergence of a wide variety of SARS-CoV-2 variants. Genomic surveillance and phylogenetic studies have shown that substantial mutations in crucial supersites of spike glycoprotein modulate the binding affinity of the evolved SARS-COV-2 lineages to ACE2 receptors and modify the binding of spike protein with neutralizing antibodies. The immunological spike mutations have been associated with differential transmissibility, infectivity, and therapeutic efficacy of the vaccines and the immunological therapies among the new variants. This review highlights the diverse genetic mutations assimilated in various SARS-CoV-2 variants. The implications of the acquired mutations related to viral transmission, infectivity, and COVID-19 severity are discussed. This review also addresses the effectiveness of human neutralizing antibodies induced by SARS-CoV-2 infection or immunization and the therapeutic antibodies against the ascended variants.
Collapse
Affiliation(s)
- Dima Hattab
- School of Pharmacy, The University of Jordan, Queen Rania Street, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Zina M Al-Alami
- Department of Basic Medical Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
25
|
Song S, Madewell ZJ, Liu M, Miao Y, Xiang S, Huo Y, Sarkar S, Chowdhury A, Longini IM, Yang Y. A systematic review and meta-analysis on the effectiveness of bivalent mRNA booster vaccines against Omicron variants. Vaccine 2024; 42:3389-3396. [PMID: 38653679 DOI: 10.1016/j.vaccine.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND A global shift to bivalent mRNA vaccines is ongoing to counterbalance the diminishing effectiveness of the original monovalent vaccines due to the evolution of SARS-CoV-2 variants, yet substantial variation in the bivalent vaccine effectiveness (VE) exists across studies and a complete picture is lacking. METHODS We searched papers evaluating absolute or relative effectiveness of SARS-CoV-2 BA.1 type or BA.4/5 type bivalent mRNA vaccines on eight publication databases published from September 1st, 2022, to November 8th, 2023. Pooled VE against Omicron-associated infection and severe events (hospitalization and/or death) was estimated in reference to unvaccinated, ≥2 original monovalent doses, and ≥ 3 original monovalent doses. RESULTS From 630 citations identified, 28 studies were included, involving 55,393,303 individuals. Bivalent boosters demonstrated higher effectiveness against symptomatic or any infection for all ages combined, with an absolute VE of 53.5 % (95 % CI: -22.2-82.3 %) when compared to unvaccinated and relative VE of 30.8 % (95 % CI: 22.5-38.2 %) and 28.4 % (95 % CI: 10.2-42.9 %) when compared to ≥ 2 and ≥ 3 original monovalent doses, respectively. The corresponding VE estimates for adults ≥ 60 years old were 22.5 % (95 % CI: 16.8-39.8 %), 31.4 % (95 % CI: 27.7-35.0 %), and 30.6 % (95 % CI: -13.2-57.5 %). Pooled bivalent VE estimates against severe events were higher, 72.9 % (95 % CI: 60.5-82.4 %), 57.6 % (95 % CI: 42.4-68.8 %), and 62.1 % (95 % CI: 54.6-68.3 %) for all ages, and 72.0 % (95 % CI: 51.4-83.9 %), 63.4 % (95 % CI: 41.0-77.3 %), and 60.7 % (95 % CI: 52.4-67.6 %) for adults ≥ 60 years old, compared to unvaccinated, ≥2 original monovalent doses, and ≥ 3 original monovalent doses, respectively. CONCLUSIONS The bivalent boosters demonstrated superior protection against severe outcomes than the original monovalent boosters across age groups, highlighting the critical need for improving vaccine coverage, especially among the vulnerable older subpopulation.
Collapse
Affiliation(s)
- Shangchen Song
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Zachary J Madewell
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Mingjin Liu
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Yu Miao
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Shaolin Xiang
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Yanan Huo
- Gilead Sciences, Inc, Foster City, CA, USA
| | - Shoumi Sarkar
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Amily Chowdhury
- Department of Computer Science, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Ira M Longini
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Yang Yang
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
26
|
Walmsley S, Nabipoor M, Qi F, Lovblom LE, Ravindran R, Colwill K, Dayam RM, Tursun TR, Silva A, Gingras AC. Declining Levels of Neutralizing Antibodies to SARS-CoV-2 Omicron Variants Are Enhanced by Hybrid Immunity and Original/Omicron Bivalent Vaccination. Vaccines (Basel) 2024; 12:564. [PMID: 38932293 PMCID: PMC11209254 DOI: 10.3390/vaccines12060564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
We determined neutralizing antibody levels to the ancestral Wuhan SARS-CoV-2 strain and three Omicron variants, namely BA.5, XBB.1.5, and EG.5, in a heavily vaccinated cohort of 178 adults 15-19 months after the initial vaccine series and prospectively after 4 months. Although all participants had detectable neutralizing antibodies to Wuhan, the proportion with detectable neutralizing antibodies to the Omicron variants was decreased, and the levels were lower. Individuals with hybrid immunity at the baseline visit and those receiving the Original/Omicron bivalent vaccine between the two sampling times demonstrated increased neutralizing antibodies to all strains. Both a higher baseline neutralizing antibody titer to Omicron BA.5 and hybrid immunity were associated with protection against a breakthrough SARS-CoV-2 infection during a 4-month period of follow up during the Omicron BA.5 wave. Neither were associated with protection from a breakthrough infection at 10 months follow up. Receipt of an Original/Omicron BA.4/5 vaccine was associated with protection from a breakthrough infection at both 4 and 10 months follow up. This work demonstrates neutralizing antibody escape with the emerging Omicron variants and supports the use of additional vaccine doses with components that match circulating SARS-CoV-2 variants. A threshold value for neutralizing antibodies for protection against reinfection cannot be determined.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, University Health Network, Toronto, ON M5G 2C4, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G 2C4, Canada; (M.N.); (L.E.L.)
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G 2C4, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Tulunay R. Tursun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Amanda Silva
- DATA Team, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | |
Collapse
|
27
|
Yeh YP, Lin TY, Yao YC, Hsu CY, Yen AMF, Chen SLS, Chen THH. New insights into three trajectories of omicron-related all-cause death reduced by COVID-19 booster vaccination. J Infect Public Health 2024; 17:735-740. [PMID: 38518679 DOI: 10.1016/j.jiph.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND The trajectories of all-cause deaths linked to omicron infections are rarely studied, especially in relation to the efficacy of booster shots. For assessing three epidemiological death trajectories, including dying from COVID-19, dying with COVID-19, and non-COVID-19 death, we offer a new COVID-19-and-death competing risk model that deals with the primary pathway (e.g., dying from COVID-19) competing with two other pathways. METHODS We applied this model to track three trajectories: deaths directly from COVID-19, deaths with COVID-19 as a contributing factor, and indirect non-COVID-19 deaths. The study used data from a Taiwanese cohort, covering periods of Omicron subvariants BA.2, BA.5, and BA.2.75. It focused on the effectiveness of monovalent and bivalent booster vaccines against these death trajectories. RESULTS The highest mortality was observed during the BA.2 phase, which decreased in the BA.5 period and increased again in the BA.2.75 period. Analyzing each trajectory, we noted similar trends in deaths directly from and with COVID-19, while non-COVID-19 deaths remained stable across subvariants. Booster vaccines reduced all-cause mortality by 58% (52%-62%) for BA.2, 70% (65%-75%) for BA.5%, and 75% (70%-80%) for BA.2.75, compared to incomplete vaccination. The reduction in deaths directly from COVID-19 was 66% (61%-72%) for BA.2, 78% (72%-84%) for BA.5%, and 85% (76%-93%) for BA.2.75. For deaths with COVID-19, the figures were 46% (36%-55%), 76% (68%-84%), and 90% (86%-95%). Additionally, the booster shots decreased non-COVID-19 deaths by 64% (63%-66%) for BA.2, 38% (36%-40%) for BA.5, and 19% (17%-21%) for BA.2.75. CONCLUSION Our competing risk analysis is effective for monitoring all-cause death trajectories amidst various Omicron infections. It provides insights into the impact of booster vaccines, especially bivalent ones, and highlights the consequences of inadequate healthcare for vulnerable groups.
Collapse
Affiliation(s)
- Yen-Po Yeh
- Changhua County Public Health Bureau, Changhua, Taiwan
| | - Ting-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Ching Yao
- Changhua County Public Health Bureau, Changhua, Taiwan
| | - Chen-Yang Hsu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Daichung Hospital, Miaoli, Taiwan
| | - Amy Ming-Fang Yen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sam Li-Sheng Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony Hsiu-Hsi Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Ghasemiyeh P, Mohammadi-Samani S. Lessons we learned during the past four challenging years in the COVID-19 era: pharmacotherapy, long COVID complications, and vaccine development. Virol J 2024; 21:98. [PMID: 38671455 PMCID: PMC11055380 DOI: 10.1186/s12985-024-02370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
About four years have passed since the detection of the first cases of COVID-19 in China. During this lethal pandemic, millions of people have lost their lives around the world. Since the first waves of COVID-19 infection, various pharmacotherapeutic agents have been examined in the management of COVID-19. Despite all these efforts in pharmacotherapy, drug repurposing, and design and development of new drugs, multiple organ involvement and various complications occurred during COVID-19. Some of these complications became chronic and long-lasting which led to the "long COVID" syndrome appearance. Therefore, the best way to eradicate this pandemic is prophylaxis through mass vaccination. In this regard, various vaccine platforms including inactivated vaccines, nucleic acid-based vaccines (mRNA and DNA vaccines), adenovirus-vectored vaccines, and protein-based subunit vaccines have been designed and developed to prevent or reduce COVID-19 infection, hospitalization, and mortality rates. In this focused review, at first, the most commonly reported clinical presentations of COVID-19 during these four years have been summarized. In addition, different therapeutic regimens and their latest status in COVID-19 management have been listed. Furthermore, the "long COVID" and related signs, symptoms, and complications have been mentioned. At the end, the effectiveness of available COVID-19 vaccines with different platforms against early SARS-CoV-2 variants and currently circulating variants of interest (VOI) and the necessity of booster vaccine shots have been summarized and discussed in more detail.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Kumar A, Tripathi P, Kumar P, Shekhar R, Pathak R. From Detection to Protection: Antibodies and Their Crucial Role in Diagnosing and Combatting SARS-CoV-2. Vaccines (Basel) 2024; 12:459. [PMID: 38793710 PMCID: PMC11125746 DOI: 10.3390/vaccines12050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the antibody response to SARS-CoV-2, the virus responsible for COVID-19, is crucial to comprehending disease progression and the significance of vaccine and therapeutic development. The emergence of highly contagious variants poses a significant challenge to humoral immunity, underscoring the necessity of grasping the intricacies of specific antibodies. This review emphasizes the pivotal role of antibodies in shaping immune responses and their implications for diagnosing, preventing, and treating SARS-CoV-2 infection. It delves into the kinetics and characteristics of the antibody response to SARS-CoV-2 and explores current antibody-based diagnostics, discussing their strengths, clinical utility, and limitations. Furthermore, we underscore the therapeutic potential of SARS-CoV-2-specific antibodies, discussing various antibody-based therapies such as monoclonal antibodies, polyclonal antibodies, anti-cytokines, convalescent plasma, and hyperimmunoglobulin-based therapies. Moreover, we offer insights into antibody responses to SARS-CoV-2 vaccines, emphasizing the significance of neutralizing antibodies in order to confer immunity to SARS-CoV-2, along with emerging variants of concern (VOCs) and circulating Omicron subvariants. We also highlight challenges in the field, such as the risks of antibody-dependent enhancement (ADE) for SARS-CoV-2 antibodies, and shed light on the challenges associated with the original antigenic sin (OAS) effect and long COVID. Overall, this review intends to provide valuable insights, which are crucial to advancing sensitive diagnostic tools, identifying efficient antibody-based therapeutics, and developing effective vaccines to combat the evolving threat of SARS-CoV-2 variants on a global scale.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Prashant Kumar
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
30
|
Plumb ID, Briggs Hagen M, Wiegand R, Dumyati G, Myers C, Harland KK, Krishnadasan A, James Gist J, Abedi G, Fleming-Dutra KE, Chea N, Lee JE, Kellogg M, Edmundson A, Britton A, Wilson LE, Lovett SA, Ocampo V, Markus TM, Smithline HA, Hou PC, Lee LC, Mower W, Rwamwejo F, Steele MT, Lim SC, Schrading WA, Chinnock B, Beiser DG, Faine B, Haran JP, Nandi U, Chipman AK, LoVecchio F, Eucker S, Femling J, Fuller M, Rothman RE, Curlin ME, Talan DA, Mohr NM. Effectiveness of a bivalent mRNA vaccine dose against symptomatic SARS-CoV-2 infection among U.S. Healthcare personnel, September 2022-May 2023. Vaccine 2024; 42:2543-2552. [PMID: 37973512 PMCID: PMC10994739 DOI: 10.1016/j.vaccine.2023.10.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Bivalent mRNA vaccines were recommended since September 2022. However, coverage with a recent vaccine dose has been limited, and there are few robust estimates of bivalent VE against symptomatic SARS-CoV-2 infection (COVID-19). We estimated VE of a bivalent mRNA vaccine dose against COVID-19 among eligible U.S. healthcare personnel who had previously received monovalent mRNA vaccine doses. METHODS We conducted a case-control study in 22 U.S. states, and enrolled healthcare personnel with COVID-19 (case-participants) or without COVID-19 (control-participants) during September 2022-May 2023. Participants were considered eligible for a bivalent mRNA dose if they had received 2-4 monovalent (ancestral-strain) mRNA vaccine doses, and were ≥67 days after the most recent vaccine dose. We estimated VE of a bivalent mRNA dose using conditional logistic regression, accounting for matching by region and four-week calendar period. We adjusted estimates for age group, sex, race and ethnicity, educational level, underlying health conditions, community COVID-19 exposure, prior SARS-CoV-2 infection, and days since the last monovalent mRNA dose. RESULTS Among 3,647 healthcare personnel, 1,528 were included as case-participants and 2,119 as control-participants. Participants received their last monovalent mRNA dose a median of 404 days previously; 1,234 (33.8%) also received a bivalent mRNA dose a median of 93 days previously. Overall, VE of a bivalent dose was 34.1% (95% CI, 22.6%-43.9%) against COVID-19 and was similar by product, days since last monovalent dose, number of prior doses, age group, and presence of underlying health conditions. However, VE declined from 54.8% (95% CI, 40.7%-65.6%) after 7-59 days to 21.6% (95% CI 5.6%-34.9%) after ≥60 days. CONCLUSIONS Bivalent mRNA COVID-19 vaccines initially conferred approximately 55% protection against COVID-19 among U.S. healthcare personnel. However, protection waned after two months. These findings indicate moderate initial protection against symptomatic SARS-CoV-2 infection by remaining up-to-date with COVID-19 vaccines.
Collapse
Affiliation(s)
- Ian D Plumb
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, USA.
| | - Melissa Briggs Hagen
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, USA
| | - Ryan Wiegand
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, USA
| | - Ghinwa Dumyati
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | - Jade James Gist
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, USA
| | - Glen Abedi
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, USA
| | - Katherine E Fleming-Dutra
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, USA
| | - Nora Chea
- National Center for Emerging and Zoonotic Diseases, Centers for Disease Control & Prevention, USA
| | - Jane E Lee
- California Emerging Infections Program, Oakland, CA, USA
| | | | - Alexandra Edmundson
- Connecticut Emerging Infections Program, Yale School of Public Health, CT, USA
| | - Amber Britton
- Georgia Emerging Infections Program and Emory University School of Medicine, Atlanta, GA, USA
| | - Lucy E Wilson
- Maryland Emerging Infections Program, Maryland Department of Health and University of Maryland, Baltimore, MD, USA
| | | | - Valerie Ocampo
- Public Health Division, Oregon Health Authority, OR, USA
| | | | | | - Peter C Hou
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Mark T Steele
- University of Missouri-Kansas City, Kansas City, MO, USA
| | - Stephen C Lim
- University Medical Center New Orleans, LSU Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | - John P Haran
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Utsav Nandi
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | - Jon Femling
- University of New Mexico Health Science Center, USA
| | | | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
31
|
Urschel R, Bronder S, Klemis V, Marx S, Hielscher F, Abu-Omar A, Guckelmus C, Schneitler S, Baum C, Becker SL, Gärtner BC, Sester U, Martinez L, Widera M, Schmidt T, Sester M. SARS-CoV-2-specific cellular and humoral immunity after bivalent BA.4/5 COVID-19-vaccination in previously infected and non-infected individuals. Nat Commun 2024; 15:3077. [PMID: 38594497 PMCID: PMC11004149 DOI: 10.1038/s41467-024-47429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Knowledge is limited as to how prior SARS-CoV-2 infection influences cellular and humoral immunity after booster-vaccination with bivalent BA.4/5-adapted mRNA-vaccines, and whether vaccine-induced immunity may indicate subsequent infection. In this observational study, individuals with prior infection (n = 64) showed higher vaccine-induced anti-spike IgG-antibodies and neutralizing titers, but the relative increase was significantly higher in non-infected individuals (n = 63). In general, both groups showed higher neutralizing activity towards the parental strain than towards Omicron-subvariants BA.1, BA.2 and BA.5. In contrast, CD4 or CD8 T cell levels towards spike from the parental strain and the Omicron-subvariants, and cytokine expression profiles were similar irrespective of prior infection. Breakthrough infections occurred more frequently among previously non-infected individuals, who had significantly lower vaccine-induced spike-specific neutralizing activity and CD4 T cell levels. In summary, we show that immunogenicity after BA.4/5-bivalent vaccination differs between individuals with and without prior infection. Moreover, our results may help to improve prediction of breakthrough infections.
Collapse
Affiliation(s)
- Rebecca Urschel
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Saskia Bronder
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Verena Klemis
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Franziska Hielscher
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Amina Abu-Omar
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Candida Guckelmus
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Sophie Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Christina Baum
- Occupational Health Care Center, Saarland University, 66421, Homburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Barbara C Gärtner
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
| | - Urban Sester
- Department of Nephrology, SHG-Klinikum Völklingen, 66333, Völklingen, Germany
| | - Leonardo Martinez
- Boston University, School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Tina Schmidt
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
32
|
Grigoryan L, Feng Y, Bellusci L, Lai L, Wali B, Ellis M, Yuan M, Arunachalam PS, Hu M, Kowli S, Gupta S, Maysel-Auslender S, Maecker HT, Samaha H, Rouphael N, Wilson IA, Moreno AC, Suthar MS, Khurana S, Pillet S, Charland N, Ward BJ, Pulendran B. AS03 adjuvant enhances the magnitude, persistence, and clonal breadth of memory B cell responses to a plant-based COVID-19 vaccine in humans. Sci Immunol 2024; 9:eadi8039. [PMID: 38579013 DOI: 10.1126/sciimmunol.adi8039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.
Collapse
Affiliation(s)
- Lilit Grigoryan
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Lilin Lai
- Department of Pediatrics and Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Bushra Wali
- Department of Pediatrics and Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Madison Ellis
- Department of Pediatrics and Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA 30329, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sheena Gupta
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sofia Maysel-Auslender
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hady Samaha
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Hope Clinic of Emory Vaccine Center, Emory University, Decatur, GA 30030, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alberto C Moreno
- Department of Medicine, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics and Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA 30329, USA
| | | | - Stéphane Pillet
- Medicago Inc., Québec, QC G1V 3V9, Canada
- Research Institute of the McGill University Health Center, 1001 Decarie St., Montréal, QC H4A 3J1, Canada
| | | | - Brian J Ward
- Medicago Inc., Québec, QC G1V 3V9, Canada
- Research Institute of the McGill University Health Center, 1001 Decarie St., Montréal, QC H4A 3J1, Canada
| | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Su YW, Qiu YZ, Wang YH, Xu Y, Huang CC, Zhang Q, Su C, Ma JH, Liu W, Liu Y, Zhao MS, Yang HY, Li CL, Lu X. Safety and immunogenicity of heterologous boosting with a bivalent SARS-CoV-2 mRNA vaccine (XBB.1.5/BQ.1) in Chinese participants aged 18 years or more: A randomised, double-blinded, active-controlled phase 1 trial. Vaccine 2024; 42:2438-2447. [PMID: 38461050 DOI: 10.1016/j.vaccine.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants urges the development of new vaccines. We assessed the safety and immunogenicity of SYS6006.32, a bivalent vaccine (XBB.1.5/BQ.1), in healthy adults who had received SARS-CoV-2 primary vaccination. In a randomised, double-blinded, active-controlled trial, 200 participants were randomised to receive one dose of SYS6006.32 (N = 100) or a prototype-based, monovalent control vaccine SYS6006 (N = 100). Adverse events (AEs) were collected through the study. Immunogenicity was assessed by live-virus neutralising antibody (Nab) and pseudovirus Nab. 61 (61.0 %) and 60 (60.0 %) participants reported AE in the SYS6006.32 and SYS6006 groups, respectively. Most AEs were grade 1 or 2. Pain and fever were the most common injection-site and systemic AEs, respectively. No serious AEs were observed. SYS6006.32 heterologous boosting induced robust Nab responses against BA.5, XBB.1.5 and EG.5 with live-virus Nab geometric mean titres (GMTs) increased by 17.1-, 34.0-, and 48.0-fold, and pseudovirus Nab GMTs increased by 12.2-, 32.0-, and 35.1-fold, respectively, 14 days after vaccination. SYS6006.32 demonstrated a superior immunogenicity to SYS6006. SYS6006.32 also induced robust pseudovirus Nab responses against XBB.1.16, XBB.2.3, and BA.2.86, with GMTs 3- to 6-fold higher than those induced by SYS6006. In conclusion, SYS6006.32 showed good safety profile and superior immunogenicity to the monovalent vaccine SYS6006.
Collapse
Affiliation(s)
- Yu-Wen Su
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Yuan-Zheng Qiu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050011, Hebei Province, China
| | - Yuan-Hui Wang
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Yan Xu
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Chao-Chao Huang
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Qing Zhang
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Chang Su
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Jun-Heng Ma
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Wen Liu
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Yan Liu
- Institute for In Vitro Diagnostic Regents Control, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Mao-Sheng Zhao
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050011, Hebei Province, China
| | - Han-Yu Yang
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050011, Hebei Province, China
| | - Chun-Lei Li
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050011, Hebei Province, China.
| | - Xiang Lu
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China.
| |
Collapse
|
34
|
Oda Y, Kumagai Y, Kanai M, Iwama Y, Okura I, Minamida T, Yagi Y, Kurosawa T, Greener B, Zhang Y, Walson JL. Immunogenicity and safety of a booster dose of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2 mRNA COVID-19 vaccine: a double-blind, multicentre, randomised, controlled, phase 3, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:351-360. [PMID: 38141632 DOI: 10.1016/s1473-3099(23)00650-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Licensed mRNA COVID-19 vaccines require booster doses to sustain SARS-CoV-2-specific responses, creating the need for novel, broadly immunogenic vaccines. We aimed to compare the immunogenicity, safety, and tolerability of ARCT-154-a self-amplifying mRNA vaccine against SARS-CoV-2 D614G variant-with the BNT162b2 (Comirnaty; Pfizer-BioNTech) mRNA vaccine when administered as a fourth-dose booster. METHODS This double-blind, multicentre, randomised, controlled, phase 3, non-inferiority trial, conducted at 11 outpatient clinical sites in Japan, enrolled healthy adults aged at least 18 years who had previously been immunised with two doses of an mRNA COVID-19 vaccine (BNT162b2 or mRNA-1273 [Spikevax; Moderna]) followed by a third dose of BNT162b2 at least 3 months before enrolment. Participants were randomly assigned, in a 1:1 ratio using an Interactive Response Technology system with a block size of four, and with stratification by age (18-64 years or ≥65 years) and by interval since last COVID-19 vaccination (<5 months or ≥5 months), to receive either ARCT-154 or BNT162b2 as a fourth-dose booster via deltoid intramuscular injection. Participants and investigators assessing outcomes were masked to group assignment. The primary objective, measured in per-protocol set 1 (consisting of participants with no evidence of previous SARS-CoV-2 infection who received their intended injection according to protocol), was to show that the immune response 28 days after the ARCT-154 vaccine was non-inferior to that of the BNT162b2 vaccine, measured in terms of both pseudovirus neutralising antibody geometric mean titre (GMT) ratios and seroresponse rates against the wild-type Wuhan-Hu-1 strain of SARS-CoV-2. Non-inferiority was declared when the lower limit of the 95% CI of the ARCT-154 to BNT162b2 GMT ratio exceeded 0·67, and when the lower limit for the difference in seroresponse rates exceeded -10%. Key secondary endpoints included the immune response against the omicron BA.4/5 subvariant, which was assessed for non-inferiority and superiority in per-protocol set 1. Safety was assessed in the full analysis set. This study was registered on the Japan Registry for Clinical Trials, jRCT 2071220080, and is ongoing. FINDINGS Between Dec 13, 2022, and Feb 25, 2023, we enrolled and randomly assigned 828 participants to receive ARCT-154 (n=420) or BNT162b2 (n=408) vaccines as a fourth-dose booster. In per-protocol set 1, the GMTs of surrogate neutralising antibodies induced against the Wuhan-Hu-1 SARS-CoV-2 strain in the ARCT-154 group (5641 [95% CI 4321-7363]) were non-inferior to those in the BNT162b2 group (3934 [2993-5169]) when measured at 28 days after boosting, with a GMT ratio of 1·43 (95% CI 1·26-1·63). Seroresponse rates were 65·2% (95% CI 60·2-69·9) in the ARCT-154 group versus 51·6% (46·4-56·8) in the BNT162b2 group, a difference of 13·6% (95% CI 6·8-20·5). GMTs against the omicron BA.4/5 variant on day 29 were 2551 (1687-3859) in the ARCT-154 group and 1958 (1281-2993) in the BNT162b2 group-a GMT ratio of 1·30 (1·07-1·58)-with seroresponse rates of 69·9% (65·0-74·4) and 58·0% (52·8-63·1). Both boosters were equally well tolerated. No treatment-related deaths were reported, nor were there severe or serious adverse events considered to be causally associated related to study vaccination. One serious adverse event, a foot deformity reported in a participant in the BNT162b2 group, was observed but determined not to have a causal relationship to the study vaccination. One severe adverse event, a case of abnormal hepatic function in the ARCT-154 group, was considered to be related to study vaccine. Adverse events of special interest for detection of myocarditis and pericarditis included chest pain (one case in the ARCT-154 group and three cases in the BNT162b2 group) and shortness of breath (two cases in the BNT162b2 group), all of which were considered to have a reasonable possibility of being related to vaccination. Local reactions were reported by 398 (95%) of 420 participants receiving the ARCT-154 vaccine and 395 (97%) of 408 participants receiving the BNT162b2 vaccine, and solicited systemic adverse events by 276 (66%) of those receiving the ARCT-154 vaccine and 255 (63%) of those receiving the BNT162b2 vaccine. Adverse events were mainly mild in severity, occurring and resolving within 3-4 days after vaccination. INTERPRETATION In adults who had previously received three doses of an mRNA COVID-19 vaccine, immune responses 28 days after an ARCT-154 booster dose were non-inferior to those observed after a BNT162b2 booster dose for the Wuhan-Hu-1 strain of SARS-CoV-2 and superior for the Omicron BA.4/5 variant. Increased immune responses at 28 days might provide increased likelihood of protection against these strains during this period and could also result in longer duration of protection. Further studies will assess the immunogenicity induced against more recent SARS-CoV-2 variants. FUNDING Japanese Ministry of Health, Labour, and Welfare. TRANSLATION For the Japanese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
| | - Yuji Kumagai
- Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | - Ye Zhang
- Arcturus Therapeutics, San Diego, CA, USA
| | | |
Collapse
|
35
|
Laghlali G, Wiest MJ, Karadag D, Warang P, O'Konek JJ, Chang LA, Park S, Farazuddin M, Landers JJ, Janczak KW, García-Sastre A, Baker JR, Wong PT, Schotsaert M. Enhanced mucosal B- and T-cell responses against SARS-CoV-2 after heterologous intramuscular mRNA prime/intranasal protein boost vaccination with a combination adjuvant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587260. [PMID: 38586014 PMCID: PMC10996704 DOI: 10.1101/2024.03.28.587260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.
Collapse
|
36
|
Cheng SMS, Mok CKP, Li JKC, Chan KKP, Luk KS, Lee BHW, Gu H, Chan KCK, Tsang LCH, Yiu KYS, Ling KKC, Tang YS, Luk LLH, Yu JKM, Pekosz A, Webby RJ, Cowling BJ, Hui DSC, Peiris M. Cross-neutralizing antibody against emerging Omicron subvariants of SARS-CoV-2 in infection-naïve individuals with homologous BNT162b2 or BNT162b2(WT + BA.4/5) bivalent booster vaccination. Virol J 2024; 21:70. [PMID: 38515117 PMCID: PMC10956325 DOI: 10.1186/s12985-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.
Collapse
Affiliation(s)
- Samuel M S Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris K P Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Research Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John K C Li
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ken K P Chan
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kristine S Luk
- Princess Margaret Hospital, Hospital Authority, Hong Kong SAR, China
| | - Ben H W Lee
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karl C K Chan
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo C H Tsang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karen Y S Yiu
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ken K C Ling
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Sang Tang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Leo L H Luk
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer K M Yu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Cowling
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David S C Hui
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Research Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
37
|
Wong CKH, Lau KTK, Au ICH, Lau EHY, Cowling BJ. Comparison of Bivalent and Monovalent mRNA Vaccine Boosters. Clin Infect Dis 2024; 78:633-636. [PMID: 37647855 DOI: 10.1093/cid/ciad519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
In this cohort study conducted in Hong Kong where both bivalent and monovalent formulations of BNT162b2 were available, there were no significant differences in the mortality or hospitalization between those who received bivalent and monovalent mRNA as second boosters. Bivalent and monovalent mRNA boosters appear equally protective against clinical outcomes.
Collapse
Affiliation(s)
- Carlos K H Wong
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Special Administrative Region (SAR), China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
- The Vaccine Confidence Project, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kristy T K Lau
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Ivan C H Au
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Eric H Y Lau
- Laboratory of Data Discovery for Health (D24H), Hong Kong Special Administrative Region (SAR), China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Benjamin J Cowling
- Laboratory of Data Discovery for Health (D24H), Hong Kong Special Administrative Region (SAR), China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| |
Collapse
|
38
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
39
|
Arantes I, Gomes M, Ito K, Sarafim S, Gräf T, Miyajima F, Khouri R, de Carvalho FC, de Almeida WAF, Siqueira MM, Resende PC, Naveca FG, Bello G. Spatiotemporal dynamics and epidemiological impact of SARS-CoV-2 XBB lineage dissemination in Brazil in 2023. Microbiol Spectr 2024; 12:e0383123. [PMID: 38315011 PMCID: PMC10913747 DOI: 10.1128/spectrum.03831-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron variant of concern that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of severe acute respiratory infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB* + F486P, XBB* + F486P + F456L, and XBB* + F486P + F456L + L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazil's epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB* + F486P + F456L + L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead. IMPORTANCE Brazil was one the most affected countries by the SARS-CoV-2 pandemic, with more than 700,000 deaths by mid-2023. This study reconstructs the dissemination of the virus in the country in the first half of 2023, a period characterized by the dissemination of descendants of XBB.1, a recombinant of Omicron BA.2 lineages evolved in late 2022. The analysis supports that XBB dissemination was marked by the continuous emergence of indigenous lineages bearing similar mutations in key sites of their Spike protein, a process followed by continuous increments in transmissibility, and without repercussions in the incidence of severe cases. Thus, the results suggest that the epidemiological impact of the spread of a SARS-CoV-2 variant is influenced by an intricate interplay of factors that extend beyond the virus's transmissibility alone. The study also underlines the need for SARS-CoV-2 genomic surveillance that allows the monitoring of its ever-shifting composition.
Collapse
Affiliation(s)
- Ighor Arantes
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcelo Gomes
- Grupo de Métodos Analíticos em Vigilância Epidemiológica, Fiocruz, Rio de Janeiro, Brazil
| | - Kimihito Ito
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Sharbilla Sarafim
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| | | | | | - Felipe Cotrim de Carvalho
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
| | - Walquiria Aparecida Ferreira de Almeida
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - COVID-19 Fiocruz Genomic Surveillance Network
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo de Métodos Analíticos em Vigilância Epidemiológica, Fiocruz, Rio de Janeiro, Brazil
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
- Fiocruz, Fortaleza, Brazil
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| |
Collapse
|
40
|
Nishikubo M, Shimomura Y, Yamamoto R, Maruoka H, Nasu S, Sakizono K, Nagai Y, Hiramoto N, Yonetani N, Kondo T, Miyakoshi C, Doi A, Ishikawa T. Sequential cellular and humoral responses after repetitive COVID-19 vaccination in patients treated with anti-CD20 antibodies. Br J Haematol 2024; 204:821-825. [PMID: 37964419 DOI: 10.1111/bjh.19207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Patients treated with anti-CD20 antibodies for haematological disorders have insufficient immune responses to mRNA COVID-19 vaccines; however, relevant sequential data are lacking. We sequentially evaluated the humoral and cellular immune responses in 22 patients who had received anti-CD20 antibodies within 12 months before the first vaccination, before and after the third and fourth vaccinations. Humoral responses improved gradually, along with the resolution of B-cell depletion. A steady increase was noted in cellular responses, regardless of the B-cell status. Our findings suggest the potential benefit of repeated vaccinations in these patients until B-cell recovery is confirmed while enhancing cellular responses.
Collapse
Affiliation(s)
- Masashi Nishikubo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Yoshimitsu Shimomura
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
- Department of Environmental Medicine and Population Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryusuke Yamamoto
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Hayato Maruoka
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Seiko Nasu
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Kenji Sakizono
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Yuya Nagai
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Nobuhiro Hiramoto
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Noboru Yonetani
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Tadakazu Kondo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Chisato Miyakoshi
- Department of Research Support, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Asako Doi
- Department of Infectious Diseases, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
41
|
Ying B, Darling TL, Desai P, Liang CY, Dmitriev IP, Soudani N, Bricker T, Kashentseva EA, Harastani H, Raju S, Liu M, Schmidt AG, Curiel DT, Boon ACM, Diamond MS. Mucosal vaccine-induced cross-reactive CD8 + T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nat Immunol 2024; 25:537-551. [PMID: 38337035 PMCID: PMC10907304 DOI: 10.1038/s41590-024-01743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Houda Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
42
|
Shin KS, Kim BS, Chang S, Jung IK, Park H, Park S, Shin J, Kim JH, Han SJ, Park B, Kim JO, Lee JA, Lee TY, Kang CY. Boosting with variant-matched adenovirus-based vaccines promotes neutralizing antibody responses against SARS-CoV-2 Omicron sublineages in mice. Int J Antimicrob Agents 2024; 63:107082. [PMID: 38163552 DOI: 10.1016/j.ijantimicag.2023.107082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron subvariants, such as BA.4, BA.5 and XBB.1.5, has been leading the recent wave of coronavirus disease 2019 (COVID-19). Unique mutations in the spike proteins of these emerging Omicron subvariants caused immune evasion from the pre-existing protective immunity induced by vaccination or natural infection. Previously, we developed AdCLD-CoV19-1, a non-replicating recombinant adenoviral vector that encodes the receptor binding domain of the spike protein of the ancestral SARS-CoV-2 strain. Based on the same recombinant adenoviral vector platform, updated vaccines that cover unique mutations found in each Omicron subvariant, including BA.1, BA.2, BA.4.1 and BA.5, were constructed. Preclinical studies revealed that each updated vaccine as a booster shot following primary vaccination targeting the ancestral strain improved neutralizing antibody responses against the pseudovirus of its respective strain most effectively. Of note, boosting with a vaccine targeting the BA.1 or BA.2 Omicron subvariant was most effective in neutralization against the pseudovirus of the BA.2.75 strain, whereas BA.4.1/5-adapted booster shots were most effective in neutralization against the BQ.1, BQ1.1 and BF.7 strains. Therefore, it is imperative to develop a vaccination strategy that can cover the unique spike mutations of currently circulating Omicron subvariants in order to prevent the next wave of COVID-19.
Collapse
Affiliation(s)
- Kwang-Soo Shin
- Cellid Co., Ltd., Seoul, Republic of Korea; Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | | | | | | | | | - Jieun Shin
- Cellid Co., Ltd., Seoul, Republic of Korea
| | | | - Sang Jun Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | | | - Jae-Ouk Kim
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Jung-Ah Lee
- Division of Infectious Disease Vaccine Research, Centre for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Tae-Young Lee
- Division of Infectious Disease Vaccine Research, Centre for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | | |
Collapse
|
43
|
Faraone JN, Wang X, Qu P, Zheng YM, Vincent E, Xu H, Liu SL. Neutralizing antibody response to SARS-CoV-2 bivalent mRNA vaccine in SIV-infected rhesus macaques: Enhanced immunity to XBB subvariants by two-dose vaccination. J Med Virol 2024; 96:e29520. [PMID: 38528837 PMCID: PMC10987079 DOI: 10.1002/jmv.29520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
The evolution of SARS-CoV-2 paired with immune imprinting by prototype messenger RNA (mRNA) vaccine has challenged the current vaccination efficacy against newly emerged Omicron subvariants. In our study, we investigated a cohort of macaques infected by SIV and vaccinated with two doses of bivalent Pfizer mRNA vaccine containing wildtype and BA.5 spikes. Using a pseudotyped lentivirus neutralization assay, we determined neutralizing antibody (nAb) titers against new XBB variants, i.e., XBB.1.5, XBB.1.16, and XBB.2.3, alongside D614G and BA.4/5. We found that compared to humans vaccinated with three doses of monovalent mRNA vaccine plus a bivalent booster, the monkeys vaccinated with two doses of bivalent mRNA vaccines exhibited relatively increased titers against XBB subvariants. Of note, SIV-positive dam macaques had reduced nAb titers relative to SIV-negative dams. Additionally, SIV positive dams that received antiretroviral therapy had lower nAb titers than untreated dams. Our study underscores the importance of reformulating the COVID-19 vaccine to better protect against newly emerged XBB subvariants as well as the need for further investigation of vaccine efficacy in individuals living with HIV-1.
Collapse
Affiliation(s)
- Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolwei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA, 70433, USA
| | - Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Eunice Vincent
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA, 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA, 70433, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Hirotsu Y, Takatori M, Mochizuki H, Omata M. Effectiveness of the severe acute respiratory syndrome coronavirus 2 Omicron BA.5 bivalent vaccine on symptoms in healthcare workers with BA.5 infection. Vaccine X 2024; 17:100433. [PMID: 38299200 PMCID: PMC10826328 DOI: 10.1016/j.jvacx.2024.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background The infection status of healthcare workers (HCWs) with coronavirus disease 2019 has become a major concern worldwide. In this study, we investigated the efficacy of the number of vaccine doses on symptoms after BA.5-adapted bivalent vaccination in HCWs. Methods We analyzed the occupation, route of infection, symptoms, and vaccination history of all HCWs who tested positive for severe acute respiratory syndrome coronavirus 2 and worked in our hospital from November 2020 to March 2023. A logistic regression analysis was performed to examine the association between the presence of BA.5-adapted bivalent vaccination and symptoms. Results During the observation period, 531 HCWs became infected. Of these, 72 % were women, with a median age of 30 years. Nurses accounted for 57 % of the infected cases, and many of the infection routes were from family members. We examined the relationship between symptoms in 352 HCWs infected with the Omicron BA.5* variant and the number of vaccine doses. As the number of vaccine doses increased, the rate of fever decreased, while symptoms such as a runny nose and sore throat tended to increase. The logistic regression analysis showed that the rate of fever tended to decrease (odds ratio = 0.52, 95 % confidence interval: 0.26-1.01, p = 0.056) and that of a runny nose increased (odds ratio = 3.68, 95 % confidence interval: 1.17-10.6, p = 0.018) after BA.5-adapted bivalent vaccination. Conclusion This study shows that fever is reduced and mild symptoms are increased after BA.5-adapted bivalent vaccination in BA.5-infected HCWs. This result highlights the potential effectiveness of tailored vaccination strategies in the management of emerging COVID-19 variants.
Collapse
Affiliation(s)
- Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Mika Takatori
- Division of Infection Control and Prevention, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
- Central Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
- Department of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
45
|
Costa Rocha VP, Souza Machado BA, Barreto BC, Quadros HC, Santana Fernandes AM, Lima EDS, Bandeira ME, Meira CS, Moraes dos Santos Fonseca L, Erasmus J, Khandhar A, Berglund P, Reed S, José da Silva Badaró R, Pereira Soares MB. A polyvalent RNA vaccine reduces the immune imprinting phenotype in mice and induces neutralizing antibodies against omicron SARS-CoV-2. Heliyon 2024; 10:e25539. [PMID: 38370238 PMCID: PMC10869778 DOI: 10.1016/j.heliyon.2024.e25539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Immune imprinting is now evident in COVID-19 vaccinated people. This phenomenon may impair the development of effective neutralizing antibodies against variants of concern (VoCs), mainly Omicron and its subvariants. Consequently, the boost doses with bivalent vaccines have not shown a significant gain of function regarding the neutralization of Omicron. The approach to design COVID-19 vaccines must be revised to improve the effectiveness against VoCs. Here, we took advantage of the self-amplifying characteristic of RepRNA and developed a polyvalent formulation composed of mRNA from five VoCs. LION/RepRNA Polyvalent induced neutralizing antibodies in mice previously immunized with LION/RepRNA D614G and reduced the imprinted phenotype associated with low neutralization capacity of Omicron B.1.1.529 pseudoviruses. The polyvalent vaccine can be a strategy to handle the low neutralization of Omicron VoC, despite booster doses with either monovalent or bivalent vaccines.
Collapse
Affiliation(s)
- Vinicius Pinto Costa Rocha
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | | | - Helenita Costa Quadros
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil
| | | | - Eduarda dos Santos Lima
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Mariana Evangelista Bandeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Cássio Santana Meira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil
| | | | | | | | | | | | - Roberto José da Silva Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil
| |
Collapse
|
46
|
Miyamoto S, Suzuki T. Infection-mediated immune response in SARS-CoV-2 breakthrough infection and implications for next-generation COVID-19 vaccine development. Vaccine 2024; 42:1401-1406. [PMID: 38310015 DOI: 10.1016/j.vaccine.2024.01.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Post-vaccination infections, termed breakthrough infections, occur after the virus infection overcomes the vaccine-induced immune barrier. During the early stages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron wave, high serum-neutralizing antibody titers against the Omicron variant were detected in individuals with breakthrough infections as well as those who received a third vaccine dose (i.e., booster recipients). Additionally, these cases indicated that Omicron antigens triggered an immune response that differed from that triggered by the vaccine strain before analysis of the effectiveness of new vaccines updated for the Omicron variants. Moreover, the magnitude and breadth of neutralizing antibody titers induced by breakthrough infections are correlated with the upper respiratory viral load at diagnosis and the duration between vaccination and infection, respectively. Unlike booster vaccine recipients, patients with breakthrough infections have varying durations between vaccination and infection. Accordingly, optimal booster vaccination intervals may be estimated based on the cross-neutralizing antibody response induced over time. Examination of breakthrough infection cases has provided valuable insights that could not be yielded by only examining vaccinated individuals alone. These insights include estimates of vaccine-induced immunity against SARS-CoV-2 variants and the various factors related to the clinical status. This review describes the immune response elicited by breakthrough infections; specifically, it discusses factors that affect the magnitude and breadth of serum antibody titers as well as the appropriate booster vaccination strategy. This review provides key aspects that could contribute to developing next-generation COVID-19 vaccines through breakthrough infection cases.
Collapse
Affiliation(s)
- Sho Miyamoto
- Department of Pathology, National Institute of Infectious Diseases Tokyo 162-8640, Japan.
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases Tokyo 162-8640, Japan
| |
Collapse
|
47
|
Nogimori T, Nagatsuka Y, Kobayashi S, Murakami H, Masuta Y, Suzuki K, Tomimaru Y, Noda T, Akita H, Takahama S, Yoshioka Y, Doki Y, Eguchi H, Yamamoto T. Humoral and cellular immune responses to COVID-19 mRNA vaccines in immunosuppressed liver transplant recipients. COMMUNICATIONS MEDICINE 2024; 4:30. [PMID: 38409262 PMCID: PMC10897323 DOI: 10.1038/s43856-024-00448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Liver transplant recipients (LTRs) are at a high risk of severe COVID-19 owing to immunosuppression and comorbidities. LTRs are less responsive to mRNA vaccines than healthy donors (HDs) or other immunosuppressed patients. However, the disruption mechanism in humoral and cellular immune memory responses is unclear. METHODS We longitudinally collected peripheral blood mononuclear cells and plasma samples from HDs (n = 44) and LTRs (n = 54) who received BNT162b2 or mRNA-1273 vaccines. We measured the levels of anti-receptor-binding domain (RBD) antibodies and spike-specific CD4+ and CD8+ T-cell responses. RESULTS Here, we show that the induction of anti-RBD IgG was weaker in LTRs than in HDs. The use of multiple immunosuppressive drugs is associated with lower antibody titers than only calcineurin inhibitor, and limits the induction of CD4+ T-cell responses. However, spike-specific CD4+ T-cell and antibody responses improved with a third vaccination. Furthermore, mRNA vaccine-induced spike-specific CD8+ T cells are quantitatively, but not qualitatively, limited to LTRs. Both CD4+ and CD8+ T cells react to omicron sublineages, regardless of the presence in HDs or LTRs. However, there is no boosting effect of spike-specific memory CD8+ T-cell responses after a third vaccination in HDs or LTRs. CONCLUSIONS The third mRNA vaccination improves both humoral responses and spike-specific CD4+ T-cell responses in LTRs but provides no booster effect for spike-specific memory CD8+ T-cell responses. A third mRNA vaccination could be helpful in LTRs to prevent severe COVID-19, although further investigation is required to elicit CD8+ T-cell responses in LTRs and HDs.
Collapse
Affiliation(s)
- Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yuta Nagatsuka
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Hirotomo Murakami
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, 540-0008, Japan
- Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, 540-0008, Japan
| | - Shokichi Takahama
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yasuo Yoshioka
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, 540-0008, Japan.
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
48
|
Reinholm A, Maljanen S, Jalkanen P, Altan E, Tauriainen S, Belik M, Skön M, Haveri A, Österlund P, Iakubovskaia A, Pasternack A, Naves RA, Ritvos O, Miettinen S, K Häkkinen H, Ivaska L, Tähtinen PA, Lempainen J, Kantele A, Kakkola L, Julkunen I, Kolehmainen P. Neutralizing antibodies after the third COVID-19 vaccination in healthcare workers with or without breakthrough infection. COMMUNICATIONS MEDICINE 2024; 4:28. [PMID: 38396065 PMCID: PMC10891120 DOI: 10.1038/s43856-024-00457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Vaccinations against the SARS-CoV-2 are still crucial in combating the ongoing pandemic that has caused more than 700 million infections and claimed almost 7 million lives in the past four years. Omicron (B.1.1.529) variants have incurred mutations that challenge the protection against infection and severe disease by the current vaccines, potentially compromising vaccination efforts. METHODS We analyzed serum samples taken up to 9 months post third dose from 432 healthcare workers. Enzyme-linked immunosorbent assays (ELISA) and microneutralization tests (MNT) were used to assess the prevalence of vaccine-induced neutralizing antibodies against various SARS-CoV-2 Omicron variants. RESULTS In this serological analysis we show that SARS-CoV-2 vaccine combinations of BNT162b2, mRNA-1273, and ChAdOx1 mount SARS-CoV-2 binding and neutralizing antibodies with similar kinetics, but with differing neutralization capabilities. The most recent Omicron variants, BQ.1.1 and XBB.1.5, show a significant increase in the ability to escape vaccine and infection-induced antibody responses. Breakthrough infections in thrice vaccinated adults were seen in over 50% of the vaccinees, resulting in a stronger antibody response than without infection. CONCLUSIONS Different three-dose vaccine combinations seem to induce considerable levels of neutralizing antibodies against most SARS-CoV-2 variants. However, the ability of the newer variants BQ1.1 and XBB 1.5 to escape vaccine-induced neutralizing antibody responses underlines the importance of updating vaccines as new variants emerge.
Collapse
Affiliation(s)
- Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eda Altan
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marika Skön
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anu Haveri
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Alina Iakubovskaia
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Rauno A Naves
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Simo Miettinen
- Department of Infectious Diseases, Meilahti Vaccination Research Center, MeVac, Helsinki, University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanni K Häkkinen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Lauri Ivaska
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Paula A Tähtinen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Johanna Lempainen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Anu Kantele
- Department of Infectious Diseases, Meilahti Vaccination Research Center, MeVac, Helsinki, University Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | | |
Collapse
|
49
|
Lasrado N, Collier ARY, Miller J, Hachmann NP, Liu J, Anand T, A. Bondzie E, Fisher JL, Mazurek CR, Patio RC, Rodrigues SL, Rowe M, Surve N, Ty DM, Wu C, Chicz TM, Tong X, Korber B, McNamara RP, Barouch DH. Waning immunity and IgG4 responses following bivalent mRNA boosting. SCIENCE ADVANCES 2024; 10:eadj9945. [PMID: 38394195 PMCID: PMC10889350 DOI: 10.1126/sciadv.adj9945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.
Collapse
Affiliation(s)
- Ninaad Lasrado
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ai-ris Y. Collier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Miller
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole P. Hachmann
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trisha Anand
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Esther A. Bondzie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jana L. Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Camille R. Mazurek
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert C. Patio
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Marjorie Rowe
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nehalee Surve
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Darren M. Ty
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cindy Wu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Bette Korber
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, NM, USA
| | | | - Dan H. Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
50
|
de Anda-Jáuregui G, Gómez-Romero L, Cañas S, Campos-Romero A, Alcántar-Fernández J, Cedro-Tanda A. COVID-19 reinfections in Mexico City: implications for public health. Front Public Health 2024; 11:1321283. [PMID: 38419814 PMCID: PMC10899476 DOI: 10.3389/fpubh.2023.1321283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024] Open
Abstract
Background Since its appearance, COVID-19 has immensely impacted our society. Public health measures, from the initial lockdowns to vaccination campaigns, have mitigated the crisis. However, SARS-CoV-2's persistence and evolving variants continue to pose global threats, increasing the risk of reinfections. Despite vaccination progress, understanding reinfections remains crucial for informed public health responses. Methods We collected available data on clinical and genomic information for SARS-CoV-2 samples from patients treated in Mexico City from 2020 epidemiological week 10 to 2023 epidemiological week 06 encompassing the whole public health emergency's period. To identify clinical data we utilized the SISVER (Respiratory Disease Epidemiological Surveillance System) database for SARS-CoV-2 patients who received medical attention in Mexico City. For genomic surveillance we analyzed genomic data previously uploaded to GISAID generated by Mexican institutions. We used these data sources to generate descriptors of case number, hospitalization, death and reinfection rates, and viral variant prevalence throughout the pandemic period. Findings The fraction of reinfected individuals in the COVID-19 infected population steadily increased as the pandemic progressed in Mexico City. Most reinfections occurred during the fifth wave (40%). This wave was characterized by the coexistence of multiple variants exceeding 80% prevalence; whereas all other waves showed a unique characteristic dominant variant (prevalence >95%). Shifts in symptom patient care type and severity were observed, 2.53% transitioned from hospitalized to ambulatory care type during reinfection and 0.597% showed the opposite behavior; also 7.23% showed a reduction in severity of symptoms and 6.05% displayed an increase in severity. Unvaccinated individuals accounted for the highest percentage of reinfections (41.6%), followed by vaccinated individuals (31.9%). Most reinfections occurred after the fourth wave, dominated by the Omicron variant; and after the vaccination campaign was already underway. Interpretation Our analysis suggests reduced infection severity in reinfections, evident through shifts in symptom severity and care patterns. Unvaccinated individuals accounted for most reinfections. While our study centers on Mexico City, its findings may hold implications for broader regions, contributing insights into reinfection dynamics.
Collapse
Affiliation(s)
- Guillermo de Anda-Jáuregui
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Investigadoras e Investigadoras por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Gómez-Romero
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Sofía Cañas
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Instituto Tecnológico de Estudios Superiores de Monterrey, Monterrey, Mexico
| | | | | | - Alberto Cedro-Tanda
- Núcleo B de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|