1
|
Quan L, Dai J, Luo Y, Wang L, Liu Y, Meng J, Yang F, You X. The 100 top-cited studies in systemic lupus erythematosus: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2387461. [PMID: 39149877 PMCID: PMC11328883 DOI: 10.1080/21645515.2024.2387461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory tissue disease. In view of the explosive growth in research on SLE, bibliometrics was performed to evaluate the 100 top-cited papers in this realm. We performed the search with terms "systemic lupus erythematosus" the Web of Science Core Collection database on May 3, 2023. Relevant literatures were screened. Data were extracted and analyzed by SPSS. The citations of 100 top-cited SLE studies spanned from 472 to 13,557. Most studies (60 out of 100) were conducted in the United States. Total citation times were positively associated with ACY, which was negatively correlated with the length of time since publication. Approximately half of the studies focused on the underlying mechanisms of SLE. New biologic therapies garnered attention and development. Our findings provide valuable insights into the developments in crucial areas of SLE and shed contributions to future studies.
Collapse
Affiliation(s)
- Liuliu Quan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiawen Dai
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Luo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lin Wang
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yue Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaqi Meng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Fan Yang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Jin Q, Ren F, Song P. Innovate therapeutic targets for autoimmune diseases: insights from proteome-wide mendelian randomization and Bayesian colocalization. Autoimmunity 2024; 57:2330392. [PMID: 38515381 DOI: 10.1080/08916934.2024.2330392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Despite growing knowledge regarding the pathogenesis of autoimmune diseases (ADs) onset, the current treatment remains unsatisfactory. This study aimed to identify innovative therapeutic targets for ADs through various analytical approaches. RESEARCH DESIGN AND METHODS Utilizing Mendelian randomization, Bayesian co-localization, phenotype scanning, and protein-protein interaction network, we explored potential therapeutic targets for 14 ADs and externally validated our preliminary findings. RESULTS This study identified 12 circulating proteins as potential therapeutic targets for six ADs. Specifically, IL12B was judged to be a risk factor for ankylosing spondylitis (p = 1.61E - 07). TYMP (p = 6.28E - 06) was identified as a protective factor for ulcerative colitis. For Crohn's disease, ERAP2 (p = 4.47E - 14), HP (p = 2.08E - 05), and RSPO3 (p = 6.52E - 07), were identified as facilitators, whereas FLRT3 (p = 3.42E - 07) had a protective effect. In rheumatoid arthritis, SWAP70 (p = 3.26E - 10), SIGLEC6 (p = 2.47E - 05), ISG15 (p = 3.69E - 05), and FCRL3 (p = 1.10E - 10) were identified as risk factors. B4GALT1 (p = 6.59E - 05) was associated with a lower risk of Type 1 diabetes (T1D). Interestingly, CTSH was identified as a protective factor for narcolepsy (p = 1.58E - 09) but a risk factor for T1D (p = 7.36E - 11), respectively. External validation supported the associations of eight of these proteins with three ADs. CONCLUSIONS Our integrated study identified 12 potential therapeutic targets for ADs and provided novel insights into future drug development for ADs.
Collapse
Affiliation(s)
- Qiubai Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Huoshen W, Zhu H, Xiong J, Chen X, Mou Y, Hou S, Yang B, Yi S, He Y, Huang H, Sun C, Li C. Identification of Potential Biomarkers and Therapeutic Targets for Periodontitis. Int Dent J 2024:S0020-6539(24)01554-5. [PMID: 39532570 DOI: 10.1016/j.identj.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic and multifactorial inflammatory disease. However, existing medications often lack sufficient therapeutic effects. The aim is to identify potential biomarkers and efficient therapeutic targets using Mendelian randomisation (MR) and single-cell analysis. METHODS MR analysis was conducted based on the cis-expression quantitative trait loci (cis-eQTLs) extracted from the eQTLGen Consortium and genome-wide association study (GWAS) data of periodontitis sourced from the Gene Lifestyle Interactions in Dental Endpoints (GLIDE) consortium (17,353 cases, 28,210 controls). Subsequently, colocalisation analysis was employed to detect whether genes and periodontitis shared the same casual variant. Finally, enrichment analysis, protein-protein interaction (PPI) networks, drug prediction, phenome-wide association study (PheWAS), molecular docking, and single-cell analysis were conducted to validate the significance of target genes. RESULTS Fourteen drug targets were significant related with periodontitis in MR analysis. Following the colocalisation and summary-data-based MR (SMR) analysis, 3 targets (S100A12, S100A9, and S100A8) were classified into tier 1 with strong evidence, 6 therapeutic targets (ADAM12, ADHFE1, BLK, HEBP1, SERPINE2, and TEK) were classified into tier 2 with moderate evidence, and 5 therapeutic targets (LY86, MMEL1, S100B, SPP1, and TRIB3) were classified into tier 3 with convincing evidence. PheWAS analysis showed that only TEK and SPP1 in tier 2 may induce side effects, including cardiometabolic and oncological issues. Molecular docking demonstrated strong binding between drugs and their respective protein targets. In the single-cell analysis, 5 target genes (HEBP1, LY86, S100A8, S100A9, and S100A12) exhibited enrichment in monocytes, while BLK and LY86 were primarily enriched in B cells. CONCLUSION The study identified 14 potential therapeutic targets for periodontitis. Among these, 3 therapeutic targets (S100A12, S100A9, and S100A8) demonstrated robust and well-supported results. Drugs designed to target these genes have a higher possibility of success in clinical trials, which are hopeful for prioritising periodontitis drug development.
Collapse
Affiliation(s)
- Wuda Huoshen
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China; Liangshan Minority Middle School, Liangshan, Sichuan, China
| | - Hanfang Zhu
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Junkai Xiong
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyu Chen
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yunjie Mou
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuhan Hou
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Yang
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Sha Yi
- Liangshan Minority Middle School, Liangshan, Sichuan, China
| | - Yahan He
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Liangshan Minority Middle School, Liangshan, Sichuan, China
| | - Haonan Huang
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Chen Sun
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Chunhui Li
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Zhang Y, Cai M, Huang X, Zhang L, Wen L, Zhu Z, Gao J, Sheng Y. ELF1 serves as a potential biomarker for the disease activity and renal involvement in systemic lupus erythematosus. Sci Rep 2024; 14:26590. [PMID: 39496744 PMCID: PMC11535329 DOI: 10.1038/s41598-024-78593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs, yet its underlying mechanisms remain unclear, and precise biomarkers are lacking. In this study, we employed Mendelian randomization and HEIDI tools to comprehensively analyze large-scale Genome-Wide Association Study (GWAS) and expression Quantitative Trait Loci (eQTL) data, leading to the identification of seven novel potential functional genes associated with SLE, including BLK, ELF1, STIM1, B3GALT6, APOLD1, INPP5B, and FHL3. Subsequent investigations revealed a significant downregulation of ELF1 gene expression in CD4+ T cells of SLE patients compared to healthy controls. Moreover, within various SLE subgroups, such as those with decreased serum complement C3 levels, positive urinary protein, new-onset skin rashes, and SLE Disease Activity Index (SLEDAI) scores ≥ 5, ELF1 expression displayed a consistent decreasing trend. Notably, ROC curve analysis highlighted the diagnostic potential of ELF1 expression in SLE (AUC = 0.9493), as well as its value in assessing disease activity (AUC = 0.6852) and renal involvement (AUC = 0.7363). In conclusion, this study underscores the potential of ELF1 as a SLE biomarker for diagnosis and evaluation, offering insights into the underlying mechanisms of SLE and paving the way for future therapeutic research.
Collapse
Affiliation(s)
- Yukun Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Dermatology, College of Medicine, Beilun Branch of the First Affiliated Hospital, Zhejiang University, No.1288, Lushan East Road, Ningbo, Zhejiang, 315800, China
| | - Minglong Cai
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230032, Anhui, China
| | - Xiaoyi Huang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Leilei Wen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yujun Sheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Department of Dermatology, China-Japan Friendship Hospital, Peking, China.
| |
Collapse
|
5
|
Zhang H, Zhang Z, Fan K, Chen Y, Xu P, Guo Y, Mo X. Deciphering cell-specific genetic insights: Unraveling the immunogenetic landscape of systemic lupus erythematosus. Mol Immunol 2024; 175:165-175. [PMID: 39476438 DOI: 10.1016/j.molimm.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/11/2024]
Abstract
Functional genes within genomic loci associated with systemic lupus erythematosus (SLE), as identified by genome-wide association studies, exhibit cell-specific characteristics. This study delves into the impact of genetic variants within SLE loci on gene expression in different types of immune cells, unraveling the complex interplay between genetics and immunopathogenesis. Through the integration of genetic association and single-cell transcriptomic sequencing data, we identified potential cell-specific susceptibility genes for SLE across diverse immune cell subsets. The single-cell eQTL analysis revealed 30,409 associations involving 3583 SLE-associated SNPs. These SNPs exhibited associations with expression levels of 147 genes across 14 distinct cell types. The single-cell summary data-based Mendelian randomization (SMR) analysis identified 119 significant associations between the expression levels of 44 genes and SLE. Notably, myeloid cells exhibited associations solely within the MHC region, while T, B, and natural killer cells showed associations with both MHC and non-MHC genes in relation to SLE. Analysis of single-cell transcriptomic data from 33 children SLE cases and 11 match controls (227,303 cells), as well as 7 adult SLE cases and 5 match controls (78,414 cells) highlights differential expression of key genes. Notably, genetic variants within HLA-DRB1, HLA-DRB5, HLA-DQA1, HLA-DQB1, IRF7, IRF5, BLK and HLA-DPA1 play a pivotal role in mediating immune dysregulation in specific immune cell types. Our study contributes to a comprehensive understanding of the intricate relationships between genetics, gene expression and SLE susceptibility. The findings shed light on the cell-specific impacts of genetic variants within SLE-associated genomic loci.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China
| | - Zhentao Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China; Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Kedi Fan
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China; Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Yuxi Chen
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China
| | - Peng Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| | - Xingbo Mo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China; Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China.
| |
Collapse
|
6
|
Zhang H, Fan K, Chen Y, Xu P, Zhang Z, Mo X, Guo Y. Genome-Wide Identification of Cell Type-Specific Susceptibility Genes for SLE Through the Analysis of RNA Modification-Associated SNPs. Immunol Invest 2024; 53:1264-1278. [PMID: 39230170 DOI: 10.1080/08820139.2024.2399577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
INTRODUCTION This study aimed to elucidate the functional genes associated with systemic lupus erythematosus (SLE) in various cell types through the utilization of RNAm-SNPs. METHODS Utilizing large-scale genetic data, we identified associations between RNAm-SNPs and SLE. The association between RNAm-SNPs and bulk and single-cell mRNA expression (eQTL) and protein levels (pQTL) were examined. Mendelian randomization and differential expression analyses were conducted to explore the links between gene expression, protein levels, and SLE. RESULTS We identified 41 RNAm-SNPs that were significantly associated with SLE. The GWAS signals exhibited notable enrichment in m6A-SNPs and m7G-SNPs. These RNAm-SNPs showed both eQTL and pQTL effects. In our single-cell analysis, 16 RNAm-SNPs exhibited associations with gene expression levels across 13 distinct cell types, including HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, HLA-DRB1 and IRF7. We identified 58 noteworthy associations between the expression levels of 20 genes and SLE across 12 distinct immune cell types. Notably, HLA-DQB1, HLA-DRB1 and IRF7 exhibited abnormalities in CD8+ T cells, IRF7 displayed abnormal expression in CD4+ T cells, while HLA-DRB1 and IRF7 were also distinctly perturbed in natural killer cells. DISCUSSION This study advances our understanding of the genetic basis of SLE by highlighting the significance of RNAm-SNPs and immune cell gene expression in SLE.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Kedi Fan
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuxi Chen
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Peng Xu
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhentao Zhang
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufan Guo
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Ghodke-Puranik Y, Olferiev M, Crow MK. Systemic lupus erythematosus genetics: insights into pathogenesis and implications for therapy. Nat Rev Rheumatol 2024; 20:635-648. [PMID: 39232240 DOI: 10.1038/s41584-024-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prime example of how the interplay between genetic and environmental factors can trigger systemic autoimmunity, particularly in young women. Although clinical disease can take years to manifest, risk is established by the unique genetic makeup of an individual. Genome-wide association studies have identified almost 200 SLE-associated risk loci, yet unravelling the functional effect of these loci remains a challenge. New analytic tools have enabled researchers to delve deeper, leveraging DNA sequencing and cell-specific and immune pathway analysis to elucidate the immunopathogenic mechanisms. Both common genetic variants and rare non-synonymous mutations can interact to increase SLE risk. Notably, variants strongly associated with SLE are often located in genome super-enhancers that regulate MHC class II gene expression. Additionally, the 3D conformations of DNA and RNA contribute to genome regulation and innate immune system activation. Improved therapies for SLE are urgently needed and current and future knowledge from genetic and genomic research should provide new tools to facilitate patient diagnosis, enhance the identification of therapeutic targets and optimize testing of agents.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Gao Y, Zhou Y, Lin Z, Chen F, Wu H, Peng C, Xie Y. Prioritizing drug targets in systemic lupus erythematosus from a genetic perspective: a druggable genome-wide Mendelian randomization study. Clin Rheumatol 2024; 43:2843-2856. [PMID: 38997544 PMCID: PMC11330408 DOI: 10.1007/s10067-024-07059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with an unsatisfactory state of treatment. We aim to explore novel targets for SLE from a genetic standpoint. METHODS Cis-expression quantitative trait loci (eQTLs) for whole blood from 31,684 samples provided by the eQTLGen Consortium as well as two large SLE cohorts were utilized for screening and validating genes causally associated with SLE. Colocalization analysis was employed to further investigate whether changes in the expression of risk genes, as indicated by GWAS signals, influence the occurrence and development of SLE. Targets identified for drug development were evaluated for potential side effects using a phenome-wide association study (PheWAS). Based on the multiple databases, we explored the interactions between drugs and genes for drug prediction and the assessment of current medications. RESULTS The analysis comprised 5427 druggable genes in total. The two-sample Mendelian randomization (MR) in the discovery phase identified 20 genes causally associated with SLE and validated 8 genes in the replication phase. Colocalization analysis ultimately identified five genes (BLK, HIST1H3H, HSPA1A, IL12A, NEU1) with PPH4 > 0.8. PheWAS further indicated that drugs acting on BLK and IL12A are less likely to have potential side effects, while HSPA1A and NEU1 were associated with other traits. Four genes (BLK, HSPA1A, IL12A, NEU1) have been targeted for drug development in autoimmune diseases and other conditions. CONCLUSIONS .This study identified five genes as therapeutic targets for SLE. Repurposing and developing drugs targeting these genes is anticipated to improve the existing treatment state for SLE. Key Points • We identified five gene targets of priority for the treatment of SLE, with BLK and IL12A indicating fewer side effects. • Among the existing drugs that target these candidate genes, Ustekinumab, Ebdarokimab, and Briakinumab (targeting the IL12 gene) and CD24FC (targeting HSPA1A) may potentially be repurposed for the treatment of SLE.
Collapse
Affiliation(s)
- Yuan Gao
- The First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Youtao Zhou
- The First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Zikai Lin
- Nanshan College, Guangzhou Medical University, Guangzhou, China
| | - Fengzhen Chen
- The First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Haiyang Wu
- The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Chusheng Peng
- The First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Yingying Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, China.
| |
Collapse
|
9
|
Li X, Villanueva V, Jimenez V, Nguyen B, Chauhan NR, Khan SQ, Dorschner JM, Jensen MA, Alzahrani K, Wei H, Cimbaluk DJ, Wei DC, Jolly M, Lopez-Rodriguez D, Pineda SB, Barbosa A, Vazquez-Padron RI, Faridi HM, Reiser J, Niewold TB, Gupta V. CD11b suppresses TLR7-driven inflammatory signaling to protect against lupus nephritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605143. [PMID: 39211173 PMCID: PMC11361177 DOI: 10.1101/2024.07.26.605143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lupus Nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) that affects kidney function. Here, we investigated the role of CD11b, a protein encoded by the ITGAM gene, in the development of LN and its functional activation as a therapeutic strategy. Genetic coding variants of ITGAM significantly increase the risk for SLE and LN by producing a less active CD11b and leading to elevated levels of type I interferon (IFN I). However, a molecular mechanism for how these variants increase LN risk has been unclear. Here, we determined that these variants also significantly associate with elevations in soluble urokinase plasminogen activator receptor (suPAR), a known biomarker linked to kidney disease, suggesting a novel molecular connection. Pharmacologic activation of CD11b with a novel, clinical-stage agonist ONT01 significantly suppressed suPAR production in myeloid cells and reduced systemic inflammation and kidney damage in multiple experimental models of LN. Importantly, delaying treatment with ONT01 until after disease onset also significantly reduced serum suPAR and inflammatory cytokines, and decreased immune complex deposition in the glomerulus, glomerulonephritis and albuminuria, suggesting that CD11b activation is therapeutic for LN. Genetic activation of CD11b via a gain-of-function CD11b mutation also showed complete protection from LN, whereas genetic deletion of CD11b worsened the disease in mice, providing further evidence of the role of CD11b activation in regulating LN. Finally, transfer of human LN PBMCs generated human LN like disease in mice that was significantly reduced by ONT01. Together, these data provide strong evidence that ONT01 mediated CD11b activation can therapeutically modulate TLR7-driven inflammation and protect against LN. These findings support clinical development of CD11b agonists as novel therapeutics for treating lupus nephritis in human patients.
Collapse
|
10
|
El-Halwagi A, Agarwal SK. Insights into the genetic landscape of systemic sclerosis. Best Pract Res Clin Rheumatol 2024:101981. [PMID: 39068103 DOI: 10.1016/j.berh.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease that clinically manifests as progressive fibrosis of the skin and internal organs. Autoimmunity and endothelial dysfunction play important roles in the development of SSc but the causes of SSc remain unknown. Accumulating evidence, first from familial aggregation studies and subsequently from candidate gene association studies and genome wide association studies underscore the crucial contributions of genetics to the development of SSc. The identification of polymorphisms in the HLA region as well as non-HLA loci is important for understanding the risks of developing SSc but can also provide important pathogenic insight in SSc. While not translating into clinic practice yet, understanding the genetic landscape of SSc will hopefully assist in the diagnosis and management of patients with and/or at risk of developing SSc in the future. Herein we review the studies that investigate genetic risks of SSc susceptibility.
Collapse
Affiliation(s)
- Ali El-Halwagi
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Santiago-Lamelas L, Dos Santos-Sobrín R, Carracedo Á, Castro-Santos P, Díaz-Peña R. Utility of polygenic risk scores to aid in the diagnosis of rheumatic diseases. Best Pract Res Clin Rheumatol 2024:101973. [PMID: 38997822 DOI: 10.1016/j.berh.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Rheumatic diseases (RDs) are characterized by autoimmunity and autoinflammation and are recognized as complex due to the interplay of multiple genetic, environmental, and lifestyle factors in their pathogenesis. The rapid advancement of genome-wide association studies (GWASs) has enabled the identification of numerous single nucleotide polymorphisms (SNPs) associated with RD susceptibility. Based on these SNPs, polygenic risk scores (PRSs) have emerged as promising tools for quantifying genetic risk in this disease group. This chapter reviews the current status of PRSs in assessing the risk of RDs and discusses their potential to improve the accuracy of the diagnosis of these complex diseases through their ability to discriminate among different RDs. PRSs demonstrate a high discriminatory capacity for various RDs and show potential clinical utility. As GWASs continue to evolve, PRSs are expected to enable more precise risk stratification by integrating genetic, environmental, and lifestyle factors, thereby refining individual risk predictions and advancing disease management strategies.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Raquel Dos Santos-Sobrín
- Reumatología, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
12
|
Al-Mayouf SM, Hamad A, Kaidali W, Alhuthil R, Alsaleem A. Clinical characteristics and prognostic value of autoantibody profile in children with monogenic lupus. JOURNAL OF RHEUMATIC DISEASES 2024; 31:143-150. [PMID: 38957362 PMCID: PMC11215254 DOI: 10.4078/jrd.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 07/04/2024]
Abstract
Objective To report the frequency of selected autoantibodies and their associations with clinical features in Arab children with monogenic lupus. Methods This study was retrospective single-center study of genetically confirmed monogenic lupus cases at childhood lupus clinic at King Faisal Specialist Hospital and Research Center, from June 1997 to July 2022. We excluded familial lupus without genetic testing and patients with insufficient data. Collected data comprised clinical and laboratory findings, including the autoantibody profile, which included the anti-double-stranded DNA (anti-dsDNA), anti-Smith, anti-Sjögren's-syndrome-related antigen A (anti-SSA), anti-Sjögren's-syndrome-related antigen B (anti-SSB), and antiphospholipid (APL) antibodies. Also, disease activity and accrual disease damage were collected at the last follow-up visit. Results This study enrolled 27 Arab patients (14 males) with a median age of 11 years (interquartile range 8.0~16 years), with 63% having early-onset disease. The consanguinity rate and family history of lupus were high (74.1% and 55.6%, respectively). The most frequent clinical features were hematological (96.3%), fever (81.5%), mucocutaneous lesions (85.2%), and renal (66.7%). The frequency of the APL antibodies was 59.3%, anti-dsDNA was 55.6%, and anti-Smith and anti-SSA were 48.2% and 44.4%, respectively. Moreover, dsDNA antibodies were significantly associated with musculoskeletal complaints (p<0.05). Likewise, both anti-Smith and anti-SSA antibodies were linked to failure to thrive and recurrent infections in the univariate analysis (p<0.05). Conclusion Our study reveals autoantibody frequencies and their association with clinical and prognostic in a substantial monogenic lupus cohort. Distinct clinical manifestations and prognosis association with certain autoantibodies support the idea that monogenic lupus is a distinctive form of lupus. Larger studies needed to validate these findings.
Collapse
Affiliation(s)
- Sulaiman M Al-Mayouf
- Depatrment of Pedaitric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Pediatrics, Alfaisal University, Riyadh, Saudi Arabia
| | - Alaa Hamad
- Department of Pediatrics, Alfaisal University, Riyadh, Saudi Arabia
| | - Wassima Kaidali
- Department of Pediatrics, Alfaisal University, Riyadh, Saudi Arabia
| | - Raghad Alhuthil
- Depatrment of Pedaitric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alhanouf Alsaleem
- Depatrment of Pedaitric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Ehirchiou D, Bernabei I, Pandian VD, Nasi S, Chobaz V, Castelblanco M, So A, Martinon F, Li X, Acha-Orbea H, Hugle T, Zhang L, Busso N. The integrin CD11b inhibits MSU-induced NLRP3 inflammasome activation in macrophages and protects mice against MSU-induced joint inflammation. Arthritis Res Ther 2024; 26:119. [PMID: 38863059 PMCID: PMC11165854 DOI: 10.1186/s13075-024-03350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE In gout, monosodium urate crystals are taken up by macrophages, triggering the activation of the NLRP3 inflammasome and the maturation of IL-1β. This study aimed to investigate the role of integrin CD11b in inflammasome activation in macrophages stimulated by MSU. METHODS BMDM from WT and CD11b KO mice were stimulated in vitro with MSU crystals. Cellular supernatants were collected to assess the expression of the inflammatory cytokines by enzyme-linked immunosorbent assay and western blot methods. The role of integrin CD11b in MSU-induced gouty arthritis in vivo was investigated by intra-articular injection of MSU crystals. Real-time extracellular acidification rate and oxygen consumption rate of BMDMs were measured by Seahorse Extracellular Flux Analyzer. RESULTS We demonstrate that CD11b-deficient mice developed exacerbated gouty arthritis with increased recruitment of leukocytes in the joint and higher IL-1β levels in the sera. In macrophages, genetic deletion of CD11b induced a shift of macrophage metabolism from oxidative phosphorylation to glycolysis, thus decreasing the overall generation of intracellular ATP. Upon MSU stimulation, CD11b-deficient macrophages showed an exacerbated secretion of IL-1β. Treating wild-type macrophages with a CD11b agonist, LA1, inhibited MSU-induced release of IL-1β in vitro and attenuated the severity of experimental gouty arthritis. Importantly, LA1, was also effective in human cells as it inhibited MSU-induced release of IL-1β by peripheral blood mononuclear cells from healthy donors. CONCLUSION Our data identified the CD11b integrin as a principal cell membrane receptor that modulates NLRP3 inflammasome activation by MSU crystal in macrophages, which could be a potential therapeutic target to treat gouty arthritis in human patients.
Collapse
Grants
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
Collapse
Affiliation(s)
- Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Vishnuprabu Durairaj Pandian
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Veronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mariela Castelblanco
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Fabio Martinon
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Xiaoyun Li
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Thomas Hugle
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Chen YC, Liu TY, Lu HF, Huang CM, Liao CC, Tsai FJ. Multiple polygenic risk scores can improve the prediction of systemic lupus erythematosus in Taiwan. Lupus Sci Med 2024; 11:e001035. [PMID: 38724181 PMCID: PMC11086529 DOI: 10.1136/lupus-2023-001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE To identify new genetic variants associated with SLE in Taiwan and establish polygenic risk score (PRS) models to improve the early diagnostic accuracy of SLE. METHODS The study enrolled 2429 patients with SLE and 48 580 controls from China Medical University Hospital in Taiwan. A genome-wide association study (GWAS) and PRS analyses of SLE and other three SLE markers, namely ANA, anti-double-stranded DNA antibody (dsDNA) and anti-Smith antibody (Sm), were conducted. RESULTS Genetic variants associated with SLE were identified through GWAS. Some novel genes, which have been previously reported, such as RCC1L and EGLN3, were revealed to be associated with SLE in Taiwan. Multiple PRS models were established, and optimal cut-off points for each PRS were determined using the Youden Index. Combining the PRSs for SLE, ANA, dsDNA and Sm yielded an area under the curve of 0.64 for the optimal cut-off points. An analysis of human leucocyte antigen (HLA) haplotypes in SLE indicated that individuals with HLA-DQA1*01:01 and HLA-DQB1*05:01 were at a higher risk of being classified into the SLE group. CONCLUSIONS The use of PRSs to predict SLE enables the identification of high-risk patients before abnormal laboratory data were obtained or symptoms were manifested. Our findings underscore the potential of using PRSs and GWAS in identifying SLE markers, offering promise for early diagnosis and prediction of SLE.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Ming Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Chou Liao
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Departments of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
15
|
Sun W, Zhu C, Li Y, Wu X, Shi X, Liu W. B cell activation and autoantibody production in autoimmune diseases. Best Pract Res Clin Rheumatol 2024; 38:101936. [PMID: 38326197 DOI: 10.1016/j.berh.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
B cells are central players in the immune system, responsible for producing antibodies and modulating immune responses. This review explores the intricate relationship between aberrant B cell activation and the development of autoimmune diseases, emphasizing the essential role of B cells in these conditions. We also summarize B cell receptor signaling and Toll-like receptor signaling in B cell activation, as well as their association with autoimmune diseases, shedding light on the molecular mechanisms behind these associations. Additionally, we explore the clinical observations involving B cell activation and their significance in autoimmune disease management. Various clinical studies related to B cell-targeted therapies are also discussed, offering insights into potential avenues for improving treatment strategies. Overall, this review serves as a resource for researchers and clinicians in the field of immunology and autoimmune diseases, providing a general view of B cell signaling and its role in autoimmunity.
Collapse
Affiliation(s)
- Wenbo Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, No. 1, Qinghua Yuan, New Biology Bldg, Haidian District, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
| | - Can Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, No. 1, Qinghua Yuan, New Biology Bldg, Haidian District, Beijing, 100084, China.
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, No. 1, Qinghua Yuan, New Biology Bldg, Haidian District, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guanlin Road, 471000, Luoyang, China.
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guanlin Road, 471000, Luoyang, China.
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, No. 1, Qinghua Yuan, New Biology Bldg, Haidian District, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
16
|
Zhang Y, Hou G, Shen N. Non-coding DNA variants for risk in lupus. Best Pract Res Clin Rheumatol 2024; 38:101937. [PMID: 38429183 DOI: 10.1016/j.berh.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is a multifactorial autoimmune disease that arises from a dynamic interplay between genetics and environmental triggers. The advent of sophisticated genomics technology has catalyzed a shift in our understanding of disease etiology, spotlighting the pivotal role of non-coding DNA variants in SLE pathogenesis. In this review, we present a comprehensive examination of the non-coding variants associated with SLE, shedding light on their role in influencing disease risk and progression. We discuss the latest methodological advancements that have been instrumental in the identification and functional characterization of these genomic elements, with a special focus on the transformative power of CRISPR-based gene-editing technologies. Additionally, the review probes into the therapeutic opportunities that arise from modulating non-coding regions associated with SLE. Through an exploration of the complex network of non-coding DNA, this review aspires to decode the genetic puzzle of SLE and set the stage for groundbreaking gene-based therapeutic interventions and the advancement of precision medicine strategies tailored to SLE management.
Collapse
Affiliation(s)
- Yutong Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China.
| |
Collapse
|
17
|
Wang W, Huang M, Ge W, Feng J, Zhang X, Li C, Wang L. Identifying serum metabolite biomarkers for autoimmune diseases: a two-sample mendelian randomization and meta-analysis. Front Immunol 2024; 15:1300457. [PMID: 38686387 PMCID: PMC11056515 DOI: 10.3389/fimmu.2024.1300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Background Extensive evidence suggests a link between alterations in serum metabolite composition and various autoimmune diseases (ADs). Nevertheless, the causal relationship underlying these correlations and their potential utility as dependable biomarkers for early AD detection remain uncertain. Objective The objective of this study was to employ a two-sample Mendelian randomization (MR) approach to ascertain the causal relationship between serum metabolites and ADs. Additionally, a meta-analysis incorporating data from diverse samples was conducted to enhance the validation of this causal effect. Materials and methods A two-sample MR analysis was performed to investigate the association between 486 human serum metabolites and six prevalent autoimmune diseases: systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), dermatomyositis (DM), type 1 diabetes (T1D), and celiac disease (CeD). The inverse variance weighted (IVW) model was employed as the primary analytical technique for the two-sample MR analysis, aiming to identify blood metabolites linked with autoimmune diseases. Independent outcome samples were utilized for further validation of significant blood metabolites. Additional sensitivity analyses, including heterogeneity test, horizontal pleiotropy test, and retention rate analysis, were conducted. The results from these analyses were subsequently meta-integrated. Finally, metabolic pathway analysis was performed using the KEGG and Small Molecule Pathway Databases (SMPD). Results Following the discovery and replication phases, eight metabolites were identified as causally associated with various autoimmune diseases, encompassing five lipid metabolism types: 1-oleoylglycerophosphoethanolamine, 1-arachidonoylglycerophosphoethanolamine, 1-myristoylglycerophosphocholine, arachidonate (20:4 n6), and glycerol. The meta-analysis indicated that three out of these eight metabolites exhibited a protective effect, while the remaining five were designated as pathogenic factors. The robustness of these associations was further confirmed through sensitivity analysis. Moreover, an investigation into metabolic pathways revealed a significant correlation between galactose metabolism and autoimmune diseases. Conclusion This study revealed a causal relationship between lipid metabolites and ADs, providing novel insights into the mechanism of AD development mediated by serum metabolites and possible biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Manli Huang
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wei Ge
- Department of Field and Disaster Nursing, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junling Feng
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xihua Zhang
- Department of Neurological Intensive Care Rehabilitation, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Chen Li
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ling Wang
- Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
18
|
Yeo NKW, Lim CK, Yaung KN, Khoo NKH, Arkachaisri T, Albani S, Yeo JG. Genetic interrogation for sequence and copy number variants in systemic lupus erythematosus. Front Genet 2024; 15:1341272. [PMID: 38501057 PMCID: PMC10944961 DOI: 10.3389/fgene.2024.1341272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Early-onset systemic lupus erythematosus presents with a more severe disease and is associated with a greater genetic burden, especially in patients from Black, Asian or Hispanic ancestries. Next-generation sequencing techniques, notably whole exome sequencing, have been extensively used in genomic interrogation studies to identify causal disease variants that are increasingly implicated in the development of autoimmunity. This Review discusses the known casual variants of polygenic and monogenic systemic lupus erythematosus and its implications under certain genetic disparities while suggesting an age-based sequencing strategy to aid in clinical diagnostics and patient management for improved patient care.
Collapse
Affiliation(s)
- Nicholas Kim-Wah Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Che Kang Lim
- Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Translation Research, Singapore General Hospital, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Kim Huat Khoo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| |
Collapse
|
19
|
Cai H, Zhang J, Xu H, Sun W, Wu W, Dong C, Zhou P, Xue C, Nan Y, Ni Y, Wu X, Gu Z, Chen M, Wang Y. ALOX5 drives the pyroptosis of CD4 + T cells and tissue inflammation in rheumatoid arthritis. Sci Signal 2024; 17:eadh1178. [PMID: 38412254 DOI: 10.1126/scisignal.adh1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Pyroptosis, an inflammatory form of programmed cell death, is linked to the pathology of rheumatoid arthritis (RA). Here, we investigated the molecular mechanism underlying pyroptosis in T cells isolated from patients with RA. Compared with healthy individuals, patients with RA had more pyroptotic CD4+ T cells in blood and synovia, which correlated with clinical measures of disease activity. Moreover, the mRNA expression and protein abundance of arachidonate 5-lipoxygenase (ALOX5), which converts arachidonic acid to leukotriene A4 (LTA4), were increased in CD4+ T cells from patients with RA and, among patients with RA, were lowest in those in clinical remission. Knockdown or pharmacological inhibition of ALOX5 suppressed CD4+ T cell pyroptosis and improved symptoms in two rodent models of RA. Mechanistically, the increase in ALOX5 activity in RA CD4+ T cells enhanced the production of the LTA4 derivative LTB4, which stimulated Ca2+ influx through ORAI3 channels, leading to the activation of NLRP3 inflammasomes and pyroptosis. Our findings reveal a role for ALOX5 in RA and provide a molecular basis for further exploring the clinical utility of ALOX5 inhibition in RA and for using ALOX5 as a biomarker to distinguish active disease and remission in RA.
Collapse
Affiliation(s)
- Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yingchen Ni
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
20
|
Stamellou E, Seikrit C, Tang SCW, Boor P, Tesař V, Floege J, Barratt J, Kramann R. IgA nephropathy. Nat Rev Dis Primers 2023; 9:67. [PMID: 38036542 DOI: 10.1038/s41572-023-00476-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. Clinical manifestations of IgAN vary from asymptomatic with microscopic or intermittent macroscopic haematuria and stable kidney function to rapidly progressive glomerulonephritis. IgAN has been proposed to develop through a 'four-hit' process, commencing with overproduction and increased systemic presence of poorly O-glycosylated galactose-deficient IgA1 (Gd-IgA1), followed by recognition of Gd-IgA1 by antiglycan autoantibodies, aggregation of Gd-IgA1 and formation of polymeric IgA1 immune complexes and, lastly, deposition of these immune complexes in the glomerular mesangium, leading to kidney inflammation and scarring. IgAN can only be diagnosed by kidney biopsy. Extensive, optimized supportive care is the mainstay of therapy for patients with IgAN. For those at high risk of disease progression, the 2021 KDIGO Clinical Practice Guideline suggests considering a 6-month course of systemic corticosteroid therapy; however, the efficacy of systemic steroid treatment is under debate and serious adverse effects are common. Advances in understanding the pathophysiology of IgAN have led to clinical trials of novel targeted therapies with acceptable safety profiles, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, as well as blockade of complement components.
Collapse
Affiliation(s)
- Eleni Stamellou
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Seikrit
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Peter Boor
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Vladimir Tesař
- Department of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
21
|
Tang Y, Yang D, Ma J, Wang N, Qian W, Wang B, Qin Y, Lu M, Lv H. Bioinformatics analysis and identification of hub genes of neutrophils in Kawasaki disease: a pivotal study. Clin Rheumatol 2023; 42:3089-3096. [PMID: 37394620 DOI: 10.1007/s10067-023-06636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is considered the main contributor to acquired heart diseases in developed countries. However, the precise pathogenesis of KD remains unclear. Neutrophils play roles in KD. This study aimed to select hub genes in neutrophils in acute KD. METHODS mRNA microarray of neutrophils from four acute KD patients and three healthy controls was performed to screen differentially expressed mRNAs (DE-mRNAs). DE-mRNAs were analyzed and predicted by Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction networks. Real time-PCR was finally conducted to confirm the reliability and validity of the expression level of DE-mRNAs from blood samples of healthy controls and KD patients in both acute and convalescent stage. RESULTS A total of 1950 DE-mRNAs including 1287 upregulated and 663 downregulated mRNAs were identified. GO and KEGG analyses revealed the DE-mRNAs were mainly enriched in the regulation of transcription from RNA polymerase II promoter, apoptotic process, intracellular signal transduction, protein phosphorylation, protein transport, metabolic pathways, carbon metabolism, lysosome, apoptosis, pyrimidine metabolism, alzheimer disease, prion disease, sphingolipid metabolism, huntington disease, glucagon signaling pathway, non-alcoholic fatty liver disease, pyruvate metabolism, sphingolipid signaling pathway, and peroxisome. Twenty hub DE-mRNAs were selected including GAPDH, GNB2L1, PTPRC, GART, HIST2H2AC, ACTG1, H2AFX, CREB1, ATP5A1, ENO1, RAC2, PKM, BCL2L1, ATP5B, MRPL13, SDHA, TLR4, RUVBL2, TXNRD1, and ITGAM. The real-time PCR results showed that BCL2L1 and ITGAM mRNA were upregulated in acute KD and were normalized in the convalescent stage. CONCLUSIONS These findings may improve our understanding of neutrophils in KD. Key Points • Neutrophilic BCL2L1 and ITGAM mRNA were first reported to be correlated with the pathogenic mechanism of KD.
Collapse
Affiliation(s)
- Yunjia Tang
- Department of Cardiology, Children's Hospital of Soochow University, No 92, Zhongnan Street, Suzhou, People's Republic of China
| | - Daoping Yang
- Department of Cardiology, Children's Hospital of Soochow University, No 92, Zhongnan Street, Suzhou, People's Republic of China
| | - Jin Ma
- Department of Pharmacy, Children's Hospital of Soochow University, No 92, Zhongnan Street, Suzhou, People's Republic of China
| | - Nana Wang
- Department of Cardiology, Children's Hospital of Soochow University, No 92, Zhongnan Street, Suzhou, People's Republic of China
| | - Weiguo Qian
- Department of Cardiology, Children's Hospital of Soochow University, No 92, Zhongnan Street, Suzhou, People's Republic of China
| | - Bo Wang
- Department of Cardiology, Children's Hospital of Soochow University, No 92, Zhongnan Street, Suzhou, People's Republic of China
| | - Yiming Qin
- Department of Pediatrics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No 6, Huanghe Road, Changshu, People's Republic of China
| | - Meihua Lu
- Department of Pediatrics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No 6, Huanghe Road, Changshu, People's Republic of China.
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, No 92, Zhongnan Street, Suzhou, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Systemic lupus erythematosus (SLE) is a severe multisystem autoimmune disease that can cause injury in almost every body system. While considered a classic example of autoimmunity, it is still relatively poorly understood. Treatment with immunosuppressive agents is challenging, as many agents are relatively non-specific, and the underlying disease is characterized by unpredictable flares and remissions. This State of The Art Review provides a comprehensive current summary of systemic lupus erythematosus based on recent literature. In basic and translational science, this summary includes the current state of genetics, epigenetics, differences by ancestry, and updates about the molecular and immunological pathogenesis of systemic lupus erythematosus. In clinical science, the summary includes updates in diagnosis and classification, clinical features and subphenotypes, and current guidelines and strategies for treatment. The paper also provides a comprehensive review of the large number of recent clinical trials in systemic lupus erythematosus. Current knowns and unknowns are presented, and potential directions for the future are suggested. Improved knowledge of immunological pathogenesis and the molecular differences that exist between patients should help to personalize treatment, minimize side effects, and achieve better outcomes in this difficult disease.
Collapse
Affiliation(s)
- Eric F Morand
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Rheumatology, Monash Health, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
23
|
Chepelev I, Harley IT, Harley JB. Modeling of horizontal pleiotropy identifies possible causal gene expression in systemic lupus erythematosus. FRONTIERS IN LUPUS 2023; 1:1234578. [PMID: 37799268 PMCID: PMC10554754 DOI: 10.3389/flupu.2023.1234578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Background Systemic lupus erythematosus (SLE) is a chronic autoimmune condition with complex causes involving genetic and environmental factors. While genome-wide association studies (GWASs) have identified genetic loci associated with SLE, the functional genomic elements responsible for disease development remain largely unknown. Mendelian Randomization (MR) is an instrumental variable approach to causal inference based on data from observational studies, where genetic variants are employed as instrumental variables (IVs). Methods This study utilized a two-step strategy to identify causal genes for SLE. In the first step, the classical MR method was employed, assuming the absence of horizontal pleiotropy, to estimate the causal effect of gene expression on SLE. In the second step, advanced probabilistic MR methods (PMR-Egger, MRAID, and MR-MtRobin) were applied to the genes identified in the first step, considering horizontal pleiotropy, to filter out false positives. PMR-Egger and MRAID analyses utilized whole blood expression quantitative trait loci (eQTL) and SLE GWAS summary data, while MR-MtRobin analysis used an independent eQTL dataset from multiple immune cell types along with the same SLE GWAS data. Results The initial MR analysis identified 142 genes, including 43 outside of chromosome 6. Subsequently, applying the advanced MR methods reduced the number of genes with significant causal effects on SLE to 66. PMR-Egger, MRAID, and MR-MtRobin, respectively, identified 13, 7, and 16 non-chromosome 6 genes with significant causal effects. All methods identified expression of PHRF1 gene as causal for SLE. A comprehensive literature review was conducted to enhance understanding of the functional roles and mechanisms of the identified genes in SLE development. Conclusions The findings from the three MR methods exhibited overlapping genes with causal effects on SLE, demonstrating consistent results. However, each method also uncovered unique genes due to different modelling assumptions and technical factors, highlighting the complementary nature of the approaches. Importantly, MRAID demonstrated a reduced percentage of causal genes from the Major Histocompatibility complex (MHC) region on chromosome 6, indicating its potential in minimizing false positive findings. This study contributes to unraveling the mechanisms underlying SLE by employing advanced probabilistic MR methods to identify causal genes, thereby enhancing our understanding of SLE pathogenesis.
Collapse
Affiliation(s)
- Iouri Chepelev
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
| | - Isaac T.W. Harley
- US Department of Veterans Affairs Medical Center, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - John B. Harley
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
| |
Collapse
|
24
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
25
|
Xiao Z, Luo S, Zhou Y, Pang H, Yin W, Qin J, Xie Z, Zhou Z. Association of the rs1990760, rs3747517, and rs10930046 polymorphisms in the IFIH1 gene with susceptibility to autoimmune diseases: a meta-analysis. Front Immunol 2023; 14:1051247. [PMID: 37426657 PMCID: PMC10327432 DOI: 10.3389/fimmu.2023.1051247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Objective Interferon induced with helicase C domain 1 (IFIH1) single-nucleotide polymorphisms (SNP) rs1990760, rs3747517, and rs10930046 have been shown to be closely related to the risk of autoimmune diseases. The aim of this study was firstly to examine the association of the rs1990760 with type 1 diabetes (T1D) in a Chinese population. Secondly, to assess the association of SNP rs1990760, rs3747517, and rs10930046 with autoimmune diseases susceptibility. Methods A total of 1,273 T1D patients and 1,010 healthy control subjects in a Chinese population were enrolled in this case-control study. Subsequently, we performed a meta-analysis on the association of the SNP rs1990760, rs3747517, and rs10930046 in the IFIH1 gene with susceptibility to autoimmune diseases. The random and fixed genetic effects models were used to evaluate the association and the effect sizes, including odds ratios (OR) and 95% confidence intervals (CI). Stratification analyses based on ethnicity and the type of autoimmune diseases were performed. Results IFIH1 SNP rs1990760 was not associated with a significant risk of T1D in the Chinese population in the case-control study. A total of 35 studies including 70,966 patients and 124,509 controls were identified and included in the meta-analysis. The results displayed significant associations between IFIH1 rs1990760 A allele and rs3747517 C allele and autoimmune diseases risk (OR=1.09, 95% CI: 1.01~1.17; OR=1.24, 95% CI: 1.15~1.25, respectively). Stratified analysis indicated a significant association rs1990760 and rs3747517 with autoimmune diseases risk in the Caucasian population (OR=1.11, 95% CI: 1.02~1.20, OR=1.29, 95% CI: 1.18~1.41, respectively). Conclusions This study revealed no association between IFIH1 SNP rs1990760 and T1D in Chinese. Furthermore, the meta-analysis indicated that rs1990760 and rs3747517 polymorphisms, confer susceptibility to autoimmune diseases, especially in the Caucasian population.
Collapse
Affiliation(s)
- Zilin Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuemin Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenfeng Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Bajnok A, Serény-Litvai T, Temesfői V, Nörenberg J, Herczeg R, Kaposi A, Berki T, Mezosi E. An Optimized Flow Cytometric Method to Demonstrate the Differentiation Stage-Dependent Ca 2+ Flux Responses of Peripheral Human B Cells. Int J Mol Sci 2023; 24:ijms24109107. [PMID: 37240453 DOI: 10.3390/ijms24109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium (Ca2+) flux acts as a central signaling pathway in B cells, and its alterations are associated with autoimmune dysregulation and B-cell malignancies. We standardized a flow-cytometry-based method using various stimuli to investigate the Ca2+ flux characteristics of circulating human B lymphocytes from healthy individuals. We found that different activating agents trigger distinct Ca2+ flux responses and that B-cell subsets show specific developmental-stage dependent Ca2+ flux response patterns. Naive B cells responded with a more substantial Ca2+ flux to B cell receptor (BCR) stimulation than memory B cells. Non-switched memory cells responded to anti-IgD stimulation with a naive-like Ca2+ flux pattern, whereas their anti-IgM response was memory-like. Peripheral antibody-secreting cells retained their IgG responsivity but showed reduced Ca2+ responses upon activation, indicating their loss of dependence on Ca2+ signaling. Ca2+ flux is a relevant functional test for B cells, and its alterations could provide insight into pathological B-cell activation development.
Collapse
Affiliation(s)
- Anna Bajnok
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Timea Serény-Litvai
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Viktória Temesfői
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Laboratory Medicine, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Jasper Nörenberg
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Medical Microbiology and Immunology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Róbert Herczeg
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, 7624 Pécs, Hungary
| | - Ambrus Kaposi
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Programming Languages and Compilers, Faculty of Informatics, Eötvös Loránd University, 1053 Budapest, Hungary
| | - Timea Berki
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Emese Mezosi
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- First Department of Internal Medicine, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
27
|
Iwata S, Hajime Sumikawa M, Tanaka Y. B cell activation via immunometabolism in systemic lupus erythematosus. Front Immunol 2023; 14:1155421. [PMID: 37256149 PMCID: PMC10225689 DOI: 10.3389/fimmu.2023.1155421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease involving multiple organs in which B cells perform important functions such as antibody and cytokine production and antigen presentation. B cells are activated and differentiated by the primary B cell receptor, co-stimulatory molecule signals-such as CD40/CD40L-, the Toll-like receptors 7,9, and various cytokine signals. The importance of immunometabolism in the activation, differentiation, and exerting functions of B cells and other immune cells has been widely reported in recent years. However, the regulatory mechanism of immunometabolism in B cells and its involvement in SLE pathogenesis remain elusive. Similarly, the importance of the PI3K-Akt-mTOR signaling pathway, glycolytic system, and oxidative phosphorylation has been demonstrated in the mechanisms of B cell immunometabolic activation, mainly in mouse studies. However, the activation of the mTOR pathway in B cells in patients with SLE, the induction of plasmablast differentiation through metabolic and transcription factor regulation by mTOR, and the involvement of this phenomenon in SLE pathogenesis are unclear. In our studies using activated B cells derived from healthy donors and from patients with SLE, we observed that methionine, an essential amino acid, is important for mTORC1 activation. Further, we observed that splenic tyrosine kinase and mTORC1 activation synergistically induce EZH2 expression and plasmablasts by suppressing BACH2 expression through epigenomic modification. Additionally, we identified another mechanism by which the glutaminolysis-induced enhancement of mitochondrial function promotes plasmablast differentiation in SLE. In this review, we focused on the SLE exacerbation mechanisms related to the activation of immune cells-especially B cells-and immunometabolism and reported the latest findings in the field.
Collapse
Affiliation(s)
- Shigeru Iwata
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Maiko Hajime Sumikawa
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
28
|
Fu T, Zuo Y, Xue G, Zhou D, Pan Z. Discovery of 2,5-diaminopyrimidine derivatives as the first series of selective monomeric degraders of B-lymphoid tyrosine kinase. Eur J Med Chem 2023; 256:115460. [PMID: 37163946 DOI: 10.1016/j.ejmech.2023.115460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
B-lymphoid tyrosine kinase (BLK) is an important knot of B cell receptor signaling, and regulates the function and development of B cells subset. Dysfunction of BLK is correlated with autoimmune diseases and cancer. There is an urgent need to develop selective BLK modulators to facilitate the studies of BLK in biological processes. Herein, we report the discovery of a series of 2,5-diaminopyrimidine-based compounds capable of selectively degrading BLK. The optimized compounds 9-11 possess weak biochemical inhibitory activities against BLK, yet they effectively degrade BLK and show high selectivity for BLK over other structurally and functionally related SRC family and TEC family kinases. Furthermore, compounds 9 and 11 demonstrate potent inhibitory activities in several B-lymphoid cell lines. As the first series of effective and selective monomeric BLK degraders, compounds 9-11 serve as valuable tools for further investigation of the functions of BLK.
Collapse
Affiliation(s)
- Tiancheng Fu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yingying Zuo
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Gang Xue
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Danli Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
29
|
Fasano S, Milone A, Nicoletti GF, Isenberg DA, Ciccia F. Precision medicine in systemic lupus erythematosus. Nat Rev Rheumatol 2023; 19:331-342. [PMID: 37041269 DOI: 10.1038/s41584-023-00948-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that has diverse clinical manifestations, ranging from restricted cutaneous involvement to life-threatening systemic organ involvement. The heterogeneity of pathomechanisms that lead to SLE contributes to between-patient variation in clinical phenotype and treatment response. Ongoing efforts to dissect cellular and molecular heterogeneity in SLE could facilitate the future development of stratified treatment recommendations and precision medicine, which is a considerable challenge for SLE. In particular, some genes involved in the clinical heterogeneity of SLE and some phenotype-related loci (STAT4, IRF5, PDGF genes, HAS2, ITGAM and SLC5A11) have an association with clinical features of the disease. An important part is also played by epigenetic varation (in DNA methylation, histone modifications and microRNAs) that influences gene expression and affects cell function without modifying the genome sequence. Immune profiling can help to identify an individual's specific response to a therapy and can potentially predict outcomes, using techniques such as flow cytometry, mass cytometry, transcriptomics, microarray analysis and single-cell RNA sequencing. Furthermore, the identification of novel serum and urinary biomarkers would enable the stratification of patients according to predictions of long-term outcomes and assessments of potential response to therapy.
Collapse
Affiliation(s)
- Serena Fasano
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Alessandra Milone
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - David A Isenberg
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Francesco Ciccia
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
30
|
Accapezzato D, Caccavale R, Paroli MP, Gioia C, Nguyen BL, Spadea L, Paroli M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:6578. [PMID: 37047548 PMCID: PMC10095030 DOI: 10.3390/ijms24076578] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Bich Lien Nguyen
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
31
|
Khunsriraksakul C, Li Q, Markus H, Patrick MT, Sauteraud R, McGuire D, Wang X, Wang C, Wang L, Chen S, Shenoy G, Li B, Zhong X, Olsen NJ, Carrel L, Tsoi LC, Jiang B, Liu DJ. Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus. Nat Commun 2023; 14:668. [PMID: 36750564 PMCID: PMC9905560 DOI: 10.1038/s41467-023-36306-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks.
Collapse
Affiliation(s)
- Chachrit Khunsriraksakul
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Qinmengge Li
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Havell Markus
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Renan Sauteraud
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel McGuire
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xingyan Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Chen Wang
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lida Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Siyuan Chen
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nancy J Olsen
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Bibo Jiang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dajiang J Liu
- Program in Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
32
|
Elbagir S, Diaz-Gallo LM, Grosso G, Zickert A, Gunnarsson I, Mahler M, Svenungsson E, Rönnelid J. Anti-phosphatidylserine/prothrombin antibodies and thrombosis associate positively with HLA-DRB1*13 and negatively with HLA-DRB1*03 in SLE. Rheumatology (Oxford) 2023; 62:924-933. [PMID: 35642868 PMCID: PMC9891424 DOI: 10.1093/rheumatology/keac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Emerging evidence demonstrates that aPS-PT associate with thrombotic events. Genetic predisposition, including HLA-DRB1 alleles, is known to contribute to the occurrence of conventional aPL [anti-β2glycoprotein-I (anti-β2GPI) and aCL]. We investigated associations between aPS-PT and HLA-DRB1* alleles and thrombosis in SLE. Conventional aPL were included for comparison. METHODS We included 341 consecutive SLE patients, with information on general cardiovascular risk factors, including blood lipids, LA and thrombotic events. aPS/PT, anti-β2GPI and aCL of IgA/G/M isotypes and LA were quantified. RESULTS aPS/PT antibodies associated positively with HLA-DRB1*13 [odds ratio (OR) 2.7, P = 0.002], whereas anti-β2GPI and aCL antibodies associated primarily with HLA-DRB1*04 (OR 2.5, P = 0.0005). These associations remained after adjustment for age, gender and other HLA-DRB1* alleles. HLA-DRB1*13, but not DRB1*04, remained as an independent risk factor for thrombosis and APS after adjustment for aPL and cardiovascular risk factors. The association between DRB1*13 and thrombosis was mediated by aPS-PT positivity. HLA-DRB1*03, on the other hand, associated negatively with thrombotic events as well as all aPL using both uni- and multivariate analyses. HLA-DRB1*03 had a thrombo-protective effect in aPL-positive patients. Additionally, HLA-DRB1*03 was associated with a favourable lipid profile regarding high-density lipoprotein and triglycerides. CONCLUSIONS HLA-DRB1*13 confers risk for both aPS-PT and thrombotic events in lupus. The association between HLA-DRB1*13 and thrombosis is largely, but not totally, mediated through aPS-PT. HLA-DRB1*03 was negatively associated with aPL and positively with favourable lipid levels. Thus, HLA-DRB1*03 seems to identify a subgroup of SLE patients with reduced vascular risk.
Collapse
Affiliation(s)
- Sahwa Elbagir
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Lina-Marcela Diaz-Gallo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Giorgia Grosso
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Zickert
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Mahler
- Research and Development, Werfen Autoimmunity, San Diego, USA
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| |
Collapse
|
33
|
Yao M, Huang X, Guo Y, Zhao JV, Liu Z. Disentangling the common genetic architecture and causality of rheumatoid arthritis and systemic lupus erythematosus with COVID-19 outcomes: Genome-wide cross trait analysis and bidirectional Mendelian randomization study. J Med Virol 2023; 95:e28570. [PMID: 36762574 DOI: 10.1002/jmv.28570] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Coronavirus Disease (COVID-19) may cause a dysregulation of the immune system and has complex relationships with multiple autoimmune diseases, including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). However, little is known about their common genetic architecture. Using the latest data from COVID-19 host genetics consortium and consortia on RA and SLE, we conducted a genome-wide cross-trait analysis to examine the shared genetic etiology between COVID-19 and RA/SLE and evaluated their causal associations using bidirectional Mendelian randomization (MR). The cross-trait meta-analysis identified 23, 28, and 10 shared genetic loci for severe COVID-19, COVID-19 hospitalization, and SARS-CoV-2 infection with RA, and 14, 17, and 7 shared loci with SLE, respectively. Co-localization analysis identified five causal variants in TYK2, IKZF3, PSORS1C1, and COG6 for COVID-19 with RA, and four in CRHR1, FUT2, and NXPE3 for COVID-19 with SLE, involved in immune function, angiogenesis and coagulation. Bidirectional MR analysis suggested RA is associated with a higher risk of COVID-19 hospitalization, and COVID-19 is not related to RA or SLE. Our novel findings improved the understanding of the genetic etiology shared by COVID-19, RA and SLE, and suggested an increased risk of COVID-19 hospitalization in people with higher genetic liability to RA.
Collapse
Affiliation(s)
- Minhao Yao
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xin Huang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Yunshan Guo
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Zhonghua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
34
|
Bruera S, Chavula T, Madan R, Agarwal SK. Targeting type I interferons in systemic lupus erythematous. Front Pharmacol 2023; 13:1046687. [PMID: 36726783 PMCID: PMC9885195 DOI: 10.3389/fphar.2022.1046687] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with systemic clinical manifestations including, but not limited to, rash, inflammatory arthritis, serositis, glomerulonephritis, and cerebritis. Treatment options for SLE are expanding and the increase in our understanding of the immune pathogenesis is leading to the development of new therapeutics. Autoantibody formation and immune complex formation are important mediators in lupus pathogenesis, but an important role of the type I interferon (IFN) pathway has been identified in SLE patients and mouse models of lupus. These studies have led to the development of therapeutics targeting type I IFN and related pathways for the treatment of certain manifestations of SLE. In the current narrative review, we will discuss the role of type I IFN in SLE pathogenesis and the potential translation of these data into strategies using type I IFN as a biomarker and therapeutic target for patients with SLE.
Collapse
Affiliation(s)
- Sebastian Bruera
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Thandiwe Chavula
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Riya Madan
- Section of General Internal Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sandeep K. Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
35
|
Ni J, Li X, Tu X, Zhu H, Wang S, Hou Y, Dou H. Halofuginone ameliorates systemic lupus erythematosus by targeting Blk in myeloid-derived suppressor cells. Int Immunopharmacol 2023; 114:109487. [PMID: 36493694 DOI: 10.1016/j.intimp.2022.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic, inflammatory autoimmune disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells participated in the pathogenesis of SLE. MDSCs has been considered a potential therapeutic target for lupus. As traditional Chinese medicine, Halofuginone (HF) has the extensive immunomodulatory effects on some autoimmune disorders. Our research was dedicated to discovering therapeutic efficacy of HF for lupus to explore novel mechanisms on MDSCs. We found that HF prominently alleviated the systemic symptoms especially nephritis in Imiquimod-induced lupus mice, and simultaneously repaired the immune system, reflected in the alteration of autoantibodies. HF diminished the quantity of MDSCs in lupus mice, and induced apoptosis of MDSCs. Through RNA sequencing performed on the sorted MDSC from lupus mice and HF-treated lupus mice, B lymphoid tyrosine kinase (Blk, a non-receptor cytoplasmic tyrosine kinase) was screened as the target molecule of HF. It's proven that HF had two independent effects on Blk. On the one hand, HF increased the mRNA expression of Blk in MDSCs by inhibiting the nuclear translocation of p65/p50 heterodimer. On the other hand, HF enhanced the kinase activity of Blk in MDSCs through direct molecular binding. We further investigated that Blk suppressed the phosphorylation of downstream ERK signaling pathway to increase the apoptosis of MDSCs. In conclusion, our study illustrated that HF alleviated the disease progression of lupus mice by targeting Blk to promote the apoptosis of MDSCs, which indicated the immunotherapeutic potential of HF to treat lupus.
Collapse
Affiliation(s)
- Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiaoying Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiaodi Tu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Haiyan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Shiqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
36
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Aseeva EA, Lila AM, Soloviev SK, Glukhova SI. Lupus nephritis as a specific clinical and immunological phenotype of systemic lupus erythematosus. MODERN RHEUMATOLOGY JOURNAL 2022. [DOI: 10.14412/1996-7012-2022-6-12-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lupus nephritis (LN) is the leading cause of death in systemic lupus erythematosus (SLE), so its early detection and treatment is of utmost importance. Features of the onset, clinical signs, certain morphological classes, as well as more aggressive therapy make it possible to assign SLE with LN to a distinct disease phenotype.Objective: to characterize the clinical, immunological and morphological features of the SLE phenotype with a predominant kidney involvement based on a comparative analysis of patients with LN and without LN.Patients and methods. The study included 400 patients with SLE who met the 2012 SLICC criteria and were hospitalized to V.A. Nasonova Research Institute of Rheumatology from 2013 to 2021. The diagnosis of LN was established in 192 (48%) patients, of which in 82 (43%) it was confirmed by pathological study of kidney biopsy specimens (the SLE group with LN). In 208 (52%) patients, no kidney damage was observed, and they constituted the SLE group without LN.All patients underwent a standard examination with an assessment of disease activity according to the SLEDAI-2K index, irreversible changes in organs according to the SLICC damage index, immunological disorders, clinical and biochemical blood tests, urinalysis according to unified methods, glomerular filtration rate, as well as pathological examination of kidney biopsy specimens for confirmation of LN in the presence of an appropriate clinical picture. In patients of both groups, a comparative study of the main clinical, laboratory, immunological manifestations of SLE, the features of the disease onset, its first clinical signs, possible trigger factors, and the drugs used was carried out.Results and discussion. In the LN group, insolation was more likely to trigger the development of SLE than in the group without LN (respectively, in 26% and 13% of cases; p=0.007). In turn, SLE without kidney damage more often than SLE with LN debuted during pregnancy or after childbirth.The first signs of the disease in almost 40% of patients with LN were proteinuria and/or changes in urinary sediment, edema, increased blood pressure, the development of LN in some cases was preceded by polyarthritis or combined lesions of the skin and joints, but no later than 6 months, signs of kidney damage appeared. In the SLE group without LN, polyarthritis (in 33%), combined lesions of the skin and joints (in 26%), and Raynaud's syndrome (in 16%; p <0.0001) were more often observed at the onset. In patients with LN, erythematous lesions of the facial skin ("butterfly", in 42%), serositis (exudative pleuritis — in 44%, pericarditis — in 46%, ascites and hydrothorax — in 5%; p<0.0001), as well as hematological disorders such as anemia (in 63%), leukopenia (in 49%) and thrombocytopenia (in 42%) were present more frequently. With the development of LN, an acute course and high activity of the disease occurred significantly more often. In the study of immunological parameters in the group without LN, lupus anticoagulant (in 6%) and antibodies to SS-A/Ro and SS-B/La (in 18 and 9% of patients, respectively) were detected significantly more often, while in the LN group — hypocomplementemia (in 81%; p<0.0001). Therapy also differed significantly: patients with LN received higher doses of glucocorticoids (p<0.0001), mycophenolate mofetil, and cyclophosphamide.Conclusion. SLE with LN can be considered a distinct disease phenotype with a set of characteristics (clinical and laboratory parameters, response to therapy, prognosis) that distinguish it from other SLE variants.
Collapse
Affiliation(s)
- E. A. Aseeva
- V.A. Nasonova Research Institute of Rheumatology
| | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | | | | |
Collapse
|
38
|
Kain J, Owen KA, Marion MC, Langefeld CD, Grammer AC, Lipsky PE. Mendelian randomization and pathway analysis demonstrate shared genetic associations between lupus and coronary artery disease. Cell Rep Med 2022; 3:100805. [PMID: 36334592 PMCID: PMC9729823 DOI: 10.1016/j.xcrm.2022.100805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/08/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Coronary artery disease (CAD) is a leading cause of death in patients with systemic lupus erythematosus (SLE). Despite clinical evidence supporting an association between SLE and CAD, pleiotropy-adjusted genetic association studies are limited and focus on only a few common risk loci. Here, we identify a net positive causal estimate of SLE-associated non-HLA SNPs on CAD by traditional Mendelian randomization (MR) approaches. Pathway analysis using SNP-to-gene mapping followed by unsupervised clustering based on protein-protein interactions (PPIs) identifies biological networks composed of positive and negative causal sets of genes. In addition, we confirm the casual effects of specific SNP-to-gene modules on CAD using only SNP mapping to each PPI-defined functional gene set as instrumental variables. This PPI-based MR approach elucidates various molecular pathways with causal implications between SLE and CAD and identifies biological pathways likely causative of both pathologies, revealing known and novel therapeutic interventions for managing CAD in SLE.
Collapse
Affiliation(s)
- Jessica Kain
- AMPEL BioSolutions, LLC, Charlottesville, VA, USA; The RILITE Research Institute, Charlottesville, VA, USA
| | - Katherine A Owen
- AMPEL BioSolutions, LLC, Charlottesville, VA, USA; The RILITE Research Institute, Charlottesville, VA, USA.
| | - Miranda C Marion
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Amrie C Grammer
- AMPEL BioSolutions, LLC, Charlottesville, VA, USA; The RILITE Research Institute, Charlottesville, VA, USA
| | - Peter E Lipsky
- AMPEL BioSolutions, LLC, Charlottesville, VA, USA; The RILITE Research Institute, Charlottesville, VA, USA
| |
Collapse
|
39
|
Wang Y, Guga S, Wu K, Khaw Z, Tzoumkas K, Tombleson P, Comeau ME, Langefeld CD, Cunninghame Graham DS, Morris DL, Vyse TJ. COVID-19 and systemic lupus erythematosus genetics: A balance between autoimmune disease risk and protection against infection. PLoS Genet 2022; 18:e1010253. [PMID: 36327221 PMCID: PMC9632821 DOI: 10.1371/journal.pgen.1010253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Genome wide association studies show there is a genetic component to severe COVID-19. We find evidence that the genome-wide genetic association signal with severe COVID-19 is correlated with that of systemic lupus erythematosus (SLE), having formally tested this using genetic correlation analysis by LD score regression. To identify the shared associated loci and gain insight into the shared genetic effects, using summary level data we performed meta-analyses, a local genetic correlation analysis and fine-mapping using stepwise regression and functional annotation. This identified multiple loci shared between the two traits, some of which exert opposing effects. The locus with most evidence of shared association is TYK2, a gene critical to the type I interferon pathway, where the local genetic correlation is negative. Another shared locus is CLEC1A, where the direction of effects is aligned, that encodes a lectin involved in cell signaling, and the anti-fungal immune response. Our analyses suggest that several loci with reciprocal effects between the two traits have a role in the defense response pathway, adding to the evidence that SLE risk alleles are protective against infection. We observed a correlation between the genetic associations with severe COVID-19 and those with systemic lupus erythematosus (SLE, Lupus), and aimed to discover which genetic loci were shared by these diseases and what biological processes were involved. This resulted in the discovery of several genetic loci, some of which had alleles that were risk for both diseases and some of which were risk for severe COVID-19 yet protective for SLE. The locus with most evidence of shared association (TYK2) is involved in interferon production, a process that is important in response to viral infection and known to be dysregulated in SLE patients. Other shared associated loci contained genes also involved in the defense response and the immune system signaling. These results add to the growing evidence that there are alleles in the human genome that provide protection against viral infection yet are risk for autoimmune disease.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Suri Guga
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Kejia Wu
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Zoe Khaw
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Konstantinos Tzoumkas
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| | - Phil Tombleson
- NIHR GSTFT/KCL Biomedical Research Centre, London, United Kingdom
| | - Mary E. Comeau
- Department of Biostatistics and Data Science and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | | | - David L. Morris
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
- * E-mail:
| | - Timothy J. Vyse
- Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
40
|
Serény-Litvai T, Bajnok A, Temesfoi V, Nörenberg J, Pham-Dobor G, Kaposi A, Varnagy A, Kovacs K, Pentek S, Koszegi T, Mezosi E, Berki T. B cells from anti-thyroid antibody positive, infertile women show hyper-reactivity to BCR stimulation. Front Immunol 2022; 13:1039166. [DOI: 10.3389/fimmu.2022.1039166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-thyroid antibody (ATA) positivity affects 1 out of 9 women in childbearing age and presents a significant risk for infertility. Emerging evidence indicates that alterations in the B cell receptor induced calcium (Ca2+) signaling could be key in the development of autoimmunity. We aimed to investigate the Ca2+ flux response of B lymphocyte subsets to BCR stimulation in Hashimoto’s thyroiditis and related infertility. We collected peripheral blood samples from ATA+, infertile, euthyroid patients (HIE), hypothyroid, ATA+ patients before (H1) and after levothyroxine treatment (H2), and age-matched healthy controls (HC). All B cell subsets of ATA+, infertile, euthyroid patients showed elevated basal Ca2+ level and hyper-responsivity to BCR ligation compared to the other groups, which could reflect altered systemic immune function. The Ca2+ flux of hypothyroid patients was similar to healthy controls. The levothyroxine-treated patients had decreased prevalence of CD25+ B cells and lower basal Ca2+ level compared to pre-treatment. Our results support the role of altered Ca2+ flux of B cells in the early phase of thyroid autoimmunity and infertility.
Collapse
|
41
|
IgA Vasculitis: Influence of CD40, BLK and BANK1 Gene Polymorphisms. J Clin Med 2022; 11:jcm11195577. [PMID: 36233442 PMCID: PMC9572210 DOI: 10.3390/jcm11195577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
CD40, BLK and BANK1 genes involved in the development and signaling of B-cells are identified as susceptibility loci for numerous inflammatory diseases. Accordingly, we assessed the potential influence of CD40, BLK and BANK1 on the pathogenesis of immunoglobulin-A vasculitis (IgAV), predominantly a B-lymphocyte inflammatory condition. Three genetic variants within CD40 (rs1883832, rs1535045, rs4813003) and BLK (rs2254546, rs2736340, rs2618476) as well as two BANK1 polymorphisms (rs10516487, rs3733197), previously associated with inflammatory diseases, were genotyped in 382 Caucasian patients with IgAV and 955 sex- and ethnically matched healthy controls. No statistically significant differences were observed in the genotype and allele frequencies of CD40, BLK and BANK1 when IgAV patients and healthy controls were compared. Similar results were found when CD40, BLK and BANK1 genotypes or alleles frequencies were compared between patients with IgAV stratified according to the age at disease onset or to the presence/absence of gastrointestinal or renal manifestations. Moreover, no CD40, BLK and BANK1 haplotype differences were disclosed between patients with IgAV and healthy controls and between patients with IgAV stratified according to the clinical characteristics mentioned above. Our findings indicate that CD40, BLK and BANK1 do not contribute to the genetic background of IgAV.
Collapse
|
42
|
Zhou RS, Zhao JZ, Guo LM, Guo JL, Makawy AE, Li ZY, Lee SC. The novel antitumor compound clinopodiside A induces cytotoxicity via autophagy mediated by the signaling of BLK and RasGRP2 in T24 bladder cancer cells. Front Pharmacol 2022; 13:982860. [PMID: 36199691 PMCID: PMC9527273 DOI: 10.3389/fphar.2022.982860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the study, we investigated the anti-cancer effect of clinopodiside A and the underlying mechanisms using T24 bladder cancer cells as an experimental model. We found that the compound inhibited the growth of the bladder cancer cells in vitro and in vivo in a in a concentration- and dose-dependent manner, respectively, which showed a combinational effect when used together with cisplatin. In the bladder cancer cells, clinopodiside A caused autophagy, which was mediated by the signaling of BLK and RasGRP2, independently. Inhibition of the autophagy by chemical inhibitor 3-methyladenine or by the inhibition of the signaling molecules attenuated the cytotoxicity of clinopodiside A. Further analyses showed that clinopodiside A acted in synergism with cisplatin which itself could trigger both autophagy and apoptosis, which occurred with concomitant enhancements in autophagy and the cisplatin-evoked apoptosis. In conclusion, our results suggest that clinopodiside A inhibits the growth of the bladder cancer cells via BLK- and RasGRP2-mediated autophagy. The synergistic effect between clinopodiside A and cisplatin is attributed to the increases in autophagy and autophagy-promoted apoptosis. Clinopodiside A is a promising investigational drug for the treatment of cancer, at least blabber, which can be used alone or in combination with clinical drug(s).
Collapse
Affiliation(s)
- Rong Sheng Zhou
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | | | - Jia Li Guo
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Aida El Makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
| | - Zong Yun Li
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- *Correspondence: Zong Yun Li, ; Shao Chin Lee,
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- *Correspondence: Zong Yun Li, ; Shao Chin Lee,
| |
Collapse
|
43
|
Saint Just Ribeiro M, Tripathi P, Namjou B, Harley JB, Chepelev I. Haplotype-specific chromatin looping reveals genetic interactions of regulatory regions modulating gene expression in 8p23.1. Front Genet 2022; 13:1008582. [PMID: 36160011 PMCID: PMC9490475 DOI: 10.3389/fgene.2022.1008582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
A major goal of genetics research is to elucidate mechanisms explaining how genetic variation contributes to phenotypic variation. The genetic variants identified in genome-wide association studies (GWASs) generally explain only a small proportion of heritability of phenotypic traits, the so-called missing heritability problem. Recent evidence suggests that additional common variants beyond lead GWAS variants contribute to phenotypic variation; however, their mechanistic underpinnings generally remain unexplored. Herein, we undertake a study of haplotype-specific mechanisms of gene regulation at 8p23.1 in the human genome, a region associated with a number of complex diseases. The FAM167A-BLK locus in this region has been consistently found in the genome-wide association studies (GWASs) of systemic lupus erythematosus (SLE) in all major ancestries. Our haplotype-specific chromatin interaction (Hi-C) experiments, allele-specific enhancer activity measurements, genetic analyses, and epigenome editing experiments revealed that: 1) haplotype-specific long-range chromatin interactions are prevalent in 8p23.1; 2) BLK promoter and cis-regulatory elements cooperatively interact with haplotype-specificity; 3) genetic variants at distal regulatory elements are allele-specific modifiers of the promoter variants at FAM167A-BLK; 4) the BLK promoter interacts with and, as an enhancer-like promoter, regulates FAM167A expression and 5) local allele-specific enhancer activities are influenced by global haplotype structure due to chromatin looping. Although systemic lupus erythematosus causal variants at the FAM167A-BLK locus are thought to reside in the BLK promoter region, our results reveal that genetic variants at distal regulatory elements modulate promoter activity, changing BLK and FAM167A gene expression and disease risk. Our results suggest that global haplotype-specific 3-dimensional chromatin looping architecture has a strong influence on local allelic BLK and FAM167A gene expression, providing mechanistic details for how regional variants controlling the BLK promoter may influence disease risk.
Collapse
Affiliation(s)
- Mariana Saint Just Ribeiro
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pulak Tripathi
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - John B. Harley
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
- *Correspondence: Iouri Chepelev, ; John B. Harley,
| | - Iouri Chepelev
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
- *Correspondence: Iouri Chepelev, ; John B. Harley,
| |
Collapse
|
44
|
Higher basophil count decreases narcolepsy risk: a Mendelian randomization study. Neurol Sci 2022; 43:5575-5580. [DOI: 10.1007/s10072-022-06123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
|
45
|
Heterotropic roles of divalent cations in the establishment of allostery and affinity maturation of integrin αXβ2. Cell Rep 2022; 40:111254. [PMID: 36001965 PMCID: PMC9440770 DOI: 10.1016/j.celrep.2022.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/23/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Allosteric activation and silencing of leukocyte β2-integrins transpire through cation-dependent structural changes, which mediate integrin biosynthesis and recycling, and are essential to designing leukocyte-specific drugs. Stepwise addition of Mg2+ reveals two mutually coupled events for the αXβ2 ligand-binding domain-the αX I-domain-corresponding to allostery establishment and affinity maturation. Electrostatic alterations in the Mg2+-binding site establish long-range couplings, leading to both pH- and Mg2+-occupancy-dependent biphasic stability change in the αX I-domain fold. The ligand-binding sensorgrams show composite affinity events for the αX I-domain accounting for the multiplicity of the αX I-domain conformational states existing in the solution. On cell surfaces, increasing Mg2+ concentration enhanced adhesiveness of αXβ2. This work highlights how intrinsically flexible pH- and cation-sensitive architecture endows a unique dynamic continuum to the αI-domain structure on the intact integrin, thereby revealing the importance of allostery establishment and affinity maturation in both extracellular and intracellular integrin events.
Collapse
|
46
|
Rae W, Sowerby JM, Verhoeven D, Youssef M, Kotagiri P, Savinykh N, Coomber EL, Boneparth A, Chan A, Gong C, Jansen MH, du Long R, Santilli G, Simeoni I, Stephens J, Wu K, Zinicola M, Allen HL, Baxendale H, Kumararatne D, Gkrania-Klotsas E, Scheffler Mendoza SC, Yamazaki-Nakashimada MA, Ruiz LB, Rojas-Maruri CM, Lugo Reyes SO, Lyons PA, Williams AP, Hodson DJ, Bishop GA, Thrasher AJ, Thomas DC, Murphy MP, Vyse TJ, Milner JD, Kuijpers TW, Smith KGC. Immunodeficiency, autoimmunity, and increased risk of B cell malignancy in humans with TRAF3 mutations. Sci Immunol 2022; 7:eabn3800. [PMID: 35960817 DOI: 10.1126/sciimmunol.abn3800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a central regulator of immunity. TRAF3 is often somatically mutated in B cell malignancies, but its role in human immunity is not defined. Here, in five unrelated families, we describe an immune dysregulation syndrome of recurrent bacterial infections, autoimmunity, systemic inflammation, B cell lymphoproliferation, and hypergammaglobulinemia. Affected individuals each had monoallelic mutations in TRAF3 that reduced TRAF3 expression. Immunophenotyping showed that patients' B cells were dysregulated, exhibiting increased nuclear factor-κB 2 activation, elevated mitochondrial respiration, and heightened inflammatory responses. Patients had mild CD4+ T cell lymphopenia, with a reduced proportion of naïve T cells but increased regulatory T cells and circulating T follicular helper cells. Guided by this clinical phenotype, targeted analyses demonstrated that common genetic variants, which also reduce TRAF3 expression, are associated with an increased risk of B cell malignancies, systemic lupus erythematosus, higher immunoglobulin levels, and bacterial infections in the wider population. Reduced TRAF3 conveys disease risks by driving B cell hyperactivity via intrinsic activation of multiple intracellular proinflammatory pathways and increased mitochondrial respiration, with a likely contribution from dysregulated T cell help. Thus, we define monogenic TRAF3 haploinsufficiency syndrome and demonstrate how common TRAF3 variants affect a range of human diseases.
Collapse
Affiliation(s)
- William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - John M Sowerby
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Dorit Verhoeven
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Mariam Youssef
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Natalia Savinykh
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Eve L Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alexis Boneparth
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Chan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Machiel H Jansen
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Romy du Long
- Amsterdam University Center (AUMC), University of Amsterdam, Department of Pathology, Amsterdam, Netherlands
| | | | - Ilenia Simeoni
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Jonathan Stephens
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Kejia Wu
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Marta Zinicola
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Hana Lango Allen
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Helen Baxendale
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Dinakantha Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Effrossyni Gkrania-Klotsas
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Selma C Scheffler Mendoza
- Clinical Immunology Service, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | | | - Laura Berrón Ruiz
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | | | - Saul O Lugo Reyes
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony P Williams
- Wessex Investigational Sciences Hub, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Gail A Bishop
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, IA, USA
- Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Adrian J Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - David C Thomas
- Department of Immunology and Inflammation, Center for Inflammatory Diseases, Imperial College London, London, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Taco W Kuijpers
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
47
|
Campoy E, Puig M, Yakymenko I, Lerga-Jaso J, Cáceres M. Genomic architecture and functional effects of potential human inversion supergenes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210209. [PMID: 35694745 PMCID: PMC9189494 DOI: 10.1098/rstb.2021.0209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Supergenes are involved in adaptation in multiple organisms, but they are little known in humans. Genomic inversions are the most common mechanism of supergene generation and maintenance. Here, we review the information about two large inversions that are the best examples of potential human supergenes. In addition, we do an integrative analysis of the newest data to understand better their functional effects and underlying genetic changes. We have found that the highly divergent haplotypes of the 17q21.31 inversion of approximately 1.5 Mb have multiple phenotypic associations, with consistent effects in brain-related traits, red and white blood cells, lung function, male and female characteristics and disease risk. By combining gene expression and nucleotide variation data, we also analysed the molecular differences between haplotypes, including gene duplications, amino acid substitutions and regulatory changes, and identify CRHR1, KANLS1 and MAPT as good candidates to be responsible for these phenotypes. The situation is more complex for the 8p23.1 inversion, where there is no clear genetic differentiation. However, the inversion is associated with several related phenotypes and gene expression differences that could be linked to haplotypes specific of one orientation. Our work, therefore, contributes to the characterization of both exceptional variants and illustrates the important role of inversions. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Elena Campoy
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Illya Yakymenko
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Jon Lerga-Jaso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
48
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Villanueva V, Li X, Jimenez V, Faridi HM, Gupta V. CD11b agonists offer a novel approach for treating lupus nephritis. Transl Res 2022; 245:41-54. [PMID: 35288363 PMCID: PMC9167730 DOI: 10.1016/j.trsl.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022]
Abstract
Lupus nephritis (LN) develops in more than a third of all systemic lupus erythematosus (SLE) patients and is the strongest predictor of morbidity and mortality. Increased circulating levels of type I interferon (IFN I) and anti-double stranded DNA (anti-dsDNA) and anti-RNA binding protein (anti-RNP) antibodies lead to increased glomerular injury via leukocyte activation and glomerular infiltration. Uncontrolled Toll-like receptor (TLR) signaling in leukocytes results in increased production of IFN I and anti-dsDNA antibodies. ITGAM gene codes for integrin CD11b, the α-chain of integrin heterodimer CD11b/CD18, that is highly expressed in leukocytes and modulates TLR-dependent pro-inflammatory signaling. Three nonsynonymous SNPs in the ITGAM gene strongly correlate with increased risk for SLE and LN and with IFN I levels. Here we review the literature on the role of CD11b on leukocytes in LN. We also incorporate conclusions from several recent studies that show that these ITGAM SNPs result in a CD11b protein that is less able to suppress TLR-dependent pro-inflammatory pathways in leukocytes, that activation of CD11b via novel small molecule agonists suppresses TLR-dependent pathways, including reductions in circulating levels of IFN I and anti-dsDNA antibodies, and that CD11b activation reduces LN in model systems. Recent data strongly suggest that integrin CD11b is an exciting new therapeutic target in SLE and LN and that allosteric activation of CD11b is a novel therapeutic paradigm for effectively treating such autoimmune diseases.
Collapse
Affiliation(s)
- Veronica Villanueva
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Xiaobo Li
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Viviana Jimenez
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Hafeez M Faridi
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, Illinois
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
50
|
Ali MW, Chen J, Yan L, Wang X, Dai JY, Vaughan TL, Casey G, Buas MF. A risk variant for Barrett's esophagus and esophageal adenocarcinoma at chr8p23.1 affects enhancer activity and implicates multiple gene targets. Hum Mol Genet 2022; 31:3975-3986. [PMID: 35766871 DOI: 10.1093/hmg/ddac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022] Open
Abstract
Nineteen genetic susceptibility loci for esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) have been identified through genome-wide association studies (GWAS). Clinical translation of such discoveries, however, has been hindered by the slow pace of discovery of functional/causal variants and gene targets at these loci. We previously developed a systematic informatics pipeline to prioritize candidate functional variants using functional potential scores, applied the pipeline to select high-scoring BE/EAC risk loci, and validated a functional variant at chr19p13.11 (rs10423674). Here, we selected two additional prioritized loci for experimental interrogation: chr3p13/rs1522552 and chr8p23.1/rs55896564. Candidate enhancer regions encompassing these variants were evaluated using luciferase reporter assays in two EAC cell lines. One of the two regions tested exhibited allele-specific enhancer activity - 8p23.1/rs55896564. CRISPR-mediated deletion of the putative enhancer in EAC cell lines correlated with reduced expression of three candidate gene targets: B lymphocyte kinase (BLK), nei like DNA glycosylase 2 (NEIL2), and cathepsin B (CTSB). Expression quantitative trait locus (eQTL) mapping in normal esophagus and stomach revealed strong associations between the BE/EAC risk allele at rs55896564 (G) and lower expression of CTSB, a protease gene implicated in epithelial wound repair. These results further support the utility of functional potential scores for GWAS variant prioritization, and provide the first experimental evidence of a functional variant and risk enhancer at the 8p23.1 GWAS locus. Identification of CTSB, BLK, and NEIL2 as candidate gene targets suggests that altered expression of these genes may underlie the genetic risk association at 8p23.1 with BE/EAC.
Collapse
Affiliation(s)
- Mourad Wagdy Ali
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James Y Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Epidemiology, University of Washington, School of Public Health, Seattle, Washington, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew F Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|