1
|
Kim K, Jeong S, Choi S, Chang J, Choi D, Lee G, Kim SR, Park SM. Cardiovascular benefit of statin use against air pollutant exposure in older adults. Eur J Prev Cardiol 2025; 32:288-298. [PMID: 38365315 DOI: 10.1093/eurjpc/zwae061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/18/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
AIMS Little is known about the cardiovascular benefit of statin use against ambient air pollution among older adults who are at higher risk of cardiovascular disease (CVD) potentially owing to age-related declines in cardiovascular functions along with other risk factors. METHODS AND RESULTS This retrospective, population-based cohort study consisted of adults aged 60 years and older free of CVD at baseline identified from the National Health Insurance Service database linked to the National Ambient Air Monitoring Information System for average daily exposure to PM10 and PM2.5 in 2015 in the major metropolitan areas in the Republic of Korea. The follow-up period began on 1 January 2016 and lasted until 31 December 2021. The Cox proportional hazards model was used to evaluate the association of cardiovascular benefit with statin use against different levels of air pollutant exposure. Of 1 229 444 participants aged 60 years and older (mean age, 67.4; 37.7% male), 377 076 (30.7%) were identified as statin users. During 11 963 322 person-years (PYs) of follow-up, a total of 86 018 incident stroke events occurred (719.0 events per 100 000 PYs). Compared to statin non-users exposed to high levels of PM10 (>50 µg/m3) and PM2.5 (>25 µg/m3), statin users had 20% [adjusted hazard ratio (HR), 0.80; 95% confidence intervals (CI), 0.75-0.85] and 17% (adjusted HR, 0.80; 95% CI, 0.80-0.86) lower adjusted risk of incident stroke for PM10 and PM2.5, respectively. A similar risk reduction for incident CVD was also found among statin users exposed to low or moderate levels of PM10 (≤50 µg/m3) and PM2.5 (≤25 µg/m3) exposure. CONCLUSION Among adults aged 60 years and older with high and low or moderate levels of exposure to PM10 and PM2.5, statin use was associated with a significantly lower risk of stroke.
Collapse
Affiliation(s)
- Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Republic of Korea
- Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Republic of Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Seulggie Choi
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Jooyoung Chang
- XAIMED Co. Ltd, 12 Opaesan-ro 3-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Daein Choi
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, 281 1st Ave., New York City, NY, USA
| | - Gyeongsil Lee
- KS Health Link Institute and Life Clinic, 4 Nambusunhwan-ro 351-gil, Gangnam-gu, Seoul, Republic of Korea
| | - Seong Rae Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Sang Min Park
- XAIMED Co. Ltd, 12 Opaesan-ro 3-gil, Seongbuk-gu, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
2
|
Jeong A, Lovison G, Bussalleu A, Cirach M, Dadvand P, de Hoogh K, Flexeder C, Hoek G, Imboden M, Karrasch S, Koppelman GH, Kress S, Ljungman P, Majewska R, Pershagen G, Pickford R, Shen Y, Vermeulen RCH, Vlaanderen JJ, Vogli M, Wolf K, Yu Z, Melén E, Pac A, Peters A, Schikowski T, Standl M, Gehring U, Probst-Hensch N. Lung function-associated exposome profile in the era of climate change: Pooled analysis of 8 population-based European cohorts within the EXPANSE project. ENVIRONMENT INTERNATIONAL 2025; 196:109269. [PMID: 39862723 DOI: 10.1016/j.envint.2025.109269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND The independent and interrelated long-term effects of the exposome such as air pollution, greenness, and ambient temperature on lung function are not well understood, yet relevant in the light of climate change. METHODS Pre-bronchodilation FEV1 from five mature birth cohorts (N = 4724) and three adult cohorts (N = 6052) from five European countries were used to assess cross-sectional associations with air pollution, greenness, and ambient temperature, assigned to their residential address. All two-way interactions and square terms were a priori included in building the final elastic net regression model. Elastic net regression results were put into the context of different environmental scenarios such as improvement of air quality, improvement of greenness, climate change, or their combinations. RESULTS Elastic net regression of FEV1 z-scores identified non-zero coefficients for many interaction terms, indicating the importance of joint effects of exposure to air pollution, greenness, and temperature. The non-zero coefficients were bigger and more stable in adults than in children. Upon exploring lung function benefits for different environmental scenarios, an improvement of FEV1 was expected in the scenario of improving air quality or greenness. In contrast, negative changes in FEV1 z-scores were expected in the scenario of climate change, characterized by daily temperature increase in summer and decrease in winter. The beneficial FEV1 effects of improving air pollution or greenness were attenuated in the presence of climate change. CONCLUSION Complex exposome profiles of long-term exposure to air pollution, greenness, and temperature showed associations with FEV1 in European adults, and to less extent in children and adolescents. Climate change seems to have a negative impact on lung function and modifies the association of air pollution and greenspace with lung function.
Collapse
Affiliation(s)
- Ayoung Jeong
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; Department of Public Health, University of Basel, Basel, Switzerland.
| | - Gianfranco Lovison
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; Department of Public Health, University of Basel, Basel, Switzerland
| | - Alonso Bussalleu
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; Department of Public Health, University of Basel, Basel, Switzerland
| | | | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; Department of Public Health, University of Basel, Basel, Switzerland
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; Department of Public Health, University of Basel, Basel, Switzerland
| | - Stefan Karrasch
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands
| | - Sara Kress
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology and Clinical Physiology, Danderyd Hospital, Stockholm, Sweden
| | - Renata Majewska
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Youchen Shen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jelle J Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Megi Vogli
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Zhebin Yu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Agnieszka Pac
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Munich, Munich, Germany
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; Department of Public Health, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Hur J, Rhee CK, Yoon HK, Park CK, Lim JU, An TJ, Choi JY, Jo YS. Influence and distinctions of particulate matter exposure across varying etiotypes in chronic obstructive pulmonary disease (COPD) mouse model. J Inflamm (Lond) 2024; 21:42. [PMID: 39487493 PMCID: PMC11529024 DOI: 10.1186/s12950-024-00416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Air pollution, notably particulate matter (PM), significantly impacts chronic respiratory disease such chronic obstructive pulmonary disease (COPD). Although asthma-COPD overlap (ACO), considered one of the COPD etiotype, is associated with greater severity in both symptoms and outcomes, effects of PM exposure remain unclear. Thus, this study aimed to evaluate impact of PM on chronic airway disease animal models. METHODS We established two distinct COPD etiotypes, cigarette smoking-related COPD (COPD-C) and COPD with asthma (COPD-A), using porcine pancreatic elastase (PPE) for COPD-C and a combination of PPE with ovalbumin for COPD-A. To reflect smoking influence, cigarette smoking extract was administered to both disease models. To assess impact of PM exposure, bronchoalveolar lavage fluid (BALF), proinflammatory cytokines, lung histology, and cellular damage mechanisms were analyzed. RESULTS In the COPD-A model, cell counts and type 2 cytokines were elevated in BALF independent of PM exposure. All models exhibited increased lung inflammation and emphysema due to PM exposure. Expression levels of apoptosis-related protein B-cell lymphoma protein 2 (Bcl-2) associated X (Bax) showed an inclination to increase with PM exposure. In the COPD-A model, decreased expression of basal nuclear factor erythroid-derived 2-like 2 (Nrf-2) and increased production of reactive oxygen species (ROS) due to PM exposure were noted. CONCLUSION We developed two distinct models for the etiotypes of COPD and found increased vulnerability to cell damage in COPD-A after PM exposure. Moreover, the control group displayed escalated airway inflammation and emphysema due to PM exposure, substantiating the risk of respiratory diseases.
Collapse
Affiliation(s)
- Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Kwon Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai Joon An
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong Suk Jo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
4
|
Garcia E, Birnhak ZH, West S, Howland S, Lurmann F, Pavlovic NR, McConnell R, Farzan SF, Bastain TM, Habre R, Breton CV. Childhood Air Pollution Exposure Associated with Self-reported Bronchitic Symptoms in Adulthood. Am J Respir Crit Care Med 2024; 210:1025-1034. [PMID: 38940605 PMCID: PMC11531092 DOI: 10.1164/rccm.202308-1484oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/28/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: Few studies have examined the effects of long-term childhood air pollution exposure on adult respiratory health, including whether childhood respiratory effects underlie this relation. Objectives: To evaluate associations between childhood air pollution exposure and self-reported adult bronchitic symptoms while considering child respiratory health in the Southern California Children's Health Study. Methods: Exposures to nitrogen dioxide (NO2), ozone, and particulate matter <2.5 μm and <10 μm in diameter (PM10) assessed using inverse-distance-squared spatial interpolation based on childhood (birth to age 17 yr) residential histories. Bronchitic symptoms (bronchitis, cough, or phlegm in the past 12 mo) were ascertained via a questionnaire in adulthood. Associations between mean air pollution exposure across childhood and self-reported adult bronchitic symptoms were estimated using logistic regression. We further adjusted for childhood bronchitic symptoms and asthma to understand whether associations operated beyond childhood respiratory health impacts. Effect modification was assessed for family history of asthma, childhood asthma, and adult allergies. Measurements and Main Results: A total of 1,308 participants were included (mostly non-Hispanic White [56%] or Hispanic [32%]). At adult assessment (mean age, 32.0 yr; standard deviation [SD], 4.7), 25% reported bronchitic symptoms. Adult bronchitic symptoms were associated with NO2 and PM10 childhood exposures. Odds ratios per 1-SD increase were 1.69 (95% confidence interval, 1.14-2.49) for NO2 (SD, 11.1 ppb) and 1.51 (95% confidence interval, 1.00-2.27) for PM10 (SD, 14.2 μg/m3). Adjusting for childhood bronchitic symptoms or asthma produced similar results. NO2 and PM10 associations were modified by childhood asthma, with greater associations among asthmatic individuals. Conclusions: Childhood NO2 and PM10 exposures were associated with adult bronchitic symptoms. Associations were not explained by childhood respiratory health impacts; however, participants with childhood asthma had stronger associations.
Collapse
Affiliation(s)
- Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Zoe H. Birnhak
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Scott West
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Steve Howland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | | | | | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| |
Collapse
|
5
|
Cheng J, Sun J, Niu R, Wang X, Hu G, Li F, Gu K, Wu H, Pu Y, Shen F, Hu H, Shen Z. Chronic exposure to PM 10 induces anxiety-like behavior via exacerbating hippocampal oxidative stress. Free Radic Biol Med 2024; 216:12-22. [PMID: 38458393 DOI: 10.1016/j.freeradbiomed.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
As one of the most environmental concerns, inhaled particulate matter (PM10) causes numerous health problems. However, the associations between anxiety behavior and toxicity caused by PM10 have rarely been reported so far. To investigate the changes of behavior after PM10 exposure and to identify the potential mechanisms of toxicity, PM10 samples (with doses of 15 mg/kg and 30 mg/kg) were intratracheally instilled into rats to simulate inhalation of polluted air by the lungs. After instillation for eight weeks, anxiety-like behavior was evaluated, levels of oxidative stress and morphological changes of hippocampus were measured. The behavioral results indicated that PM10 exposure induced obvious anxiety-like behavior in the open field and elevated plus maze tests. Both PM10 concentrations tested could increase whole blood viscosity and trigger hippocampal neuronal damage and oxidative stress by increasing superoxide dismutase (SOD) activities and malondialdehyde levels, and decreasing the expressions of antioxidant-related proteins (e.g., nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and heme oxygenase 1). Furthermore, through collecting and analyzing questionnaires, the data showed that the participants experienced obvious anxiety-related emotions and negative somatic responses under heavily polluted environments, especially PM10 being the main pollutant. These results show that PM10 exposure induces anxiety-like behavior, which may be related to suppressing the Nrf2/Keap1-SOD1 pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Niu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Medical College, Xi'an Peihua University, Xi'an, 710125, China
| | - Xiaoqing Wang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Guilin Hu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kunrong Gu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Wu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuanchun Pu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanqi Shen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, 710049, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
6
|
Steiling K. Evaluating the Impact of Race-Neutral Interpretation of Preoperative Pulmonary Function. Ann Am Thorac Soc 2024; 21:32-34. [PMID: 38156898 PMCID: PMC10867907 DOI: 10.1513/annalsats.202309-834ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Affiliation(s)
- Katrina Steiling
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Ha JH, Lee BW, Yi DH, Lee SJ, Kim WI, Pak SW, Kim HY, Kim SH, Shin IS, Kim JC, Lee IC. Particulate matter-mediated oxidative stress induces airway inflammation and pulmonary dysfunction through TXNIP/NF-κB and modulation of the SIRT1-mediated p53 and TGF-β/Smad3 pathways in mice. Food Chem Toxicol 2024; 183:114201. [PMID: 38013002 DOI: 10.1016/j.fct.2023.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Exposure to particulate matter is currently recognized as a serious aggravating factor of respiratory diseases. In this study, we investigated the effects of particulate matter (PM) on the respiratory system in BALB/c mice and NCI-H292 cells. PM (0, 2.5, 5 and 20 mg/kg) was administered to mice by intra-tracheal instillation for 7 days. After a 7 day-repeated treatment of PM, we evaluated inflammatory cytokines/cell counts in bronchoalveolar lavage fluid (BALF) and conducted pulmonary histology and functional test. We also investigated the role of TXNIP/NF-κB and SIRT1-mediated p53 and TGF-β/Smad3 pathways in PM-induced airway inflammation and pulmonary dysfunction. PM caused a significant increase in pro-inflammatory cytokines, inflammatory cell counts in bronchoalveolar lavage fluid. PM-mediated oxidative stress down-regulated thioredoxin-1 and up-regulated thioredoxin-interacting protein and activation of nuclear factor-kappa B in the lung tissue and PM-treated NCI-H292 cells. PM suppressed sirtuin1 protein levels and increased p53 acetylation in PM-exposed mice and PM-treated NCI-H292 cells. In addition, PM caused inflammatory cell infiltration and the thickening of alveolar walls by exacerbating the inflammatory response in the lung tissue. PM increased levels of transforming growth factor-β, phosphorylation of Smad3 and activation of α-smooth muscle actin, and collagen type1A2 in PM-exposed mice and PM-treated NCI-H292 cells. In pulmonary function tests, PM exposure impaired pulmonary function resembling pulmonary fibrosis, characterized by increased resistance and elastance of the respiratory system, and resistance, elastance, and damping of lung tissues, whereas decreased compliance of the respiratory system, forced expired volume and forced vital capacity. Overall, PM-mediated oxidative stress caused airway inflammation and pulmonary dysfunction with pulmonary fibrosis via TXNIP pathway/NF-κB activation and modulation of the SIRT1-mediated TGF-β/Smad3 pathways. The results of this study can provide fundamental data on the potential adverse effects and underlying mechanism of pulmonary fibrosis caused by PM exposure as a public health concern. Due to the potential toxicity of PM, people with respiratory disease must be careful with PM exposure.
Collapse
Affiliation(s)
- Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea; College of Veterinary Medicine and BK21 FOUR Program, Chungnam National University, Daejeon, Republic of Korea
| | - Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Da-Hye Yi
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeon-Young Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea.
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea.
| |
Collapse
|
8
|
Weismann D, Möckel M, Paeth H, Slagman A. Modelling variations of emergency attendances using data on community mobility, climate and air pollution. Sci Rep 2023; 13:20595. [PMID: 37996460 PMCID: PMC10667222 DOI: 10.1038/s41598-023-47857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
Air pollution is associated with morbidity and mortality worldwide. We investigated the impact of improved air quality during the economic lockdown during the SARS-Cov2 pandemic on emergency room (ER) admissions in Germany. Weekly aggregated clinical data from 33 hospitals were collected in 2019 and 2020. Hourly concentrations of nitrogen and sulfur dioxide (NO2, SO2), carbon and nitrogen monoxide (CO, NO), ozone (O3) and particulate matter (PM10, PM2.5) measured by ground stations and meteorological data (ERA5) were selected from a 30 km radius around the corresponding ED. Mobility was assessed using aggregated cell phone data. A linear stepwise multiple regression model was used to predict ER admissions. The average weekly emergency numbers vary from 200 to over 1600 cases (total n = 2,216,217). The mean maximum decrease in caseload was 5 standard deviations. With the enforcement of the shutdown in March, the mobility index dropped by almost 40%. Of all air pollutants, NO2 has the strongest correlation with ER visits when averaged across all departments. Using a linear stepwise multiple regression model, 63% of the variation in ER visits is explained by the mobility index, but still 6% of the variation is explained by air quality and climate change.
Collapse
Affiliation(s)
- Dirk Weismann
- Intensive Care Unit, Department of Internal Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany.
| | - Martin Möckel
- Departments of Emergency and Acute Medicine, Campus Mitte and Virchow-Klinikum, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Paeth
- Geographical Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Anna Slagman
- Departments of Emergency and Acute Medicine, Campus Mitte and Virchow-Klinikum, Charite-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Chen TY, Chen SC, Wang CW, Tu HP, Chen PS, Hu SCS, Li CH, Wu DW, Hung CH, Kuo CH. The impact of the synergistic effect of SO 2 and PM 2.5/PM 10 on obstructive lung disease in subtropical Taiwan. Front Public Health 2023; 11:1229820. [PMID: 37809009 PMCID: PMC10558068 DOI: 10.3389/fpubh.2023.1229820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Background Chronic Obstructive lung diseases (COPD) are complex conditions influenced by various environmental, lifestyle, and genetic factors. Ambient air pollution has been identified as a potential risk factor, causing 4.2 million deaths worldwide in 2016, accounting for 25% of all COPD-related deaths and 26% of all respiratory infection-related deaths. This study aims to evaluate the associations among chronic lung diseases, air pollution, and meteorological factors. Methods This cross-sectional study obtained data from the Taiwan Biobank and Taiwan Air Quality Monitoring Database. We defined obstructive lung disease as patients with FEV1/FVC < 70%. Descriptive analysis between spirometry groups was performed using one-way ANOVA and the chi-square or Fisher's exact test. A generalized additive model (GAM) was used to evaluate the relationship between SO2 and PM2.5/PM10 through equations and splines fitting. Results A total of 2,635 participants were enrolled. Regarding environmental factors, higher temperature, higher relative humidity, and lower rainfall were risk factors for obstructive lung disease. SO2 was positively correlated with PM10 and PM2.5, with correlation coefficients of 0.53 (p < 0.0001) and 0.52 (p < 0.0001), respectively. Additionally, SO2 modified the relative risk of obstructive impairment for both PM10 [β coefficient (β) = 0.01, p = 0.0052] and PM2.5 (β = 0.01, p = 0.0155). Further analysis per standard deviation (per SD) increase revealed that SO2 also modified the relationship for both PM10 (β = 0.11, p = 0.0052) and PM2.5 (β = 0.09, p = 0.0155). Our GAM analysis showed a quadratic pattern for SO2 (per SD) and PM10 (per SD) in model 1, and a quadratic pattern for SO2 (per SD) in model 2. Moreover, our findings confirmed synergistic effects among temperature, SO2 and PM2.5/PM10, as demonstrated by the significant associations of bivariate (SO2 vs. PM10, SO2 vs. PM2.5) thin-plate smoothing splines in models 1 and 2 with obstructive impairment (p < 0.0001). Conclusion Our study showed high temperature, humidity, and low rainfall increased the risk of obstructive lung disease. Synergistic effects were observed among temperature, SO2, and PM2.5/PM10. The impact of air pollutants on obstructive lung disease should consider these interactions.
Collapse
Affiliation(s)
- Te-Yu Chen
- School of Post-baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Wang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Shih Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Stephen Chu-Sung Hu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiu-Hui Li
- Doctoral Degree Program, Department of International Business, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program, Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Jackson P, Muyanja SZ, Siddharthan T. Health Equity and Respiratory Diseases in Low- and Middle-Income Countries. Clin Chest Med 2023; 44:623-634. [PMID: 37517840 DOI: 10.1016/j.ccm.2023.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Over 80% of the morbidity and mortality related to acute and chronic respiratory diseases occur in low- and middle-income countries (LMICs), a reflection of vast disparities in care for these conditions. Over the next decade, the prevalence of respiratory diseases is expected to increase, as population growth in LMICs exceeds high-income countries (HICs). Pediatric morbidity and mortality from lower respiratory tract infections and asthma occur almost exclusively in LMICs, contributing to a greater loss of quality adjusted life years from these conditions when compared with HICs.
Collapse
Affiliation(s)
- Peter Jackson
- Division of Pulmonary and Critical Care Medicine, Virginia Commonwealth University, 1200 East Broad Street, Box 980050, Richmond, VA 23298, USA
| | | | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, 1951 Northwest 7th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Lee HY, Kim HJ, Kim HJ, Na G, Jang Y, Kim SH, Kim NH, Kim HC, Park YJ, Kim HC, Yun YK, Lee SW. The impact of ambient air pollution on lung function and respiratory symptoms in elite athletes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158862. [PMID: 36152863 DOI: 10.1016/j.scitotenv.2022.158862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Air pollution has become a significant public health concern. During exercise, many physiological factors are thought to increase the effects of air pollution. Air pollution most affects lung function and respiratory symptoms. We investigated the association between lung function, respiratory symptoms, and air pollutant concentration with meteorological factors in elite sports athletes. METHODS A total of 59 elite sports athletes from the Korea National Sports University participated in this prospective, observational study from September 2019 to June 2020. At ten visits, lung function and respiratory symptoms were obtained after a training session. We measured six air pollutants, including SO2, CO, O3, NO2, PM10, and PM2.5, and two meteorological factors, including humidity and temperature. Air pollutants and meteorological factors were measured by two nearest depositories of the national air pollution information system in Korea. RESULTS In a single-pollutant model, PM2.5, PM10, NO2, and CO were inversely associated with both FEV1 and FEV6, 10 μg/m3 in PM2.5 was associated with a 32.31 mL decrease in FEV1 and a 36.93 mL decrease in FEV6. Meanwhile, O3 and temperature had positive associations with both FEV1 (13.00 and 3.15 mL) and FEV6 (16.91 and 4.76 mL) and humidity with FEV6 (11.98 mL). In the multi-pollutant model at lag 0, FEV1 was associated negatively with O3 and NO2 (-50.68 and -6.87 mL) and positively with SO2 and temperature (65.76 and 8.08 mL). In the multi-pollutant model at lag 6, temperature was associated with FEV1 and FEV6 (6.01 and 8.89 mL). PM2.5, PM10, NO2, CO, and temperature were significantly associated with FEV1 and FEV6 through lag 0-6. CONCLUSIONS Air pollutants and meteorological factors are associated with lung function and respiratory symptoms and have cumulative effects among elite athletes. In the multi-pollutant model, temperature has the most significant effect on lung function.
Collapse
Affiliation(s)
- Ho Young Lee
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Hyeon-Ju Kim
- Department of Community Sport, Korea National Sport University, Seoul, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Geunjoo Na
- Department of Occupational and Environmental Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Youngwon Jang
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Soo Han Kim
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Na Hyun Kim
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Republic of Korea
| | - Hwan Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Young-Kil Yun
- Department of Community Sport, Korea National Sport University, Seoul, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Feng S, Miao J, Wang M, Jiang N, Dou S, Yang L, Ma Y, Yu P, Ye T, Wu Y, Wen B, Lu P, Li S, Guo Y. Long-term improvement of air quality associated with lung function benefits in Chinese young adults: A quasi-experiment cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158150. [PMID: 35995154 DOI: 10.1016/j.scitotenv.2022.158150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Long-term exposure to air pollution is associated with lung function impairment. However, whether long-term improvements in air quality could improve lung function is unclear. OBJECTIVES To examine whether the reduction of long-term air pollution was associated with lung function improvement among Chinese young adults. METHODS We conducted a prospective quasi-experiment cohort study with 1731 college students in Shandong, China from September 2019 to September 2020, covering COVID-19 lockdown period. Data on air pollution concentrations were obtained from China Environmental Monitoring Station. Lung function indicators included forced vital capacity (FVC), forced expiratory volume in 1st second (FEV1) and forced expiratory flow at 50 % of FVC (FEF50%). We used linear mixed-effects model to examine the associations between the change of air pollutants concentrations and the change of lung function, and additional adjustments for indoor air pollution (IAP) source. We also conducted stratified analysis by sex. RESULTS Compared with 2019, the mean FVC, FEV1 and FEF50% were elevated by 414.4 ml, 321.5 ml, and 28.4 ml/s respectively in 2020. Every 5 μg/m3 decrease in annual average PM2.5 concentrations was associated with 36.0 ml [95 % confidence interval (CI):6.0, 66.0 ml], 46.1 ml (95 % CI:16.7, 75.5 ml), and 124.2 ml/s (95 % CI:69.5, 178.9 ml/s) increment in the FVC, FEV1, and FEF50%, respectively. Similar associations were found for PM10. The estimated impact was almost unchanged after adjusting for IAP source. There was no significant effect difference between males and females. CONCLUSION Long-term improvement of air quality can improve lung function among young adults. Stricter policies on improving air quality are needed to protect human health.
Collapse
Affiliation(s)
- Shurong Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Jiaming Miao
- Binzhou Medical University, Yantai, Shandong, China
| | - Minghao Wang
- Binzhou Medical University, Yantai, Shandong, China
| | - Ning Jiang
- Binzhou Medical University, Yantai, Shandong, China
| | - Siqi Dou
- Binzhou Medical University, Yantai, Shandong, China
| | - Liu Yang
- Binzhou Medical University, Yantai, Shandong, China
| | - Yang Ma
- Binzhou Medical University, Yantai, Shandong, China
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Peter KM, Pike JR, Preisser JS, Kucharska-Newton AM, Meyer ML, Mirabelli MC, Palta P, Hughes T, Matsushita K, Lu Y, Heiss G. Decline in Lung Function From Mid-to Late-Life With Central Arterial Stiffness: The Atherosclerosis Risk in Communities Study. Angiology 2022; 73:967-975. [PMID: 35624428 PMCID: PMC9490435 DOI: 10.1177/00033197221105747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We investigated the association of lung function at mid-life, later in life, and its 20-year decline, with arterial stiffness later in life. We examined 5720 Atherosclerosis Risk in Communities Study participants who attended Visits 1 (1987-1989) and 5 (2011-2013). Lung function measures were forced expiratory volume in one second (FEV1) and forced vital capacity (FVC), obtained at Visits 1, 2 (1990-1992), and 5. Central artery stiffness (carotid-femoral pulse wave velocity [cfPWV]) was measured at Visit 5. We evaluated associations of lung function with later-life central artery stiffness and cfPWV >75th percentile by multivariable linear and logistic regressions. Lung function at Visit 1 (FEV1 β: -26, 95% Confidence Interval [CI]: -48, -5; FVC β: -14, 95% CI: -32, 5) and Visit 5 (FEV1 β: -22, 95% CI: -46, 2; FVC β: -18, 95% CI: -38, 2) were inversely associated with cfPWV at Visit 5, and with odds of high cfPWV in fully adjusted models. Twenty-year decline in lung function was not associated with continuous or dichotomous measures of arterial stiffness (FEV1 β: 11, 95% CI: -46, 68; FVC β: -4, 95% CI: -52, 43). Lung function at mid-life and late-life was inversely associated with arterial stiffness in later life.
Collapse
Affiliation(s)
- Kennedy M. Peter
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James R. Pike
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John S. Preisser
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna M. Kucharska-Newton
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- University of Kentucky – Lexington, Lexington, KY, USA
| | | | | | | | | | | | - Yifei Lu
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gerardo Heiss
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Chen K, Rice MB. Small Airway Anatomy: An Indicator of Pollution Susceptibility in Adults? Am J Respir Crit Care Med 2022; 206:2-4. [PMID: 35504004 PMCID: PMC9954322 DOI: 10.1164/rccm.202203-0592ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kelly Chen
- Division of Pulmonary, Critical Care, and Sleep MedicineBeth Israel Deaconess Medical CenterBoston, Massachusetts
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep MedicineBeth Israel Deaconess Medical CenterBoston, Massachusetts
| |
Collapse
|
15
|
Yin P, Wu J, Wang L, Luo C, Ouyang L, Tang X, Liu J, Liu Y, Qi J, Zhou M, Lai T. The Burden of COPD in China and Its Provinces: Findings From the Global Burden of Disease Study 2019. Front Public Health 2022; 10:859499. [PMID: 35757649 PMCID: PMC9215345 DOI: 10.3389/fpubh.2022.859499] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
In China, chronic obstructive pulmonary disease (COPD) was accounted for a quarter of the global COPD population and has become a large economic burden. However, the comprehensive picture of the COPD burden, which could inform health policy, is not readily available for all of the provinces of China. Here, we aimed to describe the burden of COPD in China, providing an up-to-date and comprehensive analysis at the national and provincial levels, and time trends from 1990 to 2019. Following the methodology framework and general analytical strategies used in the GBD 2019, we analyzed the incidence, prevalence, mortality, disability-adjusted life years (DALYs), years lived with disability (YLDs), and years with life lost (YLLs) attributable to COPD across China and the corresponding time trends from 1990 to 2019, stratified by age and province. In order to quantify the secular trends of the burden of COPD, the estimated annual percentage changes were calculated by the linear regression model of age-standardized rates (ASRs) and calendar years. We also presented the contribution of risk factors to COPD-related mortality and DALYs. The association between COPD burden and socio-demographic index (SDI) were also evaluated. From 1990 to 2019, the incidence and prevalence numbers of COPD increased by 61.2 and 67.8%, respectively, whereas the number of deaths and DALYs owing to COPD decreased. The ASRs of COPD burden, including incidence, prevalence, mortality, DALYs, YLDs, and YLLs continuously decreased from 1990 to 2019. The crude rates of COPD burden dramatically increased with age and reached a peak in the older than 95 years age group. In 2019, the leading risk factor for COPD mortality and DALYs was tobacco use in the whole population, but ambient particulate matter pollution was the most significant risk factor in females. At the provincial level, the ASRs of COPD burden was significantly associated with the SDIs, with the highest ASRs in the western provinces with low SDIs. Collectively, our study indicated that COPD remains an important public health problem in China. Geographically targeted considerations should be developed to enhance COPD health and reduce the COPD burden throughout China and in specific provinces.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiayuan Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijun Wang
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chaole Luo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lihuan Ouyang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiantong Tang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiangmei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunning Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinlei Qi
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Maigeng Zhou
| | - Tianwen Lai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Tianwen Lai
| |
Collapse
|
16
|
Kahraman AC, Sivri N. Comparison of metropolitan cities for mortality rates attributed to ambient air pollution using the AirQ model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43034-43047. [PMID: 35091944 PMCID: PMC8799408 DOI: 10.1007/s11356-021-18341-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
In the present study, the air pollution dynamics of the metropolitan cities of Balıkesir, Bursa, Istanbul, Kocaeli, Sakarya and Tekirdağ in the Marmara Region, which is the geographical region with the highest urban and industrial activity in Turkey, were examined for the time period between 2016 and 2019. Annual changes in the cities in terms of air pollution, which was examined with a focus on the PM2.5 parameter as indicated by United Nations (UN) Sustainable Development Goals (SDGs); differences in the cities by years; and the seasonal changes in air pollution in the cities were investigated. Additionally, mortality rates attributed to air pollution were calculated with the AirQ + software based on integrated exposure-response function recommended by the World Health Organization (WHO) and the UN using city-scale statistics of fatal disease cases that can be attributed to air pollution. It was determined that all cities in the Marmara Region study area exceeded the limit PM2.5 values specified by the European Union (EU) in the years 2016, 2017 and 2018 while only Kocaeli and Tekirdağ were below the limit values in 2019. The limit values specified by the WHO were exceeded in all cities in each year. A total of 46,920 premature deaths attributed to the exceedance of WHO limit values were calculated for the years 2016, 2017, 2018 and 2019 with 11,895, 13,853, 11,748 and 9,429, respectively. Determining national limit values for the PM2.5 parameter, which is among the most important factors of air pollution, and monitoring it in a sustainable manner using a sufficient number of well-equipped stations is of great importance. This way, national, regional and urban action plans regarding the impact of air pollution on human health, as indicated by UN SDGs, can be prepared.
Collapse
Affiliation(s)
- Ahmet Cihat Kahraman
- Institute of Graduate Studies, Istanbul University-Cerrahpasa (IUC), 34320, Avcılar, Istanbul, Turkey.
| | - Nüket Sivri
- Faculty of Engineering, Department of Environmental Engineering, IUC, 34320, Avcılar, Istanbul, Turkey
| |
Collapse
|
17
|
Maio S, Baldacci S, Tagliaferro S, Angino A, Parmes E, Pärkkä J, Pesce G, Maesano CN, Annesi-Maesano I, Viegi G. Urban grey spaces are associated with increased allergy in the general population. ENVIRONMENTAL RESEARCH 2022; 206:112428. [PMID: 34838570 DOI: 10.1016/j.envres.2021.112428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND the built environment in urban areas may have side effects on children's respiratory health, whilst less is known for adulthood. AIM to assess the association between increasing exposure to grey spaces and allergic status in an adult general population sample. METHODS 2070 subjects (age range 15-84 yrs), living in Pisa/Cascina, Italy, were investigated in 1991-93 through a questionnaire on health status and risk factors, skin prick test (SPT), serum Immunoglobulins E (IgE), and serum antibodies to benzo(a)pyrene diol epoxide (BPDE)-DNA adducts. Land-cover exposure within a 1000 m buffer from each subject's home address was assessed through the CORINE Land Cover program (CLC 1990) within the FP7/HEALS project (2013-2018). Participants' residential addresses were geocoded and the proportion of surrounding grey spaces was calculated. Through logistic regression models, adjusting for potential confounding factors, the effect of a 10% increase in grey spaces exposure on allergic biomarkers/conditions was assessed; the relationship with serum antibodies to BPDE-DNA adducts positivity was also analyzed. RESULTS A 10% increase in grey spaces coverage was associated with a higher probability of having SPT positivity (OR 1.07, 95% CI 1.02-1.13), seasonal SPT positivity (OR 1.12, 1.05-1.19), polysensitization (OR 1.11, 1.04-1.19), allergic rhinitis (OR 1.10, 1.04-1.17), co-presence of SPT positivity and asthma/allergic rhinitis (OR 1.16, 1.08-1.25), asthma/allergic rhinitis (OR 1.06, 1.00-1.12), presence of serum antibodies to BPDE-DNA adducts positivity (OR 1.07, 1.01-1.14). CONCLUSIONS grey spaces have adverse effects on allergic status and are related to a biomarker of polycyclic aromatic hydrocarbons exposure in adulthood. Thus, they may be used as a proxy of urban environmental exposure.
Collapse
Affiliation(s)
- S Maio
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy.
| | - S Baldacci
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - S Tagliaferro
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - A Angino
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - E Parmes
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - J Pärkkä
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - G Pesce
- INSERM, Paris-Saclay University, UVSQ, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - C N Maesano
- INSERM, Montpellier University, Institut Desbrest d'Épidémiologie et de Santé Publique, Montpellier, France
| | - I Annesi-Maesano
- INSERM, Montpellier University, Institut Desbrest d'Épidémiologie et de Santé Publique, Montpellier, France
| | - G Viegi
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy; CNR Institute for Research and Biomedical Innovation, Palermo, Italy
| |
Collapse
|
18
|
Knox-Brown B, Mulhern O, Feary J, Amaral AFS. Spirometry parameters used to define small airways obstruction in population-based studies: systematic review. Respir Res 2022; 23:67. [PMID: 35313875 PMCID: PMC8939095 DOI: 10.1186/s12931-022-01990-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Background The assessment of small airways obstruction (SAO) using spirometry is practiced in population-based studies. However, it is not clear what are the most used parameters and cut-offs to define abnormal results.
Methods We searched three databases (Medline, Web of Science, Google Scholar) for population-based studies, published by 1 May 2021, that used spirometry parameters to identify SAO and/or provided criteria for defining SAO. We systematically reviewed these studies and summarised evidence to determine the most widely used spirometry parameter and criteria for defining SAO. In addition, we extracted prevalence estimates and identified associated risk factors. To estimate a pooled prevalence of SAO, we conducted a meta-analysis and explored heterogeneity across studies using meta regression. Results Twenty-five studies used spirometry to identify SAO. The most widely utilised parameter (15 studies) was FEF25–75, either alone or in combination with other measurements. Ten studies provided criteria for the definition of SAO, of which percent predicted cut-offs were the most common (5 studies). However, there was no agreement on which cut-off value to use. Prevalence of SAO ranged from 7.5% to 45.9%. As a result of high heterogeneity across studies (I2 = 99.3%), explained by choice of spirometry parameter and WHO region, we do not present a pooled prevalence estimate. Conclusion There is a lack of consensus regarding the best spirometry parameter or defining criteria for identification of SAO. The value of continuing to measure SAO using spirometry is unclear without further research using large longitudinal data. PROSPERO registration number CRD42021250206 Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01990-2.
Collapse
Affiliation(s)
- Ben Knox-Brown
- National Heart and Lung Institute, Imperial College London, 1B Manresa Road, London, SW3 6LR, UK.
| | - Octavia Mulhern
- National Heart and Lung Institute, Imperial College London, 1B Manresa Road, London, SW3 6LR, UK
| | - Johanna Feary
- National Heart and Lung Institute, Imperial College London, 1B Manresa Road, London, SW3 6LR, UK
| | - Andre F S Amaral
- National Heart and Lung Institute, Imperial College London, 1B Manresa Road, London, SW3 6LR, UK
| |
Collapse
|
19
|
Moradi M, Mokhtari A, Mohammadi MJ, Hadei M, Vosoughi M. Estimation of long-term and short-term health effects attributed to PM 2.5 standard pollutants in the air of Ardabil (using Air Q + model). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21508-21516. [PMID: 34761318 DOI: 10.1007/s11356-021-17303-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Clean air is considered as a basic need for human health. However, air pollution is a significant threat to health in developed and developing countries. The aim of this study was to estimate the health effects attributed to PM2.5 pollutants in the air of Ardabil in 2018 (using Air Q + model). Raw data related to particles were collected from the Department of Environment and processed in Excel software and converted into an input file of the Air Q + model, and in the final stage, by considering appropriate epidemiological parameters and combining these data with air quality data, it was possible to estimate the health effects of air pollution. The results showed that the average annual concentrations of PM2.5 and PM10 were 15.47 and 30.94 in the study year, respectively. The total number of deaths due to ALRI, COPD, lung cancer, IHD, and stroke deaths on average during the study period were estimated to be 73, 11, 7, 15, and 14 deaths, respectively, which include 14.62, 15.78, 4.9, 12.43, and 11.6% of deaths due to ALRI, COPD, lung cancer, IHD, and stroke deaths, respectively. In conditions of concentration above 5 µg/m3, attributed proportion, total number of attributed cases and number of attributed cases per 100,000 population (with moderate relative risk and confidence interval of 95%) for cardiovascular diseases have been estimated to be 0.95% 103 people and 42.19 people. Also, the attributed proportion, the total number of attributable cases, and the number of attributable cases per 100,000 population (with moderate relative risk and confidence of 95%) for the admission of respiratory diseases have been estimated at 97.1%, 68 persons and 3 persons, respectively. Our results suggest that particle exposure even at low concentrations is associated with an increased risk of overall mortality and specific cause mortality and hospital admissions for respiratory and cardiovascular diseases.
Collapse
Affiliation(s)
- Mina Moradi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Mokhtari
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Vosoughi
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran.
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
20
|
Fieten KB, Drijver‐Messelink MT, Cogo A, Charpin D, Sokolowska M, Agache I, Taborda‐Barata LM, Eguiluz‐Gracia I, Braunstahl GJ, Seys SF, den Berge M, Bloch KE, Ulrich S, Cardoso‐Vigueros C, Kappen JH, Brinke AT, Koch M, Traidl‐Hoffmann C, da Mata P, Prins DJ, Pasmans SGMA, Bendien S, Rukhadze M, Shamji MH, Couto M, Oude Elberink H, Peroni DG, Piacentini G, Weersink EJM, Bonini M, Rijssenbeek‐Nouwens LHM, Akdis CA. Alpine altitude climate treatment for severe and uncontrolled asthma: An EAACI position paper. Allergy 2022; 77:1991-2024. [PMID: 35113452 PMCID: PMC9305916 DOI: 10.1111/all.15242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/30/2022]
Abstract
Currently available European Alpine Altitude Climate Treatment (AACT) programs combine the physical characteristics of altitude with the avoidance of environmental triggers in the alpine climate and a personalized multidisciplinary pulmonary rehabilitation approach. The reduced barometric pressure, oxygen pressure, and air density, the relatively low temperature and humidity, and the increased UV radiation at moderate altitude induce several physiological and immunological adaptation responses. The environmental characteristics of the alpine climate include reduced aeroallergens such as house dust mites (HDM), pollen, fungi, and less air pollution. These combined factors seem to have immunomodulatory effects controlling pathogenic inflammatory responses and favoring less neuro‐immune stress in patients with different asthma phenotypes. The extensive multidisciplinary treatment program may further contribute to the observed clinical improvement by AACT in asthma control and quality of life, fewer exacerbations and hospitalizations, reduced need for oral corticosteroids (OCS), improved lung function, decreased airway hyperresponsiveness (AHR), improved exercise tolerance, and improved sinonasal outcomes. Based on observational studies and expert opinion, AACT represents a valuable therapy for those patients irrespective of their asthma phenotype, who cannot achieve optimal control of their complex condition despite all the advances in medical science and treatment according to guidelines, and therefore run the risk of falling into a downward spiral of loss of physical and mental health. In the light of the observed rapid decrease in inflammation and immunomodulatory effects, AACT can be considered as a natural treatment that targets biological pathways.
Collapse
|
21
|
Chen D, Lawrence KG, Pratt GC, Stenzel MR, Stewart PA, Groth CP, Banerjee S, Christenbury K, Curry MD, Jackson WB, Kwok RK, Blair A, Engel LS, Sandler DP. Fine Particulate Matter and Lung Function among Burning-Exposed Deepwater Horizon Oil Spill Workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27001. [PMID: 35103485 PMCID: PMC8805798 DOI: 10.1289/ehp8930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND During the 2010 Deepwater Horizon (DWH) disaster, controlled burning was conducted to remove oil from the water. Workers near combustion sites were potentially exposed to increased fine particulate matter [with aerodynamic diameter ≤2.5μm (PM2.5)] levels. Exposure to PM2.5 has been linked to decreased lung function, but to our knowledge, no study has examined exposure encountered in an oil spill cleanup. OBJECTIVE We investigated the association between estimated PM2.5 only from burning/flaring of oil/gas and lung function measured 1-3 y after the DWH disaster. METHODS We included workers who participated in response and cleanup activities on the water during the DWH disaster and had lung function measured at a subsequent home visit (n=2,316). PM2.5 concentrations were estimated using a Gaussian plume dispersion model and linked to work histories via a job-exposure matrix. We evaluated forced expiratory volume in 1 s (FEV1; milliliters), forced vital capacity (FVC; milliliters), and their ratio (FEV1/FVC; %) in relation to average and cumulative daily maximum exposures using multivariable linear regressions. RESULTS We observed significant exposure-response trends associating higher cumulative daily maximum PM2.5 exposure with lower FEV1 (p-trend=0.04) and FEV1/FVC (p-trend=0.01). In comparison with the referent group (workers not involved in or near the burning), those with higher cumulative exposures had lower FEV1 [-166.8mL, 95% confidence interval (CI): -337.3, 3.7] and FEV1/FVC (-1.7, 95% CI: -3.6, 0.2). We also saw nonsignificant reductions in FVC (high vs. referent: -120.9, 95% CI: -319.4, 77.6; p-trend=0.36). Similar associations were seen for average daily maximum PM2.5 exposure. Inverse associations were also observed in analyses stratified by smoking and time from exposure to spirometry and when we restricted to workers without prespill lung disease. CONCLUSIONS Among oil spill workers, exposure to PM2.5 specifically from controlled burning of oil/gas was associated with significantly lower FEV1 and FEV1/FVC when compared with workers not involved in burning. https://doi.org/10.1289/EHP8930.
Collapse
Affiliation(s)
- Dazhe Chen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kaitlyn G. Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Gregory C. Pratt
- Division of Environmental Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark R. Stenzel
- Exposure Assessment Applications, LLC, Arlington, Virginia, USA
| | | | - Caroline P. Groth
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| | - Sudipto Banerjee
- Department of Biostatistics, Fielding School of Public Health, University of California–Los Angeles, Los Angeles, California, USA
| | | | | | | | - Richard K. Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Office of the Director, National Institute of Environmental Health Sciences, Bethesda, Maryland, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
22
|
Probst-Hensch N, Bochud M, Chiolero A, Crivelli L, Dratva J, Flahault A, Frey D, Kuenzli N, Puhan M, Suggs LS, Wirth C. Swiss Cohort & Biobank - The White Paper. Public Health Rev 2022; 43:1605660. [PMID: 36619237 PMCID: PMC9817110 DOI: 10.3389/phrs.2022.1605660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Nicole Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Swiss Society for Public Health, Bern, Switzerland
- *Correspondence: Nicole Probst-Hensch,
| | - Murielle Bochud
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Swiss Society for Public Health, Bern, Switzerland
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (Unisanté), Lausanne, Switzerland
| | - Arnaud Chiolero
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Swiss Society for Public Health, Bern, Switzerland
- Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Luca Crivelli
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Swiss Society for Public Health, Bern, Switzerland
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
- Institute of Public Health Università della Svizzera Italiana, Lugano, Switzerland
| | - Julia Dratva
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Swiss Society for Public Health, Bern, Switzerland
- Institute of Public Health, Department of Health Sciences, ZHAW Zürich University of Applied Sciences, Winterthur, Switzerland
| | - Antoine Flahault
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Swiss Society for Public Health, Bern, Switzerland
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Frey
- Swiss Society for Public Health, Bern, Switzerland
| | - Nino Kuenzli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Swiss Society for Public Health, Bern, Switzerland
| | - Milo Puhan
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - L. Suzanne Suggs
- Swiss School of Public Health (SSPH+), Zürich, Switzerland
- Swiss Society for Public Health, Bern, Switzerland
- Institute of Public Health Università della Svizzera Italiana, Lugano, Switzerland
| | - Corina Wirth
- Swiss Society for Public Health, Bern, Switzerland
| |
Collapse
|
23
|
Bo Y, Chang LY, Guo C, Lin C, Lau AKH, Tam T, Lao XQ. Reduced ambient PM 2.5, better lung function, and decreased risk of chronic obstructive pulmonary disease. ENVIRONMENT INTERNATIONAL 2021; 156:106706. [PMID: 34153892 DOI: 10.1016/j.envint.2021.106706] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Several studies reported that long-term exposure to fine particulate matter (PM2.5) was associated with an increased risk of chronic obstructive pulmonary disease (COPD). It remains unclear whether reduced PM2.5 can decrease the risk of COPD development. OBJECTIVE To investigate the associations of dynamic changes (including deterioration and improvement) in long-term exposure to ambient PM2.5 with changes in lung function and the incidence of COPD. METHODS A total of 133,119 adults (aged 18 years or older) were recruited in Taiwan between 2001 and 2014. All participants underwent at least two standard medical examinations including spirometry test. We estimated PM2.5 concentrations using a high-resolution (1 km2) satellite-based spatio-temporal model. The change in PM2.5 (ΔPM2.5) was defined as the difference in concentration of PM2.5 between the respective visit and the previous visit. We used a multivariable mixed linear model and time-varying Cox model to investigate the associations of change in PM2.5 with annual change of lung function and the incidence of COPD, respectively. RESULT The PM2.5 concentration in Taiwan increased during 2002-2004 and began to decrease around 2005. Every 5-µg/m3/year decrease in the annual change of PM2.5 (i.e., ΔPM2.5/year of 5 µg/m3/year) was associated with an average increase of 19.93 mL/year (95 %CI: 17.42,22.43) in forced expiratory volume in 1 s (FEV1), 12.76 mL/year (95 %CI: 9.84,15.66) in forced vital capacity (FVC), 70.22 mL/s/year (95 %CI: 64.69,76.16) in midexpiratory flow between 25 and 75% of the forced vital capacity (MEF25-75), 0.27%/year (95 %CI: 0.21%, 0.32%) in FEV1/FVC/year. Every 5 µg/m3 decrease in PM2.5 (i.e., ΔPM2.5 of 5 µg/m3) was associated with a 12% (95 %CI: 7%, 17%) reduced risk of COPD development. The stratified and sensitivity analyses generally yielded similar results. CONCLUSION An improvement in PM2.5 pollution exposure was associated with an attenuated decline in lung function parameters of FEV1, FVC, MEF25-75, and FEV1/FVC, and a decreased risk of COPD development. Our findings suggest that strategies aimed at reducing air pollution may effectively combat the risk of COPD development.
Collapse
Affiliation(s)
- Yacong Bo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong; Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, China
| | - Ly-Yun Chang
- Gratia Christian College, Hong Kong; Institute of Sociology, Academia Sinica, Taiwan
| | - Cui Guo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong
| | - Changqing Lin
- Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong
| | - Alexis K H Lau
- Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong; Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong
| | - Tony Tam
- Department of Sociology, the Chinese University of Hong Kong, Hong Kong
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong; Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
24
|
Bo Y, Chang LY, Guo C, Lin C, Lau AKH, Tam T, Yeoh EK, Lao XQ. Associations of Reduced Ambient PM2.5 Level With Lower Plasma Glucose Concentration and Decreased Risk of Type 2 Diabetes in Adults: A Longitudinal Cohort Study. Am J Epidemiol 2021; 190:2148-2157. [PMID: 34038953 DOI: 10.1093/aje/kwab159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
It remains unknown whether reduced air pollution levels can prevent type 2 diabetes mellitus. In this study, we investigated the associations between dynamic changes in long-term exposure to ambient fine particulate matter, defined as particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), and changes in fasting plasma glucose (FPG) levels and incidence of type 2 diabetes. A total of 151,398 adults (ages ≥18 years) were recruited in Taiwan between 2001 and 2014. All participants were followed up for a mean duration of 5.0 years. Change in PM2.5 (ΔPM2.5) was defined as the value at a follow-up visit minus the corresponding value at the immediately preceding visit. The PM2.5 concentration in Taiwan increased during 2002-2004 and began to decrease in 2005. Compared with participants with little or no change in PM2.5 exposure, those with the largest decrease in PM2.5 had a decreased FPG level (β = -0.39, 95% confidence interval: -0.47, -0.32) and lower risk of type 2 diabetes (hazard ratio = 0.86, 95% confidence interval: 0.80, 0.93). The sensitivity analysis and analyses stratified by sex, age, body mass index, smoking, alcohol drinking, and hypertension generally yielded similar results. Improved PM2.5 air quality is associated with a better FPG level and a decreased risk of type 2 diabetes development.
Collapse
|
25
|
Gaffney AW, McCormick D, Woolhandler S, Christiani DC, Himmelstein DU. Prognostic implications of differences in forced vital capacity in black and white US adults: Findings from NHANES III with long-term mortality follow-up. EClinicalMedicine 2021; 39:101073. [PMID: 34458707 PMCID: PMC8379634 DOI: 10.1016/j.eclinm.2021.101073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Because Forced Vital Capacity (FVC) is reduced in Black relative to White Americans of the same age, sex, and height, standard lung function prediction equations assign a lower "normal" range for Black patients. The prognostic implications of this race correction are uncertain. METHODS We analyzed 5,294 White and 3,743 Black participants age 20-80 in NHANES III, a nationally-representative US survey conducted 1988-94, which we linked to the National Death Index to assess mortality through December 31, 2015. We calculated the FVC-percent predicted among Black and White participants, first applying NHANES III White prediction equations to all persons, and then using standard race-specific prediction equations. We used Cox proportional hazard models to calculate the association between race and all-cause mortality without and with adjustment for FVC (using each FVC metric), smoking, socioeconomic factors, and comorbidities. FINDINGS Black participants' age- and sex-adjusted mortality was greater than White participants (HR 1.46; 95%CI:1.29, 1.65). With adjustment for FVC in liters (mean 3.7 L for Black participants, 4.3 L for White participants) or FVC percent-predicted using White equations for everyone, Black race was no longer independently predictive of higher mortality (HR∼1.0). When FVC-percent predicted was "corrected" for race, Black individuals again showed increased mortality hazard. Deaths attributed to chronic respiratory disease were infrequent for both Black and White individuals. INTERPRETATION Lower FVC in Black people is associated with elevated risk of all-cause mortality, challenging the standard assumption about race-based normal limits. Black-White disparities in FVC may reflect deleterious social/environmental exposures, not innate differences. FUNDING No funding.
Collapse
Affiliation(s)
- Adam W Gaffney
- Cambridge Health Alliance, Cambridge, USA
- Harvard Medical School, Boston, USA
| | - Danny McCormick
- Cambridge Health Alliance, Cambridge, USA
- Harvard Medical School, Boston, USA
| | - Steffie Woolhandler
- Cambridge Health Alliance, Cambridge, USA
- Harvard Medical School, Boston, USA
- City University of New York at Hunter College, New York, USA
| | - David C. Christiani
- Harvard Medical School, Boston, USA
- Harvard T.H. Chan School of Public Health, Boston, USA
| | - David U. Himmelstein
- Cambridge Health Alliance, Cambridge, USA
- Harvard Medical School, Boston, USA
- City University of New York at Hunter College, New York, USA
| |
Collapse
|
26
|
Bhakta NR, Kaminsky DA, Bime C, Thakur N, Hall GL, McCormack MC, Stanojevic S. Addressing Race in Pulmonary Function Testing by Aligning Intent and Evidence With Practice and Perception. Chest 2021; 161:288-297. [PMID: 34437887 PMCID: PMC8783030 DOI: 10.1016/j.chest.2021.08.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 10/27/2022] Open
Abstract
The practice of using race or ethnicity in medicine to explain differences between individuals is being called into question because it may contribute to biased medical care and research that perpetuates health disparities and structural racism. A commonly cited example is the use of race or ethnicity in the interpretation of pulmonary function test (PFT) results, yet the perspectives of practicing pulmonologists and physiologists are missing from this discussion. This discussion has global relevance for increasingly multicultural communities in which the range of values that represent normal lung function is uncertain. We review the underlying sources of differences in lung function, including those that may be captured by race or ethnicity, and demonstrate how the current practice of PFT measurement and interpretation is imperfect in its ability to describe accurately the relationship between function and health outcomes. We summarize the arguments against using race-specific equations as well as address concerns about removing race from the interpretation of PFT results. Further, we outline knowledge gaps and critical questions that need to be answered to change the current approach of including race or ethnicity in PFT results interpretation thoughtfully. Finally, we propose changes in interpretation strategies and future research to reduce health disparities.
Collapse
Affiliation(s)
- Nirav R Bhakta
- University of California, San Francisco, San Francisco, CA.
| | | | - Christian Bime
- College of Medicine, The University of Arizona Health Science, Tucson, AZ
| | - Neeta Thakur
- University of California, San Francisco, San Francisco, CA; Zuckerberg San Francisco General Hospital, San Francisco, CA
| | - Graham L Hall
- Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute and School of Allied Health, Curtin University, Perth, WA, Australia
| | | | | |
Collapse
|
27
|
Abstract
Human health is regulated by complex interactions among the genome, the microbiome, and the environment. While extensive research has been conducted on the human genome and microbiome, little is known about the human exposome. The exposome comprises the totality of chemical, biological, and physical exposures that individuals encounter over their lifetimes. Traditional environmental and biological monitoring only targets specific substances, whereas exposomic approaches identify and quantify thousands of substances simultaneously using nontargeted high-throughput and high-resolution analyses. The quantified self (QS) aims at enhancing our understanding of human health and disease through self-tracking. QS measurements are critical in exposome research, as external exposures impact an individual's health, behavior, and biology. This review discusses both the achievements and the shortcomings of current research and methodologies on the QS and the exposome and proposes future research directions.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
28
|
Elemental and isotopic compositions in blank filters collecting atmospheric particulates. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The atmospheric particulates can be harmful to human health due to toxic substances sorbed onto particulates. Although the atmospheric particulates have been collected using different types of filters, few studies have reported background contents of major and trace element, and isotopic compositions in the blank filters used for collecting the particulates yet. Here, we first report background contents of major and trace elements, and isotopic compositions (Zn and Pb isotopes) in the blank filters. Then, we evaluate the best type of filter for elemental and isotope analyses in the particulates.
Findings
The contents of major elements are the lowest in the PTFE filter and become higher in the order of the Nylon, NC, and GF filters, indicating that either PTFE and/or Nylon filters are the most suitable for major element analysis in the atmospheric particulates. Likewise, the contents of trace elements are the lowest in the PTFE filter and become much higher in the order of the Nylon, NC, and GF filters, indicating that PTFE filter is the most suitable for trace element analysis in the atmospheric particulates. Otherwise, background elemental contents result in overestimating their concentrations in the atmospheric particulates. All δ66ZnJMC-Lyon values in two GF filters are within those from samples of the Chinese deserts and of the Chinese Loess Plateau. Likewise, their 206Pb/204Pb ratios are similar with those of samples from Xi’an and Beijing, indicating that the GF filter is not suitable for Zn and Pb isotope study in the atmospheric particulates.
Conclusions
This study suggests that the PTFE filter is the most suitable for elemental and isotope study in the atmospheric particulates and that the GF filter cannot be used for source identification in the atmospheric particulates using Zn and Pb isotopes.
Collapse
|
29
|
Bo Y, Brook JR, Lin C, Chang LY, Guo C, Zeng Y, Yu Z, Tam T, Lau AKH, Lao XQ. Reduced Ambient PM 2.5 Was Associated with a Decreased Risk of Chronic Kidney Disease: A Longitudinal Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6876-6883. [PMID: 33904723 DOI: 10.1021/acs.est.1c00552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many countries have dedicated to the mitigation of air pollution in the past several decades. However, evidence of beneficial effects of air quality improvement on chronic kidney disease (CKD) remains limited. We thus investigated the effects of dynamic changes (including deterioration and improvement) in air quality on the incidence of CKD in a longitudinal study in Taiwan. During 2001-2016, this study recruited a total of 163,197 Taiwanese residents who received at least two standard physical examinations. The level of fine particle matter (PM2.5) was estimated using a high-resolution (1 km2) satellite-based spatio-temporal model. We defined changes of PM2.5 concentrations (ΔPM2.5) as the difference between the two-year average measurements during follow-up and during the immediately preceding visit. The time-dependent Cox regression model was adopted to evaluate the relationships between ΔPM2.5 and the incidence of CKD after adjusting for a series of covariates. The concentrations of PM2.5 in Taiwan peaked around 2004 and began to decrease since 2005. We observed an approximate linear concentration-response relationship of ΔPM2.5 with CKD incidence. Every 5 μg/m3 decrease in the ambient concentration of PM2.5 was associated with a 25% reduced risk of CKD development [hazard ratio (HR): 0.75; 95% CI: 0.73, 0.78]. In conclusion, this study demonstrated that the improvement of PM2.5 air quality might be associated with a lower risk of CKD development. Our findings indicate that reducing air pollution may effectively prevent the development of CKD.
Collapse
Affiliation(s)
- Yacong Bo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Kowloon 999077, Hong Kong, China
| | | | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| | - Ly-Yun Chang
- Gratia Christian College, Kowloon 999077, Hong Kong, China
- Institute of Sociology, Academia Sinica, Taipei 11529, Taiwan
| | - Cui Guo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Yiqian Zeng
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Zengli Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450000, China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
30
|
Grant T, Brigham EP, McCormack MC. Childhood Origins of Adult Lung Disease as Opportunities for Prevention. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:849-858. [PMID: 32147138 DOI: 10.1016/j.jaip.2020.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Prenatal and childhood exposures have been shown to impact lung development, lung function trajectory, and incidence and prevalence of respiratory disease. Early life may serve as a window of susceptibility to such exposures, with the potential to influence lifelong respiratory health. Risk factors encountered in early life with potentially durable impact on lung health include prematurity, respiratory viral illness, allergen sensitization and exposure, tobacco use and exposure, indoor and outdoor pollution, diet, and obesity. These exposures vary in the extent to which they are modifiable, and interventions aimed at reducing harmful exposures range from individual-level behavior modification to policy initiatives implemented to promote population health. For many exposures, including tobacco-related exposures, multilevel interventions are needed. Future research is needed to provide insight as to early-life interventions to promote optimal lung growth and prevent development of chronic respiratory disease. Clinicians should play an active role, assisting individual patients in avoiding known detrimental exposures including maternal smoking during pregnancy and initiation of active smoking. Clinicians can be empowered by evidence to support policies promoting reduction of population-level risk factors, such as restriction on electronic cigarette sales and legislation to uphold air quality standards, to encourage attainment of maximal lung function and reduce risk of chronic lung disease.
Collapse
Affiliation(s)
- Torie Grant
- Division of Pediatric Allergy/Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Emily P Brigham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
31
|
Probst-Hensch N, Jeong A, Stolz D, Pons M, Soccal PM, Bettschart R, Jarvis D, Holloway JW, Kronenberg F, Imboden M, Schindler C, Lovison GF. Causal Effects of Body Mass Index on Airflow Obstruction and Forced Mid-Expiratory Flow: A Mendelian Randomization Study Taking Interactions and Age-Specific Instruments Into Consideration Toward a Life Course Perspective. Front Public Health 2021; 9:584955. [PMID: 34046380 PMCID: PMC8144328 DOI: 10.3389/fpubh.2021.584955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/01/2021] [Indexed: 11/22/2022] Open
Abstract
Obesity has complex links to respiratory health. Mendelian randomization (MR) enables assessment of causality of body mass index (BMI) effects on airflow obstruction and mid-expiratory flow. In the adult SAPALDIA cohort, recruiting 9,651 population-representative samples aged 18–60 years at baseline (female 51%), BMI and the ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) as well as forced mid-expiratory flow (FEF25–75%) were measured three times over 20 follow-up years. The causal effects of BMI in childhood and adulthood on FEV1/FVC and FEF25–75% were assessed in predictive (BMI averaged over 1st and 2nd, lung function (LF) averaged over 2nd and 3rd follow-up; N = 2,850) and long-term cross-sectional models (BMI and LF averaged over all follow-ups; N = 2,728) by Mendelian Randomization analyses with the use of weighted BMI allele score as an instrument variable and two-stage least squares (2SLS) method. Three different BMI allele scores were applied to specifically capture the part of BMI in adulthood that likely reflects tracking of genetically determined BMI in childhood. The main causal effects were derived from models containing BMI (instrumented by BMI genetic score), age, sex, height, and packyears smoked as covariates. BMI interactions were instrumented by the product of the instrument (BMI genetic score) and the relevant concomitant variable. Causal effects of BMI on FEV1/FVC and FEF25–75% were observed in both the predictive and long-term cross-sectional models. The causal BMI- LF effects were negative and attenuated with increasing age, and stronger if instrumented by gene scores associated with childhood BMI. This non-standard MR approach interrogating causal effects of multiplicative interaction suggests that the genetically rooted part of BMI patterns in childhood may be of particular relevance for the level of small airway function and airflow obstruction later in life. The methodological relevance of the results is first to point to the importance of a life course perspective in studies on the etiological role of BMI in respiratory health, and second to point out novel methodological aspects to be considered in future MR studies on the causal effects of obesity related phenotypes.
Collapse
Affiliation(s)
- Nicole Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Public Health, University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Public Health, University of Basel, Basel, Switzerland
| | - Daiana Stolz
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital Basel, Basel, Switzerland
| | - Marco Pons
- Division of Pulmonary Medicine, Regional Hospital of Lugano, Lugano, Switzerland
| | - Paola M Soccal
- Division of Pulmonary Medicine, Geneva University Hospitals, Geneva, Switzerland
| | | | - Deborah Jarvis
- Medical Research Council-Public Health England, Centre for Environment and Health, Imperial College London, London, United Kingdom.,Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Medea Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Public Health, University of Basel, Basel, Switzerland
| | - Christian Schindler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Public Health, University of Basel, Basel, Switzerland
| | - Gianfranco F Lovison
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Public Health, University of Basel, Basel, Switzerland.,Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
| |
Collapse
|
32
|
Shapira U, Brezinski RY, Rogowski O, Zeltser D, Berliner S, Shapira I, Shenhar-Tsarfaty S, Fireman E. Association between elevated serum bilirubin levels with preserved lung function under conditions of exposure to air pollution. BMC Pulm Med 2021; 21:119. [PMID: 33849515 PMCID: PMC8045250 DOI: 10.1186/s12890-021-01488-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High serum bilirubin levels have been shown to be associated with an improved pulmonary function test results. Their potential ability to similarly benefit pulmonary function in an environment of polluted air has not been tested. We retrospectively analyzed data of 15,605 apparently healthy individuals in order to evaluate the effect of serum bilirubin levels on forced expiratory volume in 1 s (FEV1). METHODS Individuals attended the Tel-Aviv Medical Center Inflammatory Survey for a routine annual health check between February, 2002 and June, 2009 and were divided into low, medium and high serum bilirubin levels. Their FEV1 results were compared under various levels of air pollution. Air pollution and weather data were obtained from air pollution monitoring stations of the Israeli Ministry of Environmental Protection. RESULTS The elevated serum bilirubin concentrations on FEV1 were evaluated under moderate and high pollution levels FEV1 and were significantly higher in participants with high blood bilirubin levels compared to medium or low levels (p < 0.001 and p = 0.018, respectively). Participants with high levels of bilirubin had preserved FEV1 under exposure to high and medium pollution levels of both Nitrogen Oxide (NOx) and Carbon Monoxide (CO) pollutants (p = 0.003 and p = 0.022, respectively). The multivariate regression analysis revealed that the influence of bilirubin under conditions of air pollution remained significant even after adjustment for FEV1 confounders, but the interaction was not significant. CONCLUSIONS Elevated serum bilirubin concentrations are associated with preserved lung function in healthy individuals in Israel exposed to high levels of air pollution.
Collapse
Affiliation(s)
- Udi Shapira
- Departments of Internal Medicine "C", "D" & "E" and Institute for Special Medical Examinations (MALRAM), Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rafael Y Brezinski
- Departments of Internal Medicine "C", "D" & "E" and Institute for Special Medical Examinations (MALRAM), Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ori Rogowski
- Departments of Internal Medicine "C", "D" & "E" and Institute for Special Medical Examinations (MALRAM), Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David Zeltser
- Departments of Internal Medicine "C", "D" & "E" and Institute for Special Medical Examinations (MALRAM), Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomo Berliner
- Departments of Internal Medicine "C", "D" & "E" and Institute for Special Medical Examinations (MALRAM), Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Itzhak Shapira
- Departments of Internal Medicine "C", "D" & "E" and Institute for Special Medical Examinations (MALRAM), Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shani Shenhar-Tsarfaty
- Departments of Internal Medicine "C", "D" & "E" and Institute for Special Medical Examinations (MALRAM), Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Elizabeth Fireman
- Laboratory of Pulmonary and Allergic Diseases, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6 Weizman Street, 6423906, Tel-Aviv, Israel.
| |
Collapse
|
33
|
Dalecká A, Wigmann C, Kress S, Altug H, Jiřík V, Heinrich J, Abramson MJ, Schikowski T. The mediating role of lung function on air pollution-induced cardiopulmonary mortality in elderly women: The SALIA cohort study with 22-year mortality follow-up. Int J Hyg Environ Health 2021; 233:113705. [PMID: 33582605 DOI: 10.1016/j.ijheh.2021.113705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Air pollution exposure is associated with reduced lung function and increased cardio-pulmonary mortality (CPM). OBJECTIVES We analyzed the potential mediating effect of reduced lung function on the association between air pollution exposure and CPM. METHODS We used data from the German SALIA cohort including 2527 elderly women (aged 51-56 years at baseline 1985-1994) with 22-year follow-up to CPM. Exposures to PM10, PM2.5, PM2.5 absorbance, NO2 and NOx were assessed by land-use regression modelling and back-extrapolated to estimate exposures at baseline. Lung function (FVC, FEV1) was measured by spirometry and transformed to GLI z-scores. Adjusted Cox proportional hazards and causal proportional hazards mediation analysis models were fitted. RESULTS The survival analysis showed that reduced lung function (z-scores of FVC or FEV1 below 5% predicted) reflected significantly lower survival probability from CPM (p < 0.0001). Longterm exposures to NOx and NO2 were associated with increased risks of CPM (eg. HR = 1.215; 95%CI: 1.017-1.452 for IQR increase in NOx and HR = 1.209; 95%CI: 1.011-1.445 for IQR increase in NO2) after adjusting for reduced lung function and additional covariates. The associations of PM2.5 absorbance and CPM remained significant in models adjusted for FEV1/FVC, but the associations with PM10 and PM2.5 were not significant. The mediation analysis showed significant indirect effects of NO2 and NOx on CPM mediated through reduced FEV1 and FVC. The largest indirect effects were found for exposures to NO2 (HR = 1.037; 95%CI: 1.005-1.070) and NOx (HR = 1.028; 95%CI: 1.004-1.052) mediated through reduced FVC. The mediated proportion effect ranged from 13.9% to 19.6% in fully adjusted models. DISCUSSION This study provides insights into the mechanism of reduced lung function in association between long-term air pollution exposure and CPM. The mediated effect was substantial for exposure to nitrogen oxides (NOx and NO2), but less pronounced for PM10 and PM2.5.
Collapse
Affiliation(s)
- Andrea Dalecká
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300, Ostrava, Czech Republic; Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300, Ostrava, Czech Republic.
| | - Claudia Wigmann
- IUF-Leibniz Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| | - Sara Kress
- IUF-Leibniz Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| | - Hicran Altug
- IUF-Leibniz Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| | - Vítězslav Jiřík
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300, Ostrava, Czech Republic; Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300, Ostrava, Czech Republic.
| | - Joachim Heinrich
- Ludwig-Maximilians-University Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ziemssenstrasse 1, 80336, Munich, Germany.
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, 553 St Kilda Road, VIC, 3004, Melbourne, Australia.
| | - Tamara Schikowski
- IUF-Leibniz Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
34
|
Okeleji LO, Ajayi AF, Adebayo-Gege G, Aremu VO, Adebayo OI, Adebayo ET. Epidemiologic evidence linking oxidative stress and pulmonary function in healthy populations. Chronic Dis Transl Med 2021; 7:88-99. [PMID: 34136768 PMCID: PMC8180443 DOI: 10.1016/j.cdtm.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Respiratory health in the general population declines regardless of the presence of pulmonary diseases. Oxidative stress has been implicated as one of the mechanisms involved in respiratory dysfunction. This review was to evaluate studies that relate oxidative stress factors with pulmonary function among the general population without prior respiratory illnesses. The search yielded 54 citations. Twenty-one studies qualified for incorporation in this review. Owing to the heterogeneity of the review, studies were discussed based on identified oxidative stress factors responsible for pulmonary dysfunction. Oxidative stress biomarkers, including gene polymorphisms of nuclear factor erythroid 2-related factor 2, heme oxygenase 1, glutathione S transferase, superoxide dismutase, and lipid peroxidation products were involved in lung function decline. In addition, the antioxidant status of individuals in reference to dietary antioxidant intake and exposure to environmental pollutants affected oxidative stress and pulmonary function, as indicated by forced expired volume in one second, forced vital capacity, and forced expiratory flow at 25%–75%. This review indicated that oxidative stress is implicated in the gradual decline of lung function among the general population, and gene polymorphism along the antioxidant defense line and/or their interaction with air pollutants reduce lung function. Different polymorphic forms among individuals explain why the rate of lung function decline differs among people. Dietary antioxidants have respiratory health benefits in antioxidant gene polymorphic forms. Therefore, the genetic composition of an individual may be considered for monitoring and identifying people at risk of respiratory illnesses.
Collapse
Affiliation(s)
- Lateef Olabisi Okeleji
- Cardio-thoracic Unit, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Osun state, Nigeria
| | - Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Grace Adebayo-Gege
- Department of Physiology, Baze University, Kuchigoro, Jabi, Abuja, Nigeria
| | - Victoria Oyetayo Aremu
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Emmanuel Tayo Adebayo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
35
|
Analysis of Single Nucleotide Variants (SNVs) Induced by Exposure to PM 10 in Lung Epithelial Cells Using Whole Genome Sequencing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031046. [PMID: 33503946 PMCID: PMC7908261 DOI: 10.3390/ijerph18031046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022]
Abstract
There are many epidemiological studies asserting that fine dust causes lung cancer, but the biological mechanism is not clear. This study was conducted to investigate the effect of PM10 (particulate matter less than 10 μm) on single nucleotide variants through whole genome sequencing in lung epithelial cancer cell lines (HCC-827, NCI-H358) that have been exposed to PM10. The two cell lines were exposed to PM10 for 15 days. We performed experimental and next generation sequencing analyses on experimental group that had been exposed to PM10 as well as an unexposed control group. After exposure to PM10, 3005 single nucleotide variants were newly identified in the NCI-H358 group, and 4402 mutations were identified in the HCC-827 group. We analyzed these single nucleotide variants with the Mutalisk program. We observed kataegis in chromosome 1 in NCI-H358 and chromosome 7 in HCC-827. In mutational signatures analysis, the COSMIC mutational signature 5 was highest in both HCC-827 and NCI-H358 groups, and each cosine similarity was 0.964 in HCC-827 and 0.979 in the NCI-H358 group. The etiology of COSMIC mutational signature 5 is unknown at present. Well-designed studies are needed to determine whether environmental factors, such as PM10, cause COSMIC mutational signature 5.
Collapse
|
36
|
Edginton S, O'Sullivan DE, King WD, Lougheed MD. The effect of acute outdoor air pollution on peak expiratory flow in individuals with asthma: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2021; 192:110296. [PMID: 33031812 DOI: 10.1016/j.envres.2020.110296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Acute exposures to outdoor air pollution have been shown to reduce lung function in children with asthma, but the effect on adults with asthma has not been established in a meta-analysis. The objective of this study was to conduct a systematic literature review and meta-analysis of studies that assessed the relationship of outdoor air pollution and peak expiratory flow (PEF) in adults with asthma. METHODS Studies that contained data on outdoor air pollution levels (PM10, PM2.5, or NO2) and PEF in adults with asthma were eligible for inclusion. Effect estimates were quantified for each air pollution measure using random effects models. Heterogeneity was investigated with the Q-test and I2 statistics. Meta-regression and subgroup analyses were conducted to determine differences in effect by air pollution measures and the inclusion of smokers. RESULTS A total of 22 effect estimates from 15 studies were included in this review. A 10 μg/m3 increase in acute PM10 exposure was associated with a -0.19 L/min (95% CI: 0.30, -0.09) change in PEF. For both PM10 and PM2.5, the inclusion of current smokers was a significant source of heterogeneity among studies (meta-regression: p = 0.04 and p = 0.03). Among studies that only included non-smokers, a 10 μg/m3 increase in acute exposure to PM10 and PM2.5 was associated with changes in PEF of -0.25 L/min (95% CI: 0.38, -0.13) and -1.02 L/min (95% CI: 1.79, -0.24), respectively. CONCLUSIONS This study provides evidence that acute increases in PM10 and PM2.5 levels are associated with decreases in PEF in adults with asthma, particularly among non-smokers.
Collapse
Affiliation(s)
- Stefan Edginton
- Asthma Research Unit, Kingston General Hospital Research Institute, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada.
| | - Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | - M Diane Lougheed
- Asthma Research Unit, Kingston General Hospital Research Institute, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
37
|
Kang D, Jung IB, Lee SY, Park SJ, Kwon SJ, Park DH, Son JW. Particulate matter less than 10 μm (PM 10) activates cancer related genes in lung epithelial cells. Inhal Toxicol 2020; 32:487-493. [PMID: 33283556 DOI: 10.1080/08958378.2020.1850936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Particulate matter (PM) has various systemic effects. We researched the effects of PM on lung epithelial cells with next generation sequencing (NGS) and validated this with quantitative real-time polymerase chain reaction (qRT-PCR). Methods: We cultured the group exposed to PM10 (Particulate matter less than 10 μm)-like fine dust (ERM® CZ120 fine dust) at a concentration of 50 μg/mL and the untreated group for seven days in one normal lung epithelial cell line (BEAS-2B) and four lung cancer epithelial cell lines (NCI-H358, HCC-827, A549, NCI-H292). Then, we extracted the RNA from the sample and performed NGS. As a result of NGS, various gene expressions were upregulated or downregulated. Among them, we selected the gene whose mean fold change was more than doubled and changed in the same direction in all five cell lines. Based on these genes, we selected the top 10 genes, either upregulated or downregulated, to validate with the qRT-PCR. Results: There were the four genes that matched the NGS and qRT-PCR results, all of which were upregulated genes. The four genes are CYP1A1, CYP1B1, LINC01816, and BPIFA2. All four genes that matched the two results were upregulated genes and none of the downregulated genes matched. Conclusion: CYP1A1 and CYP1B1 are known to cause lung cancer by metabolizing polycyclic aromatic hydrocarbons, and long noncoding RNA is also known to play an important role in lung cancer. Considering this, we thought PM10 might be associated with lung cancer by activating CYP1A1, CYP1B1, and LINC01816.
Collapse
Affiliation(s)
- Daeun Kang
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - In Beom Jung
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Su Yel Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Se Jin Park
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Sun Jung Kwon
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Dong Ho Park
- Department of Anesthesiology and Pain Medicine, Eulji University Medical Center, Daejeon, Korea
| | - Ji Woong Son
- Division of Pulmonology, Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
38
|
Abstract
Globally, exposure to ambient air pollutants is responsible for premature mortality and is implicated in the development and exacerbation of several acute and chronic lung disease across all ages. In this article, we discuss the source apportionment of ambient pollutants and the respiratory health effects in humans. We specifically discuss the evidence supporting ambient pollution in the development of asthma and chronic obstructive pulmonary disease and acute exacerbations of each condition. Practical advice is given to health care providers in how to promote a healthy environment and advise patients with chronic conditions to avoid unsafe air quality.
Collapse
Affiliation(s)
- Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jahred Liddie
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Kelly FJ, Mudway IS, Fussell JC. Air Pollution and Asthma: Critical Targets for Effective Action. Pulm Ther 2020; 7:9-24. [PMID: 33161530 PMCID: PMC7648850 DOI: 10.1007/s41030-020-00138-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Evidence to advocate for cleaner air for people with asthma is not in short supply. We know that air pollution is associated with the development and worsening of the condition and that mitigating interventions can improve respiratory outcomes. We have clear targets, particularly traffic emissions, especially in urban areas, and plenty of potentially effective actions. Road traffic must be reduced, and what remains should be cleaner and greener. Urban green spaces, safe cycle networks and wider pavements will promote active travel and leisure time exercise. Healthcare professionals must ensure people are aware of their air quality, its impact on asthma and the appropriate behaviour to safeguard health. What remains are realistic policies and effective measures, based on the correct scientific evidence, to be taken forth with political courage and investment so that air pollution no longer contributes to the development or worsening of respiratory ill health.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Micheal Uren Building, White City Campus, 80-92 Wood Lane, London, W12 0BZ, UK.
| | - Ian S Mudway
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Micheal Uren Building, White City Campus, 80-92 Wood Lane, London, W12 0BZ, UK
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, Sir Micheal Uren Building, White City Campus, 80-92 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
40
|
Hou D, Ge Y, Chen C, Tan Q, Chen R, Yang Y, Li L, Wang J, Ye M, Li C, Meng X, Kan H, Cai J, Song Y. Associations of long-term exposure to ambient fine particulate matter and nitrogen dioxide with lung function: A cross-sectional study in China. ENVIRONMENT INTERNATIONAL 2020; 144:105977. [PMID: 32758714 DOI: 10.1016/j.envint.2020.105977] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Few studies have evaluated the effects of ambient air pollution exposure on lung function, especially in areas with high air pollution levels. OBJECTIVES To investigate the associations of annual concentrations of particulate matter with diameters < 2.5 μm (PM2.5) and nitrogen dioxide (NO2) with adult lung function in Shanghai, China. METHODS We included 5276 permanent residents aged ≥ 20 years. Annual residential exposure to PM2.5 and NO2 was estimated by validated satellite-based and land use regression models, respectively. The effects of PM2.5 and NO2 on lung function were estimated separately using multivariable linear regression, adjusting for potential confounders. RESULTS Higher exposure to PM2.5 and NO2 was significantly associated with lower forced vital capacity (FVC), inspiration capacity (IC), and vital capacity (VC). An increase of 10 μg/m3 in the annual average PM2.5 exposure was associated with a 45.83 ml (95% CI: -82.59, -9.07) lower FVC, 1.36 (95% CI: -2.42, -0.29) lower FVC of % predicted (FVC%pred), 121.98 ml (95% CI: -164.38, -79.57) lower IC, and 89.12 ml (95% CI -124.94, -53.3) lower VC. For NO2, an increase of 10 μg/m3 in the annual average concentration was associated with 26.65 ml (95% CI: -46.29, -7.00) lower FVC, 0.70 (95% CI: -1.27, 0.13) lower FVC%pred, 65.26 ml (95% CI: -87.76, -42.76) lower IC, and 45.88 ml (95% CI: -65.03, -26.73) lower VC. The estimated effects on FEV1 were -10.25 ml (95% CI: -40.92, 20.42) and -0.29% (95% CI: -1.40, 0.82) per 10 μg/m3 increase in PM2.5 and -0.74 ml (95% CI: -17.13, 15.65) and 0.01% (95% CI: -0.58, 0.61) per 10 μg/m3 increase in NO2, which were not statistically significant. Stratified analysis showed that the estimated effects of PM2.5 were greater in the healthy subgroup than the COPD patients. Obese individuals were more susceptible to adverse effects of PM2.5 and NO2 on lung function. Education level showed no or only weak evidence of modification of the associations between air pollution and lung function. CONCLUSION In this study, long-term exposure to ambient air pollutants was significantly associated with impaired lung function, presenting as restrictive ventilatory patterns.
Collapse
Affiliation(s)
- Dongni Hou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cuicui Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Tan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yanjie Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Maosong Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Qingpu Branch, Shanghai, China; Shanghai Respiratory Research Institute, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Marmett B, Carvalho RB, Dorneles GP, Nunes RB, Rhoden CR. Should I stay or should I go: Can air pollution reduce the health benefits of physical exercise? Med Hypotheses 2020; 144:109993. [DOI: 10.1016/j.mehy.2020.109993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
|
42
|
Abstract
Air pollution is a grave risk to human health that affects nearly everyone in the world and nearly every organ in the body. Fortunately, it is largely a preventable risk. Reducing pollution at its source can have a rapid and substantial impact on health. Within a few weeks, respiratory and irritation symptoms, such as shortness of breath, cough, phlegm, and sore throat, disappear; school absenteeism, clinic visits, hospitalizations, premature births, cardiovascular illness and death, and all-cause mortality decrease significantly. The interventions are cost-effective. Reducing factors causing air pollution and climate change have strong cobenefits. Although regions with high air pollution have the greatest potential for health benefits, health improvements continue to be associated with pollution decreases even below international standards. The large response to and short time needed for benefits of these interventions emphasize the urgency of improving global air quality and the importance of increasing efforts to reduce pollution at local levels.
Collapse
|
43
|
Effect of Rosa laevigata on PM10-Induced Inflammatory Response of Human Lung Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2893609. [PMID: 32963561 PMCID: PMC7492937 DOI: 10.1155/2020/2893609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023]
Abstract
Particulate matter 10 (PM10) with a diameter of less than 10 mm causes inflammation and allergic reactions in the airways and lungs, which adversely affects asthmatic patients. In this study, we examined the anti-inflammatory effects of Rosa laevigata (RL), which has been previously investigated medicinally in Korea and China for the discovery of plant-derived anti-inflammatory agents with low side effects, using a PM10-induced lung inflammatory disease model. Using MTT assay, we confirmed that in A549 cells pretreated with RL, cytotoxicity induced by PM10 (100 μg/mL) exposure was attenuated. In addition, western blotting revealed that RL suppressed the expression level of MAPK/NF-κB pathways and its downstream signal, COX-2 in PM10-induced A549 cells. Moreover, real-time PCR demonstrated that RL downregulated the mRNA expression level of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-13, and IL-17) in PM10-induced A549 cells. Based on the results of this study, RL has been shown to relieve inflammation in the lungs due to PM10 exposure. Therefore, RL may be developed as a natural remedy for respiratory diseases caused by PM10 exposure.
Collapse
|
44
|
Guo SE, Chi MC, Lin CM, Yang TM. Contributions of burning incense on indoor air pollution levels and on the health status of patients with chronic obstructive pulmonary disease. PeerJ 2020; 8:e9768. [PMID: 32944420 PMCID: PMC7469933 DOI: 10.7717/peerj.9768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/30/2020] [Indexed: 01/26/2023] Open
Abstract
Background Among Buddhist or Taoist Taiwanese residents, burning incense is a common source of indoor particulate matter (PM), including PM10 and PM2.5, and can adversely affect the health status of patients with chronic obstructive pulmonary diseases (COPD). However, few studies have focused on the effects of intermittent burning of incense on PM concentration levels and the health status of patients with COPD. This correlational cohort study aimed to investigate the association between burning incense exposure duration, indoor air pollution levels, and lung function in patients with COPD in Taiwan. Methods We assessed 18 outpatients at seven time points with moderate-to-severe COPD using the COPD Assessment Test (CAT), and lung function tests. PM level changes were assessed at seven intervals using generalized estimating equations. Results Participants were primarily male (84%), with a mean age of 72.1 (standard deviation (SD) ± 9.3) years, and with a mean COPD duration of 3.7 (SD ± 3.1) years. Both PM10 and PM2.5 levels were the same as the background levels 1 h after incense burning. Burning incense may not influence lung function or symptom severity in patients with COPD in a short-time period. Air quality returned to baseline levels 1 h after burning incense. Conclusion Patients with COPD should avoid staying in rooms where incense is burnt, for up to 1 h. The small sample size and short study period may have influenced our results. Future longitudinal studies with larger sample sizes and long-term follow-ups are recommended.
Collapse
Affiliation(s)
- Su-Er Guo
- Department of Nursing and Graduate Institute of Nursing, College of Nursing, Chang Gung University of Science and Technology, Chiayi County, Taiwan.,Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi County, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Miao-Ching Chi
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi County, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi County, Taiwan
| | - Chieh-Mo Lin
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi County, Taiwan.,Graduate Institute of Clinical Medical Sciences,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi County, Taiwan
| |
Collapse
|
45
|
Rice MB, Mein SA. Prenatal Air Pollution and Child Lung Function: The Impossible Search for a Vulnerable Trimester. Am J Respir Crit Care Med 2020; 202:15-16. [PMID: 32271613 PMCID: PMC7328328 DOI: 10.1164/rccm.202003-0764ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mary B Rice
- Department of MedicineBeth Israel Deaconess Medical CenterBoston, Massachusetts
| | - Stephen A Mein
- Department of MedicineBeth Israel Deaconess Medical CenterBoston, Massachusetts
| |
Collapse
|
46
|
Chen S, Wu S. Deep learning for identifying environmental risk factors of acute respiratory diseases in Beijing, China: implications for population with different age and gender. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:435-446. [PMID: 30929473 DOI: 10.1080/09603123.2019.1597836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
This study focuses on identifying environmental health risk factors related to acute respiratory diseases using deep learning method. Based on respiratory disease data, air pollution data and meteorological environmental data, cross-domain risk factors of acute respiratory diseases were identified in Beijing, China. We conducted age and gender stratified deep neural network models in air pollution epidemiology. We ranked risk factors of respiratory diseases in stratified populations and conducted quantitative comparison. People ≥50 years were more sensitive to PM2.5 pollution than <50 years people, especially women ≥50 years. Compared with women, both men ≥50 years and <50 years were more susceptible to PM10. Young women <50 years were more sensitive to general air pollutants such as SO2 and NO2 than <50 years young men. Meteorological factors such as wind speed and precipitation could promote the diffusion of fine particulate matter and general air pollutants (SO2, NO2, etc.), which could help to reduce the incidence of acute respiratory diseases. This study represents a quantitative analysis of environmental health risk factors identification related to acute respiratory diseases based on deep neural network method. The results of this study could help people to improve their awareness of acute respiratory diseases prevention.
Collapse
Affiliation(s)
- Songjing Chen
- Medical Information Innovation Research Center, Institute of Medical Information and Library, Chinese Academy of Medical Sciences/Peking Union Medical College , Beijing, China
| | - Sizhu Wu
- Medical Information Innovation Research Center, Institute of Medical Information and Library, Chinese Academy of Medical Sciences/Peking Union Medical College , Beijing, China
| |
Collapse
|
47
|
Fuertes E, van der Plaat DA, Portas L, Minelli C. Effects of the Environment and Its Interplay with Genetics in Lung Function throughout Life. Am J Respir Crit Care Med 2020; 201:1425-1427. [PMID: 32293903 DOI: 10.1164/rccm.201910-1937rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Laura Portas
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
48
|
Asthma rehabilitation at high vs. low altitude and its impact on exhaled nitric oxide and sensitization patterns: Randomized parallel-group trial. Respir Med 2020; 170:106040. [PMID: 32843171 DOI: 10.1016/j.rmed.2020.106040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Allergens and pollution are reduced at high altitude. We investigated the effect of asthma rehabilitation at high altitude (HA, 3100 m) compared to low altitude (LA, 760 m) on exhaled nitric oxide (FeNO) and on specific IgE levels for house dust mites (HDM,d1) and common pollen (sx1). METHODS For this randomized controlled trial adult asthmatics living <1000 m were randomly assigned to a 3-week in-hospital-rehabilitation (education, physical- and breathing-exercises) at either LA or HA. Changes in FeNO, d1 and sx1 from baseline to end-rehabilitation were measured. RESULTS 50 asthmatics (34 females) were randomized [mean ± standard deviation LA: n = 25, 44 ± 11 years, total IgE 267 ± 365kU/l; HA: n = 25, 43 ± 13 years, total IgE 350 ± 445kU/l]. FeNO significantly improved at HA from 69 ± 56 ppb at baseline to the first day at altitude 23 ± 19 ppb and remained decreased until end-rehabilitation with 37 ± 23 ppb, mean difference 95%CI -31(-50 to -13, p = 0.001) whereas at LA FeNO did not change. A significant decrease in d1 and sx1 at end-rehabilitation was observed in the LA-group [mean difference 95%CI -10.2 kUA/l (-18.9 to -1.4) for d1 and -4.95 kUA/l(-9.69 to -0.21) for sx1] but not in the HA-group. No significant difference between groups [d1 5.9 kUA/l(-4.2 to 16.2) and sx1 4.4 kUA/l(-3.5 to 12.4)] was found. CONCLUSION Rehabilitation at HA led to significant FeNO reduction starting from the first day until end-rehabilitation despite unchanged levels of specific IgE. The significant decrease in d1 and sx1 at end-rehabilitation in the LA group might be explained by less HDM in the hospital and/or reduced seasonal pollen, as this decrease was not observed at HA.
Collapse
|
49
|
Fasola S, Maio S, Baldacci S, La Grutta S, Ferrante G, Forastiere F, Stafoggia M, Gariazzo C, Viegi G, on behalf of the BEEP Collaborative Group. Effects of Particulate Matter on the Incidence of Respiratory Diseases in the Pisan Longitudinal Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2540. [PMID: 32276330 PMCID: PMC7177905 DOI: 10.3390/ijerph17072540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
The current study aimed at assessing the effects of exposure to Particulate Matter (PM) on the incidence of respiratory diseases in a sub-sample of participants in the longitudinal analytical epidemiological study in Pisa, Italy. Three hundred and five subjects living at the same address from 1991 to 2011 were included. Individual risk factors recorded during the 1991 survey were considered, and new cases of respiratory diseases were ascertained until 2011. Average PM10 and PM2.5 exposures (µg/m3, year 2011) were estimated at the residential address (1-km2 resolution) through a random forest machine learning approach, using a combination of satellite data and land use variables. Multivariable logistic regression with Firth's correction was applied. The median (25th-75th percentile) exposure levels were 30.1 µg/m3 (29.9-30.7 µg/m3) for PM10 and 19.3 µg/m3 (18.9-19.4 µg/m3) for PM2.5. Incidences of rhinitis and chronic phlegm were associated with increasing PM2.5: OR = 2.25 (95% CI: 1.07, 4.98) per unit increase (p.u.i.) and OR = 4.17 (1.12, 18.71) p.u.i., respectively. Incidence of chronic obstructive pulmonary disease was associated with PM10: OR = 2.96 (1.50, 7.15) p.u.i. These results provide new insights into the long-term respiratory health effects of PM air pollution.
Collapse
Affiliation(s)
- Salvatore Fasola
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (S.L.G.); (F.F.); (G.V.)
| | - Sara Maio
- Institute of Clinical Physiology, National Research Council, 56126 Pisa, Italy; (S.M.); (S.B.)
| | - Sandra Baldacci
- Institute of Clinical Physiology, National Research Council, 56126 Pisa, Italy; (S.M.); (S.B.)
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (S.L.G.); (F.F.); (G.V.)
| | - Giuliana Ferrante
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy;
| | - Francesco Forastiere
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (S.L.G.); (F.F.); (G.V.)
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service—ASL Roma 1, 00147 Rome, Italy;
| | - Claudio Gariazzo
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), Monte Porzio Catone, 00144 Rome, Italy;
| | - Giovanni Viegi
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (S.L.G.); (F.F.); (G.V.)
- Institute of Clinical Physiology, National Research Council, 56126 Pisa, Italy; (S.M.); (S.B.)
| | | |
Collapse
|
50
|
Havet A, Hulo S, Cuny D, Riant M, Occelli F, Cherot-Kornobis N, Giovannelli J, Matran R, Amouyel P, Edmé JL, Dauchet L. Residential exposure to outdoor air pollution and adult lung function, with focus on small airway obstruction. ENVIRONMENTAL RESEARCH 2020; 183:109161. [PMID: 32000005 DOI: 10.1016/j.envres.2020.109161] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 05/11/2023]
Abstract
Although a growing body of evidence suggests that chronic exposure to outdoor air pollution is linked to a decline in lung function, data on flow at low lung volumes that may be more specific of small airway obstruction are still scarce. We aimed to study the associations between residential exposure to air pollution and lung function, with specific focus on small airways obstruction. We assessed 2995 French participants (aged between 40 and 65) in the ELISABET cross-sectional survey. Residential exposures to nitrogen dioxide (NO2), particulate matter with a diameter <10 μm (PM10) and sulphur dioxide (SO2) were assessed. The spirometric parameters were forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and forced expiratory flow between 25% and 75% of FVC (FEF25-75) and at 75% of FVC (FEF75). Coefficients in linear regression models were expressed as the z-score [95% confidence interval] for an increment of 5 μg/m3 in NO2 and 2 μg/m3 in PM10 and SO2. NO2 was associated with significantly lower values of FEV1 (-0.10 [-0.15;-0.05]), FVC (-0.06 [-0.11;-0.02]), FEV1/FVC (-0.07 [-0.11;-0.03]), FEF25-75 (-0.09 [-0.14;-0.05]) and FEF75 (-0.08 [-0.12;-0.04]). PM10 was associated with significantly lower values of FEV1 (-0.10 [-0.15;-0.04]), FVC (-0.06 [-0.11;-0.01]), FEV1/FVC (-0.06 [‒0.11;-0.01]), FEF25-75 (-0.08 [-0.13;-0.03]) and FEF75 (-0.08 [-0.12;-0.04]). SO2 was associated with significantly lower values of FEV1 (-0.09 [-0.16;-0.02]), FEV1/FVC (-0.07 [-0.13;-0.01]), FEF25-75 (-0.09 [-0.15;-0.02]) and FEF75 (-0.08 [-0.14;-0.03]) but not FVC (-0.05 [-0.11; 0.009]). Even though spatial variations in pollutant levels were low, residential exposure to outdoor air pollution was associated with lower lung function, including lower FEF25-75 and FEF75 suggesting small airway obstruction.
Collapse
Affiliation(s)
- Anaïs Havet
- Univ. Lille, CHU Lille, EA4483, IMPECS (IMPact of Environmental ChemicalS on Human Health), F-59000, Lille, France
| | - Sébastien Hulo
- Univ. Lille, CHU Lille, EA4483, IMPECS (IMPact of Environmental ChemicalS on Human Health), F-59000, Lille, France
| | - Damien Cuny
- Univ. Lille, EA4483, IMPECS (IMPact of Environmental ChemicalS on Human Health), F-59000, Lille, France
| | - Margaux Riant
- Univ. Lille, Inserm, CHU Lille University Hospital, Institut Pasteur de Lille, UMR1167, RID-AGE, Risk Factors and Molecular Determinants of Aging-related, F-59000, Lille, France
| | - Florent Occelli
- EA4483, IMPECS (IMPact of Environmental ChemicalS on Human Health), F-59000, Lille, France
| | - Nathalie Cherot-Kornobis
- Univ. Lille, CHU Lille, EA4483, IMPECS (IMPact of Environmental ChemicalS on Human Health), F-59000, Lille, France
| | - Jonathan Giovannelli
- Univ. Lille, Inserm, CHU Lille University Hospital, Institut Pasteur de Lille, UMR1167, RID-AGE, Risk Factors and Molecular Determinants of Aging-related, F-59000, Lille, France
| | - Régis Matran
- Univ. Lille, CHU Lille, EA4483, IMPECS (IMPact of Environmental ChemicalS on Human Health), F-59000, Lille, France
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille University Hospital, Institut Pasteur de Lille, UMR1167, RID-AGE, Risk Factors and Molecular Determinants of Aging-related, F-59000, Lille, France
| | - Jean-Louis Edmé
- Univ. Lille, CHU Lille, EA4483, IMPECS (IMPact of Environmental ChemicalS on Human Health), F-59000, Lille, France
| | - Luc Dauchet
- Univ. Lille, Inserm, CHU Lille University Hospital, Institut Pasteur de Lille, UMR1167, RID-AGE, Risk Factors and Molecular Determinants of Aging-related, F-59000, Lille, France.
| |
Collapse
|