1
|
Yang SL, Chiu TY, Tsai KL, Li CH, Yang JY, Liu MT, Wu FT. Epidemiology of human metapneumovirus in Taiwan from 2013 to 2023. Arch Virol 2024; 169:229. [PMID: 39441325 PMCID: PMC11499400 DOI: 10.1007/s00705-024-06147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/24/2024] [Indexed: 10/25/2024]
Abstract
Human metapneumovirus (HMPV) is a member of the genus Metapneumovirus in the family Pneumoviridae of the order Mononegavirales that can cause upper and lower respiratory tract disease. This retrospective study describes the epidemiology of hMPV based on community viral surveillance results from sentinel sites across Taiwan from 2013 to 2023. A total of 114 hMPV strains were isolated and analyzed to assess viral evolution through sequencing of their fusion protein genes. This study revealed that hMPV cases occur almost year-round in Taiwan, with a peak occurring during spring (March to May). Of the 114 infected patients, 68.4% were children under 4 years old. The geographical distribution of hMPV positivity was highest in Penghu County, followed by Changhua County and Hsinchu County. The clinical symptoms of hMPV infection are nonspecific, with fever (56.1%), cough (44.7%), rhinorrhea (21.1%), and sore throat (14.9%) being the most common. However, a few patients also developed severe central nervous system symptoms (1.8%) or dyspnea (0.9%). Phylogenetic analysis revealed genetic diversity among the 114 isolated hMPV strains, with the A2 lineage (57.9%) being the most frequently observed, followed by the B2 lineage (33.3%), in the Taiwanese community from 2013 to 2023. In conclusion, hMPV causes a serious acute respiratory disease in Taiwan that should not be neglected. Further epidemiological surveillance and investigations of the clinical characteristics of hMPV should be performed continually for prevention and control of this virus.
Collapse
Affiliation(s)
- Su-Lin Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Tai-Yuan Chiu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Kun-Lin Tsai
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Chung-Hao Li
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Jyh-Yuan Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China
| | - Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 128, Academic Rd., Nangang Dist, Taipei City, Taiwan, 115201, Republic of China.
| |
Collapse
|
2
|
Martínez-Espinoza I, Babawale PI, Miletello H, Cheemarla NR, Guerrero-Plata A. Interferon Epsilon-Mediated Antiviral Activity Against Human Metapneumovirus and Respiratory Syncytial Virus. Vaccines (Basel) 2024; 12:1198. [PMID: 39460364 PMCID: PMC11511582 DOI: 10.3390/vaccines12101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Interferon epsilon (IFN-ε) is a type I IFN that plays a critical role in the host immune response against pathogens. Despite having demonstrated antiviral activity in macrophages and mucosal tissues such as the female reproductive tract and the constitutive expression in mucosal tissues such as the lung, the relevance of IFN-ε against respiratory viral infections remains elusive. RESULTS We present, for the first time, the expression of IFN-ε in alveolar epithelial cells and primary human bronchial epithelial cells grown in an air-liquid interface (ALI) in response to human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) infection. The molecular characterization of the IFN-ε induction by the viruses indicates that the expression of RIG-I is necessary for an optimal IFN-ε expression. Furthermore, treatment of the airway epithelial cells with rhIFN-ε induced the expression of IFN-stimulated genes (ISGs) and significantly restricted the viral replication of HMPV and RSV. CONCLUSIONS These findings underscore the relevance of IFN-ε against viral infections in the respiratory tract.
Collapse
Affiliation(s)
| | | | | | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Brynes A, Zhang Y, Williams JV. Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling. J Virol 2024:e0110424. [PMID: 39412256 DOI: 10.1128/jvi.01104-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions (K. M. Edwards et al., N Engl J Med 368:633-643, 2013, https://doi.org/10.1056/NEJMoa1204630; A. R. Falsey et al., J Infect Dis 187:785-790, 2003, https://doi.org/10.1086/367901; J. S. Kahn, Clin Microbiol Rev 19:546-557, 2006, https://doi.org/10.1128/CMR.00014-06; N. Shafagati and J. Williams, F1000Res 7:135, 2018, https://doi.org/10.12688/f1000research.12625.1). HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors in vitro in part by preventing STAT1 phosphorylation (A. K. Hastings et al., Virology (Auckl) 494:248-256, 2016, https://doi.org/10.1016/j.virol.2016.04.022). HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for the inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wild-type, but not ΔSH virus, blocked IL-6-mediated STAT3 activation. Furthermore, JAK1 protein (but not RNA) was significantly reduced in cells infected with wild-type, but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by the addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.IMPORTANCEHuman metapneumovirus (HMPV) is a common cause of severe respiratory illness, especially in children and older adults, in whom it is a leading cause of hospitalization. Prior research suggests that severe HMPV infection is driven by a strong immune response to the virus, especially by inflammatory immune signals like interferons (IFN). HMPV produces a small hydrophobic (SH) protein that is known to block IFN signaling, but the mechanism by which it functions and its ability to inhibit other important immune signals remains unexplored. This paper demonstrates that SH can inhibit another related immune signal, IL-6, and that SH depletes JAKs, which are critical proteins involved in both IL-6 and IFN signaling. A robust understanding of how HMPV and related viruses interfere with immune signals important for disease could pave the way for future treatments aimed at mitigating severe infections.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Bakkers MJG, Ritschel T, Tiemessen M, Dijkman J, Zuffianò AA, Yu X, van Overveld D, Le L, Voorzaat R, van Haaren MM, de Man M, Tamara S, van der Fits L, Zahn R, Juraszek J, Langedijk JPM. Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer. Nat Commun 2024; 15:6270. [PMID: 39054318 PMCID: PMC11272930 DOI: 10.1038/s41467-024-50659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
The prefusion conformation of human metapneumovirus fusion protein (hMPV Pre-F) is critical for eliciting the most potent neutralizing antibodies and is the preferred immunogen for an efficacious vaccine against hMPV respiratory infections. Here we show that an additional cleavage event in the F protein allows closure and correct folding of the trimer. We therefore engineered the F protein to undergo double cleavage, which enabled screening for Pre-F stabilizing substitutions at the natively folded protomer interfaces. To identify these substitutions, we developed an AI convolutional classifier that successfully predicts complex polar interactions often overlooked by physics-based methods and visual inspection. The combination of additional processing, stabilization of interface regions and stabilization of the membrane-proximal stem, resulted in a Pre-F protein vaccine candidate without the need for a heterologous trimerization domain that exhibited high expression yields and thermostability. Cryo-EM analysis shows the complete ectodomain structure, including the stem, and a specific interaction of the newly identified cleaved C-terminus with the adjacent protomer. Importantly, the protein induces high and cross-neutralizing antibody responses resulting in near complete protection against hMPV challenge in cotton rats, making the highly stable, double-cleaved hMPV Pre-F trimer an attractive vaccine candidate.
Collapse
Affiliation(s)
- Mark J G Bakkers
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- ForgeBio B.V., Amsterdam, The Netherlands
| | - Tina Ritschel
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- J&J Innovative Medicine Technology, R&D, New Brunswick, NJ, USA
| | | | - Jacobus Dijkman
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Machine Learning Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelo A Zuffianò
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- Promaton BV, Amsterdam, The Netherlands
| | - Xiaodi Yu
- Structural & Protein Science, Janssen Research and Development, Spring House, PA, 19044, USA
| | | | - Lam Le
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | | | - Martijn de Man
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Sem Tamara
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | - Roland Zahn
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Jarek Juraszek
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Johannes P M Langedijk
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands.
- ForgeBio B.V., Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Ogonczyk-Makowska D, Brun P, Vacher C, Chupin C, Droillard C, Carbonneau J, Laurent E, Dulière V, Traversier A, Terrier O, Julien T, Galloux M, Paul S, Eléouët JF, Fouret J, Hamelin ME, Pizzorno A, Boivin G, Rosa-Calatrava M, Dubois J. Mucosal bivalent live attenuated vaccine protects against human metapneumovirus and respiratory syncytial virus in mice. NPJ Vaccines 2024; 9:111. [PMID: 38898106 PMCID: PMC11187144 DOI: 10.1038/s41541-024-00899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Live-Attenuated Vaccines (LAVs) stimulate robust mucosal and cellular responses and have the potential to protect against Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (HMPV), the main etiologic agents of viral bronchiolitis and pneumonia in children. We inserted the RSV-F gene into an HMPV-based LAV (Metavac®) we previously validated for the protection of mice against HMPV challenge, and rescued a replicative recombinant virus (Metavac®-RSV), exposing both RSV- and HMPV-F proteins at the virion surface and expressing them in reconstructed human airway epithelium models. When administered to BALB/c mice by the intranasal route, bivalent Metavac®-RSV demonstrated its capacity to replicate with reduced lung inflammatory score and to protect against both RSV and lethal HMPV challenges in vaccinated mice while inducing strong IgG and broad RSV and HMPV neutralizing antibody responses. Altogether, our results showed the versatility of the Metavac® platform and suggested that Metavac®-RSV is a promising mucosal bivalent LAV candidate to prevent pneumovirus-induced diseases.
Collapse
Affiliation(s)
- Daniela Ogonczyk-Makowska
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Pauline Brun
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Clémence Vacher
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Caroline Chupin
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Vaxxel, 43 Boulevard du onze novembre 1918, 69100, Villeurbanne, France
| | - Clément Droillard
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Emilie Laurent
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Victoria Dulière
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Aurélien Traversier
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Julien
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Stéphane Paul
- CIRI, Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Jean Monnet Saint-Etienne, Saint-Etienne, France
| | | | - Julien Fouret
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Nexomis, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Marie-Eve Hamelin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Andrés Pizzorno
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC, G1V 4G2, Canada
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
| | - Manuel Rosa-Calatrava
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France
| | - Julia Dubois
- International Research Laboratory RESPIVIR France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec, 69008, Lyon, France, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada.
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France.
| |
Collapse
|
6
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Novel insights into the host cell glycan binding profile of human metapneumovirus. J Virol 2024; 98:e0164123. [PMID: 38690874 PMCID: PMC11237588 DOI: 10.1128/jvi.01641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galβ1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
7
|
Eddens T, Parks OB, Zhang Y, Manni ML, Casanova JL, Ogishi M, Williams JV. PD-1 signaling in neonates restrains CD8 + T cell function and protects against respiratory viral immunopathology. Mucosal Immunol 2024; 17:476-490. [PMID: 38176655 PMCID: PMC11180597 DOI: 10.1016/j.mucimm.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Respiratory viral infections, including human metapneumovirus (HMPV), remain a leading cause of morbidity and mortality in neonates and infants. However, the mechanisms behind the increased sensitivity to those respiratory viral infections in neonates are poorly understood. Neonates, unlike adults, have several anti-inflammatory mechanisms in the lung, including elevated baseline expression of programmed death ligand 1 (PD-L1), a ligand for the inhibitory receptor programmed cell death protein 1 (PD-1). We thus hypothesized that neonates would rely on PD-1:PD-L1 signaling to restrain antiviral CD8 responses. To test this, we developed a neonatal primary HMPV infection model using wild-type C57BL/6 (B6) and Pdcd1-/- (lacking PD-1) mice. HMPV-infected neonatal mice had increased PD-L1/PD-L2 co-expression on innate immune cells but a similar number of antigen-specific CD8+ T cells and upregulation of PD-1 to that of adult B6 mice. Neonatal CD8+ T cells had reduced interferon-gamma (IFN-γ), granzyme B, and interleukin-2 production compared with B6 adults. Pdcd1-/- neonatal CD8+ T cells had markedly increased production of IFN-γ and granzyme B compared with B6 neonates. Pdcd1-/- neonates had increased acute pathology with HMPV or influenza. Pdcd1-/- neonates infected with HMPV had long-term changes in pulmonary physiology with evidence of immunopathology and a persistent CD8+ T-cell response with increased granzyme B production. Using single-cell ribonucleic acid sequencing from a child lacking PD-1 signaling, a similar activated CD8+ T-cell signature with increased granzyme B expression was observed. These data indicate that PD-1 signaling critically limits CD8+ T-cell effector functions and prevents immunopathology in response to neonatal respiratory viral infections.
Collapse
Affiliation(s)
- Taylor Eddens
- Division of Allergy and Immunology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; University of Pittsburgh School of Medicine, Department of Pediatrics, Pittsburgh, Pennsylvania, USA
| | - Olivia B Parks
- University of Pittsburgh Medical Scientist Training Program, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, Pennsylvania, USA
| | - Michelle L Manni
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA; Howard Hughes Medical Institute, New York, New York, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - John V Williams
- University of Pittsburgh School of Medicine, Department of Pediatrics, Pittsburgh, Pennsylvania, USA; Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Jurkowicz M, Cohen H, Nemet I, Keller N, Leibovitz E, Sherman G, Kriger O, Barkai G, Mandelboim M, Stein M. Epidemiological and clinical characteristics of hospitalized human metapneumovirus patients in Israel, 2015-2021: A retrospective cohort study. J Med Virol 2024; 96:e29709. [PMID: 38828947 DOI: 10.1002/jmv.29709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
This study evaluated the epidemiological and clinical characteristics of human metapneumovirus (hMPV) infection among hospitalized patients with acute respiratory infections during 2015-2021 and assessed the impact of the coronavirus disease 2019 pandemic on hMPV infection. A single-center, retrospective cohort study was performed, including pediatric and adult patients with laboratory-confirmed hMPV. Of a total of 990 patients, 253 (25.6%), 105 (10.6%), 121 (12.2%), and 511 (51.6%) belonged to age groups 0-2, 3-17, 18-59, and ≥60 years, respectively. The highest percentage (23.0%) of patients were hospitalized during 2019 and the lowest (4.7%) during 2020. Patients < 18 years experienced high rates of comorbidities (immunodeficiencies: 14.4% and malignancies: 29.9%). Here, 37/39 (94.9%) of all bronchiolitis cases were diagnosed in patients < 2 years, whereas more patients in older age groups were diagnosed with pneumonia. A greater proportion of hMPV patients diagnosed with viral coinfection (mostly respiratory syncytial virus and adenovirus) were <18 years. The highest percentages of intensive care unit admissions were recorded among patients < 18 years. Our findings demonstrate that hMPV is an important cause of morbidity in young children and a possibly underestimated cause of morbidity among older adults.
Collapse
Affiliation(s)
- Menucha Jurkowicz
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Hodaya Cohen
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ital Nemet
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nathan Keller
- Faculty of Medicine, Ariel University, Ariel, Israel
| | - Eugene Leibovitz
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Gilad Sherman
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Or Kriger
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Galia Barkai
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Michal Mandelboim
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Michal Stein
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Cui C, Timbrook TT, Polacek C, Heins Z, Rosenthal NA. Disease burden and high-risk populations for complications in patients with acute respiratory infections: a scoping review. Front Med (Lausanne) 2024; 11:1325236. [PMID: 38818396 PMCID: PMC11138209 DOI: 10.3389/fmed.2024.1325236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Background Acute respiratory infections (ARIs) represent a significant public health concern in the U.S. This study aimed to describe the disease burden of ARIs and identify U.S. populations at high risk of developing complications. Methods This scoping review searched PubMed and EBSCO databases to analyze U.S. studies from 2013 to 2022, focusing on disease burden, complications, and high-risk populations associated with ARIs. Results The study included 60 studies and showed that ARI is associated with a significant disease burden and healthcare resource utilization (HRU). In 2019, respiratory infection and tuberculosis caused 339,703 cases per 100,000 people, with most cases being upper respiratory infections and most deaths being lower respiratory infections. ARI is responsible for millions of outpatient visits, especially for influenza and pneumococcal pneumonia, and indirect costs of billions of dollars. ARI is caused by multiple pathogens and poses a significant burden on hospitalizations and outpatient visits. Risk factors for HRU associated with ARI include age, chronic conditions, and socioeconomic factors. Conclusion The review underscores the substantial disease burden of ARIs and the influence of age, chronic conditions, and socioeconomic status on developing complications. It highlights the necessity for targeted strategies for high-risk populations and effective pathogen detection to prevent severe complications and reduce HRU.
Collapse
Affiliation(s)
- Chendi Cui
- PINC, AI Applied Sciences, Premier Inc., Charlotte, NC, United States
| | - Tristan T. Timbrook
- Global Medical Affairs, bioMérieux, Inc., Salt Lake City, UT, United States
- University of Utah College of Pharmacy, Salt Lake City, UT, United States
| | - Cate Polacek
- PINC, AI Applied Sciences, Premier Inc., Charlotte, NC, United States
| | - Zoe Heins
- Global Medical Affairs, bioMérieux, Inc., Salt Lake City, UT, United States
| | - Ning A. Rosenthal
- PINC, AI Applied Sciences, Premier Inc., Charlotte, NC, United States
| |
Collapse
|
10
|
Brynes A, Zhang Y, Williams JV. Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593594. [PMID: 38798421 PMCID: PMC11118450 DOI: 10.1101/2024.05.10.593594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions 1,2,3,4. HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors in vitro, in part by preventing STAT1 phosphorylation5. HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling, and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wildtype, but not ΔSH virus, blocked IL-6 mediated STAT3 activation. Further, JAK1 protein (but not RNA) was significantly reduced in cells infected with wildtype but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Ramanathan A, Lee W, Peplinski J, Mace AO, Foley DA. Head-to-Head Comparison Between Respiratory Syncytial Virus and Human Metapneumovirus Bronchiolitis in the Setting of Increased Viral Testing. Pediatr Infect Dis J 2024; 43:e139-e141. [PMID: 38100724 DOI: 10.1097/inf.0000000000004217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
We compared the epidemiology, severity and management of hospitalized respiratory syncytial virus (n = 305) and human metapneumovirus (n = 39) bronchiolitis in a setting with high respiratory virus testing (95% of admissions tested). Respiratory syncytial virus-positive infants were younger and tended to require more hydration support and longer hospital stays compared to human metapneumovirus-positive infants. Respiratory support requirements were similar between groups despite significant age differences.
Collapse
Affiliation(s)
- Ashwin Ramanathan
- From the Department of General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Weihao Lee
- From the Department of General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Joseph Peplinski
- From the Department of General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Ariel O Mace
- From the Department of General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - David A Foley
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- Department of Clinical Microbiology, PathWest Laboratory Medicine, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Veronese A, Uršič T, Bizjak Vojinovič S, Rodman Berlot J. Exploring Clinical Predictors of Severe Human Metapneumovirus Respiratory Tract Infections in Children: Insights from a Recent Outbreak. Microorganisms 2024; 12:641. [PMID: 38674586 PMCID: PMC11052206 DOI: 10.3390/microorganisms12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen that causes both upper (URTIs) and lower respiratory tract infections (LRTIs) in children. The virus can be implicated in severe bronchiolitis and pneumonia, necessitating hospitalization, with certain cases requiring intensive care unit intervention. As part of a retrospective observational study, we aimed to identify indicators of severe hMPV respiratory tract infections in children referred to the University Children's Hospital Ljubljana and the Department of Infectious Diseases Ljubljana, Slovenia, during a recent outbreak. We analyzed clinical data from November 2022 to January 2023 and compared the characteristics of children presenting with URTIs and LRTIs. We also examined the characteristics of children with hMPV LRTIs, distinguishing between children with and without LRTI-associated hypoxemia. Of 78 hMPV-PCR-positive pediatric patients (mean age 3.1 years; 60.3% boys), 36% had a URTI, and 64% had an LRTI. Hospitalization was required in 64% (50/78), with 42% (21/50) requiring oxygen therapy. LRTI-associated hypoxemia was more common in patients with atopy who showed dyspnea, tachypnea, crackles, and wheezing on lung auscultation. In a multivariable logistic regression analysis, wheezing detected on lung auscultation was a significant predictive factor for hypoxemic hMPV-LRTI. Specifically, children presenting with wheezing were found to be ten times more likely to experience hypoxemia. Prematurity and chronic conditions did not influence the presentation or severity of hMPV infection. This study highlights wheezing and atopy as crucial indicators of severe hMPV LRTI in children, emphasizing the importance of early recognition and intervention.
Collapse
Affiliation(s)
- Airin Veronese
- Department of Paediatric Pulmonology, University Children’s Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Uršič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simona Bizjak Vojinovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Jasna Rodman Berlot
- Department of Paediatric Pulmonology, University Children’s Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Zhang Y, Xu J, Miranda-Katz M, Sojati J, Tollefson SJ, Manni ML, Alcorn JF, Sarkar SN, Williams JV. Distinct roles for type I and type III interferons in virulent human metapneumovirus pathogenesis. PLoS Pathog 2024; 20:e1011840. [PMID: 38315735 PMCID: PMC10868789 DOI: 10.1371/journal.ppat.1011840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/15/2024] [Accepted: 11/17/2023] [Indexed: 02/07/2024] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of acute lower respiratory infection in children and adults worldwide. There are four genetic subgroups of HMPV and both neutralizing antibodies and T cells contribute to protection. However, little is known about mechanisms of pathogenesis and most published work is based on a few extensively passaged, laboratory-adapted strains of HMPV. In this study, we isolated and characterized a panel of low passage HMPV clinical isolates representing all four genetic subgroups. The clinical isolates exhibited lower levels of in vitro replication compared to a lab-adapted strain. We compared disease phenotypes using a well-established mouse model. Several virulent isolates caused severe weight loss, lung pathology, airway dysfunction, and fatal disease in mice, which was confirmed in three inbred mouse strains. Disease severity did not correlate with lung viral titer, as virulent strains exhibited restricted replication in the lower airway. Virulent HMPV isolates were associated with markedly increased proinflammatory cytokine production and neutrophil influx; however, depletion of neutrophils or genetic ablation of inflammasome components did not reverse disease. Virulent clinical isolates induced markedly increased type I and type III interferon (IFN) secretion in vitro and in vivo. STAT1/2-deficient mice lacking both type I and type III IFN signaling showed reduced disease severity and increased lung viral replication. Inhibition of type I IFN signaling using a blocking antibody or genetic ablation of the type I IFN receptor reduced pathology with minimal effect on viral replication. Conversely, blockade of type III IFN signaling with a neutralizing antibody or genetic ablation of the IFN-lambda receptor had no effect on pathogenesis but restored viral replication. Collectively, these results demonstrate distinct roles for type I and type III IFN in HMPV pathogenesis and immunity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jiuyang Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Tsinghua University School of Medicine, Beijing, China
| | - Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sharon J. Tollefson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle L. Manni
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John F. Alcorn
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Saumendra N. Sarkar
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania, United States of America
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania, United States of America
- Institute for Infection, Inflammation, and Immunity in Children, University of Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Ballegeer M, van Scherpenzeel RC, Delgado T, Iglesias-Caballero M, García Barreno B, Pandey S, Rush SA, Kolkman JA, Mas V, McLellan JS, Saelens X. A neutralizing single-domain antibody that targets the trimer interface of the human metapneumovirus fusion protein. mBio 2024; 15:e0212223. [PMID: 38117059 PMCID: PMC10790764 DOI: 10.1128/mbio.02122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Human metapneumovirus (hMPV) is an important respiratory pathogen for which no licensed antivirals or vaccines exist. Single-domain antibodies represent promising antiviral biologics that can be easily produced and formatted. We describe the isolation and detailed characterization of two hMPV-neutralizing single-domain antibodies that are directed against the fusion protein F. One of these single-domain antibodies broadly neutralizes hMPV A and B strains, can prevent proteolytic maturation of F, and binds to an epitope in the F trimer interface. This suggests that hMPV pre-F undergoes trimer opening or "breathing" on infectious virions, exposing a vulnerable site for neutralizing antibodies. Finally, we show that this single-domain antibody, fused to a human IgG1 Fc, can protect cotton rats against hMPV replication, an important finding for potential future clinical applications.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Teresa Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Shubham Pandey
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Vicente Mas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Ye H, Zhang S, Zhang K, Li Y, Chen D, Tan Y, Liang L, Liu M, Liang J, An S, Wu J, Zhu X, Li M, He Z. Epidemiology, genetic characteristics, and association with meteorological factors of human metapneumovirus infection in children in southern China: A 10-year retrospective study. Int J Infect Dis 2023; 137:40-47. [PMID: 37816430 DOI: 10.1016/j.ijid.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES This study aimed to determine the epidemiological and genetic features of human metapneumovirus (HMPV) infection in children in southern China, and the effect of meteorological factors on infection. METHODS 14,817 children (≤14 years) with acute respiratory tract infections from 2010 to 2019 were examined for HMPV and other respiratory viruses by real-time quantitative polymerase chain reaction. Full-length F gene of 54 positive samples were sequenced and subjected to phylogenetic analysis. The correlation between the HMPV-positive rate and meteorological factors was analyzed by linear regression analysis. RESULTS HMPV was detected in 524 (3.5%) children, who were mostly younger than 1 year. The seasonal peak of HMPV prevalence mainly occurred in spring. Respiratory syncytial virus was the most common virus coinfected with HMPV (5.3%). Phylogenetic analysis revealed that the sequenced HMPV strains belonged to four sublineages, including A2b (1.9%), A2c (31.5%), B1 (50.0%), and B2 (16.7%). After adjusting for all meteorological factors, sunshine duration was inversely correlated with the HMPV-positive rate. CONCLUSION HMPV is an important respiratory pathogen that causes acute respiratory tract infections in children in southern China, particularly in children ≤5 years old. The prevalence peak of HMPV in this area appeared in spring, and the predominant subtype was B1. Meteorological factors, especially long sunshine duration, might decrease the HMPV prevalence.
Collapse
Affiliation(s)
- Hengming Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Public Health Service Center of Bao'an District, Shenzhen, China
| | - Shuqing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yizhe Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Delin Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongyao Tan
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linyue Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minjie Liu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shu An
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Cancer Institute, Southern Medical University, Guangzhou, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
16
|
Whitehead JD, Decool H, Leyrat C, Carrique L, Fix J, Eléouët JF, Galloux M, Renner M. Structure of the N-RNA/P interface indicates mode of L/P recruitment to the nucleocapsid of human metapneumovirus. Nat Commun 2023; 14:7627. [PMID: 37993464 PMCID: PMC10665349 DOI: 10.1038/s41467-023-43434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illness in young children. The HMPV polymerase (L) binds an obligate cofactor, the phosphoprotein (P). During replication and transcription, the L/P complex traverses the viral RNA genome, which is encapsidated within nucleoproteins (N). An essential interaction between N and a C-terminal region of P tethers the L/P polymerase to the template. This N-P interaction is also involved in the formation of cytoplasmic viral factories in infected cells, called inclusion bodies. To define how the polymerase component P recognizes N-encapsidated RNA (N-RNA) we employed cryogenic electron microscopy (cryo-EM) and molecular dynamics simulations, coupled to activity assays and imaging of inclusion bodies in cells. We report a 2.9 Å resolution structure of a triple-complex between multimeric N, bound to both RNA and the C-terminal region of P. Furthermore, we also present cryo-EM structures of assembled N in different oligomeric states, highlighting the plasticity of N. Combined with our functional assays, these structural data delineate in molecular detail how P attaches to N-RNA whilst retaining substantial conformational dynamics. Moreover, the N-RNA-P triple complex structure provides a molecular blueprint for the design of therapeutics to potentially disrupt the attachment of L/P to its template.
Collapse
Affiliation(s)
- Jack D Whitehead
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Hortense Decool
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Loic Carrique
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenna Fix
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| | - Max Renner
- Department of Chemistry, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
17
|
Martínez-Espinoza I, Bungwon AD, Guerrero-Plata A. Human Metapneumovirus-Induced Host microRNA Expression Impairs the Interferon Response in Macrophages and Epithelial Cells. Viruses 2023; 15:2272. [PMID: 38005948 PMCID: PMC10675405 DOI: 10.3390/v15112272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Human metapneumovirus (HMPV) is a nonsegmented, single-stranded negative RNA virus and a member of the Pneumoviridae family. During HMPV infection, macrophages play a critical role in defending the respiratory epithelium by secreting large amounts of type I interferon (IFN). MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that play an essential role in regulating gene expression during normal cellular homeostasis and disease by binding to specific mRNAs, thereby regulating at the transcriptional and post-transcriptional levels with a direct impact on the immune response and other cellular processes. However, the role of miRNAs in macrophages and respiratory viral infections remains largely unknown. Here, we characterized the susceptibility of THP-1-derived macrophages to HMPV infection and the effect of hsa-miR-4634 on these cells. Transfection of an miRNA mimic and inhibitor demonstrated that hsa-miR-4634 regulates the IFN response in HMPV-infected macrophages, suggesting that HMPV induces the expression of the miRNA as a subversion mechanism of the antiviral response. This effect was not limited to macrophages, as a similar effect was also observed in epithelial cells. Overall, our results demonstrate that hsa-miR-4634 is an important factor in regulating the IFN response in macrophages and epithelial cells during HMPV infection.
Collapse
Affiliation(s)
| | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (I.M.-E.); (A.D.B.)
| |
Collapse
|
18
|
Nadiger M, Sendi P, Martinez PA, Totapally BR. Epidemiology and Clinical Features of Human Metapneumovirus and Respiratory Syncytial Viral Infections in Children. Pediatr Infect Dis J 2023; 42:960-964. [PMID: 37523504 DOI: 10.1097/inf.0000000000004055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are 2 common causes of acute respiratory tract infections in infants and young children. The objective of this study is to compare the demographics and outcomes of children hospitalized with HMPV and RSV infections in the United States. METHODS We performed a retrospective cohort analysis of children 1 month to less than 3 years old discharged during 2016 with HMPV or RSV infection using the Kids' Inpatient Database. Children with HMPV and RSV coinfection were excluded. Data were weighted for national estimates. RESULTS There were 6585 children with HMPV infection and 70,824 with RSV infection discharged during the study period. The mean age of children with HMPV infection was higher than that of children with RSV infection (0.73 ± 0.8 vs. 0.42 ± 0.7 years; P < 0.05). The mortality rate was significantly higher in children with the presence of any complex chronic conditions compared to those without, in both HMPV [odds ratio (OR): 32.42; CI: 9.931-105.857; P < 0.05] as well as RSV (OR: 35.81; CI: 21.12-57.97; P < 0.05) groups. The adjusted median length of stay was longer (4.64 days; CI: 4.52-4.76 days vs. 3.33 days; CI: 3.31-3.35 days; P < 0.001) and total charges were higher ($44,358; CI: $42,145-$46,570 vs. $22,839; CI: $22,512-$23,166; P < 0.001), with HMPV infection. The mortality rate was similar in HMPV infection compared to RSV infection on multivariable analysis (OR: 1.48; P > 0.05). CONCLUSION In hospitalized children in the United States, HMPV infection is less common than RSV infection. Complex chronic conditions are more prevalent in children hospitalized with HMPV infection. Hospitalization with HMPV is associated with longer length of stay and higher hospital charges. The adjusted mortality is similar with both infections.
Collapse
Affiliation(s)
- Meghana Nadiger
- From the Division of Critical Care Medicine, Department of Pediatrics, University of Illinois College of Medicine, Peoria Illinois
| | - Prithvi Sendi
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, Florida
- Division of Critical Care Medicine, Department of Pediatrics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Paul A Martinez
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, Florida
- Division of Critical Care Medicine, Department of Pediatrics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Balagangadhar R Totapally
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, Florida
- Division of Critical Care Medicine, Department of Pediatrics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
19
|
Moon TD, Sumah I, Amorim G, Alhasan F, Howard LM, Myers H, Green AF, Grant DS, Schieffelin JS, Samuels RJ. Antibiotic prescribing practices for acute respiratory illness in children less than 24 months of age in Kenema, Sierra Leone: is it time to move beyond algorithm driven decision making? BMC Infect Dis 2023; 23:626. [PMID: 37749485 PMCID: PMC10519098 DOI: 10.1186/s12879-023-08606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Lower respiratory tract infections are the leading cause of mortality in young children globally. In many resource-limited settings clinicians rely on guidelines such as IMCI or ETAT + that promote empiric antibiotic utilization for management of acute respiratory illness (ARI). Numerous evaluations of both guidelines have shown an overall positive response however, several challenges have also been reported, including the potential for over-prescribing of unnecessary antibiotics. The aims of this study were to describe the antibiotic prescribing practices for children less than 24 months of age with symptoms of ARI, that were admitted to Kenema Government Hospital (KGH) in the Eastern Province of Sierra Leone, and to identify the number of children empirically prescribed antibiotics who were admitted to hospital with ARI, as well as their clinical signs, symptoms, and outcomes. METHODS We conducted a prospective study of children < 24 months of age admitted to the KGH pediatric ward with respiratory symptoms between October 1, 2020 and May 31, 2022. Study nurses collected data on demographic information, medical and medication history, and information on clinical course while hospitalized. RESULTS A total of 777 children were enrolled. Prior to arrival at the hospital, 224 children (28.8%) reported taking an antibiotic for this illness without improvement. Only 15 (1.9%) children received a chest radiograph to aid in diagnosis and 100% of patients were placed on antibiotics during their hospital stay. CONCLUSIONS Despite the lives saved, reliance on clinical decision-support tools such as IMCI and ETAT + for pediatric ARI, is resulting in the likely over-prescribing of antibiotics. Greater uptake of implementation research is needed to develop strategies and tools designed to optimize antibiotic use for ARI in LMIC settings. Additionally, much greater priority needs to be given to ensuring clinicians have the basic tools for clinical diagnosis, as well as greater investments in essential laboratory and radiographic diagnostics that help LMIC clinicians move beyond the sole reliance on algorithm based clinical decision making.
Collapse
Affiliation(s)
- Troy D Moon
- Department of Tropical Medicine and Infectious Diseases, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2300, New Orleans, Louisiana, 70112, USA.
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Tulane University School of Medicine, 1440 Canal Street, Suite 1600, New Orleans, Louisiana, 70112, USA.
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 750, Nashville, TN, 37203, USA.
| | - Ibrahim Sumah
- Kenema Government Hospital, Ministry of Health and Sanitation, 1 Combema Road, Kenema, Sierra Leone, Sierra Leone
| | - Gustavo Amorim
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1000, Nashville, TN, 37203, USA
| | - Foday Alhasan
- Kenema Government Hospital, Ministry of Health and Sanitation, 1 Combema Road, Kenema, Sierra Leone, Sierra Leone
| | - Leigh M Howard
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 750, Nashville, TN, 37203, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, D-7235 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Harriett Myers
- Department of Tropical Medicine and Infectious Diseases, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2300, New Orleans, Louisiana, 70112, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 750, Nashville, TN, 37203, USA
| | - Ann F Green
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 750, Nashville, TN, 37203, USA
| | - Donald S Grant
- Kenema Government Hospital, Ministry of Health and Sanitation, 1 Combema Road, Kenema, Sierra Leone, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, New England Ville, Freetown, Sierra Leone
| | - John S Schieffelin
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Tulane University School of Medicine, 1440 Canal Street, Suite 1600, New Orleans, Louisiana, 70112, USA
| | - Robert J Samuels
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 750, Nashville, TN, 37203, USA
- Kenema Government Hospital, Ministry of Health and Sanitation, 1 Combema Road, Kenema, Sierra Leone, Sierra Leone
| |
Collapse
|
20
|
Leister N, Commotio S, Menzel C, Yücetepe S, Ulrichs C, Wendt S, Dedden C, Trieschmann U, Hannes T. Human metapneumovirus infection in the cardiac paediatric ICU before and during COVID-19 pandemic: a retrospective cohort analysis. Cardiol Young 2023; 33:1517-1522. [PMID: 35920053 PMCID: PMC9379262 DOI: 10.1017/s1047951122002645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION This study investigates the hygiene standards in the context of the COVID-19 pandemic and their impact on the perioperative incidence of human metapneumovirus as well as the typical symptom burden of human metapneumovirus-infected children with CHDs. MATERIALS AND METHODS Between March 2018 and July 2021, all patients of a cardiac paediatric ICU of a German university hospital were included in this retrospective cohort analysis. RESULTS A total of 589 patients with CHD were included in the analysis. Three hundred and fifty-two patients (148 females and 204 males) were admitted before the introduction of social distancing and face masks between March 2018 and 15 April 2020 (cohort A). Two hundred and thirty-seven patients (118 females and 119 males) were admitted after the introduction between April 16 and July 2021 (cohort B). In cohort A, human metapneumovirus was detected in 11 out of 352 patients (3.1%) during their stay at cardiac paediatric ICU. In cohort B, one patient out of 237 (0.4%) tested positive for human metapneumovirus. Patients who tested positive for human metapneumovirus stayed in cardiac paediatric ICU for a median of 17.5 days (range, 2-45 days). Patients without a detected human metapneumovirus infection stayed in the cardiac paediatric ICU for a median of 4 days (range, 0.5-114 days). Nine out of 12 (75%) human metapneumovirus-positive patients showed atelectasis. CONCLUSION Perioperative human metapneumovirus infections prolong cardiac paediatric ICU stay in children with CHD. In affected patients, pulmonary impairment with typical symptoms appears. Under certain circumstances, a complication-rich perioperative infection with human metapneumovirus could be prevented in paediatric cardiac high-risk patients by prophylactic hygiene intervention.
Collapse
Affiliation(s)
- Nicolas Leister
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Simone Commotio
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Christoph Menzel
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Sirin Yücetepe
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Christoph Ulrichs
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Stefanie Wendt
- Department of Cardiothoracic Surgery and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Christoph Dedden
- Department of Paediatric Cardiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Uwe Trieschmann
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Tobias Hannes
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
- Department of Paediatric Cardiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
- Department of Neonatology and Paediatric Intensive Care Medicine, Asklepios Children’s Hospital St. Augustin, Sankt Augustin, Germany
| |
Collapse
|
21
|
Guo L, Li L, Liu L, Zhang T, Sun M. Neutralising antibodies against human metapneumovirus. THE LANCET. MICROBE 2023; 4:e732-e744. [PMID: 37499668 DOI: 10.1016/s2666-5247(23)00134-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 07/29/2023]
Abstract
Human metapneumovirus (hMPV) is one of the leading causes of respiratory infection. Since its discovery in 2001, no specific antiviral or vaccine has been available in contrast to its closely related family member human respiratory syncytial virus (hRSV). Neutralising monoclonal antibodies (nMAbs) are the core effectors of vaccines and are essential therapeutic immune drugs against infectious pathogens. The development of nMAbs against hMPV has accelerated in recent years as a result of breakthroughs in viral fusion (F) protein structural biology and experience with hRSV and other enveloped viruses. We provide an overview of the potent F-specific nMAbs of hMPV, generalise their targeting F antigen epitopes, and discuss the nMAb development strategy and future directions for hMPV and broad-spectrum hMPV, hRSV nMabs, and vaccine research and development.
Collapse
Affiliation(s)
- Lei Guo
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Li Li
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Li Liu
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Tiesong Zhang
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China.
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
22
|
Ou L, Chen SJ, Teng IT, Yang L, Zhang B, Zhou T, Biju A, Cheng C, Kong WP, Morano NC, Stancofski ESD, Todd JP, Tsybovsky Y, Wang S, Zheng CY, Mascola JR, Shapiro L, Woodward RA, Buchholz UJ, Kwong PD. Structure-based design of a single-chain triple-disulfide-stabilized fusion-glycoprotein trimer that elicits high-titer neutralizing responses against human metapneumovirus. PLoS Pathog 2023; 19:e1011584. [PMID: 37738240 PMCID: PMC10516418 DOI: 10.1371/journal.ppat.1011584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/29/2023] [Indexed: 09/24/2023] Open
Abstract
The Pneumoviridae family of viruses includes human metapneumovirus (HMPV) and respiratory syncytial virus (RSV). The closely related Paramyxoviridae family includes parainfluenza viruses (PIVs). These three viral pathogens cause acute respiratory tract infections with substantial disease burden in the young, the elderly, and the immune-compromised. While promising subunit vaccines are being developed with prefusion-stabilized forms of the fusion glycoproteins (Fs) of RSV and PIVs, for which neutralizing titers elicited by the prefusion (pre-F) conformation of F are much higher than for the postfusion (post-F) conformation, with HMPV, pre-F and post-F immunogens described thus far elicit similar neutralizing responses, and it has been unclear which conformation, pre-F or post-F, would be the most effective HMPV F-vaccine immunogen. Here, we investigate the impact of further stabilizing HMPV F in the pre-F state. We replaced the furin-cleavage site with a flexible linker, creating a single chain F that yielded increased amounts of pre-F stabilized trimers, enabling the generation and assessment of F trimers stabilized by multiple disulfide bonds. Introduced prolines could increase both expression yields and antigenic recognition by the pre-F specific antibody, MPE8. The cryo-EM structure of a triple disulfide-stabilized pre-F trimer with the variable region of antibody MPE8 at 3.25-Å resolution confirmed the formation of designed disulfides and provided structural details on the MPE8 interface. Immunogenicity assessments in naïve mice showed the triple disulfide-stabilized pre-F trimer could elicit high titer neutralization, >10-fold higher than elicited by post-F. Immunogenicity assessments in pre-exposed rhesus macaques showed the triple disulfide-stabilized pre-F could recall high neutralizing titers after a single immunization, with little discrimination in the recall response between pre-F and post-F immunogens. However, the triple disulfide-stabilized pre-F adsorbed HMPV-directed responses from commercially available pooled human immunoglobulin more fully than post-F. Collectively, these results suggest single-chain triple disulfide-stabilized pre-F trimers to be promising HMPV-vaccine antigens.
Collapse
Affiliation(s)
- Li Ou
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven J. Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - I-Ting Teng
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lijuan Yang
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Biju
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wing-Pui Kong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicholas C. Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
| | | | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cheng-Yan Zheng
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
| | - Ruth A. Woodward
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
23
|
Boehm AB, Wolfe MK, White BJ, Hughes B, Duong D, Bidwell A. More than a Tripledemic: Influenza A Virus, Respiratory Syncytial Virus, SARS-CoV-2, and Human Metapneumovirus in Wastewater during Winter 2022-2023. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:622-627. [PMID: 37577361 PMCID: PMC10413932 DOI: 10.1021/acs.estlett.3c00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Wastewater monitoring can provide insights into respiratory disease occurrence in communities that contribute to the wastewater system. Using daily measurements of RNA of influenza A (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (HMPV), as well as SARS-CoV-2 in wastewater solids from eight publicly owned treatment works in the Greater San Francisco Bay Area of California between July 2022 and early July 2023, we identify a "tripledemic" when concentrations of IAV, RSV, and SARS-CoV-2 peaked at approximately the same time. HMPV was also widely circulating. We designed novel hydrolysis probe RT-PCR assays for different IAV subtype markers to discern that the dominant circulating IAV subtype was H3N2. We show that wastewater data can be used to identify the onset and offset of wastewater disease occurrence events. This information can provide insight into disease epidemiology and timely, localized information to inform hospital staffing and clinical decision making to respond to circulating viruses. Whereas RSV and IAV wastewater events were mostly regionally coherent, HMPV events displayed localized occurrence patterns.
Collapse
Affiliation(s)
- Alexandria B. Boehm
- Department
of Civil & Environmental Engineering, School of Engineering and
Doerr School of Sustainability, Stanford
University, Stanford, California 94305, United States
| | - Marlene K. Wolfe
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Bradley J. White
- Verily
Life Sciences, South
San Francisco, California 94080, United States
| | - Bridgette Hughes
- Verily
Life Sciences, South
San Francisco, California 94080, United States
| | - Dorothea Duong
- Verily
Life Sciences, South
San Francisco, California 94080, United States
| | - Amanda Bidwell
- Department
of Civil & Environmental Engineering, School of Engineering and
Doerr School of Sustainability, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Lamichhane J, Upreti M, Nepal K, Upadhyay BP, Maharjan U, Shrestha RK, Chapagain RH, Banjara MR, Shrestha UT. Burden of human metapneumovirus infections among children with acute respiratory tract infections attending a Tertiary Care Hospital, Kathmandu. BMC Pediatr 2023; 23:388. [PMID: 37550689 PMCID: PMC10405573 DOI: 10.1186/s12887-023-04208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Acute respiratory infections (ARIs) are one of the most common causes of mortality and morbidity worldwide. Every year millions of children suffer from viral respiratory tract infections (RTIs) ranging from mild to severe illnesses. Human Metapneumovirus (HMPV) is among the most frequent viruses responsible for RTIs. However, HMPV infections and their severity among children have not been explored yet in Nepal. PURPOSE Therefore, the study was focused on HMPV infections and other potential viral etiologies or co-infections using multiplex PCR among children attending Kanti Children's Hospital and assessed the clinical characteristics of the infections as well as found the co-infections. A hospital-based cross-sectional study was designed and a convenience sampling method was used to enroll children of less than 15 years with flu-like symptoms from both outpatients and inpatients departments over three months of the study period. RESULTS HMPV infection (13.3%) was the most predominant infection among the different viral infections in children with ARIs in Kanti Children's Hospital. The HMPV was more prevalent in the age group less than three years (21.8%). Cough and fever were the most common clinical features present in all children infected with HMPV followed by rhinorrhea, sore throat, and wheezing. HMPV-positive children were diagnosed with pneumonia (42.9%), bronchiolitis (28.5%), upper respiratory tract infections (14.3%), and asthma (14.3%). The prevalence of HMPV was high in late winter (14.3%) followed by early spring (13.5%). CONCLUSIONS This study provides the baseline information on HMPV and associated co-infection with other respiratory viruses for the differential diagnosis based on molecular methods and also the comparison of clinical presentations among the different respiratory syndromes.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Milan Upreti
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Krishus Nepal
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | | | - Urusha Maharjan
- Central Diagnostic Laboratory & Research Center, Kamalpokhari, Kathmandu, Nepal
| | | | | | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
25
|
Wadilo F, Feleke A, Gebre M, Mihret W, Seyoum T, Melaku K, Howe R, Mulu A, Mihret A. Viral etiologies of lower respiratory tract infections in children < 5 years of age in Addis Ababa, Ethiopia: a prospective case-control study. Virol J 2023; 20:163. [PMID: 37481644 PMCID: PMC10363322 DOI: 10.1186/s12985-023-02131-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Lower respiratory tract infections (LRTIs) are a major cause of morbidity and mortality in children worldwide and disproportionally affect Sub-Saharan Africa. Despite the heaviest burden of LRIs in Ethiopia, to date, no published studies have reported a comprehensive viral etiology of LRTIs among children in Ethiopia. The objective of this study was to determine and estimate the etiological contribution of respiratory viruses to LRTIs in < 5 years children in Ethiopia. METHODS A prospective case-control study was conducted from September 2019 to May 2022 in two major governmental hospitals, St. Paul Hospital Millennium Medical College and ALERT Hospital in Addis Ababa, Ethiopia. Nasopharyngeal/oropharyngeal samples and socio-demographic and clinical information were collected from children under 5 years. A one-step Multiplex real-time PCR (Allplex™ Respiratory Panel Assays 1-3) was done to detect respiratory viruses. STATA software version 17 was used for the data analysis. We computed the odds ratio (OR), the attributable fraction among exposed (AFE) and the population attributable fraction (PAF) to measure the association of the detected viruses with LRTIs. RESULTS Overall, 210 LRTIs cases and 210 non-LRTI controls were included in the study. The likelihood of detecting one or more viruses from NP/OP was higher among cases than controls (83.8% vs. 50.3%, p = 0.004). The multivariate logistic regression showed a significantly higher detection rate for RSV A (OR: 14.6, 95% CI 4.1-52.3), RSV B (OR: 8.1, 95% CI 2.3-29.1), influenza A virus (OR: 5.8, 95% CI 1.5-22.9), and PIV 1 (OR: 4.3, 95% CI 1.1-16.4), among cases when compared with controls. The overall AFE and PAF for RSV A were (93.2% and 17.3%), RSV B (87.7% and 10.4%) and Influenza A virus (82.8% and 6.3%), respectively. The mean CT values were significantly lower for only RSV B detected in the case groups as compared with the mean CT values of RSV B detected in the control group (p = 0.01). CONCLUSIONS RSV, Influenza A and PIV 1 viruses were significantly associated with LRTIs in < 5 years children in Addis Ababa, Ethiopia. Therefore, we underscore the importance of developing prevention strategies for these viruses in Ethiopia and support the importance of developing and introducing an effective vaccine against these viruses.
Collapse
Affiliation(s)
- Fiseha Wadilo
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia.
- Department of Biomedical Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia.
| | - Adey Feleke
- Department of Biomedical Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Meseret Gebre
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Wude Mihret
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Tamrayehu Seyoum
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Kalkidan Melaku
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Rawliegh Howe
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Andargachew Mulu
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
26
|
Yim KC, Mousa JJ, Blanco JCG, Kim S, Boukhvalova MS. Human Metapneumovirus (hMPV) Infection and MPV467 Treatment in Immunocompromised Cotton Rats Sigmodon hispidus. Viruses 2023; 15:476. [PMID: 36851691 PMCID: PMC9966515 DOI: 10.3390/v15020476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Human metapneumovirus (hMPV) is an important cause of respiratory disease in immunocompromised individuals, yet hMPV infection has not been modeled before in immunocompromised animals. In this work, cotton rats S. hispidus immunosuppressed by cyclophosphamide were infected with hMPV, and viral replication and pulmonary inflammation in these animals were compared to those in normal hMPV-infected S. hispidus. The efficacy of prophylactic and therapeutic administration of the anti-hMPV antibody MPV467 was also evaluated. Immunosuppressed animals had higher pulmonary and nasal titers of hMPV on day 5 post-infection compared to normal animals, and large amounts of hMPV were still present in the respiratory tract of immunosuppressed animals on days 7 and 9 post-infection, indicating prolonged viral replication. Immunosuppression was accompanied by reduced pulmonary histopathology in hMPV-infected cotton rats compared to normal animals; however, a delayed increase in pathology and pulmonary chemokine expression was seen in immunosuppressed cotton rats. Prophylactic and therapeutic MPV467 treatments protected both upper and lower respiratory tracts against hMPV infection. The lung pathology and pulmonary expression of IP-10 and MIP-1α mRNA were reduced by therapeutic MPV467 administration. These results indicate that immunosuppressed cotton rats represent a useful model for studying hMPV pathogenesis and for evaluating therapeutics that could alleviate hMPV-induced disease in immunocompromised subjects.
Collapse
Affiliation(s)
- Kevin C. Yim
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Jorge C. G. Blanco
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - Sonnie Kim
- NIH/NIAID, Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, Rockville, MD 20852, USA
| | - Marina S. Boukhvalova
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| |
Collapse
|
27
|
Metapneumovirus Infections are Uncommon in Infants Younger than 60 Days of Age Admitted for Sepsis Evaluation. Pediatr Infect Dis J 2023; 42:e52-e53. [PMID: 36638407 DOI: 10.1097/inf.0000000000003769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The epidemiology and clinical manifestations of human metapneumovirus are not well studied in infants younger than 60 days of age. In this retrospective review of infants admitted for sepsis evaluation, we identified HMPV less frequently than other viral etiologies via nasopharyngeal multiplex polymerase chain reaction testing; in only 16 (1.9%) infants. Two infants had apneic episodes, but none had wheezing.
Collapse
|
28
|
Talj R, Amarin JZ, Rankin DA, Bloos SM, Shawareb Y, Rahman H, Haddadin Z, Howard LM, Probst V, Naffa RG, Johnson M, Lane S, Kinzler AJ, Spieker AJ, Faouri S, Shehabi A, Chappell J, Khuri-Bulos N, Williams JV, Halasa N. Clinical characteristics, outcomes, and seasonality of acute respiratory infection associated with single and codetected rhinovirus species among hospitalized children in Amman, Jordan. J Med Virol 2022; 94:5904-5915. [PMID: 35918790 DOI: 10.1002/jmv.28042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Rhinovirus (RV)-specific surveillance studies in the Middle East are limited. Therefore, we aimed to study the clinical characteristics, outcomes, and seasonality of RV-associated acute respiratory infection among hospitalized young children in Jordan. We conducted a prospective viral surveillance study and enrolled children <2 years old admitted to a large public hospital in Amman, Jordan (2010-2013). Demographic and clinical data were collected by structured interviews and chart abstractions. Nasal and/or throat swabs were collected and tested for a panel of respiratory viruses, and RV genotyping and speciation was performed. At least one virus was detected in 2641/3168 children (83.4%). RV was the second most common virus detected (n = 1238; 46.9%) and was codetected with another respiratory virus in 730 cases (59.0%). Children with RV codetection were more likely than those with RV-only detection to have respiratory distress but had similar outcomes. RV-A accounted for about half of RV-positive cases (54.7%), while children with RV-C had a higher frequency of wheezing and reactive airway disease. RV was detected year-round and peaked during winter. In conclusion, though children with RV codetection had worse clinical findings, neither codetection nor species affected most clinical outcomes.
Collapse
Affiliation(s)
- Rana Talj
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin Z Amarin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danielle A Rankin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Epidemiology PhD Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sean M Bloos
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yanal Shawareb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Herdi Rahman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zaid Haddadin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leigh M Howard
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Varvara Probst
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Randa G Naffa
- Molecular Biology Research Laboratory, The University of Jordan School of Medicine, Amman, Jordan
| | - Monika Johnson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sidney Lane
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy J Kinzler
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J Spieker
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Samir Faouri
- Department of Pediatrics, Al-Bashir Hospital, Amman, Jordan
| | - Asem Shehabi
- Department of Pathology and Microbiology and Forensic Medicine, The University of Jordan School of Medicine, Amman, Jordan
| | - James Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Najwa Khuri-Bulos
- Department of Pediatrics, The University of Jordan School of Medicine, Amman, Jordan
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Banerjee D, Hassan F, Avadhanula V, Piedra PA, Boom J, Sahni LC, Weinberg GA, Lindstrom S, Rha B, Harrison CJ, Selvarangan R. Comparative analysis of three multiplex platforms for the detection of respiratory viral pathogens. J Clin Virol 2022; 156:105274. [PMID: 36099751 DOI: 10.1016/j.jcv.2022.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Acute viral respiratory infections are a major health burden in children worldwide. In recent years, rapid and sensitive multiplex nucleic acid amplification tests (NAATs) have replaced conventional methods for routine virus detection in the clinical laboratory. OBJECTIVE/STUDY DESIGN We compared BioFire® FilmArray® Respiratory Panel (FilmArray V1.7), Luminex NxTag® Respiratory Pathogen Panel (NxTag RPP) and Applied Biosystems TaqMan Array Card (TAC) for the detection of eight viruses in pediatric respiratory specimens. Results from the three platforms were analyzed with a single-plex real-time RT-PCR (rRT-PCR) assay for each virus. RESULTS Of the 170/210 single-plex virus-positive samples, FilmArray detected a virus in 166 (97.6%), TAC in 163 (95.8%) and NxTag RPP in 160 (94.1%) samples. The Positive Percent Agreement (PPA) of FilmArray, NxTag RPP and TAC was highest for influenza B (100%, 100% and 95.2% respectively) and lowest for seasonal coronaviruses on both FilmArray (90.2%) and NxTag RPP (81.8%), and for parainfluenza viruses 1- 4 on TAC (84%). The Negative Percent Agreement (NPA) was lowest for rhinovirus/enterovirus (92.9%, 96.7% and 97.3%) on FilmArray, NxTag RPP and TAC respectively. NPA for all three platforms was highest (100%) for both parainfluenza viruses 1- 4 and influenza A and B, and 100% for human metapneumovirus with TAC as well. CONCLUSION All three multiplex platforms displayed high overall agreement (>90%) and high NPA (>90%), while PPA was pathogen dependent and varied among platforms; high PPA (>90%) was observed for FilmArray for all eight viruses, TAC for six viruses and NxTag RPP for 4 viruses.
Collapse
Affiliation(s)
- Dithi Banerjee
- Children's Mercy Hospital, Kansas City, MO, United States of America
| | - Ferdaus Hassan
- Children's Mercy Hospital, Kansas City, MO, United States of America
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Julie Boom
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Immunization Project, Baylor College of Medicine, Houston, TX, United States of America
| | - Leila C Sahni
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Immunization Project, Baylor College of Medicine, Houston, TX, United States of America
| | - Geoffrey A Weinberg
- University of Rochester School of Medicine & Dentistry, Rochester, NY, United States of America
| | - Stephen Lindstrom
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Brian Rha
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | | | | |
Collapse
|
30
|
Hacker K, Kuan G, Vydiswaran N, Chowell‐Puente G, Patel M, Sanchez N, Lopez R, Ojeda S, Lopez B, Mousa J, Maier HE, Balmaseda A, Gordon A. Pediatric burden and seasonality of human metapneumovirus over 5 years in Managua, Nicaragua. Influenza Other Respir Viruses 2022; 16:1112-1121. [PMID: 35965382 PMCID: PMC9530515 DOI: 10.1111/irv.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Human metapneumovirus (hMPV) is an important cause of pediatric respiratory infection. We leveraged the Nicaraguan Pediatric Influenza Cohort Study (NPICS) to assess the burden and seasonality of symptomatic hMPV infection in children. METHODS NPICS is an ongoing prospective study of children in Managua, Nicaragua. We assessed children for hMPV infection via real-time reverse-transcription polymerase chain reaction (RT-PCR). We used classical additive decomposition analysis to assess the temporal trends, and generalized growth models (GGMs) were used to estimate effective reproduction numbers. RESULTS From 2011 to 2016, there were 564 hMPV symptomatic infections, yielding an incidence rate of 5.74 cases per 100 person-years (95% CI 5.3, 6.2). Children experienced 3509 acute lower respiratory infections (ALRIs), of which 160 (4.6%) were associated with hMPV infection. Children under the age of one had 55% of all symptomatic hMPV infections (62/112) develop into hMPV-associated ALRIs and were five times as likely as children over one to have an hMPV-associated ALRI (rate ratio 5.5 95% CI 4.1, 7.4 p < 0.001). Additionally, symptomatic reinfection with hMPV was common. In total, 87 (15%) of all observed symptomatic infections were detected reinfections. The seasonality of symptomatic hMPV outbreaks varied considerably. From 2011 to 2016, four epidemic periods were observed, following a biennial seasonal pattern. The mean ascending phase of the epidemic periods were 7.7 weeks, with an overall mean estimated reproductive number of 1.2 (95% CI 1.1, 1.4). CONCLUSIONS Symptomatic hMPV infection was associated with substantial burden among children in the first year of life. Timing and frequency of symptomatic hMPV incidence followed biennial patterns.
Collapse
Affiliation(s)
- Kathryn Hacker
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Guillermina Kuan
- Sustainable Sciences InstituteManaguaNicaragua
- Centro de Salud Sócrates Flores VivasMinistry of HealthManaguaNicaragua
| | - Nivea Vydiswaran
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Gerardo Chowell‐Puente
- School of Public Health, Department of Population Health SciencesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Mayuri Patel
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Roger Lopez
- Sustainable Sciences InstituteManaguaNicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y ReferenciaMinistry of HealthManaguaNicaragua
| | | | | | - Jarrod Mousa
- College of Veterinary Medicine, Center for Vaccines and ImmunologyUniversity of GeorgiaAthensGeorgiaUSA
- College of Veterinary Medicine, Department of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Hannah E. Maier
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Angel Balmaseda
- Sustainable Sciences InstituteManaguaNicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y ReferenciaMinistry of HealthManaguaNicaragua
| | - Aubree Gordon
- School of Public Health, Department of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
31
|
Du Y, Li W, Guo Y, Li L, Chen Q, He L, Shang S. Epidemiology and genetic characterization of human metapneumovirus in pediatric patients from Hangzhou China. J Med Virol 2022; 94:5401-5408. [PMID: 35871601 DOI: 10.1002/jmv.28024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Human metapneumovirus (HMPV), which is distributed worldwide, is a significant viral respiratory pathogen responsible for causing acute respiratory tract infections (ARTIs) in children. The aim of the present study was to investigate the epidemiological and genetic characteristics of HMPV in pediatric patients in Hangzhou China following the peak of onset of coronavirus disease 2019 (COVID-19). A total of 1442 throat swabs were collected from the pediatric patients with a diagnosis of ARTI from November 2020 to March 2021. The following viruses were detected by real-time polymerase chain reaction analysis: HMPV, RSV, adenovirus, hPIV1-3, influenza A, and influenza B. A two-step method was used to amplify the F genes of the HMPV-positive samples. Following sequencing, phylogenetic analyses were conducted using the MEGA version 7 software package. Among the 1442 samples, 103 (7.14%) were positive for HMPV. No significant differences were observed in the gender distribution. The highest incidence of HMPV occurred in children older than 6 years and the lowest was noted in children younger than 6 months. Lower respiratory tract infections were diagnosed at a higher rate than upper respiratory tract infections in HMPV-infected children. Only 10 HMPV-infected children (5.41%) were inpatients compared with 93 outpatients (7.39%). Co-infection was observed in 31 HMPV-positive samples including 24 samples of double infection and seven samples of triple infection. A total of 61F gene fragments of HMPV, which were approximately 727 bp in length were successfully sequenced. All the HMPVs belonged to the genotype B and were clustered into subgenotypes B1 (1.6%, 1/61) and B2 (98.4%, 60/61). A total of four specific amino acid substitutions were noted as follows: aa280, aa296, aa392, and aa396. These substitutions were present between sequences derived from the subgenotypes B1 and B2 in the fusion open reading frame from position 244 to 429. In conclusion, the present study provided significant information regarding the epidemiological and genetic characteristics of HMPV in children living in Hangzhou. Following the first peak of the COVID-19 pandemic, HMPV was considered an important viral respiratory pathogen present in children with ARTI.
Collapse
Affiliation(s)
- Yun Du
- Department of Respiratory Medicine, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| | - Yajun Guo
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| | - Lin Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| | - Qiang Chen
- Department of Respiratory Medicine, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lin He
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| | - Shiqiang Shang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Perez A, Lively JY, Curns A, Weinberg GA, Halasa NB, Staat MA, Szilagyi PG, Stewart LS, McNeal MM, Clopper B, Zhou Y, Whitaker BL, LeMasters E, Harker E, Englund JA, Klein EJ, Selvarangan R, Harrison CJ, Boom JA, Sahni LC, Michaels MG, Williams JV, Langley GE, Gerber SI, Campbell A, Hall AJ, Rha B, McMorrow M. Respiratory Virus Surveillance Among Children with Acute Respiratory Illnesses - New Vaccine Surveillance Network, United States, 2016-2021. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:1253-1259. [PMID: 36201373 PMCID: PMC9541034 DOI: 10.15585/mmwr.mm7140a1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The New Vaccine Surveillance Network (NVSN) is a prospective, active, population-based surveillance platform that enrolls children with acute respiratory illnesses (ARIs) at seven pediatric medical centers. ARIs are caused by respiratory viruses including influenza virus, respiratory syncytial virus (RSV), human metapneumovirus (HMPV), human parainfluenza viruses (HPIVs), and most recently SARS-CoV-2 (the virus that causes COVID-19), which result in morbidity among infants and young children (1-6). NVSN estimates the incidence of pathogen-specific pediatric ARIs and collects clinical data (e.g., underlying medical conditions and vaccination status) to assess risk factors for severe disease and calculate influenza and COVID-19 vaccine effectiveness. Current NVSN inpatient (i.e., hospital) surveillance began in 2015, expanded to emergency departments (EDs) in 2016, and to outpatient clinics in 2018. This report describes demographic characteristics of enrolled children who received care in these settings, and yearly circulation of influenza, RSV, HMPV, HPIV1-3, adenovirus, human rhinovirus and enterovirus (RV/EV),* and SARS-CoV-2 during December 2016-August 2021. Among 90,085 eligible infants, children, and adolescents (children) aged <18 years† with ARI, 51,441 (57%) were enrolled, nearly 75% of whom were aged <5 years; 43% were hospitalized. Infants aged <1 year accounted for the largest proportion (38%) of those hospitalized. The most common pathogens detected were RV/EV and RSV. Before the emergence of SARS-CoV-2, detected respiratory viruses followed previously described seasonal trends, with annual peaks of influenza and RSV in late fall and winter (7,8). After the emergence of SARS-CoV-2 and implementation of associated pandemic nonpharmaceutical interventions and community mitigation measures, many respiratory viruses circulated at lower-than-expected levels during April 2020-May 2021. Beginning in summer 2021, NVSN detected higher than anticipated enrollment of hospitalized children as well as atypical interseasonal circulation of RSV. Further analyses of NVSN data and continued surveillance are vital in highlighting risk factors for severe disease and health disparities, measuring the effectiveness of vaccines and monoclonal antibody-based prophylactics, and guiding policies to protect young children from pathogens such as SARS-CoV-2, influenza, and RSV.
Collapse
|
33
|
Stockwell MS, Reed C, Vargas CY, Wang L, Alba LR, Jia H, LaRussa P, Larson EL, Saiman L. Five-Year Community Surveillance Study for Acute Respiratory Infections Using Text Messaging: Findings From the MoSAIC Study. Clin Infect Dis 2022; 75:987-995. [PMID: 35037056 PMCID: PMC9383201 DOI: 10.1093/cid/ciac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute respiratory infections (ARI) are the most common infectious diseases globally. Community surveillance may provide a more comprehensive picture of disease burden than medically attended illness alone. METHODS In this longitudinal study conducted from 2012 to 2017 in the Washington Heights/Inwood area of New York City, we enrolled 405 households with 1915 individuals. Households were sent research text messages twice weekly inquiring about ARI symptoms. Research staff confirmed symptoms by follow-up call. If ≥2 criteria for ARI were met (fever/feverish, cough, congestion, pharyngitis, myalgias), staff obtained a mid-turbinate nasal swab in participants' homes. Swabs were tested using the FilmArray reverse transcription polymerase chain reaction (RT-PCR) respiratory panel. RESULTS Among participants, 43.9% were children, and 12.8% had a chronic respiratory condition. During the 5 years, 114 724 text messages were sent; the average response rate was 78.8% ± 6.8%. Swabs were collected for 91.4% (2756/3016) of confirmed ARI; 58.7% had a pathogen detected. Rhino/enteroviruses (51.9%), human coronaviruses (13.9%), and influenza (13.2%) were most commonly detected. The overall incidence was 0.62 ARI/person-year, highest (1.73) in <2 year-olds and lowest (0.46) in 18-49 year-olds. Approximately one-fourth of those with ARI sought healthcare; percents differed by pathogen, demographic factors, and presence of a chronic respiratory condition. CONCLUSIONS Text messaging is a novel method for community-based surveillance that could be used both seasonally as well as during outbreaks, epidemics and pandemics. The importance of community surveillance to accurately estimate disease burden is underscored by the findings of low rates of care-seeking that varied by demographic factors and pathogens.
Collapse
Affiliation(s)
- Melissa S Stockwell
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
- NewYork-Presbyterian Hospital, New York, New York, USA
| | - Carrie Reed
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Celibell Y Vargas
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Liqun Wang
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Luis R Alba
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Haomiao Jia
- Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
- School of Nursing, Columbia University Irving Medical Center, New York, New York, USA
| | - Philip LaRussa
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Elaine L Larson
- Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
- School of Nursing, Columbia University Irving Medical Center, New York, New York, USA
| | - Lisa Saiman
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
34
|
Zhao H, Feng Q, Feng Z, Zhu Y, Ai J, Xu B, Deng L, Sun Y, Li C, Jin R, Shang Y, Chen X, Xu L, Xie Z. Clinical characteristics and molecular epidemiology of human metapneumovirus in children with acute lower respiratory tract infections in China, 2017 to 2019: A multicentre prospective observational study. Virol Sin 2022; 37:874-882. [PMID: 36007839 PMCID: PMC9797368 DOI: 10.1016/j.virs.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 01/01/2023] Open
Abstract
Human metapneumovirus (HMPV) infection is one of the leading causes of hospitalization in young children with acute respiratory illness. In this study, we prospectively collected respiratory tract samples from children who were hospitalized with acute lower respiratory tract infection in six hospitals in China from 2017 to 2019. HMPV was detected in 145 out of 2733 samples (5.3%) from the hospitalized children. The majority of HMPV-positive children were under the age of two (67.6%), with a median age of one year. HMPV can independently cause acute lower respiratory tract infection in young children, while all patients showed mild clinical symptoms. Of all the co-infected patients, HMPV was most commonly detected with enterovirus (EV) or rhinovirus (RhV) (38.0%, followed by respiratory syncytial virus (RSV) (32.0%). The highest detection rate occurred from March to May in both northern and southern China. Out of 145 HMPV positive samples, 48 were successfully typed, of which 36 strains were subgrouped into subtypes A2c (75%), eight strains were included in subtype B1 (16.7%), and four strains were included in subtype B2 (8.3%). Moreover, 16 A2c strains contained 111-nucleotide duplications in the G gene. Twenty-seven complete HMPV genomes were successfully obtained, and 25 (92.6%) strains belonged to subtype A2c, whereas one strain was included in subgroup B1 and another was included in subgroup B2. A total of 277 mutations were observed in the complete genomes of 25 A2c strains. All results presented here improve our understanding of clinical characteristics and molecular epidemiology of HMPV infection in children.
Collapse
Affiliation(s)
- Hongwei Zhao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, China
| | - Qianyu Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, China
| | - Baoping Xu
- Department of Respiratory Diseases I, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Li Deng
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Yun Sun
- Yinchuan Maternal and Child Health Hospital, Yinchuan, 750000, China
| | - Changchong Li
- The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Rong Jin
- Guiyang Women and Children Healthcare Hospital, Guiyang, 550003, China
| | - Yunxiao Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, China,Corresponding author.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, China
| |
Collapse
|
35
|
Huang J, Miller RJ, Mousa JJ. A Pan-Pneumovirus vaccine based on immunodominant epitopes of the fusion protein. Front Immunol 2022; 13:941865. [PMID: 36003370 PMCID: PMC9393700 DOI: 10.3389/fimmu.2022.941865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are two leading causes of severe respiratory infections in children, the elderly, and immunocompromised patients. The fusion (F) protein is the major target of neutralizing antibodies. Recent developments in stabilizing the pre-fusion conformation of the F proteins, and identifying immunodominant epitopes that elicit potent neutralizing antibodies have led to the testing of numerous pre-fusion RSV F-based vaccines in clinical trials. We designed and tested the immunogenicity and protective efficacy of a chimeric fusion protein that contains immunodominant epitopes of RSV F and hMPV F (RHMS-1). RHMS-1 has several advantages over vaccination with pre-fusion RSV F or hMPV F, including a focus on recalling B cells to the most important protective epitopes and the ability to induce protection against two viruses with a single antigen. RHMS-1 was generated as a trimeric recombinant protein, and analysis by negative-stain electron microscopy demonstrated the protein resembles the pre-fusion conformation. Probing of RHMS-1 antigenicity using a panel of RSV and hMPV F-specific monoclonal antibodies (mAbs) revealed the protein retains features of both viruses, including the pre-fusion site Ø epitope of RSV F. Mice immunized with RHMS-1 generated neutralizing antibodies to both viruses and were completely protected from RSV or hMPV challenge. Overall, this study demonstrates protection against two viruses with a single antigen and supports testing of RHMS-1 in additional pre-clinical animal models.
Collapse
Affiliation(s)
- Jiachen Huang
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Rose J. Miller
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod J. Mousa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Jarrod J. Mousa,
| |
Collapse
|
36
|
Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein. Immunity 2022; 55:1710-1724.e8. [DOI: 10.1016/j.immuni.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
|
37
|
Velayutham TS, Ivanciuc T, Garofalo RP, Casola A. Role of human metapneumovirus glycoprotein G in modulation of immune responses. Front Immunol 2022; 13:962925. [PMID: 35958551 PMCID: PMC9357950 DOI: 10.3389/fimmu.2022.962925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen responsible for acute respiratory tract infections in children, the elderly, and immunocompromised patients, with no effective treatment or vaccine currently available. Knowledge of virus- and host-specific mechanisms contributing to the pathogenesis of hMPV infection is still limited. Studies have shown that hMPV surface glycoprotein G is an important virulence factor, by inhibiting innate immune signaling in airway epithelial cells and immune cells. In this study, we investigated the role of G protein in modulating innate and adaptive immune responses in mice infected with a recombinant virus with deletion of G protein (rhMPV-ΔG). Results show that rhMPV-ΔG was strongly attenuated, as it did not induce significant clinical disease, airway obstruction and airway hyperresponsiveness (AHR), compared to infection with a control strain (rhMPV-WT). By analysis of cells in bronchoalveolar fluid and lung tissue, as well as cytokine production, we found that G protein mediates aspects of both innate and adaptive immune responses, including neutrophils, dendritic cells, natural killer cells and B cells. Lung T cells recruited in response to rhMPV-ΔG had a significantly higher activated phenotype compared to those present after rhMPV-WT infection. Despite highly attenuation characterized by low levels of replication in the lung, rhMPV-ΔG was able to induce neutralizing antibodies and to protect mice from a secondary hMPV challenge. However, challenged mice that had received rhMPV-ΔG as primary infection showed some signs of lung disease at the earliest time points, which were less evident in mice that had received the rhMPV-WT strain as primary infection. These results demonstrate some of the mechanisms by which G protein could contribute to airway disease and modulate immune response to hMPV infection.
Collapse
Affiliation(s)
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| |
Collapse
|
38
|
Boggs KB, Edmonds K, Cifuentes-Munoz N, El Najjar F, Ossandón C, Roe M, Wu C, Moncman CL, Creamer TP, Amarasinghe GK, Leung DW, Dutch RE. Human Metapneumovirus Phosphoprotein Independently Drives Phase Separation and Recruits Nucleoprotein to Liquid-Like Bodies. mBio 2022; 13:e0109922. [PMID: 35536005 PMCID: PMC9239117 DOI: 10.1128/mbio.01099-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (HMPV) inclusion bodies (IBs) are dynamic structures required for efficient viral replication and transcription. The minimum components needed to form IB-like structures in cells are the nucleoprotein (N) and the tetrameric phosphoprotein (P). HMPV P binds to the following two versions of the N protein in infected cells: N-terminal P residues interact with monomeric N (N0) to maintain a pool of protein to encapsidate new RNA and C-terminal P residues interact with oligomeric, RNA-bound N (N-RNA). Recent work on other negative-strand viruses has suggested that IBs are, at least in part, liquid-like phase-separated membraneless organelles. Here, HMPV IBs in infected or transfected cells were shown to possess liquid organelle properties, such as fusion and fission. Recombinant versions of HMPV N and P proteins were purified to analyze the interactions required to drive phase separation in vitro. Purified HMPV P was shown to form liquid droplets in isolation. This observation is distinct from other viral systems that also form IBs. Partial removal of nucleic acid from purified P altered phase-separation dynamics, suggesting that nucleic acid interactions play a role in IB formation. HMPV P also recruits monomeric N (N0-P) and N-RNA to droplets in vitro. These findings suggest that HMPV P may also act as a scaffold protein to mediate multivalent interactions with monomeric and oligomeric N, as well as RNA, to promote phase separation of IBs. Together, these findings highlight an additional layer of regulation in HMPV replication by the viral P and N proteins. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of respiratory disease among children, immunocompromised individuals, and the elderly. Currently, no vaccines or antivirals are available for the treatment of HMPV infections. Cytoplasmic inclusion bodies (IBs), where HMPV replication and transcription occur, represent a promising target for the development of novel antivirals. The HMPV nucleoprotein (N) and phosphoprotein (P) are the minimal components needed for IB formation in eukaryotic cells. However, interactions that regulate the formation of these dynamic structures are poorly understood. Here, we showed that HMPV IBs possess the properties of liquid organelles and that purified HMPV P phase separates independently in vitro. Our work suggests that HMPV P phase-separation dynamics are altered by nucleic acid. We provide strong evidence that, unlike results reported from other viral systems, HMPV P alone can serve as a scaffold for multivalent interactions with monomeric (N0) and oligomeric (N-RNA) HMPV N for IB formation.
Collapse
Affiliation(s)
- Kerri Beth Boggs
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Kearstin Edmonds
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Conny Ossandón
- Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - McKenna Roe
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carole L. Moncman
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Trevor P. Creamer
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daisy W. Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
39
|
Banerjee A, Huang J, Rush SA, Murray J, Gingerich AD, Royer F, Hsieh CL, Tripp RA, McLellan JS, Mousa JJ. Structural basis for ultrapotent antibody-mediated neutralization of human metapneumovirus. Proc Natl Acad Sci U S A 2022; 119:e2203326119. [PMID: 35696580 PMCID: PMC9231621 DOI: 10.1073/pnas.2203326119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/23/2022] [Indexed: 12/15/2022] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of morbidity and hospitalization among children worldwide, however, no vaccines or therapeutics are currently available for hMPV disease prevention and treatment. The hMPV fusion (F) protein is the sole target of neutralizing antibodies. To map the immunodominant epitopes on the hMPV F protein, we isolated a panel of human monoclonal antibodies (mAbs), and the mAbs were assessed for binding avidity, neutralization potency, and epitope specificity. We found the majority of the mAbs target diverse epitopes on the hMPV F protein, and we discovered multiple mAb binding approaches for antigenic site III. The most potent mAb, MPV467, which had picomolar potency, was examined in prophylactic and therapeutic mouse challenge studies, and MPV467 limited virus replication in mouse lungs when administered 24 h before or 72 h after viral infection. We determined the structure of MPV467 in complex with the hMPV F protein using cryo-electron microscopy to a resolution of 3.3 Å, which revealed a complex novel prefusion-specific epitope overlapping antigenic sites II and V on a single protomer. Overall, our data reveal insights into the immunodominant antigenic epitopes on the hMPV F protein, identify a mAb therapy for hMPV F disease prevention and treatment, and provide the discovery of a prefusion-specific epitope on the hMPV F protein.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/isolation & purification
- Antibodies, Viral/therapeutic use
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Cryoelectron Microscopy
- Epitopes/immunology
- Humans
- Metapneumovirus/immunology
- Mice
- Paramyxoviridae Infections/prevention & control
- Primary Prevention
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/immunology
Collapse
Affiliation(s)
- Avik Banerjee
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jiachen Huang
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Fredejah Royer
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602
| |
Collapse
|
40
|
Profiling of hMPV F-specific antibodies isolated from human memory B cells. Nat Commun 2022; 13:2546. [PMID: 35538099 PMCID: PMC9091222 DOI: 10.1038/s41467-022-30205-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
Human metapneumovirus (hMPV) belongs to the Pneumoviridae family and is closely related to respiratory syncytial virus (RSV). The surface fusion (F) glycoprotein mediates viral fusion and is the primary target of neutralizing antibodies against hMPV. Here we report 113 hMPV-F specific monoclonal antibodies (mAbs) isolated from memory B cells of human donors. We characterize the antibodies' germline usage, epitopes, neutralization potencies, and binding specificities. We find that unlike RSV-F specific mAbs, antibody responses to hMPV F are less dominant against the apex of the antigen, and the majority of the potent neutralizing mAbs recognize epitopes on the side of hMPV F. Furthermore, neutralizing epitopes that differ from previously defined antigenic sites on RSV F are identified, and multiple binding modes of site V and II mAbs are discovered. Interestingly, mAbs that bind preferentially to the unprocessed prefusion F show poor neutralization potency. These results elucidate the immune recognition of hMPV infection and provide novel insights for future hMPV antibody and vaccine development.
Collapse
|
41
|
August A, Shaw CA, Lee H, Knightly C, Kalidindia S, Chu L, Essink BJ, Seger W, Zaks T, Smolenov I, Panther L. Safety and immunogenicity of an mRNA-based human metapneumovirus and parainfluenza virus type 3 combined vaccine in healthy adults. Open Forum Infect Dis 2022; 9:ofac206. [PMID: 35794943 PMCID: PMC9251669 DOI: 10.1093/ofid/ofac206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Human metapneumovirus (hMPV) and parainfluenza virus type 3 (PIV3) cause respiratory tract illness in children and the elderly. No licensed vaccines are available. Methods In this phase 1, randomized, dose-ranging, first-in-human study, the safety, reactogenicity, and humoral immunogenicity of an investigational mRNA-based hMPV and PIV3 combination vaccine, mRNA-1653, were evaluated in healthy adults aged 18–49 years. Sentinel participants (n = 20) received 2 doses of mRNA-1653 (25, 75, 150, or 300 μg) in the dose escalation phase, and participants (n = 104) received 2 doses of mRNA-1653 (75, 150, or 300 μg) or placebo in the dose selection phase; injections were 28 days apart. Results The most common solicited reactogenicity events were injection site pain, headache, fatigue, and myalgia, the majority of which were grade 1 or 2. A single mRNA-1653 dose increased neutralization titers against hMPV and PIV3 1 month after vaccination compared with baseline. No notable increases in neutralizing antibody titers were observed with escalating dose levels after mRNA-1653, although no statistical inferences were made; a second mRNA-1653 dose had little observable impact on antibody titers. Neutralizing titers through 1 year remained above baseline for hMPV and returned to baseline for PIV3. Conclusions mRNA-1653 was well tolerated, with an acceptable safety profile and increased hMPV and PIV3 neutralization titers in healthy adults.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tal Zaks
- Moderna, Inc., Cambridge, MA, 02139, USA
| | | | | |
Collapse
|
42
|
Eddens T, Parks OB, Williams JV. Neonatal Immune Responses to Respiratory Viruses. Front Immunol 2022; 13:863149. [PMID: 35493465 PMCID: PMC9047724 DOI: 10.3389/fimmu.2022.863149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory tract infections are a leading cause of morbidity and mortality in newborns, infants, and young children. These early life infections present a formidable immunologic challenge with a number of possibly conflicting goals: simultaneously eliminate the acute pathogen, preserve the primary gas-exchange function of the lung parenchyma in a developing lung, and limit long-term sequelae of both the infection and the inflammatory response. The latter has been most well studied in the context of childhood asthma, where multiple epidemiologic studies have linked early life viral infection with subsequent bronchospasm. This review will focus on the clinical relevance of respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and rhinovirus (RV) and examine the protective and pathogenic host responses within the neonate.
Collapse
Affiliation(s)
- Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Division of Allergy/Immunology, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Olivia B. Parks
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - John V. Williams
- Division of Pediatric Infectious Diseases, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
43
|
Abstract
BACKGROUND Respiratory syncytial virus (RSV) and influenza infections are a major cause of hospitalization and intensive care unit (ICU) admission to children's hospitals and are closely tracked. We compared data over 6 seasons of human metapneumovirus (hMPV), RSV and influenza infections. METHODS During the 2014-2019 winter viral seasons, hMPV, RSV and influenza infections were tracked. For hMPV admissions, rates of hospitalizations, ICU admissions, hospital-acquired infections (HAIs) and mortalities were assessed and compared with RSV and influenza admissions. Retrospective data was used to study patients infected with hMPV. RESULTS During the winter seasons of 2014-2019, the rates of hospitalization due to hMPV were significantly higher than both RSV and influenza. ICU admissions, deaths and HAIs for hMPV were similar to RSV and influenza.Of the 471 total cases with hMPV, 58 (12.3%) had chronic lung disease (CLD) and 23 (4.9%) were tracheostomy dependent. Among 104 hMPV ICU admissions from 2013 to 2019, 86 (82%) had an underlying medical diagnosis, 30 (29%) had CLD, 21 (20%) had tracheostomies and 33 (32%) required mechanical ventilation. The average age of hMPV infected children in our ICU is 3 years and 10 months. CONCLUSIONS Our large descriptive study of hMPV infected children over 6 seasons showed higher rates of hospitalization compared with RSV and influenza, similar ICU and HAI rates, and deaths. ICU admitted children often had associated co-morbidities, including CLD. Further studies for focused disease surveillance and potential vaccine development for high-risk children are needed.
Collapse
|
44
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
45
|
Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022; 14:v14040677. [PMID: 35458407 PMCID: PMC9028271 DOI: 10.3390/v14040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV’s) and humans (human metapneumoviruses; HMPV’s). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A–D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.
Collapse
|
46
|
O'Bryant SC, Momin Z, Camp E, Jones J, Meskill S. Longitudinal evaluation of pediatric respiratory infections. J Clin Virol 2022; 148:105084. [DOI: 10.1016/j.jcv.2022.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
|
47
|
Higazy D, Lin X, Xie T, Wang K, Gao X, Cui M. Altered gene expression in human brain microvascular endothelial cells in response to the infection of influenza H1N1 virus. ANIMAL DISEASES 2022; 2:25. [PMID: 36345345 PMCID: PMC9631584 DOI: 10.1186/s44149-022-00053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza viruses not only cause respiratory illness, but also have been reported to elicit neurological manifestations following acute viral infection. The central nervous system (CNS) has a specific defense mechanism against pathogens structured by cerebral microvasculature lined with brain endothelial cells to form the blood–brain barrier (BBB). To investigate the response of human brain microvascular endothelial cells (hBMECs) to the Influenza A virus (IAV), we inoculated the cells with the A/WSN/33 (H1N1) virus. We then conducted an RNAseq experiment to determine the changes in gene expression levels and the activated disease pathways following infection. The analysis revealed an effective activation of the innate immune defense by inducing the pattern recognition receptors (PRRs). Along with the production of proinflammatory cytokines, we detected an upregulation of interferons and interferon-stimulated genes, such as IFN-β/λ, ISG15, CXCL11, CXCL3 and IL-6, etc. Moreover, infected hBMECs exhibited a disruption in the cytoskeletal structure both on the transcriptomic and cytological levels. The RNAseq analysis showed different pathways and candidate genes associated with the neuroactive ligand-receptor interaction, neuroinflammation, and neurodegenerative diseases, together with a predicted activation of the neuroglia. Likewise, some genes linked with the mitochondrial structure and function displayed a significantly altered expression. En masse, this data supports that hBMECs could be infected by the IAV, which induces the innate and inflammatory immune response. The results suggest that the influenza virus infection could potentially induce a subsequent aggravation of neurological disorders.
Collapse
Affiliation(s)
- Doaa Higazy
- grid.7776.10000 0004 0639 9286Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.424020.00000 0004 0369 1054International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan St. Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xianwu Lin
- grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.424020.00000 0004 0369 1054International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan St. Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Tanghui Xie
- grid.35155.370000 0004 1790 4137College of Informatics, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ke Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.424020.00000 0004 0369 1054International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan St. Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiaochen Gao
- grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.424020.00000 0004 0369 1054International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan St. Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Min Cui
- grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.424020.00000 0004 0369 1054International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan St. Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
48
|
Miranda-Katz M, Erickson JJ, Lan J, Ecker A, Zhang Y, Joyce S, Williams JV. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8 + T cells. Sci Rep 2021; 11:20769. [PMID: 34675220 PMCID: PMC8531189 DOI: 10.1038/s41598-021-00023-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of acute lower respiratory tract illness in children and adults. Repeated infections are common and can be severe in young, elderly, and immunocompromised persons due to short-lived protective humoral immunity. In turn, few protective T cell epitopes have been identified in humans. Thus, we infected transgenic mice expressing the common human HLA MHC-I allele B*07:02 (HLA-B7) with HMPV and screened a robust library of overlapping and computationally predicted HLA-B7 binding peptides. Six HLA-B7-restricted CD8+ T cell epitopes were identified using ELISPOT screening in the F, M, and N proteins, with M195-203 (M195) eliciting the strongest responses. MHC-tetramer flow cytometric staining confirmed HLA-B7 epitope-specific CD8+ T cells migrated to lungs and spleen of HMPV-immune mice. Immunization with pooled HLA-B7-restricted peptides reduced viral titer and protected mice from virulent infection. Finally, we confirmed that CD8+ T cells from HLA-B7 positive humans also recognize the identified epitopes. These results enable identification of HMPV-specific CD8+ T cells in humans and help to inform future HMPV vaccine design.
Collapse
Affiliation(s)
- Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - John J Erickson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Alwyn Ecker
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, USA
- Vanderbilt Institute for Infection, Immunity, and Inflammation (VI4), Nashville, TN, 37232, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA.
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, 15224, USA.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Understanding the pathophysiology of COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that causes the disease has demonstrated the complexity of acute respiratory viruses that can cause neurologic manifestations. This article describes the most common respiratory viruses that have neurologic manifestations, with a focus on SARS-CoV-2 and COVID-19. RECENT FINDINGS In vitro and in vivo studies have better elucidated the neurotropism of various respiratory viruses. Understanding host cell receptors that mediate viral binding and entry not only demonstrates how viruses enter host cells but also provides possible mechanisms for therapeutic interventions. Elucidation of SARS-CoV-2 binding and fusion with host cells expressing the angiotensin-converting enzyme 2 (ACE2) receptor may also provide greater insights into its systemic and neurologic sequelae. Respiratory virus neurotropism and collateral injury due to concurrent inflammatory cascades result in various neurologic pathologies, including Guillain-Barré syndrome, encephalopathy, encephalitis, ischemic stroke, intracerebral hemorrhage, and seizures. SUMMARY Numerous respiratory viruses can infect the cells of the peripheral and central nervous systems, elicit inflammatory cascades, and directly and indirectly cause various neurologic manifestations. Patients with neurologic manifestations from respiratory viruses are often critically ill and require mechanical ventilation. Neurologists and neurointensivists should be familiar with the common neurologic manifestations of respiratory viruses and the unique and still-evolving sequelae associated with COVID-19.
Collapse
|
50
|
Qian W, Huang J, Wang T, He X, Xu G, Li Y. Visual detection of human metapneumovirus using CRISPR-Cas12a diagnostics. Virus Res 2021; 305:198568. [PMID: 34555442 DOI: 10.1016/j.virusres.2021.198568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Human metapneumovirus (HmPV) is a common and serious virus that causes respiratory tract infection. This study aimed to develop a detection technique by combining reverse transcription recombinase polymerase amplification (RT-RPA) with CRISPR-Cas12a (RT-RPA-Cas12a) for clinical diagnosis of HmPV. Herein, four primer pairs targeting partial nucleoprotein (N) gene of HmPV were designed and evaluated. Then, the products amplified by RT-RPA were detected using CRISPR-Cas12a combined with fluorescence or lateral flow (LF). RT-RPA-Cas12a-based fluorescence or LF assay can be completed within 35 min or 45 min, and the detection limit was up to 6.97 × 102 copies/mL. And there was no cross reaction with human bocavirus, respiratory syncytial virus, adenovirus and parainfluenza virus. By combining with LF, the detection results were evaluated by naked eyes. Furthermore, 28 clinical samples were applied to examine the performance of RT-RPA-Cas12a system. The detection coincidence rates of RT-RPA-Cas12a-fluorescence and RT-RPA-Cas12a-LF with quantitative RT-PCR were 96.4% and 92.9%, respectively. Together, the new method for detecting HmPV with high sensitivity and specificity based on RT-RPA-Cas12a-fluorescence or LF shows promising potential for clinical diagnosis of HmPV without professional skills or ancillary equipment.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Jie Huang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xiaoxian He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Guozhang Xu
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, PR China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, PR China.
| |
Collapse
|