1
|
Song BK, Carr DA, Bruce ED, Nugent WH. Oxygenation through oral Ox66 in a two-hit rodent model of respiratory distress. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:114-121. [PMID: 38423099 DOI: 10.1080/21691401.2024.2307462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a complication of pulmonary disease that produces life-threatening hypoxaemia. Despite ventilation and hyperoxic therapies, undetected hypoxia can manifest in capillary beds leading to multi-organ failure. Ox66™ is an ingestible, solid-state form of oxygen designed to supplement oxygen deficits. Twenty-four anaesthetized rats underwent a two-hit model of respiratory distress (ARDS), where a single dose (5 mg/kg) of lipopolysaccharide (LPS) was given intratracheally, and then the respiratory tidal volume was reduced by 40%. After 60 min, animals were randomized to receive Ox66™, or normal saline (NS; vehicle control) via gavage or supplemental inspired oxygen (40% FiO2). A second gavage was administered at 120 min. Cardiovascular function and blood oximetry/chemistry were measured alongside the peripheral spinotrapezius muscle's interstitial oxygenation (PISFO2). ARDS reduced mean arterial pressure (MAP) and PISFO2 compared to baseline (BL) for all treatment groups. Treatment with Ox66 or NS did not improve MAP, but 40% FiO2 caused a rapid return to BL. PISFO2 improved after treatment with Ox66™ and 40% FiO2 and remained elevated for both groups against NS until study conclusion. Both oxygen treatments also suppressed the inflammatory response to LPS, suggesting that Ox66™ can deliver therapeutically-impactful levels of oxygen in situations of pulmonary dysfunction.
Collapse
Affiliation(s)
| | | | - Erica D Bruce
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | | |
Collapse
|
2
|
Millar JE, Reddy K, Bos LDJ. Future Directions in Therapies for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:943-951. [PMID: 39443010 DOI: 10.1016/j.ccm.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is caused by a complex interplay among hyperinflammation, endothelial dysfunction, and alveolar epithelial injury. Targeted treatments toward the underlying pathways have been unsuccessful in unselected patient populations. The first reliable biological subphenotypes reflective of these biological disease states have been identified in the past decade. Subphenotype targeted intervention studies are needed to advance the pharmacologic treatment of ARDS.
Collapse
Affiliation(s)
- Jonathan E Millar
- Baillie-Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, The Roslin Institute, Easter Bush Campus, Midlothian, Edinburgh EH25 9RG, UK; Department of Critical Care, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kiran Reddy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, University Road, Belfast BT7 1NN, UK
| | - Lieuwe D J Bos
- Intensive Care Department, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
3
|
Jayasimhan D, Matthay MA. Definitions of Acute Respiratory Distress Syndrome: Present Recommendations and Challenges. Clin Chest Med 2024; 45:785-795. [PMID: 39442997 DOI: 10.1016/j.ccm.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory process resulting in diffuse lung injury precipitated by an underlying risk factor. However, current definitions may pose barriers to the accurate diagnosis of this syndrome. These include changes in risk factors and associated disease evolution of ARDS, changes in contemporary clinical practice, and access to diagnostic tools required to diagnose ARDS in resource-limited settings. A consensus conference has proposed changes for an expanded global definition of ARDS. In this review article, we review challenges in defining ARDS and present recommendations of the global definition of ARDS.
Collapse
Affiliation(s)
- Dilip Jayasimhan
- Intensive Care Unit, Wellington Regional Hospital, Te Whatu Ora Health New Zealand- Capital, Coast and Hutt Valley, 49 Riddiford Street, Wellington 6021, New Zealand
| | - Michael A Matthay
- Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia, University of California-San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Leonard J, Sinha P. Precision Medicine in Acute Respiratory Distress Syndrome: Progress, Challenges, and the Road ahead. Clin Chest Med 2024; 45:835-848. [PMID: 39443001 PMCID: PMC11507056 DOI: 10.1016/j.ccm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Several novel high-dimensional biologic measurements are increasingly being applied to biomedical sciences. Acute respiratory distress syndrome (ARDS) is a theoretically fertile ground for such approaches. Not only are these biologic and analytic tools available to better understand ARDS but also arguably, simpler approaches such as respiratory physiology has been vastly underutilized as a means of delivering precision-based care in the field. Here we review the progress made in ARDS toward discovering biologically homogeneous phenotypes, treatment responsive subgroups, the challenges to implement these discoveries at the bedside, and the road ahead that will enable precision medicine in ARDS.
Collapse
Affiliation(s)
- Jennifer Leonard
- Department of Trauma and Acute Care Surgery, Washington University, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA; Division of Critical Care, Department of Anesthesia, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA.
| |
Collapse
|
5
|
Binda F, Gambazza S, Marelli F, Rossi V, Lusignani M, Grasselli G. Upper limb peripheral nerve injuries in patients with ARDS requiring prone positioning: A systematic review with proportion meta-analysis. Intensive Crit Care Nurs 2024; 85:103766. [PMID: 39126976 DOI: 10.1016/j.iccn.2024.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE To investigate the prevalence of upper limb peripheral nerve injuries (PNI) in adult patients admitted to the intensive care unit (ICU) with acute respiratory distress syndrome (ARDS) undergoing prone positioning. METHODS This systematic review with meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guidelines. Four electronic databases including PubMed, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), The Cochrane Library, and EMBASE were searched from inception to January 2024. The quality of the included studies was evaluated according to the Joanna Briggs Institute Critical Appraisal Tools. A proportion meta-analysis was conducted to examine the combined prevalence of upper limb PNI among patients requiring prone positioning. RESULTS A total of 8 studies (511 patients) were pooled in the quantitative analysis. All studies had a low or moderate risk of bias in methodological quality. The overall proportion of patients with upper limb PNI was 13% (95%CI: 5% to 29%), with large between-study heterogeneity (I2 = 84.6%, P<0.001). Both ulnar neuropathy and brachial plexopathy were described in 4 studies. CONCLUSION During the COVID-19 pandemic, prone positioning has been used extensively. Different approaches among ICU teams and selective reporting by untrained staff may be a factor in interpreting the large variability between studies and the 13% proportion of patients with upper limb PNI found in the present meta-analysis. Therefore, it is paramount to stress the importance of patient assessment both after discharge from the ICU and during subsequent follow-up evaluations. IMPLICATIONS FOR CLINICAL PRACTICE Specialized training is essential to ensure safe prone positioning, with careful consideration given to arms and head placement to mitigate potential nerve injuries. Therefore, healthcare protocols should incorporate preventive strategies, with patient assessments conducted by expert multidisciplinary teams.
Collapse
Affiliation(s)
- Filippo Binda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Department of Healthcare Professions, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Simone Gambazza
- Department of Healthcare Professions, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Laboratory of Medical Statistics, Biometry and Epidemiology 'G. A. Maccacaro', Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milano, Italy.
| | - Federica Marelli
- Department of Healthcare Professions, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Veronica Rossi
- Department of Healthcare Professions, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Maura Lusignani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
6
|
Braunsteiner J, Castro L, Wiessner C, Grensemann J, Schroeder M, Burdelski C, Sensen B, Kluge S, Fischer M. Association Between Dyscapnia, Ventilatory Variables, and Mortality in Patients With Acute Respiratory Distress Syndrome-A Retrospective Cohort Study. J Intensive Care Med 2024; 39:1099-1108. [PMID: 38847047 DOI: 10.1177/08850666241252741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background: This study aimed to investigate the associations between dyscapnia, ventilatory variables, and mortality. We hypothesized that the association between mechanical power or ventilatory ratio and survival is mediated by dyscapnia. Methods: Patients with moderate or severe acute respiratory distress syndrome (ARDS), who received mechanical ventilation within the first 48 h after admission to the intensive care unit for at least 48 h, were included in this retrospective single-center study. Values of arterial carbon dioxide (PaCO2) were categorized into "hypercapnia" (PaCO2 ≥ 50 mm Hg), "normocapnia" (PaCO2 36-49 mmHg), and "hypocapnia" (PaCO2 ≤ 35 mm Hg). We used path analyses to assess the associations between ventilatory variables (mechanical power and ventilatory ratio) and mortality, where hypocapnia or hypercapnia were included as mediating variables. Results: Between December 2017 and April 2021, 435 patients were included. While there was a significant association between mechanical power and hypercapnia (BEM = 0.24 [95% CI: 0.15; 0.34], P < .01), there was no significant association between mechanical power or hypercapnia and ICU mortality. The association between mechanical power and intensive care unit (ICU) mortality was fully mediated by hypocapnia (BEM = -0.10 [95% CI: -0.19; 0.00], P = .05; BMO = 0.38 [95% CI: 0.13; 0.63], P < .01). Ventilatory ratio was significantly associated with hypercapnia (B = 0.23 [95% CI: 0.14; 0.32], P < .01). There was no significant association between ventilatory ratio, hypercapnia, and mortality. There was a significant effect of ventilatory ratio on mortality, which was fully mediated by hypocapnia (BEM = -0.14 [95% CI: -0.24; -0.05], P < .01; BMO = 0.37 [95% CI: 0.12; 0.62], P < .01). Conclusion: In mechanically ventilated patients with moderate or severe ARDS, the association between mechanical power and mortality was fully mediated by hypocapnia. Likewise, there was a mediating effect of hypocapnia on the association between ventilatory ratio and ICU mortality. Our results indicate that the debate on dyscapnia and outcome after ARDS should consider the impact of ventilatory variables.
Collapse
Affiliation(s)
- Josephine Braunsteiner
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Liesa Castro
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Wiessner
- Institute of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jörn Grensemann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Schroeder
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Burdelski
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Sensen
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Fischer
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Adelsten J, Grønlykke L, Pedersen FM, Madsen SA, Sørensen M, Eschen CT, Møller Sørensen PH, Gjedsted J, Nielsen DV, Christensen S, Nielsen J, Jørgensen VL. Use of prone position ventilation in patients with COVID-19 induced severe ARDS supported with V-V ECMO: A danish cohort study with focus on adverse events. Perfusion 2024; 39:1549-1557. [PMID: 37787741 DOI: 10.1177/02676591231198798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Prone position ventilation (PPV) of patients with adult respiratory distress syndrome (ARDS) supported with veno-venous extracorporeal membrane oxygenation (V-V ECMO) may improve oxygenation and alveolar recruitment and is recommended when extensive dorsal consolidations are present, but only few data regarding adverse events (AE) related to PPV in this group of patients have been published. METHODS Nationwide retrospective analysis of 68 COVID-19 patients admitted from March 2020 - December 2021 with severe ARDS and need of V-V ECMO support. The number of patients treated with PPV, number of PPV-events, timing, the time spent in prone position, number and causes of AE are reported. Causes to stop the PPV regimen and risk factors for AE were explored. RESULTS 44 out of 68 patients were treated with PPV, and 220 PPV events are evaluated. AE were identified in 99 out of 220 (45%) PPV events and occurred among 31 patients (71%). 1 fatal PPV related AE was registered. Acute supination occurred in 19 events (9%). Causes to stop the PPV regimen were almost equally distributed between effect (weaned from ECMO), no effect, death (of other reasons) and AE. Frequent causes of AE were pressures sores and ulcers, hypoxia, airway related and ECMO circuit related. Most AE occurred during patients first or second PPV event. CONCLUSIONS PPV treatment was found to carry a high incidence of PPV related AE in these patients. Causes and preventive measures to reduce occurrence of PPV related AE during V-V ECMO support need further exploration.
Collapse
Affiliation(s)
- Janne Adelsten
- Department of Cardiothoracic Anaesthesia and Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Grønlykke
- Department of Cardiothoracic Anaesthesia and Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Finn Møller Pedersen
- Department of Cardiothoracic Anaesthesia and Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Aalbæk Madsen
- Department of Cardiothoracic Anaesthesia and Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marc Sørensen
- Department of Cardiothoracic Anaesthesia and Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Camilla Tofte Eschen
- Department of Anaesthesiology and Intensive Care, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Peter Hasse Møller Sørensen
- Department of Cardiothoracic Anaesthesia and Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jakob Gjedsted
- Department of Cardiothoracic Anaesthesia and Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dorthe Viemose Nielsen
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Christensen
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Nielsen
- Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Vibeke Lind Jørgensen
- Department of Cardiothoracic Anaesthesia and Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Kang H, Subinuer K, Tong Z. Effect of Extended Prone Positioning in Intubated COVID-19 Patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. J Intensive Care Med 2024; 39:1164-1172. [PMID: 38778759 DOI: 10.1177/08850666241252759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
INPLASY REGISTRATION NUMBER INPLASY202390072.
Collapse
Affiliation(s)
- Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Keyimu Subinuer
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Lynch Y, Vande Vusse LK. Diffuse Alveolar Hemorrhage in Hematopoietic Cell Transplantation. J Intensive Care Med 2024; 39:1055-1070. [PMID: 37872657 DOI: 10.1177/08850666231207331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Diffuse alveolar hemorrhage (DAH) is a morbid syndrome that occurs after autologous and allogeneic hematopoietic cell transplantation in children and adults. DAH manifests most often in the first few weeks following transplantation. It presents with pneumonia-like symptoms and acute respiratory failure, often requiring high levels of oxygen supplementation or mechanical ventilatory support. Hemoptysis is variably present. Chest radiographs typically feature widespread alveolar filling, sometimes with peripheral sparing and pleural effusions. The diagnosis is suspected when serial bronchoalveolar lavages return increasingly bloody fluid. DAH is differentiated from infectious causes of alveolar hemorrhage when extensive microbiological testing reveals no pulmonary pathogens. The cause is poorly understood, though preclinical and clinical studies implicate pretransplant conditioning regimens, particularly those using high doses of total-body-irradiation, acute graft-versus-host disease (GVHD), medications used to prevent GVHD, and other factors. Treatment consists of supportive care, systemic corticosteroids, platelet transfusions, and sometimes includes antifibrinolytic drugs and topical procoagulant factors. Therapeutic blockade of tumor necrosis factor-α showed promise in observational studies, but its benefit for DAH remains uncertain after small clinical trials. Even with these treatments, mortality from progression and relapse is high. Future investigational therapies could target the vascular endothelial cell biology theorized to contribute to alveolar bleeding and pathways that contribute to susceptibility, inflammation, cellular resilience, and tissue repair. This review will help clinicians navigate through the limited evidence to diagnose and treat DAH, counsel patients and families, and plan for future research.
Collapse
Affiliation(s)
- Ylinne Lynch
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa K Vande Vusse
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Wick KD, Ware LB, Matthay MA. Acute respiratory distress syndrome. BMJ 2024; 387:e076612. [PMID: 39467606 DOI: 10.1136/bmj-2023-076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The understanding of acute respiratory distress syndrome (ARDS) has evolved greatly since it was first described in a 1967 case series, with several subsequent updates to the definition of the syndrome. Basic science advances and clinical trials have provided insight into the mechanisms of lung injury in ARDS and led to reduced mortality through comprehensive critical care interventions. This review summarizes the current understanding of the epidemiology, pathophysiology, and management of ARDS. Key highlights include a recommended new global definition of ARDS and updated guidelines for managing ARDS on a backbone of established interventions such as low tidal volume ventilation, prone positioning, and a conservative fluid strategy. Future priorities for investigation of ARDS are also highlighted.
Collapse
Affiliation(s)
- Katherine D Wick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Jang MH, Shin YB, Shin HJ, Jeong E, Kim S, Yoo W, Jang H, Lee K. Rehabilitation for Patients with COVID-19-Associated Acute Respiratory Distress Syndrome During Quarantine: A Single-Center Experience. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1719. [PMID: 39459506 PMCID: PMC11509160 DOI: 10.3390/medicina60101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: In this study, we evaluated clinical factors associated with implementing a rehabilitation program for patients with COVID-19-associated acute respiratory distress syndrome (ARDS) requiring mechanical ventilation (MV) during the quarantine period. Materials and Methods: This observational study was conducted in the National Designated Isolated ICU, a dedicated COVID-19 center with 18 beds, from 30 December 2020 to 30 May 2022. One hundred and fifty-four patients (mean age: 67.3 ± 13.4 years; male: 59.7%) were enrolled. The ICU rehabilitation program included early mobilization, chest physiotherapy, and dysphagia treatment. Results: Forty-five patients (29.3%) participated in the rehabilitation program. Multivariate logistic regression identified three significant factors: tracheostomy (odds ratio [OR], 2.796; 95% confidence interval [CI], 1.238-6.316; p = 0.013), body mass index ≥ 25.0 kg/m2 (OR, 2.724; 95% CI, 1.276-5.817; p = 0.010), and extracorporeal membrane oxygenation (OR, 2.931; 95% CI, 1.165-7.377; p = 0.022); patients with all three factors were younger (median 44 vs. 70 years, p < 0.001) and had significantly lower Acute Physiology and Chronic Health Evaluation II scores (median 12 vs. 16, p = 0.002) on the MV day. One-year cumulative mortality rates for patients with 0 to 3 factors were 66.7%, 50.8%, 38.9%, and 15.4%, respectively, with a significant difference among them (log-rank, p < 0.001). Conclusions: Three clinical factors associated with implementing a rehabilitation program during the quarantine period for COVID-19-associated ARDS patients were identified. The program was feasible and beneficial, particularly for younger patients with lower illness severity and fewer comorbidities on the day of MV.
Collapse
Affiliation(s)
- Myung Hun Jang
- Department of Rehabilitation Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea; (M.H.J.); (Y.B.S.)
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.K.); (W.Y.); (H.J.)
| | - Yong Beom Shin
- Department of Rehabilitation Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea; (M.H.J.); (Y.B.S.)
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.K.); (W.Y.); (H.J.)
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Ho Jeong Shin
- Department of Physical Therapy, Graduate School, Catholic University of Pusan, Busan 49241, Republic of Korea;
| | - Eunsuk Jeong
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Saerom Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.K.); (W.Y.); (H.J.)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Wanho Yoo
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.K.); (W.Y.); (H.J.)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Hyojin Jang
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.K.); (W.Y.); (H.J.)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Kwangha Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.K.); (W.Y.); (H.J.)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
- Department of Internal Medicine, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| |
Collapse
|
12
|
Hintersteininger M, Haselwanter P, Maleczek M, Laxar D, Hermann M, Hermann A, Buchtele N, Staudinger T, Zauner C, Schneeweiss-Gleixner M. The Influence of Prone Positioning on Energy and Protein Delivery in COVID-19 Patients Requiring ECMO Support. Nutrients 2024; 16:3534. [PMID: 39458527 PMCID: PMC11510455 DOI: 10.3390/nu16203534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Gastrointestinal dysfunction is a common complication of medical nutrition therapy in critically ill patients. Whether prone positioning leads to a deterioration in gastrointestinal function has not been fully clarified. Thus, we aimed to analyze the influence of prone positioning on the tolerance of medical nutrition therapy. METHODS We conducted a retrospective analysis of 102 SARS-CoV-2 infected patients with venovenous extracorporeal membrane oxygenation support (VV ECMO). Gastric residual volume (GRV) was used to assess the tolerance of enteral nutrition. RESULTS Nutritional data were collected for 2344 days. Undernutrition was observed in 40.8%, with a significantly higher incidence on days in prone position (48.4% versus 38.6%, p < 0.001). On days in supine position, significantly more calories were administered enterally than on days in prone position (p < 0.001). The mean GRV/24 h was 111.1 mL on days in supine position and 187.3 mL on days in prone position (p < 0.001). Prone positioning was associated with higher rates of GRV of ≥500 mL/24 h independent of age, disease severity at ECMO start, ECMO runtime and ICU length of stay (adjusted hazard ratio: 4.06; 95%CI: 3.0-5.5; p < 0.001). CONCLUSIONS Prone position was associated with lower tolerance of enteral nutrition, as indicated by an increased GRV. As a result, reduced enteral nutritional support was administered.
Collapse
Affiliation(s)
- Marlene Hintersteininger
- Department of Medicine III, Clinical Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (M.H.); (P.H.); (C.Z.)
| | - Patrick Haselwanter
- Department of Medicine III, Clinical Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (M.H.); (P.H.); (C.Z.)
| | - Mathias Maleczek
- Department of Anesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (D.L.); (M.H.)
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Laxar
- Department of Anesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (D.L.); (M.H.)
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Martina Hermann
- Department of Anesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (D.L.); (M.H.)
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Hermann
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (N.B.); (T.S.)
| | - Nina Buchtele
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (N.B.); (T.S.)
| | - Thomas Staudinger
- Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (N.B.); (T.S.)
| | - Christian Zauner
- Department of Medicine III, Clinical Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (M.H.); (P.H.); (C.Z.)
| | - Mathias Schneeweiss-Gleixner
- Department of Medicine III, Clinical Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (M.H.); (P.H.); (C.Z.)
| |
Collapse
|
13
|
Stoll SE, Böttiger BW, Dusse F, Leister N, Leupold T, Menzel C, Overbeek R, Mathes A. Impact of Inhaled Nitric Oxide (iNO) on the Outcome of COVID-19 Associated ARDS. J Clin Med 2024; 13:5981. [PMID: 39408041 PMCID: PMC11478273 DOI: 10.3390/jcm13195981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Inhaled nitric oxide (iNO) can improve oxygenation in acute respiratory syndrome (ARDS), has anti-inflammatory and antithrombotic effects, and can inhibit coronavirus- replication. The study aim was to investigate the impact of iNO in COVID-19 associated ARDS (CARDS) on oxygenation, the length of mechanical ventilation (MV), the level of inflammatory markers and the rate of thrombotic events during ICU stay. Methods: This was a retrospective, observational, monocentric study analyzing the effect of INO (15 parts per million) vs. non-iNO in adult ventilated CARDS patients on oxygenation, the level of inflammatory markers, and the rate of thrombotic events during ICU stay. Within the iNO group, the impact on gas exchange was assessed by comparing arterial blood gas results obtained at different time points. Results: Overall, 19/56 patients were treated with iNO, with no difference regarding sex, age, body mass index, and SOFA-/APACHE II- score between the iNO and non-iNO groups. iNO improved oxygenation in iNO-responders (7/19) and had no impact on inflammatory markers or the rate of thrombotic events but was associated with an increased MV length. Conclusions: iNO was able to improve oxygenation in CARDS in iNO-responders but did not show an impact on inflammatory markers or the rate of thrombotic events, while it was associated with an increased MV length.
Collapse
Affiliation(s)
- Sandra Emily Stoll
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Bernd W. Böttiger
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Fabian Dusse
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Nicolas Leister
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Tobias Leupold
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Christoph Menzel
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Remco Overbeek
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Alexander Mathes
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| |
Collapse
|
14
|
Bates JHT, Kaczka DW, Kollisch-Singule M, Nieman GF, Gaver DP. Atelectrauma can be avoided if expiration is sufficiently brief: evidence from inverse modeling and oscillometry during airway pressure release ventilation. Crit Care 2024; 28:329. [PMID: 39380082 PMCID: PMC11462759 DOI: 10.1186/s13054-024-05112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Airway pressure release ventilation (APRV) has been shown to be protective against atelectrauma if expirations are brief. We hypothesize that this is protective because epithelial surfaces are not given enough time to come together and adhere during expiration, thereby avoiding their highly damaging forced separation during inspiration. METHODS We investigated this hypothesis in a porcine model of ARDS induced by Tween lavage. Animals were ventilated with APRV in 4 groups based on whether inspiratory pressure was 28 or 40 cmH2O, and whether expiration was terminated when end-expiratory flow reached either 75% (a shorter expiration) or 25% (a longer expiration) of its initial peak value. A mathematical model of respiratory system mechanics that included a volume-dependent elastance term characterized by the parameter E 2 was fit to airway pressure-flow data obtained each hour for 6 h post-Tween injury during both expiration and inspiration. We also measured respiratory system impedance between 5 and 19 Hz continuously through inspiration at the same time points from which we derived a time-course for respiratory system resistance ( R rs ). RESULTS E 2 during both expiration and inspiration was significantly different between the two longer expiration versus the two shorter expiration groups (ANOVA, p < 0.001). We found that E 2 was most depressed during inspiration in the higher-pressure group receiving the longer expiration, suggesting that E 2 reflects a balance between strain stiffening of the lung parenchyma and ongoing recruitment as lung volume increases. We also found in this group that R rs increased progressively during the first 0.5 s of inspiration and then began to decrease again as inspiration continued, which we interpret as corresponding to the point when continuing derecruitment was reversed by progressive lung inflation. CONCLUSIONS These findings support the hypothesis that sufficiently short expiratory durations protect against atelectrauma because they do not give derecruitment enough time to manifest. This suggests a means for the personalized adjustment of mechanical ventilation.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - David W Kaczka
- Departments of Anesthesia, Biomedical Engineering, and Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, 13210, USA
| | - Donald P Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
15
|
Zhou Y, Li C, Mei S, Xu Q, Qin S, Feng J, Wang J, Xing S, Wang W, Li F, Zhou Q, He Z, Gao Y, Zhang X, Zhang Z. Identifying risk factors for acute respiratory distress syndrome in critically ill patients: a retrospective study. Front Med (Lausanne) 2024; 11:1469291. [PMID: 39416868 PMCID: PMC11480032 DOI: 10.3389/fmed.2024.1469291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition that can develop in critically ill patients. Early identification of risk factors associated with ARDS development is essential for timely intervention and improved patient outcomes. This study aimed to investigate the potential predictors of ARDS in critically ill patients admitted to the intensive care unit (ICU). Methods We conducted a retrospective study involving 502 critically ill patients admitted to the ICUs of three hospitals. Demographic and clinical data, including laboratory test results, were collected during their ICU stay. Multivariable logistic regression analysis was performed to identify independent risk factors associated with the development of ARDS. Results Among the 502 critically ill patients, 104 (20.7%) patients developed ARDS during their ICU stay, with a median time to development of 5.2 days. Multivariable logistic regression analysis revealed that age (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.01-1.13; P = 0.002), C-reactive protein (CRP) levels (OR, 1.11; 95% CI, 1.05-1.17; P = 0.013), T lymphocyte count (OR, 0.82; 95% CI, 0.69-0.93; P = 0.011), and interleukin-6 (IL-6) levels (OR, 1.17; 95% CI, 1.08-1.23; P = 0.003) were independently associated with the development of ARDS in critically ill patients. Conclusions Our study identified age, CRP, T lymphocyte count, and IL-6 as independent predictors of ARDS in critically ill patients admitted to the ICU. These findings highlight the importance of monitoring these parameters in critically ill patients to identify those at high risk of developing ARDS. Early recognition and intervention based on these risk factors may improve patient outcomes in the ICU setting. Further prospective studies are warranted to validate these results and develop a reliable predictive model for ARDS in critically ill patients.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congye Li
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojie Qin
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiemin Wang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Li
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Quanhong Zhou
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhiyun Zhang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Morris PD, Anderton RA, Marshall-Goebel K, Britton JK, Lee SMC, Smith NP, van de Vosse FN, Ong KM, Newman TA, Taylor DJ, Chico T, Gunn JP, Narracott AJ, Hose DR, Halliday I. Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight. Nat Rev Cardiol 2024; 21:667-681. [PMID: 39030270 DOI: 10.1038/s41569-024-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/21/2024]
Abstract
For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation-perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.
Collapse
Affiliation(s)
- Paul D Morris
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - Ryan A Anderton
- Medical Department, Spaceflight, UK Civil Aviation Authority, Gatwick, UK
| | - Karina Marshall-Goebel
- The National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston, TX, USA
| | - Joseph K Britton
- Aerospace Medicine Specialist Wing, Royal Air Force (RAF) Centre of Aerospace Medicine, Henlow, UK
| | - Stuart M C Lee
- KBR, Human Health Countermeasures Element, NASA Johnson Space Center, Houston, TX, USA
| | - Nicolas P Smith
- Victoria University of Wellington, Wellington, New Zealand
- Auckland Bioengineering Institute, Auckland, New Zealand
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Karen M Ong
- Virgin Galactic Medical, Truth or Consequences, NM, USA
| | - Tom A Newman
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Daniel J Taylor
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Tim Chico
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Julian P Gunn
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Andrew J Narracott
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - D Rod Hose
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Ian Halliday
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Ippolito M, Galvano AN, Cortegiani A. Long-term outcomes in critically ill patients with acute respiratory failure. Curr Opin Crit Care 2024; 30:510-522. [PMID: 39158188 DOI: 10.1097/mcc.0000000000001196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore the latest evidence on long-term outcomes in patients admitted to the ICU because of acute respiratory failure (ARF). RECENT FINDINGS As the survival rate of critically ill patients with acute respiratory failure improves, long-term mortality and disability still influence the quality of life of survivors and their caregivers. Patients admitted to the ICU because of ARF are at risk of developing the postintensive care syndrome, which presents with physical, cognitive and mental symptoms, all of which may impair their quality of life. Caregivers seem to be affected as well, which may lead to intergenerational trauma. The need for more care, including prone positioning, invasive support (e.g. mechanical ventilation, ECMO) and deep sedation are probably adjunctive risk factors for poor long-term outcomes. SUMMARY There is not much data on the long-term outcomes of patients who have survived ARF. More follow-up studies should be conducted, especially in centers providing higher levels of costly care (e.g. ECMO). Randomized controlled trials on interventions for ARF should include patient-centered long-term outcomes in addition to mortality rates. The high mortality rates associated with ARF mandate collaboration among multiple centers to achieve an adequate sample size for studying the long-term outcomes of survivors.
Collapse
Affiliation(s)
- Mariachiara Ippolito
- Department of Anesthesia, Analgesia, Intensive Care and Emergency. University Hospital Policlinico Paolo Giaccone
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.). University of Palermo, Palermo, Italy
| | - Alberto Nicolò Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.). University of Palermo, Palermo, Italy
| | - Andrea Cortegiani
- Department of Anesthesia, Analgesia, Intensive Care and Emergency. University Hospital Policlinico Paolo Giaccone
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.). University of Palermo, Palermo, Italy
| |
Collapse
|
18
|
Hochberg CH, Colantuoni E, Sahetya SK, Eakin MN, Fan E, Psoter KJ, Iwashyna TJ, Needham DM, Hager DN. Extended versus Standard Proning Duration for COVID-19-associated Acute Respiratory Distress Syndrome: A Target Trial Emulation Study. Ann Am Thorac Soc 2024; 21:1449-1457. [PMID: 38935831 PMCID: PMC11451884 DOI: 10.1513/annalsats.202404-380oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: Prone positioning for ⩾16 hours in moderate-to-severe acute respiratory distress syndrome (ARDS) improves survival. However, the optimal duration of proning is unknown. Objectives: To estimate the effect of extended versus standard proning duration on patients with moderate-to-severe coronavirus disease (COVID-19) ARDS. Methods: Data were extracted from a five-hospital electronic medical record registry. Patients who were proned within 72 hours of mechanical ventilation were categorized as receiving extended (⩾24 h) versus standard (16-24 h) proning based on the first proning session length. We used a target trial emulation design to estimate the effect of extended versus standard proning on the primary outcome of 90-day mortality and secondary outcomes of ventilator liberation and intensive care unit (ICU) discharge. Analytically, we used inverse probability of treatment weighted (IPTW) Cox or Fine-Gray regression models. Results: A total of 314 patients were included; 234 received extended proning, and 80 received standard-duration proning. Patients who received extended proning were older, had greater comorbidity, were more often at an academic hospital, and had shorter time from admission to mechanical ventilation. After IPTW, characteristics were well balanced. Unadjusted 90-day mortality in the extended versus standard proning groups was 39% versus 58%. In doubly robust IPTW analyses, we found no significant effects of extended versus standard proning duration on mortality (hazard ratio [95% confidence interval], 0.95 [0.51-1.77]), ventilator liberation (subdistribution hazard, 1.60 [0.97-2.64], or ICU discharge (subdistribution hazard, 1.31 [0.82-2.10]). Conclusions: Using target trial emulation, we found no significant effect of extended versus standard proning duration on mortality, ventilator liberation, or ICU discharge. However, given the imprecision of estimates, further study is justified.
Collapse
Affiliation(s)
- Chad H. Hochberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Elizabeth Colantuoni
- Department of Biostatistics, Bloomberg School of Public Health
- Outcomes After Critical Illness and Surgery (OACIS) Group
| | - Sarina K. Sahetya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Outcomes After Critical Illness and Surgery (OACIS) Group
| | - Michelle N. Eakin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Outcomes After Critical Illness and Surgery (OACIS) Group
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | | | - Theodore J. Iwashyna
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Bloomberg School of Public Health, and
| | - Dale M. Needham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Outcomes After Critical Illness and Surgery (OACIS) Group
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - David N. Hager
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
19
|
Siuba MT, Bulgarelli L, Duggal A, Cavalcanti AB, Zampieri FG, Rey DA, Lucena WDR, Maia IS, Paisani DM, Laranjeira LN, Neto AS, Deliberato RO. Differential Effect of Positive End-Expiratory Pressure Strategies in Patients With ARDS: A Bayesian Analysis of Clinical Subphenotypes. Chest 2024; 166:754-764. [PMID: 38768777 PMCID: PMC11489450 DOI: 10.1016/j.chest.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND ARDS is a heterogeneous condition with two subphenotypes identified by different methodologies. Our group similarly identified two ARDS subphenotypes using nine routinely available clinical variables. However, whether these are associated with differential response to treatment has yet to be explored. RESEARCH QUESTION Are there differential responses to positive end-expiratory pressure (PEEP) strategies on 28-day mortality according to subphenotypes in adult patients with ARDS? STUDY DESIGN AND METHODS We evaluated data from two prior ARDS trials (Higher vs Lower Positive End-Expiratory Pressures in Patients With the ARDS [ALVEOLI] and the Alveolar Recruitment in ARDS Trial [ART]) that compared different PEEP strategies. We classified patients into one of two subphenotypes as described previously. We assessed the differential effect of PEEP with a Bayesian hierarchical logistic model for the primary outcome of 28-day mortality. RESULTS We analyzed data from 1,559 patients with ARDS. Compared with lower PEEP, a higher PEEP strategy resulted in higher 28-day mortality in patients with subphenotype A disease in the ALVEOLI study (OR, 1.61; 95% credible interval [CrI], 0.90-2.94) and ART (OR, 1.73; 95% CrI, 1.01-2.98), with a probability of harm resulting from higher PEEP in this subphenotype of 94.3% and 97.7% in the ALVEOLI and ART studies, respectively. Higher PEEP was not associated with mortality in patients with subphenotype B disease in each trial (OR, 0.95 [95% CrI, 0.51-1.73] and 1.00 [95% CrI, 0.63-1.55], respectively), with probability of benefit of 56.4% and 50.7% in the ALVEOLI and ART studies, respectively. These effects were not modified by Pao2 to Fio2 ratio, driving pressure, or the severity of illness for the cohorts. INTERPRETATION We found evidence of differential response to PEEP strategies across two ARDS subphenotypes, suggesting possible harm with a higher PEEP strategy in one subphenotype. These observations may assist with predictive enrichment in future clinical trials.
Collapse
Affiliation(s)
- Matthew T Siuba
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH.
| | - Lucas Bulgarelli
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Abhijit Duggal
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | | | | | | | - Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil; Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne, VIC, Australia; Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Rodrigo Octávio Deliberato
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Biostatistics, Health Informatics and Data Science (BHIDS), University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
20
|
Emeruwa IO, Qadir N. Prone Positioning: What Remains to Be Learned after Decades of Clinical Trials. Ann Am Thorac Soc 2024; 21:1385-1386. [PMID: 39352179 PMCID: PMC11451885 DOI: 10.1513/annalsats.202407-744ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Affiliation(s)
- I Obi Emeruwa
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California
| | - Nida Qadir
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Fiedler-Kalenka MO, Brenner T, Bernhard M, Reuß CJ, Beynon C, Hecker A, Jungk C, Nusshag C, Michalski D, Weigand MA, Dietrich M. [Focus on ventilation, oxygen therapy and weaning 2022-2024 : Summary of selected intensive care studies]. DIE ANAESTHESIOLOGIE 2024; 73:698-711. [PMID: 39210065 DOI: 10.1007/s00101-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Affiliation(s)
- M O Fiedler-Kalenka
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
- Translationales Lungenforschungszentrum Heidelberg (TLRC-H), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Universitätsklinikum Heidelberg, Heidelberg, Deutschland.
| | - T Brenner
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
| | - M Bernhard
- Zentrale Notaufnahme, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Düsseldorf, Deutschland
| | - C J Reuß
- Klinik für Anästhesiologie und operative Intensivmedizin, Klinikum Stuttgart, Stuttgart, Deutschland
| | - C Beynon
- Neurochirurgische Klinik, Universitätsklinikum Mannheim, Mannheim, Deutschland
| | - A Hecker
- Klinik für Allgemein- Viszeral‑, Thorax‑, Transplantations- und Kinderchirurgie, Universitätsklinikum Gießen und Marburg, Standort Gießen, Gießen, Deutschland
| | - C Jungk
- Neurochirurgische Klinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Nusshag
- Klinik für Endokrinologie, Stoffwechsel und klinische Chemie/Sektion Nephrologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - D Michalski
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - M A Weigand
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| | - M Dietrich
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| |
Collapse
|
22
|
Richard JCM, Beloncle FM, Béduneau G, Mortaza S, Ehrmann S, Diehl JL, Prat G, Jaber S, Rahmani H, Reignier J, Boulain T, Yonis H, Richecoeur J, Thille AW, Declercq PL, Antok E, Carteaux G, Vielle B, Brochard L, Mercat A. Pressure control plus spontaneous ventilation versus volume assist-control ventilation in acute respiratory distress syndrome. A randomised clinical trial. Intensive Care Med 2024; 50:1647-1656. [PMID: 39287651 PMCID: PMC11457688 DOI: 10.1007/s00134-024-07612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE The aim of this study was to compare the effect of a pressure-controlled strategy allowing non-synchronised unassisted spontaneous ventilation (PC-SV) to a conventional volume assist-control strategy (ACV) on the outcome of patients with acute respiratory distress syndrome (ARDS). METHODS Open-label randomised clinical trial in 22 intensive care units (ICU) in France. Seven hundred adults with moderate or severe ARDS (PaO2/FiO2 < 200 mmHg) were enrolled from February 2013 to October 2018. Patients were randomly assigned to PC-SV (n = 348) or ACV (n = 352) with similar objectives of tidal volume (6 mL/kg predicted body weight) and positive end-expiratory pressure (PEEP). Paralysis was stopped after 24 h and sedation adapted to favour patients' spontaneous ventilation. The primary endpoint was in-hospital death from any cause at day 60. RESULTS Hospital mortality [34.6% vs 33.5%, p = 0.77, risk ratio (RR) = 1.03 (95% confidence interval [CI] 0.84-1.27)], 28-day mortality, as well as the number of ventilator-free days and organ failure-free days at day 28 did not differ between PC-SV and ACV groups. Patients in the PC-SV group received significantly less sedation and neuro-muscular blocking agents than in the ACV group. A lower proportion of patients required adjunctive therapy of hypoxemia (including prone positioning) in the PC-SV group than in the ACV group [33.1% vs 41.3%, p = 0.03, RR = 0.80 (95% CI 0.66-0.98)]. The incidences of pneumothorax and refractory hypoxemia did not differ between the groups. CONCLUSIONS A strategy based on PC-SV mode that favours spontaneous ventilation reduced the need for sedation and adjunctive therapies of hypoxemia but did not significantly reduce mortality compared to ACV with similar tidal volume and PEEP levels.
Collapse
Affiliation(s)
- Jean-Christophe M Richard
- Médecine Intensive, Réanimation, Vent'Lab, CHU d'Angers, University Hospital of Angers, Angers, France.
- Med2Lab, ALMS, Antony, France.
| | - François M Beloncle
- Médecine Intensive, Réanimation, Vent'Lab, CHU d'Angers, University Hospital of Angers, Angers, France
| | - Gaëtan Béduneau
- Médecine Intensive, Réanimation, Univ Rouen Normandie, GRHVN UR 3830, CHU Rouen, Rouen, France
| | - Satar Mortaza
- Médecine Intensive, Réanimation, Vent'Lab, CHU d'Angers, University Hospital of Angers, Angers, France
- Réanimation Polyvalente, CH René Dubos, Pontoise, France
| | - Stephan Ehrmann
- Médecine Intensive, Réanimation, INSERM CIC 1415, Crics-Triggersep F-CRIN Research Network, CHRU de Tours and Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Jean-Luc Diehl
- Médecine Intensive, Réanimation, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Gwenaël Prat
- Médecine Intensive, Réanimation, CHU de Brest, Brest, France
| | - Samir Jaber
- Réanimation Chirurgicale, CHU de Montpellier, Montpellier, France
| | - Hassene Rahmani
- Médecine Intensive, Réanimation, CHU de Strasbourg NHC, Strasbourg, France
| | - Jean Reignier
- Médecine Intensive, Réanimation, Movement-Interactions-Performance, MIP UR 4334-CHU de Nantes, Nantes, France
| | - Thierry Boulain
- Médecine Intensive, Réanimation, CHU d'Orléans, Orléans, France
| | - Hodane Yonis
- Médecine Intensive, Réanimation, HC de Lyon, Lyon, France
| | | | - Arnaud W Thille
- Médecine Intensive, Réanimation, CHU de Poitiers, Poitiers, France
| | | | - Emmanuel Antok
- Réanimation Polyvalente, CHU Sud Réunion, La Réunion, France
| | - Guillaume Carteaux
- Médecine Intensive, Réanimation, Hôpital Henri Mondor, APHP, Créteil, France
| | - Bruno Vielle
- Département de Biostatistiques, CHU d'Angers, Angers, France
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Alain Mercat
- Médecine Intensive, Réanimation, Vent'Lab, CHU d'Angers, University Hospital of Angers, Angers, France
| |
Collapse
|
23
|
Fossali T, Locatelli M, Colombo R, Veronese A, Borghi B, Ballone E, Castelli A, Rech R, Catena E, Ottolina D. Awake pronation with helmet CPAP in early COVID-19 ARDS patients: effects on respiratory effort and distribution of ventilation assessed by EIT. Intern Emerg Med 2024; 19:2025-2034. [PMID: 38532048 DOI: 10.1007/s11739-024-03572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Prone positioning with continuous positive airway pressure (CPAP) is widely used for respiratory support in awake patients with COVID-19-associated acute respiratory failure. We aimed to assess the respiratory mechanics and distribution of ventilation in COVID-19-associated ARDS treated by CPAP in awake prone position. We studied 16 awake COVID-19 patients with moderate-to-severe ARDS. The study protocol consisted of a randomized sequence of supine and prone position with imposed positive end-expiratory pressure (PEEP) of 5 and 10 cmH2O delivered by helmet CPAP. Respiratory mechanics and distribution of ventilation were assessed through esophageal pressure (PES) and electrical impedance tomography (EIT). At the end of each 20-min phase, arterial blood gas analysis was performed, and PES swing and EIT tracings were recorded for the calculation of the respiratory mechanics and regional ventilation. The patient's position had no significant effects on respiratory mechanics. EIT analysis did not detect differences among global indices of ventilation. A significant proportion of pixels in the sternal region of interest showed an increase in compliance from the supine to prone position and PaO2/FIO2 increased accordingly. The best improvement of both PaO2/FIO2 and sternal compliance was obtained in the prone position with PEEP 10 cmH2O. In the studied subjects, prone positioning during CPAP treatment raised oxygenation without improvement of "protective" ventilation or global ventilatory inhomogeneity indices. Prone positioning with higher PEEP significantly increased the compliance of sternal regions.
Collapse
Affiliation(s)
- Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Martina Locatelli
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Alice Veronese
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Beatrice Borghi
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Elisabetta Ballone
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Antonio Castelli
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Roberto Rech
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Emanuele Catena
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Davide Ottolina
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
24
|
Zhou YM, Tian X, Wang YM, Wang S, Yang YL, Zhou JX, Zhang L. A bibliometric analysis of respiratory mechanics research related to acute respiratory distress syndrome from 1985 to 2023. Front Med (Lausanne) 2024; 11:1420875. [PMID: 39371338 PMCID: PMC11449829 DOI: 10.3389/fmed.2024.1420875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a severe condition characterized by lung stiffness and compromised gas exchange, often requiring mechanical ventilation for treatment. In addition to its clinical significance, understanding the publication trends and research patterns in respiratory mechanics related to ARDS can provide insights into the evolution of this field from a bibliometric perspective, aiding in strategic planning and resource allocation for future research endeavors. Objective This study aimed to explore the trends and identify the hotspots in respiratory mechanics research related to ARDS. Methods All relevant studies on respiratory mechanics of ARDS published between 1985 and 2023 were retrieved from the Web of Science Core Collection (WoSCC), and the retrieval strategy was topic search "TS = respiratory mechanics OR lung mechanics AND TS = ARDS OR acute respiratory distress syndrome." Annual trends, citation patterns, and contributions from countries, institutions, authors, and journals were analyzed using Bibliometrix Biblioshiny. Networks and overlay of authors, institutions, countries, journals, co-citations, and keywords were analyzed and visualized using VOSviewer. Results Our analysis included 1,248 articles published between 1985 and 2023, revealing fluctuations in publication output over time. The United States emerged as the leading contributor, with Critical Care Medicine being the most prominent journal. Key research themes included mechanical ventilation, acute lung injury, and protective ventilation strategies. International collaboration was evident, facilitating knowledge exchange and interdisciplinary cooperation. Conclusion Our study sheds light on the evolving landscape of respiratory mechanics research in ARDS. International collaboration is pivotal in advancing the field, while researchers increasingly focus on personalized approaches to address the complexities of ARDS respiratory mechanics.
Collapse
Affiliation(s)
- Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiuli Tian
- Department of Respiration, Liaocheng People’s Hospital, Liaocheng, China
| | - Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuya Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Lai C, Shi R, Jelinski L, Lardet F, Fasan M, Ayed S, Belotti H, Biard N, Guérin L, Fage N, Fossé Q, Gobé T, Pavot A, Roger G, Yhuel A, Teboul JL, Pham T, Monnet X. Respiratory effects of prone position in COVID-19 acute respiratory distress syndrome differ according to the recruitment-to-inflation ratio: a prospective observational study. Ann Intensive Care 2024; 14:146. [PMID: 39292429 PMCID: PMC11411043 DOI: 10.1186/s13613-024-01375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Improvements in oxygenation and lung mechanics with prone position (PP) in patients with acute respiratory distress syndrome (ARDS) are inconstant. The objectives of the study were (i) to identify baseline variables, including the recruitment-to-inflation ratio (R/I), associated with a positive response to PP in terms of oxygenation (improvement of the ratio of arterial oxygen partial pressure over the inspired oxygen fraction (PaO2/FiO2) ≥ 20 mmHg) and lung mechanics; (ii) to evaluate whether the response to the previous PP session is associated with the response to the next session. METHODS In this prospective, observational, single-center study in patients who underwent PP for ARDS due to COVID-19, respiratory variables were assessed just before PP and at the end of the session. Respiratory variables included mechanical ventilation settings and respiratory mechanics variables, including R/I, an estimate of the potential for lung recruitment compared to lung overinflation. RESULTS In 50 patients, 201 PP sessions lasting 19 ± 3 h were evaluated. Neuromuscular blockades were used in 116 (58%) sessions. The PaO2/FiO2 ratio increased from 109 ± 31 mmHg to 165 ± 65 mmHg, with an increase ≥ 20 mmHg in 142 (71%) sessions. In a mixed effect logistic regression, only pre-PP PaO2/FiO2 (OR 1.12 (95% CI [1.01-1.24])/every decrease of 10 mmHg, p = 0.034) in a first model and improvement in oxygenation at the previous PP session (OR 3.69 (95% CI [1.27-10.72]), p = 0.017) in a second model were associated with an improvement in oxygenation with PP. The R/I ratio (n = 156 sessions) was 0.53 (0.30-0.76), separating lower- and higher-recruiters. Whereas PaO2/FiO2 improved to the same level in both subgroups, driving pressure and respiratory system compliance improved only in higher-recruiters (from 14 ± 4 to 12 ± 4 cmH2O, p = 0.027, and from 34 ± 11 to 38 ± 13 mL/cmH2O, respectively, p = 0.014). CONCLUSIONS A lower PaO2/FiO2 at baseline and a positive O2-response at the previous PP session are associated with a PP-induced improvement in oxygenation. In higher-recruiters, lung mechanics improved along with oxygenation. Benefits of PP could thus be greater in these patients.
Collapse
Affiliation(s)
- Christopher Lai
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France.
- Inserm UMR S_999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, University Paris-Saclay, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| | - Rui Shi
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR S_999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, University Paris-Saclay, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Ludwig Jelinski
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Florian Lardet
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Marta Fasan
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Department of Surgery, Dentistry, Gynaecology and Paediatrics, University of Verona, Verona, Veneto, Italy
| | - Soufia Ayed
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Hugo Belotti
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Nicolas Biard
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Laurent Guérin
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Nicolas Fage
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Quentin Fossé
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Thibaut Gobé
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Arthur Pavot
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Guillaume Roger
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Alex Yhuel
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Jean-Louis Teboul
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR S_999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, University Paris-Saclay, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Tai Pham
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Inserm U1018, Equipe d'Epidémiologie Respiratoire Intégrative, CESP,, Université Paris-Saclay (UVSQ)-Université Paris-Sud, Villejuif, 94807, France
| | - Xavier Monnet
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR S_999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, University Paris-Saclay, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
26
|
Yin X, Jin Z, Li F, Huang L, Hu YM, Zhu BC, Wang ZQ, Li XY, Li JP, Lao L, Mi YQ, Xu SF. Effectiveness and safety of adjunctive non-drug measures in improving respiratory symptoms among patients with severe COVID-19: A multicenter randomized controlled trial. JOURNAL OF INTEGRATIVE MEDICINE 2024:S2095-4964(24)00389-3. [PMID: 39358063 DOI: 10.1016/j.joim.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The outbreak of coronavirus disease 2019 (COVID-19) infection posed a huge threat and burden to public healthcare in late 2022. Non-drug measures of traditional Chinese medicine (TCM), such as acupuncture, cupping and moxibustion, are commonly used as adjuncts in China to help in severe cases, but their effects remain unclear. OBJECTIVES To observe the clinical effect of TCM non-drug measures in improving respiratory function and symptoms among patients with severe COVID-19. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS This study was designed as a multicenter, assessor-blind, randomized controlled trial. Hospitalized patients with COVID-19 were randomly assigned to the treatment or control group. The treatment group received individualized TCM non-drug measures in combination with prone position ventilation, while the control group received prone position ventilation only for 5 consecutive days. MAIN OUTCOME MEASURES The primary outcome measures were the percentage of patients with improved oxygen saturation (SpO2) at the end of the 5-day intervention, as well as changes of patients' respiratory rates. The secondary outcome measures included changes in SpO2 and total score on the self-made respiratory symptom scale. The improvement rate, defined as a 3-day consecutive increase in SpO2, the duration of prone positioning, and adverse events were recorded as well. RESULTS Among the 198 patients included in the intention-to-treat analysis, 159 (80.3%) completed all assessments on day 5, and 39 (19.7%) patients withdrew from the study. At the end of the intervention, 71 (91%) patients in the treatment group had SpO2 above 93%, while 61 (75.3%) in the control group reached this level. The proportion of participant with improved SpO2 was significantly greater in the intervention group (mean difference [MD] = 15.7; 95% confidence interval [CI]: 4.4, 27.1; P = 0.008). Compared to the baseline, with daily treatment there were significant daily decreases in respiratory rates in both groups, but no statistical differences between groups were found (all P ≥ 0.05). Compared to the control group, the respiratory-related symptoms score was lower among patients in the treatment group (MD = -1.7; 95%CI: -2.8, -0.5; P = 0.008) after day 3 of treatment. A gradual decrease in the total scores of both groups was also observed. Thirty-one adverse events occurred during the intervention, and 2 patients were transferred to the intensive care unit due to deterioration of their illness. CONCLUSION TCM non-drug measures combined with prone positioning can effectively treat patients with severe COVID-19. The combined therapy significantly increased SpO2 and improved symptom scores compared to prone positioning alone, thus improving the patients' respiratory function to help them recover. However, the improvement rate did not differ between the two groups. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2300068319). Please cite this article as: Yin X, Jin Z, Li F, Huang L, Hu YM, Zhu BC, Wang ZQ, Li XY, Li JP, Lao LX, Mi YQ, Xu SF. Effectiveness and safety of adjunctive non-drug measures in improving respiratory symptoms among patients with severe COVID-19: A multicenter randomized controlled trial. J Integr Med. 2024; Epub ahead of print.
Collapse
Affiliation(s)
- Xuan Yin
- Acupuncture and Moxibustion Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Zhu Jin
- Medical Department, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Feng Li
- Acupuncture and Moxibustion Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Li Huang
- Medical Department, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yan-Mei Hu
- Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Bo-Chang Zhu
- Acupuncture and Moxibustion Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Zu-Qing Wang
- Acupuncture and Moxibustion Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Xi-Ying Li
- Acupuncture and Moxibustion Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jian-Ping Li
- Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Lixing Lao
- Virginia University of Integrative Medicine, Fairfax, VA 22031, USA
| | - Yi-Qun Mi
- Acupuncture and Moxibustion Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Shi-Fen Xu
- Acupuncture and Moxibustion Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
27
|
Li W, Xu N, Wei J, Zhu W, Niu Y, Wei J, Mei Q, Wang X, Wang H. Dose-response relationship between awake prone-positioning duration and PaO 2/FiO 2 changes and risk of disease aggravation in patients with severe COVID-19: A prospective cohort study. Aust Crit Care 2024:S1036-7314(24)00242-X. [PMID: 39261233 DOI: 10.1016/j.aucc.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Patients not mechanically ventilated often fail to achieve the recommended duration of awake prone positioning due to treatment interruption and discomfort. Few studies have investigated the link between treatment outcome and prone-positioning duration, the inability to accurately guide patients to perform awake prone positioning. OBJECTIVES The aim of this study was to characterise and explore the relationship between awake prone-positioning duration with the ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2 [P/F]) changes and the risk of disease aggravation. METHODS A prospective cohort study; dose-response relationship was used. Awake prone positioning was performed on patients with severe Corona Virus Disease 2019 (COVID-19) for 5 consecutive days from 1 February to 21 March 2023. Linear and logistic regression models were utilised to assess the association between prone-positioning duration with P/F changes and risk of disease aggravation, respectively. Meanwhile, the restricted cubic spline was used to evaluate the dose-response relationships. RESULTS A total of 408 patients with severe COVID-19 were analysed. The daily prone positioning duration was 4.57 ± 2.74 h/d, and the changes in P/F were 67.63 ± 69.17 mmHg. On the sixth day of hospitalisation, the condition of 52 (12.8%) patients deteriorated. There was a positive, nonlinear dose-response relationship (Poverall < 0.001, Pnonlinearity = 0.041) and a strong, significant positive correlation (β = 29.286, t = 4.302, P < 0.001) between the prone-positioning duration and P/F changes. The risk of disease aggravation gradually decreases with the increase of prone-positioning duration. Nonetheless, the prone-positioning duration was not statistically associated with disease aggravation (odds ratio = 0.986, 95% confidence interval: 0.514-1.895). CONCLUSIONS Awake prone positioning for ≥4 h/d is effective on oxygenation (not mortality/intubation) and is achievable for patients with severe COVID-19. Prolonged prone positioning is promising in improving patients' oxygenation but does not alleviate their risk of disease aggravation.
Collapse
Affiliation(s)
- WanLing Li
- Nursing Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China; Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Na Xu
- Central Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Jia Wei
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - WenJuan Zhu
- Nursing Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - YanBin Niu
- Central Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Jing Wei
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - XiuMei Wang
- Central Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China.
| | - Hui Wang
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
28
|
Jones TW, Hendrick T, Chase AM. Heterogeneity, Bayesian thinking, and phenotyping in critical care: A primer. Am J Health Syst Pharm 2024; 81:812-832. [PMID: 38742459 DOI: 10.1093/ajhp/zxae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE To familiarize clinicians with the emerging concepts in critical care research of Bayesian thinking and personalized medicine through phenotyping and explain their clinical relevance by highlighting how they address the issues of frequent negative trials and heterogeneity of treatment effect. SUMMARY The past decades have seen many negative (effect-neutral) critical care trials of promising interventions, culminating in calls to improve the field's research through adopting Bayesian thinking and increasing personalization of critical care medicine through phenotyping. Bayesian analyses add interpretive power for clinicians as they summarize treatment effects based on probabilities of benefit or harm, contrasting with conventional frequentist statistics that either affirm or reject a null hypothesis. Critical care trials are beginning to include prospective Bayesian analyses, and many trials have undergone reanalysis with Bayesian methods. Phenotyping seeks to identify treatable traits to target interventions to patients expected to derive benefit. Phenotyping and subphenotyping have gained prominence in the most syndromic and heterogenous critical care disease states, acute respiratory distress syndrome and sepsis. Grouping of patients has been informative across a spectrum of clinically observable physiological parameters, biomarkers, and genomic data. Bayesian thinking and phenotyping are emerging as elements of adaptive clinical trials and predictive enrichment, paving the way for a new era of high-quality evidence. These concepts share a common goal, sifting through the noise of heterogeneity in critical care to increase the value of existing and future research. CONCLUSION The future of critical care medicine will inevitably involve modification of statistical methods through Bayesian analyses and targeted therapeutics via phenotyping. Clinicians must be familiar with these systems that support recommendations to improve decision-making in the gray areas of critical care practice.
Collapse
Affiliation(s)
- Timothy W Jones
- Department of Pharmacy, Piedmont Eastside Medical Center, Snellville, GA
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA, USA
| | - Tanner Hendrick
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Aaron M Chase
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA
- Department of Pharmacy, Augusta University Medical Center, Augusta, GA, USA
| |
Collapse
|
29
|
Zochios V, Nasa P, Yusuff H, Schultz MJ, Antonini MV, Duggal A, Dugar S, Ramanathan K, Shekar K, Schmidt M. Definition and management of right ventricular injury in adult patients receiving extracorporeal membrane oxygenation for respiratory support using the Delphi method: a PRORVnet study. Expert position statements. Intensive Care Med 2024; 50:1411-1425. [PMID: 39102027 DOI: 10.1007/s00134-024-07551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is an integral part of the management algorithm of patients with severe respiratory failure refractory to evidence-based conventional treatments. Right ventricular injury (RVI) pertaining to abnormalities in the dimensions and/or function of the right ventricle (RV) in the context of VV-ECMO significantly influences mortality. However, in the absence of a universally accepted RVI definition and evidence-based guidance for the management of RVI in this very high-risk patient cohort, variations in clinical practice continue to exist. METHODS Following a systematic search of the literature, an international Steering Committee consisting of eight healthcare professionals involved in the management of patients receiving ECMO identified domains and knowledge gaps pertaining to RVI definition and management where the evidence is limited or ambiguous. Using a Delphi process, an international panel of 52 Experts developed Expert position statements in those areas. The process also conferred RV-centric overarching open questions for future research. Consensus was defined as achieved when 70% or more of the Experts agreed or disagreed on a Likert-scale statement or when 80% or more of the Experts agreed on a particular option in multiple-choice questions. RESULTS The Delphi process was conducted through four rounds and consensus was achieved on 31 (89%) of 35 statements from which 24 Expert position statements were derived. Expert position statements provided recommendations for RVI nomenclature in the setting of VV-ECMO, a multi-modal diagnostic approach to RVI, the timing and parameters of diagnostic echocardiography, and VV-ECMO settings during RVI assessment and management. Consensus was not reached on RV-protective driving pressure thresholds or the effect of prone positioning on patient-centric outcomes. CONCLUSION The proposed definition of RVI in the context of VV-ECMO needs to be validated through a systematic aggregation of data across studies. Until further evidence emerges, the Expert position statements can guide informed decision-making in the management of these patients.
Collapse
Affiliation(s)
- Vasileios Zochios
- Glenfield Hospital Extracorporeal Membrane Oxygenation Unit, University Hospitals of Leicester National Health Service Trust, Glenfield, Groby Road, Leicester, LE3 9QP, UK.
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | - Prashant Nasa
- Critical Care Medicine, NMC Specialty Hospital, Dubai, United Arab Emirates
- Internal Medicine, College of Medicine and Health Sciences, Al Ain, Abu Dhabi, United Arab Emirates
| | - Hakeem Yusuff
- Glenfield Hospital Extracorporeal Membrane Oxygenation Unit, University Hospitals of Leicester National Health Service Trust, Glenfield, Groby Road, Leicester, LE3 9QP, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Marcus J Schultz
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Anesthesiology, Critical Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Marta Velia Antonini
- Intensive Care Unit, Bufalini Hospital, AUSL Della Romagna, Cesena, Italy
- PhD program in Cardio-Nephro-Thoracic Sciences, University of Bologna, Bologna, Italy
| | - Abhijit Duggal
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Siddharth Dugar
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kollengode Ramanathan
- National University Hospital, Singapore, 119074, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kiran Shekar
- Adult Intensive Care Services, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
- University of Queensland, Brisbane and Bond University, Gold Coast, QLD, Australia
| | - Matthieu Schmidt
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, AP-HP, Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| |
Collapse
|
30
|
Yoshida T, Shimizu S, Fushimi K, Mihara T. Changing clinical practice and prognosis for severe respiratory failure over time: A nationwide inpatient database study. Respir Investig 2024; 62:778-784. [PMID: 38986214 DOI: 10.1016/j.resinv.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Severe respiratory failure requires numerous interventions and its clinical implementation changes over time. We aimed to clarify the clinical practice and prognosis of severe respiratory failure and its changes over time. METHODS In a nationwide Japanese administrative database from 2016 to 2019, we identified nonoperative patients with severe respiratory failure without congestive heart failure as the main diagnosis who received mechanical ventilation (MV) for more than four days. We examined trends in patient characteristics, adjunctive interventions, and prognosis. RESULTS Among 66,905 patients included in this study, patients received antibiotics (90%), high-dose corticosteroids (14%), low-dose corticosteroids (18%), and 51% were admitted to the critical care unit. Hospital mortality was 35%. Median mechanical ventilation lasted 10 days. Tracheostomy occurred in 23% of cases. Median critical care and hospital stays were 10 and 25 days, respectively. Among survivors, 23% had mechanical ventilation dependency at hospital discharge. Large relative changes in adjunctive therapies included fentanyl (30%-38%), rocuronium (4.4%-6.7%), vasopressin (3.8%-6.0%), early rehabilitation (27%-38%), extracorporeal membrane oxygenation (0.7%-1.2%), dopamine (15%-10%), and sivelestat (8.6%-3.5%). No notable changes were seen in mechanical ventilation duration, tracheostomy, critical care unit stay, hospital stay, or ventilator dependency at discharge, except for a slight reduction in hospital mortality (36%-34%). CONCLUSIONS Several adjunctive therapies for severe respiratory failure changed from 2016 to 2019, with an increase in evidence-based practices and a slight decrease in hospital mortality.
Collapse
Affiliation(s)
- Takuo Yoshida
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, 22-2, Seto, Kanazawa, Yokohama, 236-0027, Japan; Department of Emergency Medicine, The Jikei University School of Medicine, 3-19-18, Nishi-Shinbashi, Minato-ku, Tokyo 105-8471, Japan.
| | - Sayuri Shimizu
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, 22-2, Seto, Kanazawa, Yokohama, 236-0027, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takahiro Mihara
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, 22-2, Seto, Kanazawa, Yokohama, 236-0027, Japan; Department of Anesthesiology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
31
|
Kneyber MCJ, Cheifetz IM, Asaro LA, Graves TL, Viele K, Natarajan A, Wypij D, Curley MAQ. Protocol for the Prone and Oscillation Pediatric Clinical Trial ( PROSpect ). Pediatr Crit Care Med 2024; 25:e385-e396. [PMID: 38801306 PMCID: PMC11379539 DOI: 10.1097/pcc.0000000000003541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
OBJECTIVES Respiratory management for pediatric acute respiratory distress syndrome (PARDS) remains largely supportive without data to support one approach over another, including supine versus prone positioning (PP) and conventional mechanical ventilation (CMV) versus high-frequency oscillatory ventilation (HFOV). DESIGN We present the research methodology of a global, multicenter, two-by-two factorial, response-adaptive, randomized controlled trial of supine versus PP and CMV versus HFOV in high moderate-severe PARDS, the Prone and Oscillation Pediatric Clinical Trial ( PROSpect , www.ClinicalTrials.gov , NCT03896763). SETTING Approximately 60 PICUs with on-site extracorporeal membrane oxygenation support in North and South America, Europe, Asia, and Oceania with experience using PP and HFOV in the care of patients with PARDS. PATIENTS Eligible pediatric patients (2 wk old or older and younger than 21 yr) are randomized within 48 h of meeting eligibility criteria occurring within 96 h of endotracheal intubation. INTERVENTIONS One of four arms, including supine/CMV, prone/CMV, supine/HFOV, or prone/HFOV. We hypothesize that children with high moderate-severe PARDS treated with PP or HFOV will demonstrate greater than or equal to 2 additional ventilator-free days (VFD). MEASUREMENTS AND MAIN RESULTS The primary outcome is VFD through day 28; nonsurvivors receive zero VFD. Secondary and exploratory outcomes include nonpulmonary organ failure-free days, interaction effects of PP with HFOV on VFD, 90-day in-hospital mortality, and among survivors, duration of mechanical ventilation, PICU and hospital length of stay, and post-PICU functional status and health-related quality of life. Up to 600 patients will be randomized, stratified by age group and direct/indirect lung injury. Adaptive randomization will first occur 28 days after 300 patients are randomized and every 100 patients thereafter. At these randomization updates, new allocation probabilities will be computed based on intention-to-treat trial results, increasing allocation to well-performing arms and decreasing allocation to poorly performing arms. Data will be analyzed per intention-to-treat for the primary analyses and per-protocol for primary, secondary, and exploratory analyses. CONCLUSIONS PROSpect will provide clinicians with data to inform the practice of PP and HFOV in PARDS.
Collapse
Affiliation(s)
- Martin C J Kneyber
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Critical Care, Anesthesiology, Peri-operative and Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands
| | - Ira M Cheifetz
- Division of Cardiac Critical Care, Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Lisa A Asaro
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| | | | | | - Aruna Natarajan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Martha A Q Curley
- Department of Family and Community Health, School of Nursing, University of Pennsylvania, Philadelphia, PA
- Anesthesia and Critical Care Medicine-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
32
|
Zochios V, Yusuff H, Antonini MV. Prone Positioning and Right Ventricular Protection During Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. ASAIO J 2024; 70:e119-e122. [PMID: 38941486 DOI: 10.1097/mat.0000000000002261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Affiliation(s)
- Vasileios Zochios
- From the University Hospitals of Leicester National Health Service Trust, Glenfield Hospital Extracorporeal Membrane Oxygenation Unit, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Hakeem Yusuff
- From the University Hospitals of Leicester National Health Service Trust, Glenfield Hospital Extracorporeal Membrane Oxygenation Unit, Leicester, United Kingdom
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Marta Velia Antonini
- Intensive Care Unit, Bufalini Hospital, AUSL della Romagna, Cesena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
33
|
Parke RL, McGuinness SP, Cavadino A, Cowdrey KA, Bates S, Bihari S, Corley A, Gilder E, Hodgson C, Litton E, McArthur C, Nichol A, Parker J, Turner A, Webb S, Van Haren FM. Management of severe acute respiratory distress syndrome in Australia and New Zealand (SAGE-ANZ): An observational study. CRIT CARE RESUSC 2024; 26:161-168. [PMID: 39355498 PMCID: PMC11440055 DOI: 10.1016/j.ccrj.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 10/03/2024]
Abstract
Objective Acute respiratory distress syndrome (ARDS) is associated with significant mortality, morbidity, and cost. We aimed to describe characteristics and management of adult patients admitted to intensive care units (ICUs) in Australia and New Zealand with moderate-severe ARDS, to better understand contemporary practice. Design Bi-national, prospective, observational, multi-centre study. Setting 19 ICUs in Australia and New Zealand. Participants Mechanically ventilated patients with moderate-severe ARDS. Main outcome measures Baseline demographic characteristics, ventilation characteristics, use of adjunctive support therapy and all-cause mortality to day 28. Data were summarised using descriptive statistics. Results 200 participants were enrolled, mean (±SD) age 55.5 (±15.9) years, 40% (n = 80) female. Around half (51.5%) had no baseline comorbidities and 45 (31%) tested positive for COVID-19. On day 1, mean SOFA score was 9 ± 3; median (IQR) PaO2/FiO2 ratio 119 (89, 142), median (IQR) FiO2 70% (50%, 99%) and mean (±SD) positive end expiratory pressure (PEEP) 11 (±3) cmH2O. On day one, 10.5% (n = 21) received lung protective ventilation (LPV) (tidal volume ≤6.5 mL/kg predicted body weight and plateau pressure or peak pressure ≤30 cm H2O). Adjunctive therapies were received by 86% (n = 172) of patients at some stage from enrolment to day 28. Systemic steroids were most used (n = 127) followed by neuromuscular blockers (n = 122) and prone positioning (n = 27). Median ventilator-free days (IQR) to day 28 was 5 (0, 20). In-hospital mortality, censored at day 28, was 30.5% (n = 61). Conclusions In Australia and New Zealand, compliance with evidence-based practices including LPV and prone positioning was low in this cohort. Therapies with proven benefit in the treatment of patients with moderate-severe ARDS, such as lung protective ventilation and prone positioning, were not routinely employed.
Collapse
Affiliation(s)
- Rachael L Parke
- Cardiothoracic and Vascular Intensive Care Unit, Te Toka Tumai Auckland, Auckland, New Zealand
- School of Nursing, The University of Auckland, Auckland, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Australian and New Zealand Intensive Care Centre, Monash University, Melbourne, Australia
| | - Shay P McGuinness
- Cardiothoracic and Vascular Intensive Care Unit, Te Toka Tumai Auckland, Auckland, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Australian and New Zealand Intensive Care Centre, Monash University, Melbourne, Australia
| | - Alana Cavadino
- School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Keri-Anne Cowdrey
- Cardiothoracic and Vascular Intensive Care Unit, Te Toka Tumai Auckland, Auckland, New Zealand
| | - Samantha Bates
- Department of Intensive Care, Western Health, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
| | - Shailesh Bihari
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
- Department of ICCU, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Amanda Corley
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- School of Nursing and Midwifery & Menzies Health Institute Queensland, Griffith University, Australia
- School of Nursing, Midwifery and Social Work, University of Queensland, Australia
| | - Eileen Gilder
- Cardiothoracic and Vascular Intensive Care Unit, Te Toka Tumai Auckland, Auckland, New Zealand
- School of Nursing, The University of Auckland, Auckland, New Zealand
| | - Carol Hodgson
- Australian and New Zealand Intensive Care Centre, Monash University, Melbourne, Australia
- Intensive Care Unit, Alfred Hospital, Melbourne, Australia
| | - Edward Litton
- Intensive Care Unit, Fiona Stanley Hospital, Perth Australia
- School of Medicine, University of Western Australia, Crawley, Australia
| | - Colin McArthur
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Department of Critical Care Medicine, Te Toka Tumai Auckland, Auckland, New Zealand
| | - Alistair Nichol
- Australian and New Zealand Intensive Care Centre, Monash University, Melbourne, Australia
- University College Dublin-Clinical Research Centre, St Vincent's University Hospital, Dublin, Ireland
| | - Jane Parker
- Australian and New Zealand Intensive Care Centre, Monash University, Melbourne, Australia
| | - Anne Turner
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Steve Webb
- Australian and New Zealand Intensive Care Centre, Monash University, Melbourne, Australia
| | - Frank Mp Van Haren
- Intensive Care Unit, St George Hospital, Sydney, Australia
- College of Health and Medicine, Australian National University, Canberra, Australia
| |
Collapse
|
34
|
Gacouin A, Guillot P, Delamaire F, Le Corre A, Quelven Q, Terzi N, Tadié JM, Maamar A. Impact of cardiovascular risk factors and cardiac diseases on mortality in patients with moderate to severe ARDS: A retrospective cohort study. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 22:200318. [PMID: 39234517 PMCID: PMC11372786 DOI: 10.1016/j.ijcrp.2024.200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Background History of coronary artery disease (CAD) and/or atrial fibrillation (AF) and/or valvular replacement (VR) are prevalent among patients admitted to intensive care units (ICUs). The impact of these conditions on outcomes in patients with acute respiratory distress syndrome (ARDS) remains insufficiently explored. Methods We performed a retrospective study on prospectively collected data from patients with ARDS and a PaO2/FiO2 ratio ≤150 mmHg. Patients were admitted between January 2006 and March 2022. We used multivariable logistic regression analysis. The primary outcome was 1-year mortality from admission to the ICU; secondary outcomes included mortality at 28 days and 90 days. Results Among 1.033 patients, 181 (17.5 %) had a history of CAD and/or AF and/or VR. History of CAD and/or AF and/or VR was independently associated with 1-year mortality (Odds-Ratio (OR) = 2.59, 95 % confidence interval (CI) 1.76-3.82, p < 0.001), with mortality at 90 days (OR = 1.87, 95 % CI 1.27-2.76, p = 0.001), but not with mortality at 28 days (OR = 1.40, 95 % CI 0.93-2.11, p = 0.10). In sensitivity analyses, history of CAD and/or AF and/or VR remained independently associated with 1-year mortality in ICU survivors (OR = 3.58, 95 % CI = 2.41-7.82, p < 0.001). Conclusions History of CAD and/or AF and/or VR was associated with mortality in ARDS. Prompt referral to cardiologists for comprehensive management post-ICU discharge may be warranted to optimize outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Arnaud Gacouin
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
- Université Rennes 1, Faculté de Médecine, Biosit, F-35043 Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes 1, IFR 140, F-35033 Rennes, France
| | - Pauline Guillot
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
- Université Rennes 1, Faculté de Médecine, Biosit, F-35043 Rennes, France
| | - Flora Delamaire
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
- Université Rennes 1, Faculté de Médecine, Biosit, F-35043 Rennes, France
| | - Alexia Le Corre
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
- Université Rennes 1, Faculté de Médecine, Biosit, F-35043 Rennes, France
| | - Quentin Quelven
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
- Université Rennes 1, Faculté de Médecine, Biosit, F-35043 Rennes, France
| | - Nicolas Terzi
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
- Université Rennes 1, Faculté de Médecine, Biosit, F-35043 Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes 1, IFR 140, F-35033 Rennes, France
| | - Jean Marc Tadié
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
- Université Rennes 1, Faculté de Médecine, Biosit, F-35043 Rennes, France
- Inserm-CIC-1414, Faculté de Médecine, Université Rennes 1, IFR 140, F-35033 Rennes, France
| | - Adel Maamar
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
- Université Rennes 1, Faculté de Médecine, Biosit, F-35043 Rennes, France
| |
Collapse
|
35
|
Luckner KM, Seckel MA. Understanding the Evolving Pathophysiology of Coronavirus Disease 2019 and Adult Nursing Management. Crit Care Nurs Clin North Am 2024; 36:295-321. [PMID: 39069352 DOI: 10.1016/j.cnc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Coronavirus disease 2019 (COVID-19) was first identified in December 2019 and quickly became a global pandemic. The understanding of the pathophysiology, treatment, and management of the disease has evolved since the beginning of the pandemic in 2020. COVID-19 can be complicated by immune system dysfunction, lung injury with hypoxemia, acute kidney injury, and coagulopathy. The treatment and management of COVID-19 is based on the severity of illness, ranging from asymptomatic to severe and often life-threatening disease. The 3 main recommended medication classes include antivirals, immunomodulators, and anticoagulants. Other supportive therapies include ensuring adequate oxygenation, mechanical ventilation, and prone positioning.
Collapse
|
36
|
Mocellin A, Guidotti F, Rizzato S, Tacconi M, Bruzzi G, Messina J, Puggioni D, Patsoura A, Fantini R, Tabbì L, Castaniere I, Marchioni A, Clini E, Tonelli R. Monitoring and modulation of respiratory drive in patients with acute hypoxemic respiratory failure in spontaneous breathing. Intern Emerg Med 2024:10.1007/s11739-024-03715-3. [PMID: 39207721 DOI: 10.1007/s11739-024-03715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Non-invasive respiratory support, namely, non-invasive ventilation, continuous positive airway pressure, and high-flow nasal cannula, has been increasingly used worldwide to treat acute hypoxemic respiratory failure, giving the benefits of keeping spontaneous breathing preserved. In this scenario, monitoring and controlling respiratory drive could be helpful to avoid patient self-inflicted lung injury and promptly identify those patients that require an upgrade to invasive mechanical ventilation. In this review, we first describe the physiological components affecting respiratory drive to outline the risks associated with its hyperactivation. Further, we analyze and compare the leading strategies implemented for respiratory drive monitoring and discuss the sedative drugs and the non-pharmacological approaches used to modulate respiratory drive during non-invasive respiratory support. Refining the available techniques and rethinking our therapeutic and monitoring targets can help critical care physicians develop a personalized and minimally invasive approach.
Collapse
Affiliation(s)
- Anna Mocellin
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Federico Guidotti
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Simone Rizzato
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Matteo Tacconi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Jacopo Messina
- Internal Medicine Unit, University of Rome, Roma 1, Rome, Italy
| | - Daniele Puggioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Athina Patsoura
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Riccardo Fantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy.
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Cave C, Samano D, Sharma AM, Dickinson J, Salomon J, Mahapatra S. Acute respiratory distress syndrome: A review of ARDS across the life course. J Investig Med 2024:10815589241270612. [PMID: 39092841 DOI: 10.1177/10815589241270612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a multifactorial, inflammatory lung disease with significant morbidity and mortality that predominantly requires supportive care in its management. Although initially described in adult patients, the diagnostic definitions for ARDS have evolved over time to accurately describe this disease process in pediatric and, more recently, neonatal patients. The management of ARDS in each age demographic has converged in the application of lung-protective ventilatory strategies to mitigate the primary disease process and prevent its exacerbation by limiting ventilator-induced lung injury. However, differences arise in the preferred ventilatory strategies or adjunctive pulmonary therapies used to mitigate each type of ARDS. In this review, we compare and contrast the epidemiology, common etiologies, pathophysiology, diagnostic criteria, and outcomes of ARDS across the lifespan. Additionally, we discuss in detail the different management strategies used for each subtype of ARDS and spotlight how these strategies were applied to mitigate poor outcomes during the COVID-19 pandemic. This review is geared toward both clinicians and clinician-scientists as it not only summarizes the latest information on disease pathogenesis and patient management in ARDS across the lifespan but also highlights knowledge gaps for further investigative efforts. We conclude by projecting how future studies can fill these gaps in research and what improvements may be envisioned in the management of NARDS and PARDS based on the current breadth of literature on adult ARDS treatment strategies.
Collapse
Affiliation(s)
- Caleb Cave
- Division of Neonatology, and Division of Pulmonology, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dannielle Samano
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abhineet M Sharma
- Division of Neonatology, and Division of Pulmonology, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, University of Nebraska Medical Center, Omaha, NE, USA
| | - John Dickinson
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey Salomon
- Division of Critical Care Medicine, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Division of Critical Care Medicine, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
38
|
Yang Y, Wang Y, Zhu G, Xu S, Liu J, Tang Z. Developing a predictive nomogram for mortality in patients with extrapulmonary acute respiratory distress syndrome: the prognostic value of serum soluble thrombomodulin, lung ultrasound score, and lactate. Front Pharmacol 2024; 15:1407825. [PMID: 39257391 PMCID: PMC11385278 DOI: 10.3389/fphar.2024.1407825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Objective: This study aimed to elucidate the prognostic significance of serum soluble thrombomodulin (sTM), lung ultrasound score (LUS), and lactate levels in patients with extrapulmonary acute respiratory distress syndrome (ARDS), with the goal of refining mortality risk prediction in this cohort. Methods: In a prospective cohort of 95 patients with extrapulmonary ARDS admitted to the intensive care unit, we investigated the primary endpoint of 28-day mortality. Utilizing Lasso-Cox regression analysis, we identified independent prognostic factors for mortality. A predictive nomogram was developed incorporating these factors, and its performance was validated through several statistical measures, including the consistency index, calibration plot, internal validation curve, decision curve analysis, interventions avoided analysis, receiver operating characteristic curve analysis, and Kaplan-Meier survival analysis. We further conducted a subgroup analysis to examine the impact of prone positioning on patient outcomes. Results: The study identified baseline serum sTM, LUS, and lactate levels as independent predictors of 28-day mortality in extrapulmonary ARDS patients. The predictive nomogram demonstrated superior prognostic accuracy compared to the use of sTM, LUS, or lactate levels alone, and outperformed traditional prognostic tools such as the Acute Physiology and Chronic Health Evaluation II score and the partial pressure of arterial oxygen to fractional inspired oxygen ratio. The subgroup analysis did not show a significant impact of prone positioning on the predictive value of the identified biomarkers. Conclusion: Our study results support the development and validation of a novel prognostic nomogram that integrates key clinical biomarkers and ultrasound imaging scores to predict mortality in patients with extrapulmonary ARDS. While our research is preliminary, further studies and validation are required.
Collapse
Affiliation(s)
- Yang Yang
- Department of Intensive Care Unit, Hefei BOE Hospital Co., Ltd., Hefei, Anhui, China
| | - Yue Wang
- Department of Science and Education, Hefei BOE Hospital Co., Ltd., Hefei, Anhui, China
| | - Guoguo Zhu
- Department of Emergency, Central Theater General Hospital of the People's Liberation Army of China, Wuhan, Hubei, China
| | - Siya Xu
- Department of Emergency, Central Theater General Hospital of the People's Liberation Army of China, Wuhan, Hubei, China
| | - Jie Liu
- Department of Intensive Care Unit, Hefei BOE Hospital Co., Ltd., Hefei, Anhui, China
| | - Zhongzhi Tang
- Department of Emergency, Central Theater General Hospital of the People's Liberation Army of China, Wuhan, Hubei, China
| |
Collapse
|
39
|
Boesing C, Rocco PRM, Luecke T, Krebs J. Positive end-expiratory pressure management in patients with severe ARDS: implications of prone positioning and extracorporeal membrane oxygenation. Crit Care 2024; 28:277. [PMID: 39187853 PMCID: PMC11348554 DOI: 10.1186/s13054-024-05059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
The optimal strategy for positive end-expiratory pressure (PEEP) titration in the management of severe acute respiratory distress syndrome (ARDS) patients remains unclear. Current guidelines emphasize the importance of a careful risk-benefit assessment for PEEP titration in terms of cardiopulmonary function in these patients. Over the last few decades, the primary goal of PEEP usage has shifted from merely improving oxygenation to emphasizing lung protection, with a growing focus on the individual pattern of lung injury, lung and chest wall mechanics, and the hemodynamic consequences of PEEP. In moderate-to-severe ARDS patients, prone positioning (PP) is recommended as part of a lung protective ventilation strategy to reduce mortality. However, the physiologic changes in respiratory mechanics and hemodynamics during PP may require careful re-assessment of the ventilation strategy, including PEEP. For the most severe ARDS patients with refractory gas exchange impairment, where lung protective ventilation is not possible, veno-venous extracorporeal membrane oxygenation (V-V ECMO) facilitates gas exchange and allows for a "lung rest" strategy using "ultraprotective" ventilation. Consequently, the importance of lung recruitment to improve oxygenation and homogenize ventilation with adequate PEEP may differ in severe ARDS patients treated with V-V ECMO compared to those managed conservatively. This review discusses PEEP management in severe ARDS patients and the implications of management with PP or V-V ECMO with respect to respiratory mechanics and hemodynamic function.
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
40
|
Wang R, Tang X, Li X, Li Y, Liu Y, Li T, Zhao Y, Wang L, Li H, Li M, Li H, Tong Z, Sun B. Early reapplication of prone position during venovenous ECMO for acute respiratory distress syndrome: a prospective observational study and propensity-matched analysis. Ann Intensive Care 2024; 14:127. [PMID: 39162882 PMCID: PMC11336129 DOI: 10.1186/s13613-024-01365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/11/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND A combination of prone positioning (PP) and venovenous extracorporeal membrane oxygenation (VV-ECMO) is safe, feasible, and associated with potentially improved survival for severe acute respiratory distress syndrome (ARDS). However, whether ARDS patients, especially non-COVID-19 patients, placed in PP before VV-ECMO should continue PP after a VV-ECMO connection is unknown. This study aimed to test the hypothesis that early use of PP during VV-ECMO could increase the proportion of patients successfully weaned from ECMO support in severe ARDS patients who received PP before ECMO. METHODS In this prospective observational study, patients with severe ARDS who were treated with VV-ECMO were divided into two groups: the prone group and the supine group, based on whether early PP was combined with VV-ECMO. The proportion of patients successfully weaned from VV-ECMO and 60-day mortality were analyzed before and after propensity score matching. RESULTS A total of 165 patients were enrolled, 50 in the prone and 115 in the supine group. Thirty-two (64%) and 61 (53%) patients were successfully weaned from ECMO in the prone and the supine groups, respectively. The proportion of patients successfully weaned from VV-ECMO in the prone group tended to be higher, albeit not statistically significant. During PP, there was a significant increase in partial pressure of arterial oxygen (PaO2) without a change in ventilator or ECMO settings. Tidal impedance shifted significantly to the dorsal region, and lung ultrasound scores significantly decreased in the anterior and posterior regions. Forty-five propensity score-matched patients were included in each group. In this matched sample, the prone group had a higher proportion of patients successfully weaned from VV-ECMO (64.4% vs. 42.2%; P = 0.035) and lower 60-day mortality (37.8% vs. 60.0%; P = 0.035). CONCLUSIONS Patients with severe ARDS placed in PP before VV-ECMO should continue PP after VV-ECMO support. This approach could increase the probability of successful weaning from VV-ECMO. TRIAL REGISTRATION ClinicalTrials.Gov: NCT04139733. Registered 23 October 2019.
Collapse
Affiliation(s)
- Rui Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Xiao Tang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Xuyan Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Ying Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Yalan Liu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Yu Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Haichao Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Meng Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Hu Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Bing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
41
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
42
|
Li Y, Hu Q, Wang W, Du C, Fan S, Xu L, Li S, Chen B. Development of Prone Position Ventilation Device and Study on the Application Effect of Combined Life Support Technology in Critically Ill Patients. Can Respir J 2024; 2024:5812829. [PMID: 39188353 PMCID: PMC11347033 DOI: 10.1155/2024/5812829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/21/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
Objective This study aims to evaluate a novel prone position ventilation device designed to enhance patient safety, improve comfort, and reduce adverse events, facilitating prolonged tolerance in critically ill patients. Methods A randomized controlled trial was conducted on 60 critically ill patients from January 2020 to June 2023. Of which, one self-discharged during treatment and another was terminated due to decreased oxygenation, leaving an effective sample of 58 patients. Patients were allocated to either a control group receiving traditional prone positioning aids (ordinary sponge pads and pillows) or an intervention group using a newly developed adjustable prone positioning device. A subset of patients in each group also received life support technologies such as extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT). We assessed prone position ventilation tolerance, oxygen saturation increments postintervention, duration of prone positioning, CRRT filter lifespan, and the incidence of adverse events. Results The intervention group exhibited significantly longer average tolerance to prone positioning (16.6 hours vs. 8.3 hours, P < 0.001 with a difference of 8.3 (4.4, 12.2) hours), higher increases in oxygen saturation postventilation (9% vs. 6%, P < 0.001 with a difference of 3.0 (1.5, 4.5)), and reduced time required for medical staff to position patients (11.7 min vs. 21.8 min, P < 0.001 with a difference of -10.1 (-11.9, -8.3)). Adverse events, including catheter displacement or blockage, facial edema, pressure injuries, and vomiting or aspiration, were markedly lower in the intervention group, with statistical significance (P < 0.05). In patients receiving combined life support, the intervention group demonstrated improved catheter blood drainage and extended CRRT filter longevity. Conclusion The newly developed adjustable prone ventilation device significantly improves tolerance to prone positioning, enhances oxygenation, and minimizes adverse events in critically ill patients, thereby also facilitating the effective application of life support technologies.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Intensive Care UnitXuzhou Central Hospital, Xuzhou 221009, China
| | - Qiaoqiao Hu
- Department of Operating RoomXuzhou Central Hospital, Xuzhou 221009, China
| | - Wenjie Wang
- Department of Intensive Care UnitXuzhou Central Hospital, Xuzhou 221009, China
| | - Changhong Du
- Department of Intensive Care UnitXuzhou Central Hospital, Xuzhou 221009, China
| | - Siwen Fan
- Department of Intensive Care UnitXuzhou Central Hospital, Xuzhou 221009, China
| | - Linlin Xu
- Department of Intensive Care UnitXuzhou Central Hospital, Xuzhou 221009, China
| | - Songmei Li
- Department of Intensive Care UnitXuzhou Central Hospital, Xuzhou 221009, China
| | - Bei Chen
- Department of Intensive Care UnitXuzhou Central Hospital, Xuzhou 221009, China
| |
Collapse
|
43
|
de Almeida TM, Fernandes RG, Binhardi VDR, França JID, Magnoni D, da Silva RG. Factors associated with oropharyngeal dysphagia in individuals with cardiovascular disease and COVID-19. Codas 2024; 36:e20220112. [PMID: 39166598 PMCID: PMC11340871 DOI: 10.1590/2317-1782/20242022112en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/12/2024] [Indexed: 08/23/2024] Open
Abstract
PURPOSE Oropharyngeal dysphagia (OD) is one of the possible outcomes in patients hospitalized with COVID-19 and also in the population hospitalized for the treatment of cardiovascular disease. Thus, knowing the predictive risk factors for OD may help with referral and early intervention. This study aimed to verify the association of different factors with OD in hospitalized individuals with cardiovascular disease and COVID-19. METHODS Cross-sectional clinical study approved by the Research Ethics Committee (4,521,771). Clinical evaluation of swallowing was carried out in 72 adult patients with cardiovascular disease and COVID-19 hospitalized from April to September 2020. Individuals under 18 years of age and without previous cardiovascular disease were excluded. The presence of general clinical and/or neurological complications, pronation, stay in the intensive care unit (ICU), orotracheal intubation (OTI), tracheostomy tube, oxygen support and age were considered as predictive risk factors for oropharyngeal dysphagia. Fisher's exact test, Mann Whitney test and logistic regression model were used for analysis. RESULTS General clinical complications (p=0.001), pronation (p=0.003), ICU stay (p=0.043), in addition to the need for oxygen supplementation (p=0.023) and age (p= 0 .037) were statistically significant factors associated. The pronation (0.013) and age (0.038) were independently associated with dysphagia. OTI (p=0.208), tracheostomy (p=0.707) and the presence of previous cerebrovascular accidents (p=0.493) were not statistically significant. CONCLUSION In this study, age and prone position were factors independently associated with oropharyngeal dysphagia, complications such as the need for oxygen supplementation, in addition to the need for ICU admission, were also associated factors in the population.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Magnoni
- Instituto Dante Pazzanese de Cardiologia - São Paulo (SP), Brasil.
| | | |
Collapse
|
44
|
Traynor M. Lung-protective ventilation in the management of congenital diaphragmatic hernia. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000789. [PMID: 39119150 PMCID: PMC11308893 DOI: 10.1136/wjps-2024-000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Prioritizing lung-protective ventilation has produced a clear mortality benefit in neonates with congenital diaphragmatic hernia (CDH). While there is a paucity of CDH-specific evidence to support any particular approach to lung-protective ventilation, a growing body of data in adults is beginning to clarify the mechanisms behind ventilator-induced lung injury and inform safer management of mechanical ventilation in general. This review summarizes the adult data and attempts to relate the findings, conceptually, to the CDH population. Critical lessons from the adult studies are that much of the damage done during conventional mechanical ventilation affects normal lung tissue and that most of this damage occurs at the low-volume and high-volume extremes of the respiratory cycle. Consequently, it is important to prevent atelectasis by using sufficient positive end-expiratory pressure while also avoiding overdistention by scaling tidal volume to the amount of functional lung tissue rather than body weight. Paralysis early in acute respiratory distress syndrome improves outcomes, possibly because consistent respiratory mechanics facilitate avoidance of both atelectasis and overdistention-a mechanism that may also apply to the CDH population. Volume-targeted conventional modes may be advantageous in CDH, but determining optimal tidal volume is challenging. Both high-frequency oscillatory ventilation and high-frequency jet ventilation have been used successfully as 'rescue modes' to avoid extracorporeal membrane oxygenation, and a prospective trial comparing the two high-frequency modalities as the primary ventilation strategy for CDH is underway.
Collapse
Affiliation(s)
- Mike Traynor
- Department of Anesthesia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Schaller SJ, Scheffenbichler FT, Bein T, Blobner M, Grunow JJ, Hamsen U, Hermes C, Kaltwasser A, Lewald H, Nydahl P, Reißhauer A, Renzewitz L, Siemon K, Staudinger T, Ullrich R, Weber-Carstens S, Wrigge H, Zergiebel D, Coldewey SM. Guideline on positioning and early mobilisation in the critically ill by an expert panel. Intensive Care Med 2024; 50:1211-1227. [PMID: 39073582 DOI: 10.1007/s00134-024-07532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024]
Abstract
A scientific panel was created consisting of 23 interdisciplinary and interprofessional experts in intensive care medicine, physiotherapy, nursing care, surgery, rehabilitative medicine, and pneumology delegated from scientific societies together with a patient representative and a delegate from the Association of the Scientific Medical Societies who advised methodological implementation. The guideline was created according to the German Association of the Scientific Medical Societies (AWMF), based on The Appraisal of Guidelines for Research and Evaluation (AGREE) II. The topics of (early) mobilisation, neuromuscular electrical stimulation, assist devices for mobilisation, and positioning, including prone positioning, were identified as areas to be addressed and assigned to specialist expert groups, taking conflicts of interest into account. The panel formulated PICO questions (addressing the population, intervention, comparison or control group as well as the resulting outcomes), conducted a systematic literature review with abstract screening and full-text analysis and created summary tables. This was followed by grading the evidence according to the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence and a risk of bias assessment. The recommendations were finalized according to GRADE and voted using an online Delphi process followed by a final hybrid consensus conference. The German long version of the guideline was approved by the professional associations. For this English version an update of the systematic review was conducted until April 2024 and recommendation adapted based on new evidence in systematic reviews and randomized controlled trials. In total, 46 recommendations were developed and research gaps addressed.
Collapse
Affiliation(s)
- Stefan J Schaller
- Department of Anaesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | | | | | - Manfred Blobner
- Department of Anaesthesiology and Intensive Care Medicine, Ulm University, Ulm, Germany
- Department of Anaesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julius J Grunow
- Department of Anaesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Uwe Hamsen
- Ruhr University Bochum, Bochum, Germany
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Carsten Hermes
- Hochschule für Angewandte Wissenschaften Hamburg (HAW Hamburg), Hamburg, Germany
- Akkon-Hochschule für Humanwissenschaften, Berlin, Germany
| | - Arnold Kaltwasser
- Academy of the District Hospitals Reutlingen, Kreiskliniken Reutlingen, Reutlingen, Germany
| | - Heidrun Lewald
- Department of Anaesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter Nydahl
- University Hospital of Schleswig-Holstein, Kiel, Germany
- Institute of Nursing Science and Development, Paracelsus Medical University, Salzburg, Austria
| | - Anett Reißhauer
- Department of Rehabilitation Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Renzewitz
- Department of Physiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karsten Siemon
- Department of Pneumology, Fachkrankenhaus Kloster Grafschaft, Schmallenberg, Germany
| | - Thomas Staudinger
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Center Vienna, Vienna, Austria
| | - Steffen Weber-Carstens
- Department of Anaesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Hermann Wrigge
- Department of Anaesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital, Halle, Germany
- Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | - Sina M Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.
- Septomics Research Center, Jena University Hospital, Jena, Germany.
| |
Collapse
|
46
|
González-Castro A, Huertas Martín C, Cuenca Fito E, Peñasco Y, Gonzalez C, Rodríguez Borregán JC. Duration of the first prone positioning maneuver and its association with 90-day mortality in patients with acute respiratory failure due to COVID-19: A retrospective study of time terciles. Med Intensiva 2024; 48:457-466. [PMID: 38688818 DOI: 10.1016/j.medine.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To investigate the association between the duration of the first prone positioning maneuver (PPM) and 90-day mortality in patients with C-ARDS. DESIGN Retrospective, observational, and analytical study. SETTING COVID-19 ICU of a tertiary hospital. PATIENTS Adults over 18 years old, with a confirmed diagnosis of SARS-CoV-2 disease requiring PPM. INTERVENTIONS Multivariable analysis of 90-day survival. MAIN VARIABLES OF INTEREST Duration of the first PPM, number of PPM sessions, 90-day mortality. RESULTS 271 patients undergoing PPM were analyzed: first tertile (n = 111), second tertile (n = 95) and third tertile (n = 65). The results indicated that the median duration of PDP was 14 h (95% CI: 10-16 h) in the first tertile, 19 h (95% CI: 18-20 h) in the second tertile and 22 h (95% CI: 21-24 h) in the third tertile. Comparison of survival curves using the Logrank test did not reach statistical significance (p = 0.11). Cox Regression analysis showed an association between the number of pronation sessions (patients receiving between 2 and 5 sessions (HR = 2.19; 95% CI: 1.07-4.49); and those receiving more than 5 sessions (HR = 6.05; 95% CI: 2.78-13.16) and 90-day mortality. CONCLUSIONS while the duration of PDP does not appear to significantly influence 90-day mortality, the number of pronation sessions is identified as a significant factor associated with an increased risk of mortality.
Collapse
Affiliation(s)
- Alejandro González-Castro
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Grupo Internacional de Ventilación Mecánica, WeVent
| | - Carmen Huertas Martín
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Elena Cuenca Fito
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Yhivian Peñasco
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Camilo Gonzalez
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | |
Collapse
|
47
|
Liu L, Sun Q, Zhao H, Liu W, Pu X, Han J, Yu J, Jin J, Chao Y, Wang S, Liu Y, Wu B, Zhu Y, Li Y, Chang W, Chen T, Xie J, Yang Y, Qiu H, Slutsky A. Prolonged vs shorter awake prone positioning for COVID-19 patients with acute respiratory failure: a multicenter, randomised controlled trial. Intensive Care Med 2024; 50:1298-1309. [PMID: 39088076 PMCID: PMC11306533 DOI: 10.1007/s00134-024-07545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE Awake prone positioning has been reported to reduce endotracheal intubation in patients with coronavirus disease 2019 (COVID-19)-related acute hypoxemic respiratory failure (AHRF). However, it is still unclear whether using the awake prone positioning for longer periods can further improve outcomes. METHODS In this randomized, open-label clinical trial conducted at 12 hospitals in China, non-intubated patients with COVID-19-related AHRF were randomly assigned to prolonged awake prone positioning (target > 12 h daily for 7 days) or standard care with a shorter period of awake prone positioning. The primary outcome was endotracheal intubation within 28 days after randomization. The key secondary outcomes included mortality and adverse events. RESULTS In total, 409 patients were enrolled and randomly assigned to prolonged awake prone positioning (n = 205) or standard care (n = 204). In the first 7 days after randomization, the median duration of prone positioning was 12 h/d (interquartile range [IQR] 12-14 h/d) in the prolonged awake prone positioning group vs. 5 h/d (IQR 2-8 h/d) in the standard care group. In the intention-to-treat analysis, intubation occurred in 35 (17%) patients assigned to prolonged awake prone positioning and in 56 (27%) patients assigned to standard care (relative risk 0.62 [95% confidence interval (CI) 0.42-0.9]). The hazard ratio (HR) for intubation was 0.56 (0.37-0.86), and for mortality was 0.63 (0.42-0.96) for prolonged awake prone positioning versus standard care, within 28 days. The incidence of pre-specified adverse events was low and similar in both groups. CONCLUSION Prolonged awake prone positioning of patients with COVID-19-related AHRF reduces the intubation rate without significant harm. These results support prolonged awake prone positioning of patients with COVID-19-related AHRF.
Collapse
Affiliation(s)
- Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Hongsheng Zhao
- Department of Intensive Care Unit, Affiliated Hospital of Nantong University, Nantong, China
| | - Weili Liu
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuehua Pu
- Department of Intensive Care Unit, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jibin Han
- Department of Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Jun Jin
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yali Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sicong Wang
- Department of Intensive Care Unit, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Wu
- Department of Intensive Care Unit, Third Hospital of Xiamen, Xiamen, Fujian, China
| | - Ying Zhu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Yang Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Tao Chen
- Center for Health Economics, University of York, York, UK
- Global Health Trials Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Arthur Slutsky
- Interdepartmental Division of Critical Care Medicine, Departments of Medicine, Surgery, and Biomedical Engineering, University of Toronto, Toronto, Canada
- Division of Respirology and Critical Care Medicine, Unity Health Toronto, Toronto, Canada
- Keenan Research Center at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
48
|
Hermes C, Nydahl P, Grunow JJ, Schaller SJ. [Positioning therapy for intensive care patients]. Dtsch Med Wochenschr 2024; 149:1028-1033. [PMID: 39146750 DOI: 10.1055/a-2174-2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The current S3 guideline, "Positioning Therapy and Mobilization of Critically Ill Patients in Intensive Care Units", introduces methodological changes and substantive updates compared to the previous version. Additionally, new evidence-based insights with specified PICO questions have been integrated, aiming for a more precise application of recommendations in clinical practice and thus enhancing the care of critically ill patients.A notable aspect is the more nuanced approach to early mobilization, which is recommended to commence within the first 72 hours of ICU admission. A staged concept and score-based mobilization schema facilitate improved patient rehabilitation. Mobilization should be standard of care, i.e., immobilization should be ordered by the physician. The guideline provides suggestions for the duration and additional mobilization measures to ensure patients stand, transfer actively from bed to chair, or walk as frequently as possible. These recommendations apply even during ECMO therapy, highlighting the importance of early mobilization.Further updates include semi-recumbent positions of at least 40° in intubated patients, with careful consideration of potential side effects. Continuous lateral rotation therapy (CLRT) is not advised due to the progress in intensive care therapy, shifting from deep sedation toward responsive patient management.Prone positioning (PP) involves rotating the patient 180° onto the ventral side. It is recommended as a therapeutic option for invasively ventilated patients with ARDS and impaired arterial oxygenation (PaO2/FiO2 <150mmHg), with a recommended minimum duration of 12 hours, ideally 16 hours. Special recommendations apply, for example, to COVID-19 patients with acute hypoxemic respiratory failure, where awake proning should be considered.Additionally, new chapters have been introduced focusing on assistive devices and neuromuscular electrical stimulation.
Collapse
Affiliation(s)
- Carsten Hermes
- Pflege und Management, Hochschule für Angewandte Wissenschaften Hamburg, Hamburg, Deutschland
- Akkon Hochschule für Humanwissenschaften, Berlin, Deutschland
| | - Peter Nydahl
- Pflegewissenschaft und -entwicklung, Universitätsklinikum Schleswig-Holstein, Kiel, Deutschland
- Universitätsinstitut für Pflegewissenschaft und -praxis, Paracelsus Medizinische Privatuniversität, Salzburg, Österreich
| | - Julius J Grunow
- Klinik für Anästhesiologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Stefan J Schaller
- Klinik für Anästhesiologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
49
|
Qadir N, Bauer PR. Acute Respiratory Distress Syndrome and the Meaning of Hospital Mortality. Crit Care Med 2024; 52:1319-1321. [PMID: 39007577 DOI: 10.1097/ccm.0000000000006340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Affiliation(s)
- Nida Qadir
- Division of Pulmonary and Critical Care Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA
| | - Philippe R Bauer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
50
|
Cai H, Luo S, Cai X, Lai T, Zhao S, Zhang W, Zhuang J, Li Z, Chen L, Chen B, Ye Y. Effect of Fu Zheng Jie Du Formula on outcomes in patients with severe pneumonia receiving prone ventilation: a retrospective cohort study. Front Pharmacol 2024; 15:1428817. [PMID: 39114366 PMCID: PMC11303160 DOI: 10.3389/fphar.2024.1428817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Background The effect of combining prone ventilation with traditional Chinese medicine on severe pneumonia remains unclear. Objective To evaluate the effect of Fu Zheng Jie Du Formula (FZJDF) combined with prone ventilation on clinical outcomes in patients with severe pneumonia. Methods This single-center retrospective cohort study included 188 severe pneumonia patients admitted to the ICU from January 2022 to December 2023. Patients were divided into an FZJD group (receiving FZJDF for 7 days plus prone ventilation) and a non-FZJD group (prone ventilation only). Propensity score matching (PSM) was performed to balance baseline characteristics. The primary outcome was the change in PaO2/FiO2 ratio after treatment. Secondary outcomes included 28-day mortality, duration of mechanical ventilation, length of ICU stay, PaCO2, lactic acid levels, APACHE II score, SOFA score, Chinese Medicine Score, inflammatory markers, and time to symptom resolution. Results After PSM, 32 patients were included in each group. Compared to the non-FZJD group, the FZJD group showed significantly higher PaO2/FiO2 ratios, lower PaCO2, and lower lactic acid levels after treatment (p < 0.05 for all). The FZJD group also had significantly lower APACHE II scores, SOFA scores, Chinese Medicine Scores, and levels of WBC, PCT, hs-CRP, and IL-6 (p < 0.05 for all). Time to symptom resolution, including duration of mechanical ventilation, length of ICU stay, time to fever resolution, time to cough resolution, and time to resolution of pulmonary rales, was significantly shorter in the FZJD group (p < 0.05 for all). There was no significant difference in 28-day mortality between the two groups. Conclusion FZJDF as an adjuvant therapy to prone ventilation can improve oxygenation and other clinical outcomes in severe pneumonia patients. Prospective studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Hairong Cai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sicong Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingui Cai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Lai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou, China
| | - Weizhang Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieqin Zhuang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhishang Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bojun Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou, China
- Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Ye Ye
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou, China
- Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|