1
|
Su L, Sun Q, Li Y, Alvarez JF, Tao B, Zhang G, Gu Y, Hanudel MR, Espinoza A, Zhang L, Pan C, Hilser JR, Hartiala JA, Li S, Pellegrini M, Allayee H, Lusis AJ, Deb A. Collagen V regulates renal function after kidney injury and can be pharmacologically targeted to enhance kidney repair in mice. Sci Transl Med 2025; 17:eads7714. [PMID: 40203084 DOI: 10.1126/scitranslmed.ads7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/03/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Kidney fibrosis determines clinical outcomes in individuals with chronic kidney disease (CKD). The stoichiometric ratio of collagens in renal scar differs from that of healthy kidney extracellular matrix (ECM), but the functional importance of altered collagen types in injured kidneys remains unclear. Using human population studies, we show that circulating protein and renal mRNA amounts of collagen V A1 (COL5A1) exhibited associations with kidney disease and incident CKD risk. We show that Col5a1 regulates the degree of postinjury fibrosis and renal function. Mice with conditionally knocked out Col5a1 (Col5a1 CKO) exhibited decreased renal function and greater renal fibrosis after dietary adenine- or ureteric obstruction-mediated kidney injury. Renal fibroblasts in Col5a1 CKO animals up-regulated the profibrotic αvβ3 integrin. Inhibition of αvβ3 signaling with a small molecule, cilengitide, rescued postinjury renal function in Col5a1 CKO animals. Using the hybrid mouse diversity panel that comprises 100 diverse inbred strains of mice, we observed that gene expression of Col5a1 after injury exhibited genetic variation across 100 strains. Strains with low Col5a1 expression after injury exhibited worse renal function compared with animals that had higher degrees of expression. We next measured Col5a1 expression in peripheral blood mononuclear cells in mice to identify nonresponder strains that did not have increased Col5a1 expression after kidney injury. We observed that administration of cilengitide in nonresponder strains significantly rescued postinjury renal fibrosis and function. These studies point to the feasibility of precision medicine approaches to target Col5a1 for enhancing renal repair.
Collapse
Affiliation(s)
- Lianjiu Su
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qihao Sun
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yusheng Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juan Felipe Alvarez
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bo Tao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yiqian Gu
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark R Hanudel
- Department of Pediatric Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Espinoza
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linlin Zhang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Calvin Pan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James R Hilser
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaana A Hartiala
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hooman Allayee
- Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Pang N, Zhao N, An C, Li K, Li P, Wang N, Li J, Cheng X, Zheng N, Guo D, Xiong X. Development of a Long-Acting Interleukin-11 Antagonist for the Treatment of Renal Fibrosis. J Med Chem 2025. [PMID: 40198895 DOI: 10.1021/acs.jmedchem.4c03185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Renal fibrosis, a key progression of chronic kidney disease (CKD), remains a major challenge in nephrology, with no FDA-approved drugs specifically targeting this condition. Interleukin-11 (IL-11) has emerged as a potential therapeutic target for renal fibrosis. In this study, we identified the antifibrotic effects of a recombinant human IL-11 analogue, IL-11-6M, in a mouse model of unilateral ureteral obstruction (UUO). We generated additional IL-11-6M variants via an optimized Escherichia coli expression system, with one variant (D46C) exhibiting comparable efficacy. Further modified through cysteine-specific PEGylation, analogue 13 demonstrated similar potency to IL-11-6M with an IC50 value of 61.5 ± 26.2 nM and maintained strong binding affinity to IL-11Rα (KD = 3.0 nM). Notably, analogue 13 exhibited a prolonged half-life and showed significant therapeutic effects in the UUO-induced renal fibrosis model. These findings suggest analogue 13 should be a promising candidate for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Ningning Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Na Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Chunmei An
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Keqiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Peiying Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Naiyuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jian Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Nan Zheng
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen 518000, Guangdong, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiaochun Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
3
|
Gao Z, Cao S, Yuan H, Wu JZ, Zou G. Broad antifibrotic activities of AK3280 in pulmonary, hepatic, cardiac, and skin fibrosis animal models. Int Immunopharmacol 2025; 151:114337. [PMID: 40015207 DOI: 10.1016/j.intimp.2025.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Fibrosis is the pathological outcome of many chronic inflammatory diseases, affecting various human organs. It is a significant contributor to global morbidity and mortality that affects nearly half of the elderly population. Pirfenidone (PFD) and nintedanib are approved by the FDA for treating pulmonary fibrosis, but these treatments are associated with poor tolerability and limited efficacy. Moreover, no antifibrotic drugs are approved for other fibrosis-related diseases, highlighting an urgent unmet medical need for more effective therapies. Here we report the in vivo pharmacological activities of AK3280, a novel, orally bioavailable small molecule designed to enhance pharmacokinetics, antifibrotic activity, and tolerability over PFD. AK3280 demonstrated antifibrotic effects across multiple organs, including the lungs, liver, heart, and skin, in various animal models. These results suggest that AK3280 holds promise as a clinically beneficial antifibrotic therapy for a range of fibrotic diseases, especially pulmonary, hepatic, cardiac, and skin fibrosis.
Collapse
Affiliation(s)
- Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China
| | - Haiqing Yuan
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China
| | - Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China.
| |
Collapse
|
4
|
Villanueva C, Tripathi D, Bosch J. Preventing the progression of cirrhosis to decompensation and death. Nat Rev Gastroenterol Hepatol 2025; 22:265-280. [PMID: 39870944 DOI: 10.1038/s41575-024-01031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/29/2025]
Abstract
Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur. In recent years, innovative studies have provided evidence supporting new strategies to prevent decompensation in cACLD. These studies have yielded major advances, including the development of noninvasive tests (NITs) to identify patients with CSPH with reasonable confidence, the demonstration that aetiological therapies can prevent disease progression and even achieve regression of cirrhosis, and the finding that non-selective β-blockers can effectively prevent decompensation in patients with cACLD and CSPH, mainly by reducing the risk of ascites, the most frequent decompensating event. Here, we review the evidence supporting new strategies to manage cACLD to prevent decompensation and the caveats for their implementation, from patient selection using NITs to ancillary therapies.
Collapse
Affiliation(s)
- Càndid Villanueva
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.
| | - Dhiraj Tripathi
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham Health Partners, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jaume Bosch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain
- Department of Visceral Surgery and Medicine (Hepatology), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Reese CF, Gooz M, Hajdu Z, Hoffman S. CD45+/ Col I+ Fibrocytes: Major source of collagen in the fibrotic lung, but not in passaged fibroblast cultures. Matrix Biol 2025; 136:87-101. [PMID: 39828137 DOI: 10.1016/j.matbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The role of cells of the hematopoietic lineage in fibrosis is controversial. Here we evaluate the contribution of Col I+/CD45+ cells (fibrocytes) to lung fibrosis. Systemic bleomycin treatment was used to induce fibrosis in a bone marrow transplant and two transgenic mouse models. Lung cells from these mice were analyzed by flow cytometry, both immediately upon release from the tissue or following growth on tissue-culture plastic. Fibrotic and control human lung tissue were also used. Fibroblasts and fibrocytes derived from a transgenic mouse model were compared in terms of their morphology, growth, and adhesion to fibronectin. Single cell RNAseq was performed with the analysis focusing on CD45-/Col I+ "fibroblasts" and CD45+/Col I+ "fibrocytes" in control and fibrotic mouse lung tissue. Finally, we inhibited fibrosis in mice using a novel, water-soluble version of caveolin scaffolding domain (CSD) called WCSD. In both mouse and human lung tissue, we observed by flow cytometry a large increase in fibrocyte number and Col I expression associated with fibrosis. In contrast, fibroblast number was not significantly increased. A large increase (>50-fold) in fibrocyte number associated with fibrosis was also observed by single cell RNAseq. In this case, fibroblasts increased 5-fold. Single cell RNAseq also revealed that myofibroblast markers in fibrotic tissue are associated with a cluster containing a similar number of fibrocytes and fibroblasts, not with a resident fibroblast cluster. Some investigators claim that fibrocytes are not present among primary fibroblasts. However, we found that fibrocytes were the predominant cell type present in these cultures prior to passage. Fewer fibrocytes were present after one passage, and almost none after two passages. Our experiments suggest that fibrocytes are crowded out of cultures during passage because fibroblasts have a larger footprint than fibrocytes, even though fibrocytes bind more efficiently to fibronectin. Finally, we observed by flow cytometry that in mice treated with bleomycin and WCSD compared to bleomycin alone, there was a large decrease in the number of fibrocytes present but not in the number of fibroblasts. In summary, fibrocytes are a major collagen-producing cell type that is increased in number in association with fibrosis as well as a major source of myofibroblasts. The common observation that collagen-producing spindle-shaped cells associated with fibrosis are CD45- may be an artifact of passage in cell culture.
Collapse
Affiliation(s)
- Charles F Reese
- Division of Rheumatology/Department of Medicine, Medical University of South Carolina, Charleston 29425, SC, USA
| | - Monika Gooz
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston 29425, SC, USA
| | - Zoltan Hajdu
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine, 350 Howard Street, Spartanburg 29303, SC, USA
| | - Stanley Hoffman
- Division of Rheumatology/Department of Medicine, Medical University of South Carolina, Charleston 29425, SC, USA.
| |
Collapse
|
6
|
Zhang Q, Dai J, Liu T, Rao W, Li D, Gu Z, Huang L, Wang J, Hou X. Targeting cardiac fibrosis with Chimeric Antigen Receptor-Engineered Cells. Mol Cell Biochem 2025; 480:2103-2116. [PMID: 39460827 DOI: 10.1007/s11010-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Cardiac fibrosis poses a significant challenge in cardiovascular diseases due to its intricate pathogenesis, and there is currently no standardized and effective treatment approach. The fibrotic process entails the involvement of various cell types and molecular mechanisms, such as fibroblast activation and proliferation, increased collagen synthesis, and extracellular matrix rearrangement. Traditional therapies often fall short in efficacy or carry substantial side effects. However, recent studies have shown that Chimeric Antigen Receptor T (CAR-T) cells can selectively target and eliminate activated cardiac fibroblasts (CFs) in mice, leading to reduced cardiac fibrosis and improved myocardial tissue compliance. This breakthrough presents a new and promising avenue for treating cardiac fibrosis. Currently, CAR-T cell-based therapy for cardiac fibrosis is undergoing animal experimentation, indicating ample scope for enhancement. Future investigations could explore the application of CAR cell therapy in cardiac fibrosis treatment, including the potential of CAR-natural killer (CAR-NK) cells and CAR macrophages (CAR-M), offering novel insights and strategies for combating cardiac fibrosis.
Collapse
Affiliation(s)
- Qinghang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xumin Hou
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
7
|
Chen Y, Wang Z, Ma Q, Sun C. The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). Int J Mol Med 2025; 55:61. [PMID: 39950330 PMCID: PMC11878481 DOI: 10.3892/ijmm.2025.5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Various forms of tissue damage can lead to fibrosis, an abnormal reparative reaction. In the industrialized countries, 45% of deaths are attributable to fibrotic disorders. Autophagy is a highly preserved process. Lysosomes break down organelles and cytoplasmic components during autophagy. The cytoplasm is cleared of pathogens and dysfunctional organelles, and its constituent components are recycled. With the growing body of research on autophagy, it is becoming clear that autophagy and its associated mechanisms may have a role in the development of numerous fibrotic disorders. However, a comprehensive understanding of autophagy in fibrosis is still lacking and the progression of fibrotic disease has not yet been thoroughly investigated in relation to autophagy‑associated processes. The present review focused on the latest findings and most comprehensive understanding of macrophage autophagy, endoplasmic reticulum stress‑mediated autophagy and autophagy‑mediated endothelial‑to‑mesenchymal transition in the initiation, progression and treatment of fibrosis. The article also discusses treatment strategies for fibrotic diseases and highlights recent developments in autophagy‑targeted therapies.
Collapse
Affiliation(s)
| | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
8
|
Wang J, Song Y, Tan X, Wang T, Shi Y, Xu X, Du J, Yu Z, Song B. Targeting PIM1 by Bruceine D attenuates skin fibrosis via myofibroblast ferroptosis. Redox Biol 2025; 82:103619. [PMID: 40168881 DOI: 10.1016/j.redox.2025.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025] Open
Abstract
Skin pan-fibrosis diseases-such as hypertrophic scar (HS), keloid scar (KS), and systemic sclerosis (SSc)-pose significant threats to patients' health and quality of life. In this study, the authors conducted both in vivo and in vitro experiments and discovered that the serine/threonine kinase PIM1 is upregulated in the myofibroblasts of human HS, KS, and SSc tissues, as well as in various animal models of skin fibrosis. Overexpression of PIM1 enhanced the profibrotic phenotypes of human hypertrophic scar fibroblasts (HSFs), which serve as key effector cells in the pathogenesis of skin pan-fibrosis diseases. Through high-throughput screening and subsequent laboratory assays, we identified the small molecule Bruceine D (BD) as a direct binder of PIM1. BD promoted ferroptosis in HSFs by selectively suppressing the PIM1-KEAP1-NRF2 pathway through augmented degradation of PIM1. In various in vivo models-including a hypertrophic scar mouse model, a rabbit ear hypertrophic scar model, and a bleomycin (BLM)-induced skin fibrosis mouse model-BD effectively attenuated fibrotic phenotypes. Collectively, these findings demonstrate that PIM1 serves as a common biomarker and therapeutic target for skin pan-fibrosis diseases. BD mitigates skin fibrosis by activating ferroptosis via PIM1 inhibition, highlighting its great translational potential and high promise to be developed to a clinical drug in treating these conditions, especially those with abnormally elevated PIM1 expression.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingbo Xu
- Clinic for Cardiology and Pulmonology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| | - Juan Du
- Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Li J, Shu R, Peng T, Yang Z, Yang M, Hu F, Tao Z, Hong Y, Cai Z, Jia J, Wan L, Tian S, She ZG, Li H, Zhang XJ, Zhang E. Targeted imaging of pulmonary fibrosis by a cyclic peptide LyP-1. Sci Rep 2025; 15:8098. [PMID: 40057509 PMCID: PMC11890567 DOI: 10.1038/s41598-024-78068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/28/2024] [Indexed: 03/31/2025] Open
Abstract
Pulmonary fibrosis (PF) is an interstitial chronic lung disease characterized by interstitial inflammation and extracellular matrix deposition, resulting in progressive lung dysfunction and ultimate respiratory failure. However, lacking of precise and noninvasive tracers for fibrotic lesions limits timely diagnosis and treatment. Here, we identified LyP-1, a cyclic peptide, as a specific and sensitive tracer for PF detection using PET/CT imaging. FITC-LyP-1 selectively recognized fibrotic regions in bleomycin-induced PF mice, indicating its targeting capability. The colocalization of FITC-LyP-1 with extracellular collagen I within the fibrotic lesions validated its specificity, and further analysis revealed several potential target molecules. In the in vivo application studies, radiolabeled [68Ga]Ga-LyP-1 showed significantly increased lung uptake in PF mice, specifically enriching fibrotic regions on PET/CT imaging. Notably, compared to CT imaging that showed increased mean lung density throughout the phases after bleomycin-administration, lung uptake of [68Ga]Ga-LyP-1 was only increased in the later phase, indicating that LyP-1 recognizes the fibrous changes rather than the inflammatory cells in vivo. These results suggest that the new radiotracer [68Ga]Ga-LyP-1 specifically detects the extracellular matrix in fibrotic lungs. LyP-1 shows promise as a noninvasive tracer for assessing human pulmonary fibrosis, offering potential for improved diagnostic accuracy and timely intervention.
Collapse
Affiliation(s)
- Jing Li
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- State Key Laboratory of New Targets Discovery and Drug Development for Serious Diseases, Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China
| | - Rui Shu
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Tian Peng
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zifeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingzi Yang
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fengjiao Hu
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhangqian Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Hong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Jia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Wan
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, Hubei, China
| | - Song Tian
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliang Li
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Serious Diseases, Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China.
| | - Xiao-Jing Zhang
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Serious Diseases, Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China.
| | - Ejuan Zhang
- School of Basic Medical Science, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Li L, Zhou H, Li M, Liu W, Li Y, Xu H, Jiang J, Yang Y, Gong Y. Salvianolic acid B ameliorates hepatic fibrosis via inhibiting p300/CBP. Eur J Pharmacol 2025; 998:177495. [PMID: 40058756 DOI: 10.1016/j.ejphar.2025.177495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/23/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Salvianolic acid B (Sal B), an active ingredient extracted from Salvia miltiorrhiza Bunge, has shown hepatic anti-fibrotic activity. Hepatic stellate cells (HSCs) activation is considered the determining event in liver fibrogenesis. E1A binding protein p300 (p300)/CREB binding protein (CBP) is an attractive target for inhibiting HSCs activation. But whether Sal B inhibits hepatic fibrosis through suppressing p300/CBP is unknown. We used DEN/CCl4/C2H5OH to establish a mouse model of hepatic fibrosis and detect the effects of Sal B on liver function, pathological alterations, and p300/CBP expression. TGF-β1 was used to induce LX-2 cells for in vitro experimental validation. Additionally, the effects of Sal B on LX-2 activation were explored using the p300/CBP activator CTB, and molecular docking was used to predict the interaction between Sal B and p300. The in vivo results demonstrated that Sal B improved liver function, reversed pathological changes, reduced collagen synthesis, and downregulated the protein levels of p300 and CBP in DEN/CCl4/C2H5OH-induced hepatic fibrosis mice. The in vitro results showed that Sal B inhibited LX-2 cells activation and decreased both the mRNA and protein levels of p300 and CBP. Furthermore, the p300/CBP activator CTB reversed the inhibitory effect of Sal B on LX-2 cells activation. Molecular docking showed that Sal B bound well to p300 with a high degree of match and a binding energy of -14.859 kcal/mol. Our study revealed that Sal B ameliorates hepatic fibrosis, which likely via inhibition of p300/CBP. However, the specific binding site deserves further exploration.
Collapse
Affiliation(s)
- Lili Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Huabiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Miaomiao Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Wenbo Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Yuxuan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Hanyang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Jiemei Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China.
| | - Yongfang Gong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China; School of Nursing, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Qiao Y, Liang J, Jiang D. State of the ART: Drug Screening Reveals Artesunate as a Promising Anti-Fibrosis Therapy. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2025; 2:10023. [PMID: 39925974 PMCID: PMC11800322 DOI: 10.70322/jrbtm.2024.10023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Fibrosis is a progressive pathological process that severely impairs normal organ function. Current treatments for fibrosis are extremely limited, with no curative approaches available. In a recent article published in Cell, Zhang and colleagues employed drug screening using ACTA2 reporter iPSC-derived cardiac fibroblasts and identified artesunate as a potent antifibrotic drug by targeting MD2/TLR4 signaling. This study provides new insights into strategies for exploiting existing drugs to treat fibrosis.
Collapse
Affiliation(s)
- Yujie Qiao
- Division of Pulmonary, Women’s Guild Lung Institute,
Department of Medicine, Los Angeles, CA 90048, USA
- Department of Respiratory and Critical Care Medicine,
Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiurong Liang
- Division of Pulmonary, Women’s Guild Lung Institute,
Department of Medicine, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Division of Pulmonary, Women’s Guild Lung Institute,
Department of Medicine, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Hopkins CM, Wilks BT, Morgan JR. TGF-β1 requires IL-13 to sustain collagen accumulation and increasing tissue strength and stiffness. Connect Tissue Res 2025; 66:107-120. [PMID: 40013741 DOI: 10.1080/03008207.2025.2469575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/27/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
AIMS Fibrosis is a multifactorial process characterized by the excessive accumulation of extracellular matrix (ECM), increased tissue stiffness, and decreased elasticity. This study examined how individual cytokines and a cytokine combination alter collagen production and biomechanics in a 3D in vitro model of the human ECM. METHODS Cultured human fibroblasts were seeded into a circular agarose trough molded in 24 well plates. The fibroblasts aggregated and formed a 3D ring-shaped tissue that synthesized de novo a collagen-rich human ECM complete with collagen fibrils. Unlike existing models, no macromolecular crowders were added, nor artificial scaffolds or exogenous ECM proteins. Rings were treated with TGF-β1, IL-13 or the combination of TGF-β1 and IL-13 for up to 3 weeks. Morphology, histology, collagen, DNA, fibril formation, gene expression and tensile properties of the rings were measured. RESULTS As the rings compacted, cellularity and total DNA decreased, whereas total collagen accumulated. TGF-β1 stimulated collagen accumulation and increased ring biomechanics at day 7, but these increases stalled and declined by day 21. When treated with IL-13, a cytokine exclusive to the immune system, there were no significant differences from control. However, when TGF-β1 was combined with IL-13, collagen levels and ring biomechanics increased over the entire three weeks to levels higher than TGF-β1 alone. Gene expression was differentially regulated by cytokine treatment over the entire three weeks suggesting that increased collagen accumulation was not due to upregulation of collagen gene expression. CONCLUSIONS These results suggest that TGF-β1 requires a second signal, such as IL-13, to sustain the long-term pathological increases in collagen accumulation and biomechanics that can compromise the function of fibrotic tissues.
Collapse
Affiliation(s)
- Caitlin M Hopkins
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Benjamin T Wilks
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| |
Collapse
|
13
|
Xu S, Stark C, Lapin WB, Hughes AL, Balarezo F, Moss K, Bezler NS, Cantor E. Rapidly Enlarging Palatal Masses as a Novel Presentation of Scurvy. Pediatr Blood Cancer 2025; 72:e31512. [PMID: 39745143 DOI: 10.1002/pbc.31512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025]
Affiliation(s)
- Summer Xu
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Courtney Stark
- Department of Pediatrics, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - William Blaine Lapin
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Division of Rheumatology, Connecticut Children's, Hartford, Connecticut, USA
| | - Amy L Hughes
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Division of Otolaryngology, Department of Surgery, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Fabiola Balarezo
- Department of Pathology and Laboratory Medicine, Hartford Hospital, Hartford, Connecticut, USA
| | - Kerry Moss
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Division of Hematology and Oncology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Natalie S Bezler
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Division of Hematology and Oncology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Evan Cantor
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Division of Hematology and Oncology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| |
Collapse
|
14
|
Luo PY, Zou JR, Chen T, Zou J, Li W, Chen Q, Cheng L, Zheng LY, Qian B. Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis. Asian J Androl 2025; 27:166-176. [PMID: 39028624 PMCID: PMC11949458 DOI: 10.4103/aja202433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Collapse
Affiliation(s)
- Pei-Yue Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Jun-Rong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Li-Ying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| |
Collapse
|
15
|
Ng C, Kim M, Yanti, Kwak MK. Oxidative stress and NRF2 signaling in kidney injury. Toxicol Res 2025; 41:131-147. [PMID: 40013079 PMCID: PMC11850685 DOI: 10.1007/s43188-024-00272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 02/28/2025] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and the AKI-to-CKD transition. This review examines the intricate relationship between oxidative stress and kidney pathophysiology, emphasizing the potential therapeutic role of nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of cellular redox homeostasis. In diverse AKI and CKD models, diminished NRF2 activity exacerbates oxidative stress, whereas genetic and pharmacological NRF2 activation alleviates kidney damage induced by nephrotoxic agents, ischemia-reperfusion injury, fibrotic stimuli, and diabetic nephropathy. The renoprotective effects of NRF2 extend beyond antioxidant defense, encompassing its anti-inflammatory and anti-fibrotic properties. The significance of NRF2 in renal fibrosis is further underscored by its interaction with the transforming growth factor-β signaling cascade. Clinical trials using bardoxolone methyl, a potent NRF2 activator, have yielded both encouraging and challenging outcomes, illustrating the intricacy of modulating NRF2 in human subjects. In summary, this overview suggests the therapeutic potential of targeting NRF2 in kidney disorders and highlights the necessity for continued research to refine treatment approaches.
Collapse
Affiliation(s)
- Cherry Ng
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
| | - Maxine Kim
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
| | - Yanti
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930 Indonesia
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-Ro, Bucheon, Gyeonggi-do 14662 Republic of Korea
| |
Collapse
|
16
|
Liao Z, Tang X, Yang B, Yang J. Dopamine receptors and organ fibrosis. Biochem Biophys Rep 2025; 41:101910. [PMID: 39867679 PMCID: PMC11761258 DOI: 10.1016/j.bbrep.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Organ fibrosis, considered as a major global health concern, is a pathological condition often occurring after tissue injury in various organs. The pathogenesis of fibrosis involves multiple phases and multiple cell types. Dopamine is involved in various life activities by activating five receptors (D1, D2, D3, D4, D5). Activation or loss of function of dopamine receptors has been reported to be associated with the fibrosis of several organs, such as ocular, lung, liver, heart, and kidney. In this paper, we review dopamine receptors' potential roles in organ fibrosis and mechanisms by which organ fibrosis develops or decreases when dopamine receptors function is activated or perturbed.
Collapse
Affiliation(s)
- ZhongLi Liao
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400030, China
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - XueFeng Tang
- Department of Pathology, Chongqing General Hospital, Chongqing University, Chongqing, 400030, China
| | - Bin Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, 361000, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400030, China
| |
Collapse
|
17
|
Li R, Li X, Zhang X, Yu J, Li Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Zheng K, Lai L, Zhang H, Huang P, Zhou C, Wu J, Ye W, Xia J. Macrophages in Cardiovascular Fibrosis: Novel Subpopulations, Molecular Mechanisms, and Therapeutic Targets. Can J Cardiol 2025; 41:309-322. [PMID: 39580052 DOI: 10.1016/j.cjca.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Cardiovascular fibrosis is a common pathological process that contributes to the development and progression of various cardiovascular diseases. Despite being widely believed to be an irreversible and relentless process, preclinical models and clinical trials have shown that cardiovascular fibrosis is an extremely dynamic process. Additionally, as part of the innate immune system, macrophages are heterogeneous cells that are pivotal in tissue regeneration and fibrosis. They participate in fibroblast activation, extracellular matrix remodelling, and the regression of fibrosis. Although we have made some advances in understanding macrophages in cardiovascular fibrosis, a gap still remains between their identification and conversion into effective treatments. Moreover, the traditional M1-M2 paradigm faces many challenges because it does not sufficiently clarify macrophage diversity and their functions. Exploring novel macrophage-based therapies is urgent for cardiovascular fibrosis treatment. Single-cell techniques have shed light on identifying novel subpopulations that differ in function and molecular signature under steady-state and pathological conditions. In this review, we outline the developmental origins of macrophages, which underlie their functions; and recent technology development in the single-cell era. In addition, we describe the markers and mediators of the newly defined macrophage subpopulations and the molecular mechanisms involved to elucidate potential approaches for targeting macrophages in cardiovascular fibrosis.
Collapse
Affiliation(s)
- Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
18
|
Díez-Villanueva P, Jiménez-Méndez C, Pérez-Rivera Á, Barge Caballero E, López J, Ortiz C, Bonanad C, Goirigolzarri J, Esteban Fernández A, Cobo M, Montes N, Ariza-Solé A, Martínez-Sellés M, Alfonso F. Different impact of chronic kidney disease in older patients with heart failure according to frailty. Eur J Intern Med 2025; 132:90-96. [PMID: 39648049 DOI: 10.1016/j.ejim.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) and frailty are often present in older patients with heart failure (HF). Our aim was to evaluate the association of CKD and frailty in one-year mortality in a cohort of older (≥75 years) outpatients with HF METHODS: Our data come from the FRAGIC study ("impacto de la FRAGilidad y otros síndromes Geriátricos en el manejo clínico y pronóstico del paciente anciano ambulatorio con Insuficiencia Cardíaca"), a multicenter prospective registry conducted in 16 cardiology services in Spain which included ≥75 years outpatients with HF. Renal function was assessed according to CKD-EPI formula. A comprehensive geriatric assessment was performed and frailty was identified according to visual mobility scale (frail if VMS≥2). Survival rates were analyzed by Cox regression model. RESULTS We included 499 patients, mean age 81.4 ± 4.3 years, 38 % women. Mean estimated glomerular filtration rate (eGFR) was 52.1 ± 17.5 ml/min/1.72 m2. Patients were classified in normal renal function (eGFR≥60 ml/min/1.72m2, 182 patients, 36 %), moderately impaired (eGFR 30-59 ml/min/1.72m2, 261 patients, 52.7 %) and severely impaired (eGFR<30 ml/min/1.72m2, 56 patients, 11.3 %). Patients with severe CKD were older, more often female, and presented a worse clinical profile, with higher comorbidity burden and frailty. After a median follow up of 371 days, 58 patients (11.6 %) died. Mortality was higher in patients with worse renal function (8.8 %, 11 % and 21 % according to renal function subgroups, respectively, p = 0.036) and frailty in the univariate analysis. However, only frailty, according to VMS, but not severe renal dysfunction, was independently associated with one year mortality. CONCLUSIONS Most HF patients≥75 years have renal dysfunction. CKD is a marker of worse prognosis in elderly patients with chronic HF, but it does not independently associate one-year mortality in the presence of frailty.
Collapse
Affiliation(s)
| | | | | | | | - Javier López
- Cardiology Deparment, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Carolina Ortiz
- Cardiology Deparment, Hospital Universitario Fundación de Alcorcón, Madrid, Spain
| | - Clara Bonanad
- Cardiology Deparment, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | | - Marta Cobo
- Cardiology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Nuria Montes
- Instituto de Investigación Sanitaria (ISS-IP) & Rheumathology Department, Hospital Universitario La Princesa, Madrid, Spain; Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, Madrid, Spain
| | - Albert Ariza-Solé
- Cardiology Deparment, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Spain
| | | | - Fernando Alfonso
- Cardiology Deparment, Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
19
|
Kai F, Leidal AM, Weaver VM. Tension-induced organelle stress: an emerging target in fibrosis. Trends Pharmacol Sci 2025; 46:117-131. [PMID: 39818520 PMCID: PMC11805623 DOI: 10.1016/j.tips.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma. This stiffening appropriates actomyosin-mediated mechanical tension within cells to ultimately affect cell fate decisions and function. Recent studies demonstrate that subcellular organelles are physically connected to the actin cytoskeleton and sensitive to mechanoperturbations. These insights highlight mechanisms that may contribute to the chronic organelle stress in many fibrotic diseases, including those of the lung and liver. In this review, we discuss the hypothesis that a stiffened fibrotic ECM corrupts intracellular mechanical tension to compromise organelle homeostasis. We summarize potential therapeutics that could intervene in this mechanical dialog and that may have clinical benefit for resolving pathological organelle stress in fibrosis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Andrew M Leidal
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
He S, Li X, He Y, Guo L, Dong Y, Wang L, Yang L, Li L, Huang S, Fu J, Lin Q, Zhang Z, Zhang L. High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches. Nat Commun 2025; 16:1061. [PMID: 39870661 PMCID: PMC11772610 DOI: 10.1038/s41467-025-56223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization. Thus, we co-load anti-inflammatory drug triptolide (TP) and anti-fibrotic drug nintedanib (BIBF) on bHDL nanoparticles to treat CKD. Based on the targeted delivery and mutual enhancement of the efficacy of co-delivered drugs, the bHDL-based system effectively reduces kidney injury and alleviates renal fibrosis in different CKD mouse models. The mechanistic study shows that BIBF and TP synergistically remodel the fibrotic niches by decreasing inflammatory cytokines, limiting immune cell infiltration and inhibiting the activation of myofibroblasts. The bHDL vehicle also possesses high manufacturability, good safety and adequately reduces the toxicity of TP. Thus, this system is promising for the treatment of CKD and bHDL has good potential for delivering agents to damaged renal tubular epithelial cells.
Collapse
Affiliation(s)
- Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyang Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ling Guo
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. China
| | - Yunzhou Dong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Leilei Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lan Yang
- College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lin Li
- College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shiyun Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiali Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
21
|
Rashidi N, Harasymowicz NS, Savadipour A, Steward N, Tang R, Oswald S, Guilak F. PIEZO1-mediated mechanotransduction regulates collagen synthesis on nanostructured 2D and 3D models of fibrosis. Acta Biomater 2025; 193:242-254. [PMID: 39675497 DOI: 10.1016/j.actbio.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Progressive fibrosis can lead to tissue malfunction and organ failure due to the pathologic accumulation of a collagen-rich extracellular matrix. In vitro models provide useful tools for deconstructing the roles of specific biomechanical or biological mechanisms, such as substrate micro- and nanoscale architecture, in these processes for identifying potential therapeutic targets. Here, we investigated how the mechanosensitive ion channel PIEZO1 influences fibrotic gene and protein expression in adipose-derived stem cells (hASCs). Specifically, we examined the role of PIEZO1 and the mechanosensitive transcription factors YAP/TAZ in sensing aligned or non-aligned substrate architecture to regulate collagen formation. We utilized both 2D microphotopatterned substrates and 3D electrospun polycaprolactone (PCL) substrates to study the role of culture dimensionality. We found that PIEZO1 regulates collagen synthesis in hASCs in a manner that is sensitive to substrate architecture. Activation of PIEZO1 induced significant morphological changes in hASCs, particularly when cultured on aligned substrates, leading to a 30-40 % reduction in cell spreading area and increased cell elongation, in 3D-aligned cultures. Picrosirius Red staining and immunoblotting revealed that PIEZO1 activation reduced collagen accumulation in 3D culture. While YAP translocated to the cytoplasm following PIEZO1 activation, depleting YAP and TAZ did not change collagen expression significantly downstream of PIEZO1 activation, implying that YAP/TAZ translocation from the nucleus and decreased collagen synthesis may be independent consequences of PIEZO1 activation. Our studies demonstrate a role for PIEZO1 in cellular mechanosensing of substrate architecture and provide targetable pathways for treating fibrosis and for enhancing tissue-engineered and regenerative approaches for fibrous tissue repair. STATEMENT OF SIGNIFICANCE: This study examines how cells sense and respond to their physical environment via PIEZO1 mechanotransduction. We discovered that cells use PIEZO1 to detect the alignment of surrounding structures, influencing the production of collagen - a key component in fibrosis. Our study used both 2D and 3D models to mimic different tissue environments, providing new insights into how cellular responses change in more complex settings. Importantly, we found that activating PIEZO1 alters cell shape and collagen production, especially on aligned surfaces. Interestingly, while PIEZO1 activation caused YAP translocation to the cytoplasm, this translocation did not directly affect collagen production. This work advances our understanding of fibrosis development and identifies PIEZO1 as a potential target for new therapies.
Collapse
Affiliation(s)
- Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Oswald
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA; Cytex Therapeutics, Inc., Durham, NC 27704, USA.
| |
Collapse
|
22
|
Wei YS, Tsai SY, Lin SL, Chen YT, Tsai PS. Methylglyoxal-Stimulated Mesothelial Cells Prompted Fibroblast-to-Proto-Myofibroblast Transition. Int J Mol Sci 2025; 26:813. [PMID: 39859527 PMCID: PMC11766140 DOI: 10.3390/ijms26020813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
During long-term peritoneal dialysis, peritoneal fibrosis (PF) often happens and results in ultrafiltration failure, which directly leads to the termination of dialysis. The accumulation of extracellular matrix produced from an increasing number of myofibroblasts was a hallmark characteristic of PF. To date, glucose degradation products (GDPs, i.e., methylglyoxal (MGO)) that appeared during the heating and storage of the dialysate are considered to be key components to initiating PF, but how GDPs lead to the activation of myofibroblast in fibrotic peritoneum has not yet been fully elucidated. In this study, mesothelial cell line (MeT-5A) and fibroblast cell line (MRC-5) were used to investigate the transcriptomic and proteomic changes to unveil the underlying mechanism of MGO-induced PF. Our transcriptomic data from the MGO-stimulated mesothelial cells showed upregulation of genes involved in pro-inflammatory, apoptotic, and fibrotic pathways. While no phenotypic changes were noted on fibroblasts after direct MGO, supernatant from MGO-stimulated mesothelial cells promoted fibroblasts to change into proto-myofibroblasts, activated fibroblasts in the first stage toward myofibroblasts. In conclusion, this study showed that MGO-stimulated mesothelial cells promoted fibroblast-to-proto-myofibroblast transition; however, additional involvement of other factors or cells (e.g., macrophages) may be needed to complete the transformation into myofibroblasts.
Collapse
Affiliation(s)
- Yu-Syuan Wei
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Shuei-Liong Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Yi-Ting Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
23
|
Kreutz L, Gaab A, Dona M, Pinto AR, Tallquist MD, Groneberg D, Friebe A. Analysis of cellular NO-GC expression in the murine heart and lineage determination in angiotensin II-induced fibrosis. iScience 2025; 28:111615. [PMID: 39829679 PMCID: PMC11742323 DOI: 10.1016/j.isci.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data. In healthy myocardium, NO-GC is strongly expressed in pericytes and smooth muscle cells but not in endothelial cells or cardiomyocytes. Angiotensin II induced cardiac hypertrophy and fibrosis; fibrotic lesions contained cells positive for NO-GC identified as activated fibroblasts. Lineage tracing indicates that NO-GC-expressing activated fibroblasts originate from PDGFRβ- and Tcf21-positive fibroblast precursors. Our data indicate NO-GC expression in cardiac pericytes and SMC in naive myocardium and in activated fibroblast in fibrotic heart tissue. NO-mediated signaling may modulate fibrotic responses underlying the action of NO-GC stimulators used in the therapy of heart failure.
Collapse
Affiliation(s)
- Lennart Kreutz
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Annika Gaab
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Malathi Dona
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Michelle D. Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dieter Groneberg
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Xiao X, Huang G, Yu X, Tan Y. Advances in Selenium and Related Compounds Inhibiting Multi-Organ Fibrosis. Drug Des Devel Ther 2025; 19:251-265. [PMID: 39830783 PMCID: PMC11742456 DOI: 10.2147/dddt.s488226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Selenium (Se), a critically essential trace element, plays a crucial role in diverse physiological processes within the human body, such as oxidative stress response, inflammation regulation, apoptosis, and lipid metabolism. Organ fibrosis, a pathological condition caused by various factors, has become a significant global health issue. Numerous studies have demonstrated the substantial impact of Se on fibrotic diseases. This review delves into the latest research advancements in Se and Se-related biological agents for alleviating fibrosis in the heart, liver, lungs, and kidneys, detailing their mechanisms of action within fibrotic pathways. Additionally, the article summa-rizes some of the anti-fibrotic drugs currently in clinical trials for the aforementioned organ fibroses.
Collapse
Affiliation(s)
- Xixi Xiao
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Minzu University, Enshi, 445000, People’s Republic of China
| | - Guoquan Huang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| | - Xinqiao Yu
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| |
Collapse
|
25
|
Shan N, Shang Y, He Y, Wen Z, Ning S, Chen H. Common biomarkers of idiopathic pulmonary fibrosis and systemic sclerosis based on WGCNA and machine learning. Sci Rep 2025; 15:610. [PMID: 39753882 PMCID: PMC11699037 DOI: 10.1038/s41598-024-84820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. In this study, weighted correlation network analysis (WGCNA), protein‒protein interaction, Kaplan-Meier curve, univariate Cox analysis and machine learning methods were used on datasets from the Gene Expression Omnibus database. CCL2 was identified as a common characteristic gene of IPF and SSc. The genes associated with CCL2 expression in both diseases were enriched mainly in chemokine-related pathways and lipid metabolism-related pathways according to Gene Set Enrichment Analysis. Single-cell RNA sequencing (sc-RNAseq) revealed a significant difference in CCL2 expression in alveolar epithelial type 1/2 cells, mast cells, ciliated cells, club cells, fibroblasts, M1/M2 macrophages, monocytes and plasma cells between IPF patients and healthy donors. Statistical analyses revealed that CCL2 was negatively correlated with lung function in IPF patients and decreased after mycophenolate mofetil (MMF) treatment in SSc patients. Finally, we identified CCL2 as a common biomarker from IPF and SSc, revealing the common mechanism of these two diseases and providing clues for the study of the treatment and mechanism of these two diseases.
Collapse
Affiliation(s)
- Ning Shan
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu Shang
- The Second Hospital of Heilongjiang Province, Harbin, Heilongjiang Province, China
| | - Yaowu He
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhe Wen
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shangwei Ning
- Harbin Medical University, Harbin, Heilongjiang Province, China.
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Hong Chen
- Harbin Medical University, Harbin, Heilongjiang Province, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
26
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
27
|
Xiao Z, Wang Y, Chen Y, Jin L, Shi Y, Liu C, Fu C, Cao Y. Exosomes derived from TREM-2 knocked-out macrophages alleviated renal fibrosis via HSPa1b/AKT pathway. Am J Physiol Renal Physiol 2025; 328:F131-F151. [PMID: 39657110 DOI: 10.1152/ajprenal.00219.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 03/12/2025] Open
Abstract
Macrophages are recognized as vital players in renal fibrosis, with a high degree of heterogeneity and plasticity, and the triggering receptor expressed on myeloid cell-2 (TREM-2) is highly expressed on macrophages and participates in the progression of tissue fibrosis. However, the mechanism by which TREM-2 mediates the progression of renal fibrosis is still unclear. Our study revealed that exosomes derived from TREM-2-deficient (TREM-2-/-) macrophages suppressed the progression of fibrosis, as indicated by a greater matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) ratio at the protein level in secreted exosomes than in exosomes from wild-type (WT) macrophages in the fibrotic microenvironment. In addition, renal tubular epithelial cells (TECs) engulfed these nanoscale vesicles, and the expression of collagen I and α-smooth muscle actin (α-SMA) (a fibrosis-related marker) was obviously decreased. Through RNA-seq, we found that TREM-2-/- macrophages increase the MMP-9/TIMP-1 ratio in their exosomes via the heat shock protein a1b (HSPa1b)/AKT pathway. Notably, renal fibrosis was effectively alleviated in the obstructed kidneys of mice that received a renal pelvis injection of an adeno-associated virus (AAV-shTREM-2) containing the sequence used to silence TREM-2. However, VER-155008 (an inhibitor of HSPa1b) and Ly294002 (an inhibitor of AKT) reversed this effect. Moreover, polyclonal antibodies against TREM-2 also effectively relieved unilateral ureteral obstruction (UUO)-induced renal fibrosis. Overall, we validated that knocking down TREM-2 expression can inhibit the progression of renal fibrosis through a macrophage exosome-dependent pathway both in vitro and in vivo. Hence, our findings suggest that TREM-2 is a potential therapeutic target for chronic kidney disease (CKD).NEW & NOTEWORTHY Renal fibrosis is a common pathological feature of CKD, resulting in irreversible loss of function and structure. However, effective therapies for CKD are currently limited. We found that the deletion of TREM-2 in macrophages increased the MMP-9/TIMP-1 ratio in exosomes, shifting toward the degradation of the extracellular matrix (ECM) and the alleviation of renal fibrosis. Furthermore, polyclonal antibodies against TREM-2 effectively suppressed renal fibrosis. These findings provide evidence that TREM-2 is a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Zihao Xiao
- Department of Nephrology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, People's Republic of China
- Anesthesia Laboratory & Training Center of Wannan Medical College, Wuhu, People's Republic of China
| | - Yajie Wang
- Department of Nephrology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, People's Republic of China
| | - Yuye Chen
- Department of Nephrology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, People's Republic of China
| | - Ling Jin
- Department of Nephrology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, People's Republic of China
| | - Yuanhui Shi
- Department of Nephrology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, People's Republic of China
| | - Can Liu
- Department of Anesthesiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, People's Republic of China
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, People's Republic of China
| | - Yuhan Cao
- Department of Nephrology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, People's Republic of China
| |
Collapse
|
28
|
Korkmaz Y, Pryymachuk G, Schroeter MM, Puladi B, Piekarek N, Appel S, Bloch W, Lackmann JW, Deschner J, Friebe A. The α 1- and β 1-Subunits of Nitric Oxide-Sensitive Guanylyl Cyclase in Pericytes of Healthy Human Dental Pulp. Int J Mol Sci 2024; 26:30. [PMID: 39795887 PMCID: PMC11720548 DOI: 10.3390/ijms26010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an α1β1-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC α1β1-heterodimer in human pericytes. Since NO-GC is a marker for platelet-derived growth factor-β (PDGFRβ)-positive pericytes, we investigated whether NO-GC is expressed in its active α1β1-heterodimer in pericytes of healthy human dental pulp. In our previous studies, we developed and validated an antibody against the α1-subunit of human NO-GC. Here, we developed a new antibody against the β1-subunit of human NO-GC and validated it by immunoblot, mass spectrometry, and immunohistochemistry on tissue samples from humans and NO-GC knockout (GCKO) mice. Using both antibodies, we detected α1- and β1-subunits of NO-GC in pericytes of pre-capillary arterioles, capillaries, and post-capillary venules in dental pulp of decalcified and non-decalcified human molars. We concluded that NO-GC as an active α1β1-heterodimer may be involved in the regulation of vascular permeability, vascular stability, organ homeostasis, and organ regeneration in healthy human dental pulp.
Collapse
Affiliation(s)
- Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Galyna Pryymachuk
- Institute of Anatomy, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany;
- Department of Anatomy I, University of Cologne, 50937 Cologne, Germany
| | - Mechthild M. Schroeter
- Center for Physiology and Pathophysiology Faculty of Medicine and University Hospital Cologne, 51109 Cologne, Germany;
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany;
| | - Nadin Piekarek
- Experimental Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 51109 Cologne, Germany;
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany;
| | - Jan-Wilm Lackmann
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Andreas Friebe
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany;
| |
Collapse
|
29
|
Díaz del Moral S, Wagner N, Wagner KD. The Wilms' Tumor Suppressor WT1 in Cardiomyocytes: Implications for Cardiac Homeostasis and Repair. Cells 2024; 13:2078. [PMID: 39768169 PMCID: PMC11674098 DOI: 10.3390/cells13242078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
The Wilms' tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair. In adulthood, WT1-expression levels are lower compared to those observed through development, and WT1 expression is restricted to a few cell types. However, its systemic deletion in adult mice is lethal, demonstrating that its presence is also key for organ maintenance. In response to injury, the epicardium re-activates the expression of WT1, but little is known about the roles it plays in cardiomyocytes, which are the main cell type affected after myocardial infarction. The fact that cardiomyocytes exhibit a low proliferation rate in the adult heart in mammals highlights the need to explore new approaches for cardiac regeneration. The aim of this review is to emphasize the functions carried out by WT1 in cardiomyocytes in cardiac homeostasis and heart regeneration.
Collapse
Affiliation(s)
| | | | - Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (S.D.d.M.); (N.W.)
| |
Collapse
|
30
|
Lovisa S, Vetrano S. TWISTed fibroblasts: New drivers of intestinal fibrosis in Crohn's disease. Heliyon 2024; 10:e40604. [PMID: 39654763 PMCID: PMC11626011 DOI: 10.1016/j.heliyon.2024.e40604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Fibrosis is the pathological consequence of chronic inflammation. In Crohn's disease (CD), fibrostenotic complications occur with 50-70 % frequency as a failure to properly repair the tissue damage. Intestinal stenosis requires surgical intervention and relapses in most patients. Mesenchymal cells encompassed of heterogeneous cell subsets orchestrate this complex process. The lack of a full characterization of the stromal diversity and function in CD has consequently slowed the development of anti-fibrotic targets. Two recent studies align together demonstrating FAP+TWIST1+ fibroblasts as the primary mesenchymal population driving intestinal fibrosis in CD. Genetic and pharmacological targeting of Twist1 in mouse models proved the functional role of Fap+Twist1+ fibroblasts and indicate the use of the Twist1 inhibitor harmine as a potential therapeutic strategy to revert fibrosis.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefania Vetrano
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
31
|
Huang W, Zheng J, Wang M, Du LY, Bai L, Tang H. The potential therapeutic role of melatonin in organ fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1502368. [PMID: 39735699 PMCID: PMC11681627 DOI: 10.3389/fmed.2024.1502368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses. Recent studies have shown that melatonin may have potential in inhibiting organ fibrosis, possibly due to its functions in anti-oxidative stress, anti-inflammation, remodeling the extracellular matrix (ECM), inhibiting epithelial-mesenchymal transition (EMT), and regulating apoptosis, thereby alleviating fibrosis. This review aims to explore the therapeutic potential of melatonin in fibrosis-related human diseases using findings from various in vivo and in vitro studies. These discoveries should provide important insights for the further development of new drugs to treat fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Zheng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ling-Yao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Zhang J, Huang J, Yang Q, Zeng L, Deng K. Regulatory mechanisms of macrophage-myofibroblast transdifferentiation: A potential therapeutic strategy for fibrosis. Biochem Biophys Res Commun 2024; 737:150915. [PMID: 39486135 DOI: 10.1016/j.bbrc.2024.150915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Macrophage-myofibroblast transdifferentiation (MMT), a fibrotic process impacting diverse tissue types, has garnered recent scholarly interest. Within damaged tissues, the role of myofibroblasts is pivotal in the accumulation of excessive fibrous connective tissue, leading to persistent scarring or organ dysfunction. Consequently, the examination of MMT-related fibrosis is imperative. This review underscores MMT as a fundamental mechanism in myofibroblast generation during tissue fibrosis, and its exploration is crucial for elucidating the regulatory mechanisms underlying this process. Gaining insight into these mechanisms promises to facilitate the development of therapeutic approaches aimed at inhibiting and reversing fibrosis, thereby offering potential avenues for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Junchao Zhang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jinfa Huang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Qian Yang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Lingling Zeng
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Kaixian Deng
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| |
Collapse
|
33
|
Cao Q, Foley M, Gill AJ, Chou A, Chen XM, Pollock CA. Second Generation I-Body AD-214 Attenuates Unilateral Ureteral Obstruction (UUO)-Induced Kidney Fibrosis Through Inhibiting Leukocyte Infiltration and Macrophage Migration. Int J Mol Sci 2024; 25:13127. [PMID: 39684834 DOI: 10.3390/ijms252313127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Kidney fibrosis is the common pathological pathway in progressive chronic kidney disease (CKD), and current treatments are largely ineffective. The C-X-C chemokine receptor 4 (CXCR4) is crucial to fibrosis development. By using neural cell adhesion molecules as scaffolds with binding loops that mimic the shape of shark antibodies, fully humanized single-domain i-bodies have been developed. The first-generation i-body, AD-114, demonstrated antifibrotic effects in a mouse model of folic acid (FA)-induced renal fibrosis. The second-generation i-body, AD-214, is an Fc-fusion protein with an extended half-life, enhanced activity, and a mutated Fc domain to prevent immune activation. To investigate the renoprotective mechanisms of AD-214, RPTEC/TERT1 cells (a human proximal tubular cell line) were incubated with TGF-b1 with/without AD-214 and the supernatant was collected to measure collagen levels by Western blot. Mice with unilateral ureteral obstruction (UUO) received AD-214 intraperitoneally (i.p.) every two days for 14 days. Kidney fibrosis markers and kidney function were then analyzed. AD-214 suppressed TGF-b1-induced collagen overexpression in RPTEC/TERT1 cells. In UUO mice, AD-214 reduced extracellular matrix (ECM) deposition, restored kidney function, and limited leukocyte infiltration. In a scratch assay, AD-214 also inhibited macrophage migration. To conclude, i-body AD-214 attenuates UUO-induced kidney fibrosis by inhibiting leukocyte infiltration and macrophage migration.
Collapse
Affiliation(s)
- Qinghua Cao
- Renal Medicine, Kolling Institute of Medical Research, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Michael Foley
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- AdAlta Limited, LIMS2 Building, Science Drive, La Trobe University, Melbourne, VIC 3086, Australia
| | - Anthony J Gill
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Angela Chou
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Xin-Ming Chen
- Renal Medicine, Kolling Institute of Medical Research, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Carol A Pollock
- Renal Medicine, Kolling Institute of Medical Research, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
34
|
Altieri A, Visser GV, Buechler MB. Enter the Matrix: Fibroblast-immune cell interactions shape extracellular matrix deposition in health and disease. F1000Res 2024; 13:119. [PMID: 39886650 PMCID: PMC11781523 DOI: 10.12688/f1000research.143506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function. In this review, we will highlight recent studies which elucidate the mechanisms by which fibroblast-derived ECM factors (e.g., collagens, fibrillar proteins) regulate ECM architecture and subsequent immune responses, with a focus on macrophages. As examples of fibroblast-derived ECM proteins, we examine Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Transforming Growth Factor-β-inducible protein (TGFBI), also known as BIGH3. We address the need for investigation into how diverse fibroblast populations coordinate immune responses by modulating ECM, including the fibroblast-ECM-immune axis and the precise molecular mediators and pathways which regulate these processes. Finally, we will outline how novel research identifying key regulators of ECM deposition is critical for therapeutic development for fibrotic diseases and cancer.
Collapse
|
35
|
Ross GR, Vodanovic-Jankovic S, Benjamin IJ. Geranylgeranyl Pyrophosphate Promotes Profibrotic Factors and Collagen-Specific Chaperone HSP47 in Fibroblasts. J Cell Mol Med 2024; 28:e70273. [PMID: 39716037 DOI: 10.1111/jcmm.70273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation. To test this hypothesis, we demonstrated pharmacological inhibition of geranylgeranyl pyrophosphate synthase (GGPS1) significantly decreased TGF-β1-dependent myofibroblast differentiation assessed by reduced α-SMA, periostin, FAP and HSP47 expression. Exogenous GGPP in the presence of GGPS1 inhibition restored TGF-β1-induced differentiation, supporting posttranslational requirements of GGPP modification during myofibroblast differentiation. Selective inhibition of either geranylgeranyl transferase or farnesyl transferase significantly impacted TGF-β1-induced myofibroblast α-SMA and HSP47 expression. The importance of protein prenylation as a key regulator of myofibroblast differentiation was remarkably revealed by an unexpected decrease in HSP47 expression. In contrast, direct HSP47 inhibition not only suppressed TGF-β1-induced α-SMA expression but surprisingly could not be rescued using exogenous GGPP. A selective role for the ER-resident chaperone HSP47 expression downstream of GGPP was suggested when the effects of GGPS1 inhibition on periostin expression were counteracted by GGPP and geranylgeranyl transferase inhibition. Taken together, our findings underscore for the first time the functional role of cholesterol synthesis-independent GGPP-dependent pathway in fibroblast-to-myofibroblast transition and open new potential therapeutic targets for antifibrosis therapies.
Collapse
Affiliation(s)
- Gracious R Ross
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Ivor J Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
36
|
Baral A, Garg S, Nguyen M, Razzaq R, Ang A, Khan H, Vainer D, Patel V, Roache G, Muthiah M, Yakubu I, Kumaran V, Bui AT, Siddiqui MS. Vibration-Controlled Transient Elastography-Based Parameters Predict Clinical Outcomes in Liver Transplant Recipients. Clin Gastroenterol Hepatol 2024; 22:2424-2431.e4. [PMID: 38969073 DOI: 10.1016/j.cgh.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/12/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND AND AIMS Vibration-controlled transient elastography (VCTE) is used in clinical practice to risk-stratify liver transplant (LT) recipients; however, there are currently little data demonstrating the relationship between VCTE and clinical outcomes. METHODS A total of 362 adult LT recipients with successful VCTE examination between 2015 and 2022 were included. Presence of advanced fibrosis was defined as liver stiffness measurement (LSM) ≥10.5 kPa and hepatic steatosis as controlled attenuation parameter (CAP) ≥270 dB/m. The outcomes of interest included all-cause mortality, myocardial infarction (MI), and graft cirrhosis using cumulative incidence analysis that accounted for the competing risks of these outcomes. RESULTS The LSM was elevated in 64 (18%) and CAP in 163 (45%) LT recipients. The baseline LSM values were similar in patients with elevated vs normal CAP values. After a median follow-up of 65 (interquartile range, 20-140) months from LT to baseline VCTE, 66 (18%) patients died, 12 (3%) developed graft cirrhosis, and 18 (5%) experienced an MI. Baseline high LSM was independently associated with all-cause mortality (hazard ratio [HR], 1.97; 95% confidence interval [CI], 1.11-3.50; P = .02) and new onset cirrhosis (HR, 6.74; 95% CI, 2.08-21.79; P < .01). A higher CAP value was significantly and independently associated with increased risk of experiencing a MI over study follow-up (HR, 4.14; 95% CI, 1.29-13.27; P = .017). CONCLUSIONS The VCTE-based parameters are associated with clinical outcomes and offer the potential to be incorporated into clinical risk-stratification strategies to improve outcomes among LT recipients.
Collapse
Affiliation(s)
- Alok Baral
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Shreya Garg
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Madison Nguyen
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Rehan Razzaq
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Audrey Ang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Hiba Khan
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Dylan Vainer
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Vaishali Patel
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, Virginia
| | - Geneva Roache
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Idris Yakubu
- Division of Transplant Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Vinay Kumaran
- Division of Transplant Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Anh T Bui
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
37
|
Li L, Gao PP, Chen TT, Li N, Zhang HJ, Li MQ, Chen YN, Wei W, Wang H, Sun WY. SUMO: A new perspective to decipher fibrosis. Acta Physiol (Oxf) 2024; 240:e14240. [PMID: 39404508 DOI: 10.1111/apha.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition resulting from dysregulated wound healing and connective tissue repair mechanisms. Excessive accumulation of ECM leads to fibrous tissue formation, impairing organ function and driving the progression of various fibrotic diseases. Recently, the role of small ubiquitin-like modifiers (SUMO) in fibrotic diseases has attracted significant attention. SUMO-mediated SUMOylation, a highly conserved posttranslational modification, participates in a variety of biological processes, including nuclear-cytosolic transport, cell cycle progression, DNA damage repair, and cellular metabolism. Conversely, SUMO-specific proteases cleave the isopeptide bond of SUMO conjugates, thereby regulating the deSUMOylation process. Mounting evidence indicates that SUMOylation and deSUMOylation regulate the functions of several proteins, such as Smad3, NF-κB, and promyelocytic leukemia protein, which are implicated in fibrotic diseases like liver fibrosis, myocardial fibrosis, and pulmonary fibrosis. This review summarizes the role of SUMO in fibrosis-related pathways and explores its pathological relevance in various fibrotic diseases. All evidence suggest that the SUMO pathway is important targets for the development of treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hui-Juan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Meng-Qi Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ya-Ning Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| |
Collapse
|
38
|
Pieper D, Sandek A, Schäfer AK, Dihazi H, Dihazi GH, Leha A, Zeisberg M, Lüders S, Koziolek M, Wallbach M. Urinary Dickkopf-3 as a Potential Marker for Estimated Glomerular Filtration Rate Decline in Patients With Heart Failure. J Am Heart Assoc 2024:e036637. [PMID: 39604022 DOI: 10.1161/jaha.124.036637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Patients with chronic heart failure (HF) show an increased risk for the occurrence of chronic kidney disease and cardiorenal syndrome. Urinary Dickkopf-3 (uDKK3), a stress-induced, tubular profibrotic glycoprotein, may be elevated in HF as early as in New York Heart Association class I HF and may indicate subsequent decline in estimated glomerular filtration rate (eGFR). METHODS AND RESULTS uDKK3 levels in patients with HF and controls were measured by enzyme-linked immunosorbent assay. eGFR was determined up to 5 years in HF. Change in eGFR was assessed with respect to baseline uDKK3 using (mixed-effect) linear and logistic regression models. A total of 488 patients with chronic HF and 45 control patients were included. Patients with HF showed higher median uDKK3 levels than controls (259.6 pg/mg creatinine [interquartile range (IQR), 119.2-509.4 pg/mg creatinine] versus 107.5 pg/mg creatinine [IQR, 60.5-181.2 pg/mg creatinine], P<0.001). Regression models demonstrated a significant association between log uDKK3 and the decline in eGFR during a median of 13 months (IQR, 12-59 months) (estimated higher eGFR loss, 0.8039 mL/min per 1.73 m2/year [95% CI, 0.002-1.606 mL/min per 1.73 m2/year], P=0.049; odds ratio, 1.345 [95% CI, 1.049-1.741], P=0.021). uDKK3 levels ≥354 pg/mg creatinine were associated with a significantly higher risk for eGFR decline at 1-year follow-up (estimated higher eGFR loss, 4.538 mL/min per 1.73 m2 [95% CI, 1.482-9.593 mL/min per 1.73 m2]), P=0.004). Even patients with HF without chronic kidney disease (n=334) had higher uDKK3 levels compared with controls (233.4 [IQR, 109.0-436.9 pg/mg creatinine] versus 107.5 [IQR, 60.5-181.2 pg/mg creatinine], P<0.001). CONCLUSIONS The present findings indicate that uDKK3 is a promising prognostic biomarker for subsequent eGFR decline in patients with HF, irrespective of the presence of chronic kidney disease and even in the early stages of HF. This potential allows for early intervention to mitigate the deterioration of kidney function. Further investigation is warranted to validate its clinical utility.
Collapse
Affiliation(s)
- Dennis Pieper
- Department of Nephrology and Rheumatology University Medical Center Göttingen, Georg-August-University Göttingen Göttingen Germany
| | - Anja Sandek
- German Center for Cardiovascular Research (DZHK) Partner Site Göttingen Göttingen Germany
- Department of Cardiology and Pneumology University Medical Center Göttingen Göttingen Germany
| | - Ann-Kathrin Schäfer
- Department of Nephrology and Rheumatology University Medical Center Göttingen, Georg-August-University Göttingen Göttingen Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology University Medical Center Göttingen, Georg-August-University Göttingen Göttingen Germany
| | - Gry Helene Dihazi
- Institute for Clinical Chemistry University Medical Center Göttingen Göttingen Germany
| | - Andreas Leha
- Department of Medical Statistics University Medical Center Göttingen Göttingen Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology University Medical Center Göttingen, Georg-August-University Göttingen Göttingen Germany
| | - Stephan Lüders
- Department of Nephrology and Rheumatology University Medical Center Göttingen, Georg-August-University Göttingen Göttingen Germany
- Department of Nephrology St.-Josefs-Hospital Cloppenburg Germany
| | - Michael Koziolek
- Department of Nephrology and Rheumatology University Medical Center Göttingen, Georg-August-University Göttingen Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Göttingen Göttingen Germany
| | - Manuel Wallbach
- Department of Nephrology and Rheumatology University Medical Center Göttingen, Georg-August-University Göttingen Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Göttingen Göttingen Germany
| |
Collapse
|
39
|
Malvica S, Fenaroli P, Lee CY, Louis S, Celia AI, Bagnasco S, Yang X, Hodgin JB, Buyon J, Magder L, Petri M, Rosenberg A, Fava A. Inflammation in Areas of Fibrosis Precedes Loss of Kidney Function in Lupus Nephritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625225. [PMID: 39651286 PMCID: PMC11623599 DOI: 10.1101/2024.11.25.625225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Interstitial fibrosis in lupus nephritis (LN) is often infiltrated by immune cells but typically regarded as nonspecific "scar reaction." This study aimed to investigate the relationship between inflammatory fibrosis and kidney disease progression in LN. Methods Interstitial fibrosis and tubular atrophy (IFTA) were scored in 124 LN kidney biopsies. Inflammation in areas of IFTA (i-IFTA) was graded 0-3 according to the Banff Classification of Allograft Pathology. Significant glomerular filtration rate (GFR) loss was defined as a decline of >15 ml/min at 3 years from biopsy. Immune cell phenotype was defined by serial immunohistochemistry (13-plex). Results IFTA was observed in 88/124 (71%) biopsies, and i-IFTA was identified in 76/88 (86%) cases. The distribution of i-IFTA grades was heterogenous across all IFTA grades. In patients with moderate-to-severe IFTA (>25%), the degree of i-IFTA was associated with a higher risk of significant GFR loss: 0/2 (0%), 1/3 (33%), 3/4 (75%), and 7/9 (78%) for i-IFTA grades 0, 1, 2, and 3, respectively (p = 0.028). Multiplexed histology revealed that i-IFTA was mostly composed of CD163+ macrophages and CD4 T cells, followed by CD8 T cells and granulocytes. Conclusion I-IFTA is frequently observed in LN and is dominated by macrophages and T cells. For patients with baseline IFTA >25%, the degree of i-IFTA emerged as a predictor of GFR loss. These data support the routine scoring of i-IFTA in LN due to its prognostic implications and nominate i-IFTA as a potential therapeutic target. LAY SUMMARY Scar tissue often contains immune cells, but we still do not fully understand their role. In lupus nephritis (LN), this is typically dismissed as "nonspecific inflammation". However, our study analyzed kidney biopsies from 124 people with LN and found that inflammation in scarred areas may predict future kidney function loss. Specifically, we identified a type of immune cell, CD163+ macrophages, that may contribute to scarring and kidney damage. Our findings suggest that routinely assessing inflammation in scarred areas could help predict kidney health in LN patients and highlight a possible new target for therapies to prevent kidney damage.
Collapse
|
40
|
Jia Y, Wei Z, Feng J, Lei M, Yang Y, Liu J, Ma Y, Chen W, Huang G, Genin GM, Guo X, Li Y, Xu F. A Heart Rate Matched Patch for Mechano-Chemical Treatment of Myocardial Infarction: Optimal Design and Transspecies Application. RESEARCH (WASHINGTON, D.C.) 2024; 7:0517. [PMID: 39582687 PMCID: PMC11582187 DOI: 10.34133/research.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
After myocardial infarction (MI), ventricular dilation and the microscopic passive stretching of the infarcted border zone is the meaning contributor to the continuous expansion of myocardial fibrosis. Epicardial hydrogel patches have been demonstrated to alleviate this sequela of MI in small-animal models. However, these have not been successfully translated to humans or even large animals, in part because of challenges in attaining both the greater stiffness and slower viscoelastic relaxation that mathematical models predict to be optimal for application to larger, slower-beating hearts. Here, using borate-based dynamic covalent chemistry, we develop an injectable "heart rate matched" viscoelastic gelatin (VGtn) hydrogel with a gel point tunable across the stiffnesses and frequencies that are predicted to transspecies and cross-scale cardiac repair after MI. Small-animal experiments demonstrated that, compared to heart rate mismatched patches, the heart rate matched VGtn patches inhibited ventricular bulging and attenuated stress concentrations in the myocardium after MI. In particular, the viscoelastic patch can coordinate the microscopic strain at the infarction boundary. VGtn loaded with anti-fibrotic agents further reduced myocardial damage and promoted angiogenesis in the myocardium. The tuned heart rate matched patches demonstrated similar benefits in a larger-scale and lower heart rate porcine MI model. Results suggest that heart rate matched VGtn patches may hold potential for clinical translation.
Collapse
Affiliation(s)
- Yuanbo Jia
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, P.R. China
- Key Laboratory of Surgical Critical Care and Life Support (Xi’an Jiaotong University), Ministry of Education, Xi’an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Zhao Wei
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jinteng Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Meng Lei
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yanshen Yang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jingyi Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Weiguo Chen
- Department of Cardiology, Tangdu Hospital,
the Air Force Military Medical University, Xi’an, Shaanxi 710038, P.R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering,
Wuhan University, Wuhan 430072, P.R. China
| | - Guy M. Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Department of Mechanical Engineering & Materials Science,
Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology,
Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310003, P.R. China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital,
the Air Force Military Medical University, Xi’an, Shaanxi 710038, P.R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
41
|
Harrison BA, Dowling JE, Bursavich MG, Troast DM, Chong KM, Hahn KN, Zhong C, Mulvihill KM, Nguyen H, Monroy MF, Qiao Q, Sosa B, Mostafavi S, Smukste I, Lee D, Cappellucci L, Konopka EH, Nowakowski P, Stawski L, Senices M, Nguyen MH, Kapoor PS, Luus L, Sullivan A, Bortolato A, Svensson M, Hickey ER, Konze KD, Day T, Kim B, Negri A, Gerasyuto AI, Moy TI, Lu M, Ray AS, Wang L, Cui D, Lin FY, Lippa B, Rogers BN. The Discovery of MORF-627, a Highly Selective Conformationally-Biased Zwitterionic Integrin αvβ6 Inhibitor for Fibrosis. J Med Chem 2024; 67:18656-18681. [PMID: 39446989 DOI: 10.1021/acs.jmedchem.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Inhibition of integrin αvβ6 is a promising approach to the treatment of fibrotic disease such as idiopathic pulmonary fibrosis. Screening a small library combining head groups that stabilize the bent-closed conformation of integrin αIIbβ3 with αv integrin binding motifs resulted in the identification of hit compounds that bind the bent-closed conformation of αvβ6. Crystal structures of these compounds bound to αvβ6 and related integrins revealed opportunities to increase potency and selectivity, and these efforts were accelerated using accurate free energy perturbation (FEP+) calculations. Optimization of PK parameters including permeability, bioavailability, clearance, and half-life resulted in the discovery of development candidate MORF-627, a highly selective inhibitor of αvβ6 that stabilizes the bent-closed conformation and has good oral PK. Unfortunately, the compound showed toxicity in a 28-day NHP safety study, precluding further development. Nevertheless, MORF-627 is a useful tool compound for studying the biology of integrin αvβ6.
Collapse
Affiliation(s)
- Bryce A Harrison
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - James E Dowling
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | | | - Dawn M Troast
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Katherine M Chong
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Kristopher N Hahn
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Cheng Zhong
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | | | - Hanh Nguyen
- CMC, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Meghan F Monroy
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Qi Qiao
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Brian Sosa
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Siavash Mostafavi
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Inese Smukste
- DMPK, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Dooyoung Lee
- DMPK, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Laura Cappellucci
- Screening Biology, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Elizabeth H Konopka
- Screening Biology, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Patrycja Nowakowski
- Screening Biology, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Lukasz Stawski
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Mayra Senices
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Minh Hai Nguyen
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Parmita S Kapoor
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Lia Luus
- Translational Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Andrew Sullivan
- Translational Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Andrea Bortolato
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Mats Svensson
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Eugene R Hickey
- Medicinal Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Kyle D Konze
- Medicinal Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Tyler Day
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Byungchan Kim
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Ana Negri
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Aleksey I Gerasyuto
- Medicinal Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Terence I Moy
- Screening Biology, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Min Lu
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Adrian S Ray
- Biology and Translational Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Liangsu Wang
- Biology and Translational Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Dan Cui
- DMPK, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Fu-Yang Lin
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Blaise Lippa
- Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Bruce N Rogers
- Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| |
Collapse
|
42
|
Miyasako K, Nakashima A, Ishiuchi N, Tanaka Y, Morimoto K, Sasaki K, Nagamatsu S, Matsuda G, Masaki T. Impact of immunosuppressive drugs on efficacy of mesenchymal stem cell therapy for suppressing renal fibrosis. Stem Cells Transl Med 2024; 13:1067-1085. [PMID: 39401338 PMCID: PMC11555481 DOI: 10.1093/stcltm/szae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 11/13/2024] Open
Abstract
Preemptive regenerative medicine using mesenchymal stem cells (MSCs) may provide a novel therapeutic approach to prevent the progression from organ damage to organ failure. Although immunosuppressive drugs are often used in patients with organ disorder, their impact on MSC therapy remains unclear. We investigated the effects of immunosuppressive drugs on the therapeutic efficacy of MSCs. We created unilateral ureteral obstruction models, as a well-established model of renal fibrosis, a preliminary stage of organ failure. Three immunosuppressive drugs (methylprednisolone, cyclosporine, and cyclophosphamide) were intraperitoneally administered 3 days after surgery, and MSCs were injected via tail vein the following day. Preadministration of methylprednisolone or cyclophosphamide interfered with MSC activation by reducing expression of interferon-gamma (IFN-γ) and high-mobility group box-1 protein, thus significantly attenuating the therapeutic efficacy of MSCs. Preadministration of cyclophosphamide downregulated the expression of stromal cell-derived factor-1/C-X-C motif ligand 12, which is a potent migration factor for MSCs, resulting in reduced MSC engraftment in the renal cortex. IFN-γ-preconditioned activated MSCs were unaffected by these drugs and maintained their beneficial therapeutic effects. Cyclosporine preadministration had no effect on the therapeutic efficacy of MSCs. Our study demonstrated that the administration of certain immunosuppressive drugs interfered with MSC activation and engraftment at the site of injury, resulting in a significant attenuation of their therapeutic efficacy. These findings provide crucial information for selecting patients suitable for MSC therapy. Use of MSCs preactivated with IFN-γ or other means is preferred for patients on methylprednisolone or cyclophosphamide.
Collapse
Affiliation(s)
- Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- Department of Nephrology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Yoshiki Tanaka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Keisuke Morimoto
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Go Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| |
Collapse
|
43
|
Chang X, Han YM, Li QL, Wang C, Guo B, Jiang HL. Spatiotemporally cascade-driven "Lipo micelles" enhance extracellular matrix penetration and remodel intercellular crosstalk in pulmonary fibrosis. J Control Release 2024; 376:861-879. [PMID: 39489465 DOI: 10.1016/j.jconrel.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Pulmonary fibrosis (PF) is an inevitable phase of many respiratory diseases with high mortality and limited effective treatments in the clinic. In PF, aberrant extracellular matrix (ECM) deposition is a significant pathological structural alteration that blocks intercellular crosstalk and hinders the deep penetration of therapeutics into lung tissues, reducing the effectiveness of conventional treatment strategies. Herein, a penetrating enhancer (Lipomicelles) composed of thermosensitive liposome shells loaded with collagenase IV and micellar cores containing thioketal bonds encapsulated with curcumin and decorated with cyclic RGDfc, is developed to alleviate PF. Specifically, Lipomicelles exhibit a cascade-responsive pattern to achieve precision delivery of curcumin through thermosensitivity, enhanced ECM penetration, site-specific targeting, and rapid release in injured alveolar epithelial type II cells (CellAEC2s). Subsequently, intercellular crosstalk is remodeled through the curcumin-mediated repair of CellAEC2s, combined with collagenase IV-mediated ECM degradation to inhibit myofibroblasts, ultimately achieving PF reversal. This work provides an innovative approach to enhance ECM penetration of therapeutics before remodeling intercellular crosstalk, addressing multi-phase PF therapy.
Collapse
Affiliation(s)
- Xin Chang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Yu-Mo Han
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Qiu-Ling Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chao Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Bin Guo
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu 210009, China..
| |
Collapse
|
44
|
Luo K, Geng Y, Oosterhuis D, de Meijer VE, Olinga P. Evaluating the antifibrotic potential of naringenin, asiatic acid, and icariin using murine and human precision-cut liver slices. Physiol Rep 2024; 12:e16136. [PMID: 39501714 PMCID: PMC11538472 DOI: 10.14814/phy2.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 11/09/2024] Open
Abstract
Liver fibrosis is an exaggerated wound healing response defined by the excessive accumulation of extracellular matrix. This study investigated the antifibrotic potential of naringenin (NRG), asiatic acid (AA), and icariin (ICA) using murine and human precision-cut liver slices (PCLS). These natural products have shown promise in animal models, but human data are lacking. In this study, PCLS prepared from male mouse liver tissue (mPCLS), healthy human liver tissue (hhPCLS), and cirrhotic human liver tissue (chPCLS) were cultured for 48 h with varying concentrations of the three compounds. Our findings indicate that NRG reduced collagen type 1 (COL1A1) expression in a concentration-dependent manner in both mPCLS and chPCLS, decreased fibrosis-related gene expression, and significantly lowered pro-collagen type 1 (PCOL1A1) levels in the culture medium by 54 ± 21% (mPCLS) and 78 ± 35% (chPCLS). Furthermore, NRG effectively inhibited IL-1β and TNF-α in mPCLS and IL-1β in chPCLS on both gene and protein levels. AA specifically reduced COL1A1 and PCOL1A1 in chPCLS, while ICA selectively downregulated Col1a1 and Acta2 gene expression in mPCLS. This study suggests NRG's potential as an effective antifibrotic agent, warranting further investigation into its mechanisms and therapeutic applications in liver fibrosis.
Collapse
Affiliation(s)
- Ke Luo
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Yana Geng
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, University of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
45
|
Schoettler FI, Fatehi Hassanabad A, Jadli AS, Patel VB, Fedak PWM. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc Pathol 2024; 73:107671. [PMID: 38906439 DOI: 10.1016/j.carpath.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
The potential of the pericardial space as a therapeutic delivery tool for cardiac fibrosis and heart failure (HF) treatment has yet to be elucidated. Recently, miRNAs and exosomes have been discovered to be present in human pericardial fluid (PF). Novel studies have shown characteristic human PF miRNA compositions associated with cardiac diseases and higher miRNA expressions in PF compared to peripheral blood. Five key studies found differentially expressed miRNAs in HF, angina pectoris, aortic stenosis, ventricular tachycardia, and congenital heart diseases with either atrial fibrillation or sinus rhythm. As miRNA-based therapeutics for cardiac fibrosis and HF showed promising results in several in vivo studies for multiple miRNAs, we hypothesize a potential role of miRNA-based therapeutics delivered through the pericardial cavity. This is underlined by the favorable results of the first phase 1b clinical trial in this emerging field. Presenting the first human miRNA antisense drug trial, inhibition of miR-132 by intravenous administration of a novel antisense oligonucleotide, CDR132L, established efficacy in reducing miR-132 in plasma samples in a dose-dependent manner. We screened the literature, provided an overview of the miRNAs and exosomes present in PF, and drew a connection to those miRNAs previously elucidated in cardiac fibrosis and HF. Further, we speculate about clinical implications and potential delivery methods.
Collapse
Affiliation(s)
- Friederike I Schoettler
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
46
|
Jonkman I, Jacobs MME, Negishi Y, Yanginlar C, Martens JHA, Baltissen M, Vermeulen M, van den Hoogen MWF, Baas M, van der Vlag J, Fayad ZA, Teunissen AJP, Madsen JC, Ochando J, Joosten LAB, Netea MG, Mulder WJM, Mhlanga MM, Hilbrands LB, Rother N, Duivenvoorden R. Trained immunity suppression determines kidney allograft survival. Am J Transplant 2024; 24:2022-2033. [PMID: 39147201 PMCID: PMC11789421 DOI: 10.1016/j.ajt.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The innate immune system plays an essential role in regulating the immune responses to kidney transplantation, but the mechanisms through which innate immune cells influence long-term graft survival are unclear. The current study highlights the vital role of trained immunity in kidney allograft survival. Trained immunity describes the epigenetic and metabolic changes that innate immune cells undergo following an initial stimulus, allowing them have a stronger inflammatory response to subsequent stimuli. We stimulated healthy peripheral blood mononuclear cells with pretransplant and posttransplant serum of kidney transplant patients and immunosuppressive drugs in an in vitro trained immunity assay and measured tumor necrosis factor and interleukin 6 cytokine levels in the supernatant as a readout for trained immunity. We show that the serum of kidney transplant recipients collected 1 week after transplantation can suppress trained immunity. Importantly, we found that kidney transplant recipients whose serum most strongly suppressed trained immunity rarely experienced graft loss. This suppressive effect of posttransplant serum is likely mediated by previously unreported effects of immunosuppressive drugs. Our findings provide mechanistic insights into the role of innate immunity in kidney allograft survival, uncovering trained immunity as a potential therapeutic target for improving graft survival.
Collapse
Affiliation(s)
- Inge Jonkman
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maaike M E Jacobs
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yutaka Negishi
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Cell Biology, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marijke Baltissen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Martijn W F van den Hoogen
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marije Baas
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zahi A Fayad
- Department of Radiology, Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abraham J P Teunissen
- Department of Radiology, Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joren C Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA; Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Musa M Mhlanga
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Cell Biology, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Radiology, Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
47
|
Xiao Y, Martinez L, Zigmond Z, Woltmann D, Singer DV, Singer HA, Vazquez-Padron RI, Salman LH. Functions for platelet factor 4 (PF4/CXCL4) and its receptors in fibroblast-myofibroblast transition and fibrotic failure of arteriovenous fistulas (AVFs). J Vasc Access 2024; 25:1911-1924. [PMID: 37589266 PMCID: PMC10998683 DOI: 10.1177/11297298231192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Over 60% of End Stage Renal Disease (ESRD) patients are relying on hemodialysis (HD) to survive, and the arteriovenous fistula (AVF) is the preferred vascular access method for HD. However approximately half of all newly created AVF fail to mature and cannot be used without a salvage procedure. We have recently demonstrated an association between AVF maturation failure and post-operative fibrosis, while our RNA-seq study also revealed that veins that ultimately failed during AVF maturation had elevated levels of platelet factor 4 (PF4/CXCL4). However, a link between these two findings was yet to be established. METHODS In this study, we investigated potential mechanisms between PF4 levels and fibrotic remodeling in veins. We compared the local expression of PF4 and fibrosis marker integrin β6 (ITGB6) in veins that successfully underwent maturation with that in veins that ultimately failed to mature. We also measured the changes of expression level of α-smooth muscle actin (αSMA/ACTA2) and collagen (Col1/COL1A1) in venous fibroblasts upon various treatments, such as PF4 pharmacological treatment, alteration of PF4 expression, and blocking of PF4 receptors. RESULTS We found that PF4 is expressed in veins and co-localizes with αSMA. In venous fibroblasts, PF4 stimulates expression of αSMA and Col1 via different pathways. The former requires integrins αvβ5 and α5β1, while chemokine receptor CXCR3 is needed for the latter. Interestingly, we also discovered that the expression of PF4 is associated with that of ITGB6, the β subunit of integrin αvβ6. This integrin is critical for the activation of the major fibrosis factor TGFβ, and overexpression of PF4 promotes activation of the TGFβ pathway. CONCLUSIONS These results indicate that upregulation of PF4 may cause venous fibrosis both directly by stimulating fibroblast differentiation and expression of extracellular matrix (ECM) molecules and indirectly by facilitating the activation of the TGFβ pathway.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zachary Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Woltmann
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology & Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
48
|
Giuliani KTK, Adams BC, Healy HG, Kassianos AJ. Regulated cell death in chronic kidney disease: current evidence and future clinical perspectives. Front Cell Dev Biol 2024; 12:1497460. [PMID: 39544363 PMCID: PMC11560912 DOI: 10.3389/fcell.2024.1497460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of kidney function/structure over a period of at least 3 months. It is characterised histologically by the triad of cell loss, inflammation and fibrosis. This literature review focuses on the forms of cell death that trigger downstream inflammation and fibrosis, collectively called regulated cell death (RCD) pathways. Discrete forms of RCD have emerged as central mediators of CKD pathology. In particular, pathways of regulated necrosis - including mitochondrial permeability transition pore (mPTP)-mediated necrosis, necroptosis, ferroptosis and pyroptosis - have been shown to mediate kidney pathology directly or through the release of danger signals that trigger a pro-inflammatory response, further amplifying tissue injury in a cellular process called necroinflammation. Despite accumulating evidence in pre-clinical models, no clinical studies have yet targeted these RCD modes in human CKD. The review summarizes recent advances in our understanding of RCD pathways in CKD, looks at inter-relations between the pathways (with the emphasis on propagation of death signals) and the evidence for therapeutic targeting of molecules in the RCD pathways to prevent or treat CKD.
Collapse
Affiliation(s)
- Kurt T. K. Giuliani
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Benjamin C. Adams
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Helen G. Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Künzel SR, Klapproth E, Zimmermann N, Kämmerer S, Schubert M, Künzel K, Hoffmann M, Drukewitz S, Vehlow A, Eitler J, Arriens M, Thiel J, Kronstein-Wiedemann R, Tietze M, Beissert S, Renner B, El-Armouche A, Günther C. Radiation-induced morphea of the breast - characterization and treatment of fibroblast dysfunction with repurposed mesalazine. Sci Rep 2024; 14:26132. [PMID: 39477958 PMCID: PMC11525966 DOI: 10.1038/s41598-024-74206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Radiation-induced morphea (RIM) is a rare complication of radiotherapy presenting as inflammatory fibrosis, most commonly reported in breast cancer patients. As underlying disease mechanisms are not well understood, targeted therapies are lacking. Since fibroblasts are the key mediators of all fibroproliferative diseases, this study aimed to characterize patient-derived fibroblasts to identify therapeutic targets. We studied primary human control and RIM-fibroblasts on a functional and molecular basis, analyzed peripheral blood and tissue samples and conducted, based on our findings, a treatment attempt in one patient. In RIM, we identified a distinct myofibroblast phenotype reflected by increased alpha-smooth-muscle-actin (αSMA) expression, reduced proliferation and migration rates, and overexpression of osteopontin (OPN). Our RNA sequencing identified aberrant Myc activation as a potential disease driver in RIM fibroblasts, similar to previous findings in systemic sclerosis. Treatment with the anti-inflammatory drug mesalazine reversed the myofibroblast phenotype by targeting Myc. Based on these findings, a patient with RIM was successfully treated with mesalazine, resulting in reduced inflammation and pain and tissue softening, while serum OPN was halved. The present study provides a comprehensive characterization of RIM fibroblasts, suggests a disease-driving role for Myc, demonstrates promising antifibrotic effects of mesalazine and proposes OPN as a biomarker for RIM.
Collapse
Affiliation(s)
- Stephan R Künzel
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany.
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany.
| | - Erik Klapproth
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nick Zimmermann
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany
| | - Susanne Kämmerer
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mario Schubert
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karolina Künzel
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maximilian Hoffmann
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Drukewitz
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Core Unit for Molecular Tumor Diagnostics, NCT Dresden and DKFZ, Dresden, Germany
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jiri Eitler
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Marieke Arriens
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Jessica Thiel
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Romy Kronstein-Wiedemann
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Maximiliane Tietze
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany
| | - Bertold Renner
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ali El-Armouche
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany.
| |
Collapse
|
50
|
Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, Peng S, Nie H. Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater 2024:S1742-7061(24)00614-7. [PMID: 39433198 DOI: 10.1016/j.actbio.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Liver fibrosis is a key process in the progression of chronic liver disease to cirrhosis. Currently, early diagnosis and precise staging of liver fibrosis remain great challenges. Extracellular matrix (ECM) molecules expressed specifically during liver fibrosis are ideal targets for bioimaging and detection of liver fibrosis. Here, we report that fluorescent probes based on a nucleic acid aptamer (ZY-1) targeting cellular fibronectin (cFN), a critical ECM molecule significantly accumulating during liver fibrosis, are promising bioimaging agents for the staging of liver fibrosis. In the work, the outstanding binding affinity of ZY-1 to cFN was validated through an in vitro model of human-derived hepatic stellate cells (HSCs). Subsequently, we constructed different ZY-1-based fluorescent probes and explored the real-time imaging performance of these fluorescent probes in CCl4-induced mouse models of different liver fibrosis stages. The ZY-1-based fluorescent probes, for the first time, effectively identified and distinguished early-stage liver fibrosis (stage 3 of Ishak 6) from advanced liver fibrosis (stage 5 of Ishak 6). The proof-of-concept study provides compelling evidences that ZY-1-based probes are a promising tool for the early diagnosis and staging of liver fibrosis and paves the way for further development of clinical-related diagnosis strategies for fibrotic diseases of the liver and other organs. STATEMENT OF SIGNIFICANCE: Currently, early diagnosis and accurate staging of liver fibrosis continue to present significant challenges. This study demonstrates that fluorescent probes based on the nucleic acid aptamer ZY-1, which targets cellular fibronectin (cFN)-a crucial extracellular matrix (ECM) molecule that significantly accumulates during liver fibrosis-are promising bioimaging agents for staging liver fibrosis. The ZY-1-based fluorescent probes effectively identified and differentiated early-stage liver fibrosis from advanced liver fibrosis. This proof-of-concept study not only provides compelling evidence that ZY-1-based probes show promise for the early diagnosis and staging of liver fibrosis but also paves the way for further investigations into the use of ZY-1 in detecting other diseases associated with cFN.
Collapse
Affiliation(s)
- Mengjun Ge
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Haitao Zou
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiahao Chen
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Qinyao Zhang
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Yang
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Jiumei Wu
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xing Xie
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Lei
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China.
| | - Shaoliang Peng
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|