1
|
Cao Z, Zhao C, Mo S, Gao BH, Liu M. The impact of tangeretin combined with whey protein on exercise-induced bronchoconstriction in professional athletes: a placebo-controlled trial. J Int Soc Sports Nutr 2024; 21:2414870. [PMID: 39422600 PMCID: PMC11492410 DOI: 10.1080/15502783.2024.2414870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exercise-induced bronchoconstriction (EIB) is highly prevalent in athletes. The objective of this study was to assess the therapeutic efficacy of daily tangeretin combined with whey protein supplementation over a period of 4 weeks in professional athletes with EIB. METHODS Using a placebo-controlled, double-blind, paired, randomized trial design, a cohort of 30 professional athletes with EIB, consisting of 14 females and 16 males, was divided into two groups: the tangeretin combined with whey protein intervention group (TIG), and the placebo control group (PCG). Both the TIG and PCG underwent exercise challenge tests (ECT) and VO2max tests before (ECT1, V1) and after (ECT2, V2) the intervention. Blood (eosinophils, neutrophils, and basophils) and serum (interleukin-5, IL-5; interleukin-8, IL-8; Clara cell secretory protein-16, CC16; immunoglobulin E, IgE) levels were measured early in the morning of ECT1 and ECT2, respectively. Lung function was assessed immediately before and post-ECT immediately. RESULTS Tangeretin combined with whey protein use for 4 weeks attenuated the decrease in forced expiratory volume in 1 s (FEV1) post trials (∆FEV1(ECT1-ECT2): mean (SD) TIG -7.51(6.9)% vs. PCG -2.33(11.49)%, p = 0.013). Tangeretin also substantially attenuated IL-5 concentration (∆IL-5(T1-T5): Tangeretin -19.4% vs Placebo + 8.37%, p = 0.022); IL-8 concentration (∆IL-8(T1-T5): Tangeretin -17.28% vs Placebo + 6.1%, p = 0.012); CC16 concentration (∆CC16(T1-T5): Tangeretin -11.77% vs Placebo + 24.19%); and IgE concentration in the serum (∆IgE(T1-T5): Tangeretin -24.1% vs Placebo -3.9%), and significantly decreased neutrophil count (∆N(T1-T5): Tangeretin -11.34% vs Placebo + 0.3%) and eosinophil count in blood (∆N(T1-T5): Tangeretin -38.5% vs Placebo + 4.35%). Compared with V1, VO2max (p = 0.042) and TLim (p = 0.05) of V2 were significantly increased in the TIG, and there was no significant change in the PCG. Meanwhile, six athletes in the TIG and 0 athletes in the PCG became EIB-negative at ECT2; the overall negative conversion rate of EIB was 40.00% in TCG. Additionally, the number of cough symptoms decreased from 9 to 3 and dyspnea from 4 to 2 in the TIG. CONCLUSION After high-intensity exercise, athletes with EIB achieved significant improvements in lung function and blood inflammatory factors by combining tangeretin and whey protein supplementation. EIB athletes also showed longer exercise endurance and VO2max at 4 weeks after TI. In addition, some patient symptoms disappeared after combination supplementation. The effect of this treatment on professional athletes with EIB was beneficial.
Collapse
Affiliation(s)
- Zhi Cao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Can Zhao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Shiwei Mo
- Shenzhen University, School of Physical Education, Shenzhen, China
| | - Bing-Hong Gao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Meng Liu
- Chongqing University, Chongqing, China
- Chongqing Institute of Sport Science, Chongqing administration of sport, Chongqing, China
| |
Collapse
|
2
|
Wong M, Gardner L, Denton E, Borg BM, Dharmakumara M, Mahoney J, Bondarenko J, Hore-Lacy F, Lin T, Sverrild A, Hew M, Lee J. Investigation of exertional dyspnoea by cardiopulmonary exercise testing with continuous laryngoscopy. J Sci Med Sport 2024:S1440-2440(24)00523-1. [PMID: 39419690 DOI: 10.1016/j.jsams.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES Abnormal breathlessness at maximal exercise may be caused by a range of conditions, including exercise-induced bronchospasm, breathing pattern disorder, or exercise-induced laryngeal obstruction. These three disorders may not be detected on standard cardiopulmonary exercise testing. The aim of this study was to describe diagnostic outcomes of an expanded protocol during cardiopulmonary exercise testing. DESIGN Retrospective cohort study. METHODS Patients presenting with abnormal breathlessness on maximal exercise underwent continuous laryngoscopy with cardiopulmonary exercise testing on a stationary cycle ergometer. Breathing pattern disorder was evaluated by video and ventilatory data. Pre- and post-exercise spirometry was performed. RESULTS 24 adult patients were evaluated; 10 were professional athletes. Mean age was 40 years (range 18-73). Nine of 24 (38 %) were diagnosed with exercise-induced laryngeal obstruction and referred for speech pathology. Six of these had supraglottic exercise-induced laryngeal obstruction; all were aged <30 years; 5/6 were professional athletes. One patient had breathing pattern disorder and was referred for physiotherapy; one had exercise-induced bronchospasm, requiring escalation of asthma medication; one had muscle tension dysphonia resulting in referral to an otolaryngologist who administered a laryngeal injection of botulinum toxin. A further four patients had unexplained lower maximal oxygen consumption with cardiac limitation and were referred for further cardiac investigation. CONCLUSIONS In patients reporting abnormal breathlessness at maximal exercise, this expanded exercise protocol provided diagnostic information in 66.7 % cases which contributed to further personalised management.
Collapse
Affiliation(s)
- Melanie Wong
- Asthma, Allergy and Clinical Immunology Service, Alfred Health, Australia.
| | - Logan Gardner
- Asthma, Allergy and Clinical Immunology Service, Alfred Health, Australia; Public Health & Preventive Medicine, Monash University, Australia
| | - Eve Denton
- Asthma, Allergy and Clinical Immunology Service, Alfred Health, Australia; Central Clinical School, Monash University, Australia
| | - Brigitte M Borg
- Physiology Service, Respiratory Medicine, Alfred Health, Australia
| | | | | | | | - Fiona Hore-Lacy
- Asthma, Allergy and Clinical Immunology Service, Alfred Health, Australia; Public Health & Preventive Medicine, Monash University, Australia
| | - Tiffany Lin
- Asthma, Allergy and Clinical Immunology Service, Alfred Health, Australia
| | - Asger Sverrild
- Asthma, Allergy and Clinical Immunology Service, Alfred Health, Australia; Department of Respiratory Medicine, University Hospital Bispebjerg, Denmark
| | - Mark Hew
- Asthma, Allergy and Clinical Immunology Service, Alfred Health, Australia; Public Health & Preventive Medicine, Monash University, Australia
| | - Joy Lee
- Asthma, Allergy and Clinical Immunology Service, Alfred Health, Australia; Central Clinical School, Monash University, Australia
| |
Collapse
|
3
|
Kowalski T, Rebis K, Wilk A, Klusiewicz A, Wiecha S, Paleczny B. Body Oxygen Level Test (BOLT) is not associated with exercise performance in highly-trained individuals. Front Physiol 2024; 15:1430837. [PMID: 39290618 PMCID: PMC11406178 DOI: 10.3389/fphys.2024.1430837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The analysis of chemoreflex and baroreflex sensitivity may contribute to optimizing patient care and athletic performance. Breath-holding tests, such as the Body Oxygen Level Test (BOLT), have gained popularity as a feasible way to evaluate the reflex control over the cardiorespiratory system. According to its proponents, the BOLT score reflects the body's sensitivity to carbon dioxide and homeostasis disturbances, providing feedback on exercise tolerance. However, it has not yet been scientifically validated or linked with exercise performance in highly-trained individuals. Therefore, we investigated the association of BOLT scores with the results of standard performance tests in elite athletes. Methods A group of 49 speedskaters performed BOLT, Wingate Anaerobic Test (WAnT), and cardiopulmonary exercise test (CPET) on a cycle ergometer. Peak power, total work, and power drop were measured during WAnT. Time to exhaustion and maximum oxygen uptake were measured during CPET. Spearman's rank correlation and multiple linear regression were performed to analyze the association of BOLT scores with parameters obtained during the tests, age, somatic indices, and training experience. Results No significant correlations between BOLT scores and parameters obtained during WAnT and CPET were found, r(47) = -0.172-0.013, p = 0.248-0.984. The parameters obtained during the tests, age, somatic indices, and training experience were not significant in multiple linear regression (p = 0.38-0.85). The preliminary regression model showed an R 2 of 0.08 and RMSE of 9.78 sec. Conclusions Our findings did not demonstrate a significant relationship between BOLT scores and exercise performance. Age, somatic indices, and training experience were not significant in our analysis. It is recommended to interpret BOLT concerning exercise performance in highly-trained populations with a great degree of caution.
Collapse
Affiliation(s)
- Tomasz Kowalski
- Department of Physiology, Institute of Sport - National Research Institute, Warsaw, Poland
| | - Kinga Rebis
- Department of Physiology, Institute of Sport - National Research Institute, Warsaw, Poland
| | - Adrian Wilk
- Department of Physiology, Institute of Sport - National Research Institute, Warsaw, Poland
| | - Andrzej Klusiewicz
- Department of Physical Education and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Szczepan Wiecha
- Department of Physical Education and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Bartłomiej Paleczny
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
4
|
Grandinetti R, Mussi N, Rossi A, Zambelli G, Masetti M, Giudice A, Pilloni S, Deolmi M, Caffarelli C, Esposito S, Fainardi V. Exercise-Induced Bronchoconstriction in Children: State of the Art from Diagnosis to Treatment. J Clin Med 2024; 13:4558. [PMID: 39124824 PMCID: PMC11312884 DOI: 10.3390/jcm13154558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is a common clinical entity in people with asthma. EIB is characterized by postexercise airway obstruction that results in symptoms such as coughing, dyspnea, wheezing, chest tightness, and increased fatigue. The underlying mechanism of EIB is not completely understood. "Osmotic theory" and "thermal or vascular theory" have been proposed. Initial assessment must include a specific work-up to exclude alternative diagnoses like exercise-induced laryngeal obstruction (EILO), cardiac disease, or physical deconditioning. Detailed medical history and clinical examination must be followed by basal spirometry and exercise challenge test. The standardized treadmill running (TR) test, a controlled and standardized method to assess bronchial response to exercise, is the most adopted exercise challenge test for children aged at least 8 years. In the TR test, the goal is to reach the target heart rate in a short period and maintain it for at least 6 min. The test is then followed by spirometry at specific time points (5, 10, 15, and 30 min after exercise). In addition, bronchoprovocation tests like dry air hyperpnea (exercise and eucapnic voluntary hyperpnea) or osmotic aerosols (inhaled mannitol) can be considered when the diagnosis is uncertain. Treatment options include both pharmacological and behavioral approaches. Considering medications, the use of short-acting beta-agonists (SABA) just before exercise is the commonest option strategy, but daily inhaled corticosteroids (ICS) can also be considered, especially when EIB is not controlled with SABA only or when the patients practice physical activity very often. Among the behavioral approaches, warm-up before exercise, breathing through the nose or face mask, and avoiding polluted environments are all recommended strategies to reduce EIB risk. This review summarizes the latest evidence published over the last 10 years on the pathogenesis, diagnosis using spirometry and indirect bronchoprovocation tests, and treatment strategies, including SABA and ICS, of EIB. A specific focus has been placed on EIB management in young athletes, since this condition can not only prevent them from practicing regular physical activity but also competitive sports.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (R.G.); (N.M.); (A.R.); (G.Z.); (M.M.); (A.G.); (S.P.); (M.D.); (C.C.); (S.E.)
| |
Collapse
|
5
|
Csoma BALÁ, Sydó N, SZŰcs G, Seres É, Erdélyi T, Horváth G, Csulak E, Merkely B, Müller V. Exhaled and Systemic Biomarkers to Aid the Diagnosis of Bronchial Asthma in Elite Water Sports Athletes. Med Sci Sports Exerc 2024; 56:1256-1264. [PMID: 38650115 DOI: 10.1249/mss.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE Our aim was to evaluate the accuracy of a combined airway inflammatory biomarker assessment in diagnosing asthma in elite water sports athletes. METHODS Members of the Hungarian Olympic and Junior Swim Team and elite athletes from other aquatic disciplines were assessed for asthma by objective lung function measurements, and blood eosinophil count (BEC), serum total immunoglobulin E (IgE), fractional exhaled nitric oxide (F ENO ) measurements, and skin prick testing were performed. A scoring system from BEC, F ENO , serum IgE, and skin test positivity was constructed by dichotomizing the variables and assigning a score of 1 if the variable is elevated. These scores were summed to produce a final composite score ranging from 0 to 4. RESULTS A total of 48 participants were enrolled (age 21 ± 4 yr, 42% male), of which 22 were diagnosed with asthma. Serum total IgE and F ENO levels were higher in asthmatic individuals (68 [27-176] vs 24 [1-43], P = 0.01; 20 [17-26] vs 15 [11-22], P = 0.02), and positive prick test was also more frequent (55% vs 8%, P < 0.01). Asthmatic participants had higher composite variable scores (2 [1-3] vs 1 [0-1], P = 0.02). Receiver operating characteristic analysis showed that total IgE, F ENO , and composite variable were suitablefor identifying asthmatic participants (area under the curve = 0.72, P = 0.01; 0.70, P = 0.02, and 0.69, P = 0.03). A composite score of >2 reached a specificity of 96.2%, a sensitivity of 36.4%, and a likelihood ratio of 9.5. Logistic regression model revealed a strong association between the composite variable and the asthma diagnosis (OR = 2.71, 95% confidence interval = 1.17-6.23, P = 0.02). CONCLUSIONS Our data highlight the diagnostic value of combined assessment of Th2-type inflammation in elite water sports athletes. The proposed scoring system may be helpful in ruling in asthma in this population upon clinical suspicion.
Collapse
Affiliation(s)
- BALÁzs Csoma
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Nóra Sydó
- Heart and Vascular Centre, Semmelweis University, Budapest, HUNGARY
| | - Gergő SZŰcs
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Éva Seres
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Tamás Erdélyi
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Gábor Horváth
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Emese Csulak
- Heart and Vascular Centre, Semmelweis University, Budapest, HUNGARY
| | - Béla Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, HUNGARY
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| |
Collapse
|
6
|
Pigakis KM, Stavrou VT, Kontopodi AK, Pantazopoulos I, Daniil Z, Gourgoulianis K. Impact of Isolated Exercise-Induced Small Airway Dysfunction on Exercise Performance in Professional Male Cyclists. Sports (Basel) 2024; 12:112. [PMID: 38668580 PMCID: PMC11054898 DOI: 10.3390/sports12040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Professional cycling puts significant demands on the respiratory system. Exercise-induced bronchoconstriction (EIB) is a common problem in professional athletes. Small airways may be affected in isolation or in combination with a reduction in forced expiratory volume at the first second (FEV1). This study aimed to investigate isolated exercise-induced small airway dysfunction (SAD) in professional cyclists and assess the impact of this phenomenon on exercise capacity in this population. MATERIALS AND METHODS This research was conducted on professional cyclists with no history of asthma or atopy. Anthropometric characteristics were recorded, the training age was determined, and spirometry and specific markers, such as fractional exhaled nitric oxide (FeNO) and immunoglobulin E (IgE), were measured for all participants. All of the cyclists underwent cardiopulmonary exercise testing (CPET) followed by spirometry. RESULTS Compared with the controls, 1-FEV3/FVC (the fraction of the FVC that was not expired during the first 3 s of the FVC) was greater in athletes with EIB, but also in those with isolated exercise-induced SAD. The exercise capacity was lower in cyclists with isolated exercise-induced SAD than in the controls, but was similar to that in cyclists with EIB. This phenomenon appeared to be associated with a worse ventilatory reserve (VE/MVV%). CONCLUSIONS According to our data, it appears that professional cyclists may experience no beneficial impacts on their respiratory system. Strenuous endurance exercise can induce airway injury, which is followed by a restorative process. The repeated cycle of injury and repair can trigger the release of pro-inflammatory mediators, the disruption of the airway epithelial barrier, and plasma exudation, which gradually give rise to airway hyper-responsiveness, exercise-induced bronchoconstriction, intrabronchial inflammation, peribronchial fibrosis, and respiratory symptoms. The small airways may be affected in isolation or in combination with a reduction in FEV1. Cyclists with isolated exercise-induced SAD had lower exercise capacity than those in the control group.
Collapse
Affiliation(s)
- Konstantinos M. Pigakis
- Department of Respiratory & Critical Care Medicine, Creta Interclinic, 71304 Heraklion, Greece
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.T.S.); (Z.D.); (K.G.)
| | - Vasileios T. Stavrou
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.T.S.); (Z.D.); (K.G.)
| | - Aggeliki K. Kontopodi
- Department of Respiratory & Critical Care Medicine, Creta Interclinic, 71304 Heraklion, Greece
| | - Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Zoe Daniil
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.T.S.); (Z.D.); (K.G.)
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.T.S.); (Z.D.); (K.G.)
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
7
|
Klain A, Giovannini M, Pecoraro L, Barni S, Mori F, Liotti L, Mastrorilli C, Saretta F, Castagnoli R, Arasi S, Caminiti L, Gelsomino M, Indolfi C, Del Giudice MM, Novembre E. Exercise-induced bronchoconstriction, allergy and sports in children. Ital J Pediatr 2024; 50:47. [PMID: 38475842 DOI: 10.1186/s13052-024-01594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is characterized by the narrowing of airways during or after physical activity, leading to symptoms such as wheezing, coughing, and shortness of breath. Distinguishing between EIB and exercise-induced asthma (EIA) is essential, given their divergent therapeutic and prognostic considerations. EIB has been increasingly recognized as a significant concern in pediatric athletes. Moreover, studies indicate a noteworthy prevalence of EIB in children with atopic predispositions, unveiling a potential link between allergic sensitivities and exercise-induced respiratory symptoms, underpinned by an inflammatory reaction caused by mechanical, environmental, and genetic factors. Holistic management of EIB in children necessitates a correct diagnosis and a combination of pharmacological and non-pharmacological interventions. This review delves into the latest evidence concerning EIB in the pediatric population, exploring its associations with atopy and sports, and emphasizing the appropriate diagnostic and therapeutic approaches by highlighting various clinical scenarios.
Collapse
Affiliation(s)
- Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy.
| | - Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
- Department of Health Sciences, University of Florence, 50139, Florence, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126, Verona, Italy
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Lucia Liotti
- Pediatric Unit, Department of Mother and Child Health, Salesi Children's Hospital, 60123, Ancona, Italy
| | - Carla Mastrorilli
- Pediatric and Emergency Department, Pediatric Hospital Giovanni XXIII, AOU Policlinic of Bari, 70126, Bari, Italy
| | - Francesca Saretta
- Pediatric Department, Latisana-Palmanova Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Stefania Arasi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Caminiti
- Allergy Unit, Department of Pediatrics, AOU Policlinico Gaetano Martino, 98124, Messina, Italy
| | - Mariannita Gelsomino
- Department of Life Sciences and Public Health, Pediatric Allergy Unit, University Foundation Policlinico Gemelli IRCCS, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Elio Novembre
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| |
Collapse
|
8
|
Ora J, De Marco P, Gabriele M, Cazzola M, Rogliani P. Exercise-Induced Asthma: Managing Respiratory Issues in Athletes. J Funct Morphol Kinesiol 2024; 9:15. [PMID: 38249092 PMCID: PMC10801521 DOI: 10.3390/jfmk9010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Asthma is a complex respiratory condition characterized by chronic airway inflammation and variable expiratory airflow limitation, affecting millions globally. Among athletes, particularly those competing at elite levels, the prevalence of respiratory conditions is notably heightened, varying between 20% and 70% across specific sports. Exercise-induced bronchoconstriction (EIB) is a common issue among athletes, impacting their performance and well-being. The prevalence rates vary based on the sport, training environment, and genetics. Exercise is a known trigger for asthma, but paradoxically, it can also improve pulmonary function and alleviate EIB severity. However, athletes' asthma phenotypes differ, leading to varied responses to medications and challenges in management. The unique aspects in athletes include heightened airway sensitivity, allergen, pollutant exposure, and temperature variations. This review addresses EIB in athletes, focusing on pathogenesis, diagnosis, and treatment. The pathogenesis of EIB involves complex interactions between physiological and environmental factors. Airway dehydration and cooling are key mechanisms, leading to osmotic and thermal theories. Airway inflammation and hyper-responsiveness are common factors. Elite athletes often exhibit distinct inflammatory responses and heightened airway sensitivity, influenced by sport type, training, and environment. Swimming and certain sports pose higher EIB risks, with chlorine exposure in pools being a notable factor. Immune responses, lung function changes, and individual variations contribute to EIB in athletes. Diagnosing EIB in athletes requires objective testing, as baseline lung function tests can yield normal results. Both EIB with asthma (EIBA) and without asthma (EIBwA) must be considered. Exercise and indirect bronchoprovocation tests provide reliable diagnoses. In athletes, exercise tests offer effectiveness in diagnosing EIB. Spirometry and bronchodilation tests are standard approaches, but the diagnostic emphasis is shifting toward provocation tests. Despite its challenges, achieving an optimal diagnosis of EIA constitutes the cornerstone for effective management, leading to improved performance, reduced risk of complications, and enhanced quality of life. The management of EIB in athletes aligns with the general principles for symptom control, prevention, and reducing complications. Non-pharmacological approaches, including trigger avoidance and warming up, are essential. Inhaled corticosteroids (ICS) are the cornerstone of asthma therapy in athletes. Short-acting beta agonists (SABA) are discouraged as sole treatments. Leukotriene receptor antagonists (LTRA) and mast cell stabilizing agents (MCSA) are potential options. Optimal management improves the athletes' quality of life and allows them to pursue competitive sports effectively.
Collapse
Affiliation(s)
- Josuel Ora
- Division of Respiratory Medicine, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Patrizia De Marco
- Division of Respiratory Medicine, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Mariachiara Gabriele
- Division of Respiratory Medicine, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paola Rogliani
- Division of Respiratory Medicine, University Hospital “Tor Vergata”, 00133 Rome, Italy
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
9
|
Hostrup M, Jessen S. Beyond bronchodilation: Illuminating the performance benefits of inhaled beta 2 -agonists in sports. Scand J Med Sci Sports 2024; 34:e14567. [PMID: 38268072 DOI: 10.1111/sms.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
Given the prevalent use of inhaled beta2 -agonists in sports, there is an ongoing debate as to whether they enhance athletic performance. Over the last decades, inhaled beta2 -agonists have been claimed not to enhance performance with little consideration of dose or exercise modality. In contrast, orally administered beta2 -agonists are perceived as being performance enhancing, predominantly on muscle strength and sprint ability, but can also induce muscle hypertrophy and slow-to-fast fiber phenotypic switching. But because inhaled beta2 -agonists are more efficient to achieve high systemic concentrations than oral delivery relative to dose, it follows that the inhaled route has the potential to enhance performance too. The question is at which inhaled doses such effects occur. While supratherapeutic doses of inhaled beta2 -agonists enhance muscle strength and short intense exercise performance, effects at low therapeutic doses are less apparent. However, even high therapeutic inhaled doses of commonly used beta2 -agonists have been shown to induce muscle hypertrophy and to enhance sprint performance. This is concerning from an anti-doping perspective. In this paper, we raise awareness of the circumstances under which inhaled beta2 -agonists can constitute a performance-enhancing benefit.
Collapse
Affiliation(s)
- Morten Hostrup
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Human Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Hostrup M, Hansen ESH, Rasmussen SM, Jessen S, Backer V. Asthma and exercise-induced bronchoconstriction in athletes: Diagnosis, treatment, and anti-doping challenges. Scand J Med Sci Sports 2024; 34:e14358. [PMID: 36965010 DOI: 10.1111/sms.14358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Athletes often experience lower airway dysfunction, such as asthma and exercise-induced bronchoconstriction (EIB), which affects more than half the athletes in some sports, not least in endurance sports. Symptoms include coughing, wheezing, and breathlessness, alongside airway narrowing, hyperresponsiveness, and inflammation. Early diagnosis and management are essential. Not only because untreated or poorly managed asthma and EIB potentially affects competition performance and training, but also because untreated airway inflammation can result in airway epithelial damage, remodeling, and fibrosis. Asthma and EIB do not hinder performance, as advancements in treatment strategies have made it possible for affected athletes to compete at the highest level. However, practitioners and athletes must ensure that the treatment complies with general guidelines and anti-doping regulations to prevent the risk of a doping sanction because of inadvertently exceeding specified dosing limits. In this review, we describe considerations and challenges in diagnosing and managing athletes with asthma and EIB. We also discuss challenges facing athletes with asthma and EIB, while also being subject to anti-doping regulations.
Collapse
Affiliation(s)
- Morten Hostrup
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Erik S H Hansen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Søren M Rasmussen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
- Medical Department, Nykøbing Falster Hospital, Nykøbing Falster, Denmark
| | - Søren Jessen
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
- Department of Otorhinolaryngology Head & Neck Surgery and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
11
|
Parekh AB. House dust mite allergens, store-operated Ca 2+ channels and asthma. J Physiol 2023. [PMID: 38054814 DOI: 10.1113/jp284931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
The house dust mite is the principal source of aero-allergen worldwide. Exposure to mite-derived allergens is associated with the development of asthma in susceptible individuals, and the majority of asthmatics are allergic to the mite. Mite-derived allergens are functionally diverse and activate multiple cell types within the lung that result in chronic inflammation. Allergens activate store-operated Ca2+ release-activated Ca2+ (CRAC) channels, which are widely expressed in multiple cell types within the lung that are associated with the pathogenesis of asthma. Opening of CRAC channels stimulates Ca2+ -dependent transcription factors, including nuclear factor of activated T cells and nuclear factor-κB, which drive expression of a plethora of pro-inflammatory cytokines and chemokines that help to sustain chronic inflammation. Here, I describe drivers of asthma, properties of mite-derived allergens, how the allergens are recognized by cells, the signalling pathways used by the receptors and how these are transduced into functional effects, with a focus on CRAC channels. In vivo experiments that demonstrate the effectiveness of targeting CRAC channels as a potential new therapy for treating mite-induced asthma are also discussed, in tandem with other possible approaches.
Collapse
Affiliation(s)
- Anant B Parekh
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
12
|
Wang L, Wu S, He B, Liu S, Liang S, Luo Y. Exercise-induced bronchoconstriction assessed by a ratio of surface diaphragm EMG to tidal volume. Physiol Rep 2023; 11:e15860. [PMID: 37960999 PMCID: PMC10643992 DOI: 10.14814/phy2.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is usually assessed by changes in forced expiratory volume in 1 s (FEV1 ) which is effort dependent. The purpose of this study was to determine whether the diaphragm electromyogram (EMGdi ) recorded from chest wall surface electrodes could be used to reflect changes in airway resistance during an exercise challenge test and to distinguish patients with EIB from those without EIB. Ninety participants with or without asthma history were included in the study. FEV1 was recorded before and 5, 10, 15, and 20 min after exercise. EIB was defined as an FEV1 decline greater than 10% after exercise. A ratio of root mean square of EMGdi to tidal volume (EMGdi /VT ) was used to assess changes in airway resistance. Based on changes in FEV1 , 25 of 90 participants exhibited EIB; the remainder were defined as non-EIB participants. EMGdi /VT in EIB increased by 124% (19%-478%) which was significantly higher than that of 21% (-39% to 134%) in non-EIB participants (p < 0.001). At the optimal cutoff point (54% in EMGdi /VT ), the area under the ROC curve (AUC) for detection of a positive test was 0.92 (p < 0.001) with sensitivity 92% and specificity 88%. EMGdi /VT can be used to assess changes in airway resistance after exercise and could be used to distinguish participants with EIB from those without EIB.
Collapse
Affiliation(s)
- Lishuang Wang
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Senrui Wu
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Baiting He
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Simin Liu
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Shanfeng Liang
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Yuanming Luo
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
- Division of Sleep and Circadian DisordersBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- College of Medicine and Public Health, Adelaide Institute for Sleep HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
13
|
Sogard AS, Mickleborough TD. The therapeutic role of inspiratory muscle training in the management of asthma: a narrative review. Am J Physiol Regul Integr Comp Physiol 2023; 325:R645-R663. [PMID: 37720997 DOI: 10.1152/ajpregu.00325.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Asthma is a disorder of the airways characterized by chronic airway inflammation, hyperresponsiveness, and variable recurring airway obstruction. Treatment options for asthma include pharmacological strategies, whereas nonpharmacological strategies are limited. Established pharmacological approaches to treating asthma may cause unwanted side effects and do not always afford adequate protection against asthma, possibly because of an individual's variable response to medications. A potential nonpharmacological intervention that is most available and cost effective is inspiratory muscle training (IMT), which is a technique targeted at increasing the strength and endurance of the diaphragm and accessory muscles of inspiration. Studies examining the impact of IMT on asthma have reported increases in inspiratory muscle strength and a reduction in the perception of dyspnea and medication use. However, because of the limited number of studies and discordant methods between studies more evidence is required to elucidate in individuals with asthma the efficacy of IMT on inspiratory muscle endurance, exercise capacity, asthma control, symptoms, and quality of life as well as in adolescents with differing severities of asthma. Large randomized controlled trials would be a significant step forward in clarifying the effectiveness of IMT in individuals with asthma. Although IMT may have favorable effects on inspiratory muscle strength, dyspnea, and medication use, the current evidence that IMT is an effective treatment for asthma is inconclusive.
Collapse
Affiliation(s)
- Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
14
|
Spivak I, Gut G, Hanna M, Gur M, Shallufi G, Ben-David Y, Nir V, Hakim F, Bentur L, Bar-Yoseph R. The effect of nose clip on exercise-induced bronchoconstriction in adolescents. Pediatr Pulmonol 2023; 58:2647-2655. [PMID: 37378471 DOI: 10.1002/ppul.26569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Oral breathing is considered to increase hyper-responsiveness of the airways. Data on the need for nose clip (NC) during exercise challenge test (ECT) in children and adolescents is scarce. Ouraim was to evaluate the role of NC during ECT in children and adolescents. METHODS A prospective, cohort study; children referred for ECT were evaluated on two separate visits, with and without a NC. Demographic, clinical data and measurements of lung functions were recorded. Allergy and asthma control were evaluated by Total Nasal Symptoms Score (TNSS) and Asthma Control Test (ACT) questionnaires. RESULTS Sixty children and adolescents (mean age 16.7 ± 1.1 years, 38% Female,) performed ECT with NC and 48 (80%) completed visit 2 (ECT without NC), 8.7 ± 7.9 days after visit 1. Following exercise, 29/48 patients (60.4%) with NC had a decline of ≥12% in forced expiratory volume in the first second (FEV1 ) (positive ECT) compared to only 16/48 (33.3%) positive tests without NC (p = 0.0008). Test result was changed in 14 patients from positive ECT (with NC) to negative ECT (no NC) and in only one patient from negative to positive. The use of NC resulted in greater FEV1 decline (median 16.3% predicted, IQR 6.0-19.1% predicted vs. median 4.5% predicted, IQR 1.6-18.4% predicted, p = 0.0001), and better FEV1 increase after bronchodil at or inhalation compared to ECT without NC. Higher TNSS scores did not predict higher probability to positive ECT. CONCLUSIONS The use of NC during ECT increases detection rate of exercise induced bronchoconstriction during ECT in the pediatric population. These findings strengthen the recommendation of nasal blockage during ECT in children and adolescents.
Collapse
Affiliation(s)
- Ilia Spivak
- Department of Pediatrics, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Guy Gut
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Moneera Hanna
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Michal Gur
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - George Shallufi
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Yael Ben-David
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Vered Nir
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fahed Hakim
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lea Bentur
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Bar-Yoseph
- Pediatric Pulmonary Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Qian K, Xu H, Chen Z, Zheng Y. Advances in pulmonary rehabilitation for children with bronchial asthma. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:518-525. [PMID: 37643985 PMCID: PMC10495252 DOI: 10.3724/zdxbyxb-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Bronchial asthma is a heterogeneous disease characterized by chronic airway inflammation and airway hyperresponsiveness. With the development of the whole-life-cycle health concept, the focus of treatment for bronchial asthma in children has gradually shifted from pharmacological control to an integrated management model of functional rehabilitation and pharmacological assistance. As a non-pharmacological integrated approach, pulmonary rehabilitation plays an equally important role in the management of childhood asthma as pharmacological treatments. Breathing techniques such as Buteyko breathing, pursed lip breathing, diaphragmatic breathing training, threshold-pressure inspiratory muscle training and yoga breathing can improve lung function indicators such as forced expiratory volume in first second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and maximal voluntary ventilation (MVV) in children. Comprehensive pre-exercise assessment, development of exercise prescriptions, and implementation and evaluation of exercise effects can improve physical fitness, neuromuscular coordination, and self-confidence of children with asthma. The comprehensive interventions of health education, psychological support and nutritional intervention can improve the compliance and effectiveness of rehabilitation training. This article reviews the research progress on respiratory training, physical exercise, and comprehensive interventions in the pulmonary rehabilitation of asthmatic children, to provide theoretical basis and practical guidance for the scientific and rational management of pulmonary rehabilitation of asthmatic children in clinical settings.
Collapse
Affiliation(s)
- Kongjia Qian
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Hongzhen Xu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Zhimin Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ying Zheng
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
16
|
Goossens J, Jonckheere AC, Seys SF, Dilissen E, Decaesteker T, Goossens C, Peers K, Vanbelle V, Stappers J, Aertgeerts S, De Wilde B, Leus J, Verelst S, Raes M, Dupont L, Bullens DM. Activation of epithelial and inflammatory pathways in adolescent elite athletes exposed to intense exercise and air pollution. Thorax 2023; 78:775-783. [PMID: 36927754 PMCID: PMC10359548 DOI: 10.1136/thorax-2022-219651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
RATIONALE Participation in high-intensity exercise in early life might act as stressor to the airway barrier. OBJECTIVES To investigate the effect of intense exercise and associated exposure to air pollution on the airway barrier in adolescent elite athletes compared with healthy controls and to study exercise-induced bronchoconstriction (EIB) in this population. METHODS Early-career elite athletes attending 'Flemish-Elite-Sports-Schools' (12-18 years) of 4 different sport disciplines (n=90) and control subjects (n=25) were recruited. Presence of EIB was tested by the eucapnic voluntary hyperventilation (EVH) test. Markers at mRNA and protein level; RNA-sequencing; carbon load in airway macrophages were studied on induced sputum samples. RESULTS 444 genes were differentially expressed in sputum from athletes compared with controls, which were related to inflammation and epithelial cell damage and sputum samples of athletes contained significantly more carbon loaded airway macrophages compared with controls (24%, 95% CI 20% to 36%, p<0.0004). Athletes had significantly higher substance P (13.3 pg/mL, 95% CI 2.0 to 19.2) and calprotectin (1237 ng/mL, 95% CI 531 to 2490) levels as well as IL-6, IL-8 and TNF-α mRNA levels compared with controls (p<0.05). The incidence of EIB in athletes was 9%. The maximal fall in forced expiratory volume in 1 s (%) after EVH test in athletes was significantly associated with prior PM10 and PM2.5 exposure. CONCLUSION Early-career elite athletes showed increased markers of air pollution exposure, epithelial damage and airway inflammation compared with controls. Acute exposure to increased air pollution PM10 levels was linked to increased airway hyper-reactivity. TRIAL REGISTRATION NUMBER NCT03587675.
Collapse
Affiliation(s)
- Janne Goossens
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Anne-Charlotte Jonckheere
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Sven F Seys
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Ellen Dilissen
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Tatjana Decaesteker
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Camille Goossens
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Koen Peers
- Sport Medical Advice Centre, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Sven Aertgeerts
- Academic Centre for General Practitioners, Catholic University, Leuven, Belgium
| | | | - Jasmine Leus
- Pediatric Allergy, AZ Maria Middelares, Sint-Niklaas, Belgium
- Clinical Division of Paediatrics, Katholieke Universiteit, Leuven, Flanders, Belgium
| | - Sophie Verelst
- Clinical Division of Paediatrics, Katholieke Universiteit, Leuven, Flanders, Belgium
- Pediatrics, Jessa Hospital Campus Virga Jesse, Hasselt, Belgium
| | - Marc Raes
- Clinical Division of Paediatrics, Katholieke Universiteit, Leuven, Flanders, Belgium
- Pediatrics, Jessa Hospital Campus Virga Jesse, Hasselt, Belgium
| | - Lieven Dupont
- Department of Respiratory Medicine, University Hospital Gasthuisberg, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Dominique M Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Division of Paediatrics, Katholieke Universiteit, Leuven, Flanders, Belgium
| |
Collapse
|
17
|
Verhey JT, Poon SK. General Medical Emergencies in Athletes. Clin Sports Med 2023; 42:427-440. [PMID: 37208057 DOI: 10.1016/j.csm.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This article focuses on the management of the most common on-field medical emergencies. As with any discipline in medicine, a well-defined plan and systematic approach is the cornerstone of quality health care delivery. In addition, the team-based collaboration is necessary for the safety of the athlete and the success of the treatment plan.
Collapse
Affiliation(s)
- Jens T Verhey
- Orthopaedic Surgery Residency, Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Steven K Poon
- Sports Medicine Section, Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, AZ, USA.
| |
Collapse
|
18
|
Barahona JA, Mills K, Hernandez M, Bozkurt A, Carpenter D, Lobaton EJ. Adolescent Asthma Monitoring: A Preliminary Study of Audio and Spirometry Modalities. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083189 DOI: 10.1109/embc40787.2023.10340643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Asthma patients' sleep quality is correlated with how well their asthma symptoms are controlled. In this paper, deep learning techniques are explored to improve forecasting of forced expiratory volume in one second (FEV1) by using audio data from participants and test whether auditory sleep disturbances are correlated with poorer asthma outcomes. These are applied to a representative data set of FEV1 collected from a commercially available sprirometer and audio spectrograms collected overnight using a smartphone. A model for detecting nonverbal vocalizations including coughs, sneezes, sighs, snoring, throat clearing, sniffs, and breathing sounds was trained and used to capture nightly sleep disturbances. Our preliminary analysis found significant improvement in FEV1 forecasting when using overnight nonverbal vocalization detections as an additional feature for regression using XGBoost over using only spirometry data.Clinical relevance- This preliminary study establishes up to 30% improvement of FEV1 forecasting using features generated by deep learning techniques over only spirometry-based features.
Collapse
|
19
|
Pigakis KM, Stavrou VT, Pantazopoulos I, Daniil Z, Kontopodi-Pigaki AK, Gourgoulianis K. Effect of Hydration on Pulmonary Function and Development of Exercise-Induced Bronchoconstriction among Professional Male Cyclists. Adv Respir Med 2023; 91:239-253. [PMID: 37366805 DOI: 10.3390/arm91030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Exercise-induced bronchoconstriction (EIB) is a common problem in elite athletes. Classical pathways in the development of EIB include the osmotic and thermal theory as well as the presence of epithelial injury in the airway, with local water loss being the main trigger of EIB. This study aimed to investigate the effects of systemic hydration on pulmonary function and to establish whether it can reverse dehydration-induced alterations in pulmonary function. MATERIALS AND METHODS This follow-up study was performed among professional cyclists, without a history of asthma and/or atopy. Anthropometric characteristics were recorded for all participants, and the training age was determined. In addition, pulmonary function tests and specific markers such as fractional exhaled nitric oxide (FeNO) and immunoglobulin E (IgE) were measured. All the athletes underwent body composition analysis and cardiopulmonary exercise testing (CPET). After CPET, spirometry was followed at the 3rd, 5th, 10th, 15th, and 30th min. This study was divided into two phases: before and after hydration. Cyclists, who experienced a decrease in Forced Expiratory Volume in one second (FEV1) ≥ 10% and/or Maximal Mild-Expiratory Flow Rate (MEF25-75) ≥ 20% after CPET in relation to the results of the spirometry before CPET, repeated the test in 15-20 days, following instructions for hydration. RESULTS One hundred male cyclists (n = 100) participated in Phase A. After exercise, there was a decrease in all spirometric parameters (p < 0.001). In Phase B, after hydration, in all comparisons, the changes in spirometric values were significantly lower than those in Phase A (p < 0.001). CONCLUSIONS The findings of this study suggest that professional cyclists have non-beneficial effects on respiratory function. Additionally, we found that systemic hydration has a positive effect on spirometry in cyclists. Of particular interest are small airways, which appear to be affected independently or in combination with the decrease in FEV1. Our data suggest that pulmonary function improves systemic after hydration.
Collapse
Affiliation(s)
- Konstantinos M Pigakis
- Department of Respiratory & Critical Care Medicine, Creta Interclinic, 71304 Heraklion, Greece
| | - Vasileios T Stavrou
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Pantazopoulos
- Emergency Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Zoe Daniil
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | | | - Konstantinos Gourgoulianis
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
20
|
Wang B, Song ZM, Li JD, Zhao YL, Sun PL, Tian JK, Yin JZ, Zhang Y. Benign but fatal: management of endotracheal Rosai-Dorfman disease with acute onset. Thorax 2023; 78:211-213. [PMID: 36261274 DOI: 10.1136/thorax-2022-219092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/22/2022] [Indexed: 01/17/2023]
Abstract
Rosai-Dorfman disease (RDD) is a non-malignant condition mainly manifesting as a proliferation of histiocytes in lymph nodes. Endotracheal RDD (ERDD) with an acute onset presentation is extremely rare. There are few case reports of ERDD mainly concerning its pathology, diagnostics and bronchoscopic treatment, without providing sufficient clinical information from a comprehensive perspective. As a novel and challenging technique, tracheal resection and reconstruction (TRR) with spontaneous-ventilation video-assisted thoracoscopic surgery (SV-VATS) has been reported as feasible and safe in highly selected patients, but few centres have shared their experience with this approach. This case-based discussion includes not only practical issues in the management of a life-threatening ERDD patient, but also specialists' views on the management of acute obstructive airway, and the surgeons' reflection on TRR with SV-VATS.
Collapse
Affiliation(s)
- Bin Wang
- Department of Thoracic Surgery, Jilin University Second Hospital, Changchun, Jilin, China
| | - Zhi-Min Song
- Department of Anesthesiology, Jilin University Second Hospital, Changchun, Jilin, China
| | - Jin-Dong Li
- Department of Thoracic Surgery, Jilin University Second Hospital, Changchun, Jilin, China
| | - Yin-Long Zhao
- Department of Radiology and Nuclear Medicine, Jilin University Second Hospital, Changchun, Jilin, China
| | - Ping-Li Sun
- Department of Pathology, Jilin University Second Hospital, Changchun, Jilin, China
| | - Jia-Kun Tian
- Department of Intensive Care, Jilin University Second Hospital, Changchun, Jilin, China
| | - Jin-Zhi Yin
- Department of Respiratory Medicine, Jilin University Second Hospital, Changchun, Jilin, China
| | - Yan Zhang
- Department of Thoracic Surgery, Jilin University Second Hospital, Changchun, Jilin, China
| |
Collapse
|
21
|
Goossens J, Decaesteker T, Jonckheere AC, Seys S, Verelst S, Dupont L, Bullens DMA. How to detect young athletes at risk of exercise-induced bronchoconstriction? Paediatr Respir Rev 2022; 44:40-46. [PMID: 34740520 DOI: 10.1016/j.prrv.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a prevalent condition in elite athletes caused by transient airway narrowing during or after exercise. Young athletes nowadays start early to perform high level exercise, highlighting the need to screen for EIB in a younger population. The purpose of this review is to evaluate current evidence of pre-tests with high probability to predict a positive provocation test in young and adolescent athletes, aged 12-24 years and thus indicate whether a young athlete is at risk of having EIB. Up to now, there is no validated screening test available to increase the pre-test probability of a provocation test of EIB in young and adolescent athletes. We would recommend that a clinical guideline committee might consider the development of a flow chart to screen for EIB in adolescent athletes. It could be composed of a symptom-based questionnaire focusing on wheezing during exercise, atopic state, reversibility test (to exclude EIB with asthma) and completed with markers in blood/serum. However, more research is necessary.
Collapse
Affiliation(s)
- Janne Goossens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven 3000, Belgium.
| | - Tatjana Decaesteker
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven 3000, Belgium
| | - Anne-Charlotte Jonckheere
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven 3000, Belgium
| | - Sven Seys
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven 3000, Belgium
| | - Sophie Verelst
- UZ Leuven, Clinical Division of Paediatrics, Leuven 3000, Belgium
| | - Lieven Dupont
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven 3000, Belgium; UZ Leuven, Clinical Division of Respiratory Medicine, Leuven 3000, Belgium
| | - Dominique M A Bullens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven 3000, Belgium; UZ Leuven, Clinical Division of Paediatrics, Leuven 3000, Belgium
| |
Collapse
|
22
|
Khairullin AE, Teplov AY, Grishin SN, Ziganshin AU. Purinergic Mechanisms of Adaptation of Different Types of Motor Units under Conditions of Allergic Reorganization. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
23
|
Rasmussen SM, Hansen ESH, Backer V. Asthma in elite athletes - do they have Type 2 or non-Type 2 disease? A new insight on the endotypes among elite athletes. FRONTIERS IN ALLERGY 2022; 3:973004. [PMID: 36340019 PMCID: PMC9633848 DOI: 10.3389/falgy.2022.973004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
Asthma and exercise-induced bronchoconstriction are highly prevalent in elite athletes compared with the general population. Some athletes have classic asthma with allergic sensitization; however, it seems that a proportion of athletes develop asthma as a result of several years of intensive training. It leads us to believe that asthma in athletes consists of at least two distinct endotypes - classic early-onset, Type 2 mediated asthma, and asthma with later onset caused by exercise which might be classified as non-Type 2 asthma. The purpose of this review is to evaluate the current literature on asthma in athletes focusing on inflammation and examine if asthma in athletes could be characterized as either Type 2- or non-Type 2 asthma.
Collapse
Affiliation(s)
- Søren Malte Rasmussen
- Medical Department, Nykøbing Falster Hospital, Nykøbing Falster, Denmark,Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Correspondence: Søren Malte Rasmussen
| | - Erik Sören Halvard Hansen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre, Hospital, Hvidovre, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Department of Otorhinolaryngology Head / Neck surgery and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
24
|
Current Limitations and Recent Advances in the Management of Asthma. Dis Mon 2022:101483. [DOI: 10.1016/j.disamonth.2022.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Gu W, Lei J, Zhu H, Xiao Y, Zhang Z, Zhao L. Effect of the BMPR-II-SMAD3/MRTF pathway on proliferation and migration of ASMCs and the mechanism in asthma. Mol Biol Rep 2022; 49:9283-9296. [PMID: 36008606 PMCID: PMC9515032 DOI: 10.1007/s11033-022-07764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
Background A variety of smooth muscle-specific genes and proteins, including SMAD3, BMPR-II, and MRTF, are involved in airway remodeling in asthma. As a receptor of bone morphogenetic protein (BMP) signaling, BMPR-II has important roles in airway remodeling in asthma. However, the underlying mechanism of BMPR-II in airway smooth muscle cells (ASMCs) in asthma remains incomplete. Methods Wistar rats were intraperitoneally injected with ovalbumin antigen suspension and aluminium hydroxide and, stimulated with ovalbumin nebulized inhalation to constructed asthma model. Primary ASMCs were isolated with collagenase I and identified by testing the α-SMA expression. Quantitative polymerase chain reaction (qPCR) and western blot assay were employed to detect the gene expression. CCK8, Transwell and Fluo-4 A assays were introduced to measure the cell viability, migration and intracellular Ca2+. Co-Immunoprecipitation (Co-IP) assay was applied to test the interaction among proteins. Results First, we observed significant increases in BMPR-II in asthmatic rat model and ASMCs at both the mRNA and protein levels. Second, we observed that silencing of siBMPR-II inhibited proliferation, migratory capacity and intracellular Ca2+ concentration in ASMCs. Furthermore, our study demonstrated that siBMPR-II inhibited the Smad3 expression and overexpression promoted the bioactivity of ASMCs. In addition, this study showed that p-Smad3 could interacted with MRTF and siMRTF inhibits the bioactivity of ASMCs. Finally, our results revealed BMPR-II-SMAD3/MRTF pathway affected the bioactivity of ASMCs. Conclusions This study indicates that the BMPR-II-SMAD3/MRTF signaling pathway is involved in the process of ASMCs remodeling, providing novel avenues for the identification of new therapeutic modalities.
Collapse
Affiliation(s)
- Wenbo Gu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiahui Lei
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - He Zhu
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yali Xiao
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhenping Zhang
- People's Hospital of Zhongmu, Zhengzhou, China.,Henan Provincial People's Hospital, Zhengzhou, China
| | - Limin Zhao
- Zhengzhou University People's Hospital, Zhengzhou, China. .,Henan Provincial People's Hospital, Zhengzhou, China. .,Henan Univerity People's Hospital, Zhengzhou, China. .,Department of Respiratory Medicine, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), No. 7 Weiwu Road, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Bernhardsen GP, Stang J, Halvorsen T, Stensrud T. Differences in lung function, bronchial hyperresponsiveness and respiratory health between elite athletes competing in different sports. Eur J Sport Sci 2022:1-10. [PMID: 35975407 DOI: 10.1080/17461391.2022.2113144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objectives: Examine lung function, bronchial hyperresponsiveness (BHR) and exercise-induced respiratory symptoms in elite athletes performing different sports.Methods: Norwegian national-team athletes (30 swimmers, 32 cross-country skiers, 16 speed-skaters, 11 rowers/paddlers, 17 handball players and 23 soccer players) completed a validated questionnaire, measured exhaled nitric oxide (FENO), spirometry, methacholine provocation (PD20met) and skin prick test. Three cut-off levels defined BHR; i.e., PD20met ≤2µmol, ≤4 µmol and ≤8µmol.Results: Mean forced vital capacity (FVC) was highest in swimmers (Mean z-score[95%CI] =1.16 [0.80, 1.51]), and close to or higher than reference values according to the Global Lung Initiative equation, across all sports. Mean forced expiratory volume in 1 second (FEV1) was higher than reference values in swimmers (0.48 [0.13, 0.84]), and ball game athletes (0.69 [0.41, 0.97]). Mean forced expiratory flow between 25 and 75% of FVC (FEF25-75), and/or FEV1/FVC were lower than reference values in all endurance groups. BHR defined by ≤2 and ≤8 µmol methacholine was observed in respectively 50%-87% of swimmers, 25%-47% of cross-country skiers, 20%-53% of speed-skaters, 18%-36% and of rowers/paddlers, and 0%-17% of the ball game athletes. Exercise-induced symptoms were common in all groups, most frequent in cross-country skiers (88%), swimmers (83%) and speed-skaters (81%).Conclusion: Elite swimmers and ball game athletes had higher mean FVC and FEV1, compared to reference values. However, FEF25-75 and/or FEV1/FVC was lower than the reference values in all endurance groups. The prevalence of BHR was high across all sports, except the ball game athletes, and most of the athletes reported exercise-induced respiratory symptoms.
Collapse
Affiliation(s)
- Guro P Bernhardsen
- Norwegian School of Sport Sciences, Department of Sports Medicine, Oslo, Norway.,Akershus University Hospital, R&D department, Division of Mental Health Services, Lørenskog, Norway
| | - Julie Stang
- Norwegian School of Sport Sciences, Department of Sports Medicine, Oslo, Norway
| | - Thomas Halvorsen
- Norwegian School of Sport Sciences, Department of Sports Medicine, Oslo, Norway.,University of Bergen, Department of Clinical Science, Faculty of Medicine, Bergen, Norway
| | - Trine Stensrud
- Norwegian School of Sport Sciences, Department of Sports Medicine, Oslo, Norway
| |
Collapse
|
27
|
Khairullin AE, Teplov AY, Grishin SN, Ziganshin AU. Purinergic Mechanisms in the Adaptation of the Mouse Diaphragm to Allergic Disorders. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Schwellnus M, Adami PE, Bougault V, Budgett R, Clemm HH, Derman W, Erdener U, Fitch K, Hull JH, McIntosh C, Meyer T, Pedersen L, Pyne DB, Reier-Nilsen T, Schobersberger W, Schumacher YO, Sewry N, Soligard T, Valtonen M, Webborn N, Engebretsen L. International Olympic Committee (IOC) consensus statement on acute respiratory illness in athletes part 2: non-infective acute respiratory illness. Br J Sports Med 2022; 56:bjsports-2022-105567. [PMID: 35623888 DOI: 10.1136/bjsports-2022-105567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 01/03/2023]
Abstract
Acute respiratory illness (ARill) is common and threatens the health of athletes. ARill in athletes forms a significant component of the work of Sport and Exercise Medicine (SEM) clinicians. The aim of this consensus is to provide the SEM clinician with an overview and practical clinical approach to non-infective ARill in athletes. The International Olympic Committee (IOC) Medical and Scientific Committee appointed an international consensus group to review ARill in athletes. Key areas of ARill in athletes were originally identified and six subgroups of the IOC Consensus group established to review the following aspects: (1) epidemiology/risk factors for ARill, (2) infective ARill, (3) non-infective ARill, (4) acute asthma/exercise-induced bronchoconstriction and related conditions, (5) effects of ARill on exercise/sports performance, medical complications/return-to-sport (RTS) and (6) acute nasal/laryngeal obstruction presenting as ARill. Following several reviews conducted by subgroups, the sections of the consensus documents were allocated to 'core' members for drafting and internal review. An advanced draft of the consensus document was discussed during a meeting of the main consensus core group, and final edits were completed prior to submission of the manuscript. This document (part 2) of this consensus focuses on respiratory conditions causing non-infective ARill in athletes. These include non-inflammatory obstructive nasal, laryngeal, tracheal or bronchial conditions or non-infective inflammatory conditions of the respiratory epithelium that affect the upper and/or lower airways, frequently as a continuum. The following aspects of more common as well as lesser-known non-infective ARill in athletes are reviewed: epidemiology, risk factors, pathology/pathophysiology, clinical presentation and diagnosis, management, prevention, medical considerations and risks of illness during exercise, effects of illness on exercise/sports performance and RTS guidelines.
Collapse
Affiliation(s)
- Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SEMLI, IOC Research Centre, Pretoria, Gauteng, South Africa
| | - Paolo Emilio Adami
- Health & Science Department, World Athletics, Monaco, Monaco Principality
| | - Valerie Bougault
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice, Provence-Alpes-Côte d'Azu, France
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Hege Havstad Clemm
- Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Wayne Derman
- Institute of Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- ISEM, IOC Research Center, South Africa, Stellenbosch, South Africa
| | - Uğur Erdener
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Ken Fitch
- School of Human Science; Sports, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London (UCL), London, UK
| | - Cameron McIntosh
- Dr CND McIntosh INC, Edge Day Hospital, Port Elizabeth, South Africa
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrucken, Germany
| | - Lars Pedersen
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Tonje Reier-Nilsen
- Oslo Sports Trauma Research Centre, The Norwegian Olympic Sports Centre, Oslo, Norway
- Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Wolfgang Schobersberger
- Insitute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), Kliniken Innsbruck and Private University UMIT Tirol, Hall, Austria
| | | | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SEMLI, IOC Research Centre, Pretoria, Gauteng, South Africa
| | - Torbjørn Soligard
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, Calgary, Alberta, Canada
| | - Maarit Valtonen
- KIHU, Research Institute for Olympic Sports, Jyväskylä, Finland
| | - Nick Webborn
- Centre for Sport and Exercise Science and Medicine, University of Brighton, Brighton, UK
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
- Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
29
|
Holthof K, Bridevaux PO, Frésard I. Underlying lung disease and exposure to terrestrial moderate and high altitude: personalised risk assessment. BMC Pulm Med 2022; 22:187. [PMID: 35534855 PMCID: PMC9088024 DOI: 10.1186/s12890-022-01979-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Once reserved for the fittest, worldwide altitude travel has become increasingly accessible for ageing and less fit people. As a result, more and more individuals with varying degrees of respiratory conditions wish to travel to altitude destinations. Exposure to a hypobaric hypoxic environment at altitude challenges the human body and leads to a series of physiological adaptive mechanisms. These changes, as well as general altitude related risks have been well described in healthy individuals. However, limited data are available on the risks faced by patients with pre-existing lung disease. A comprehensive literature search was conducted. First, we aimed in this review to evaluate health risks of moderate and high terrestrial altitude travel by patients with pre-existing lung disease, including chronic obstructive pulmonary disease, sleep apnoea syndrome, asthma, bullous or cystic lung disease, pulmonary hypertension and interstitial lung disease. Second, we seek to summarise for each underlying lung disease, a personalized pre-travel assessment as well as measures to prevent, monitor and mitigate worsening of underlying respiratory disease during travel.
Collapse
Affiliation(s)
- Kirsten Holthof
- Service de pneumologie, Centre Hospitalier du Valais Romand, Avenue du Grand-Champsec 80, 1950, Sion, Switzerland
| | - Pierre-Olivier Bridevaux
- Service de pneumologie, Centre Hospitalier du Valais Romand, Avenue du Grand-Champsec 80, 1950, Sion, Switzerland.,Service de pneumologie, Hôpitaux universitaires de Genève, 1211, Geneva 14, Switzerland.,Geneva Medical School, University of Geneva, Geneva, Switzerland
| | - Isabelle Frésard
- Service de pneumologie, Centre Hospitalier du Valais Romand, Avenue du Grand-Champsec 80, 1950, Sion, Switzerland.
| |
Collapse
|
30
|
Cuthbertson L, Turner SE, Jackson A, Ranson C, Loosemore M, Kelleher P, Moffatt MF, Cookson WO, Hull JH, Shah A. Evidence of immunometabolic dysregulation and airway dysbiosis in athletes susceptible to respiratory illness. EBioMedicine 2022; 79:104024. [PMID: 35490556 PMCID: PMC9062742 DOI: 10.1016/j.ebiom.2022.104024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/03/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
31
|
Bubnis MA, Hulsopple C. Human Performance and Injury Prevention in Cold Weather Environments. Curr Sports Med Rep 2022; 21:112-116. [PMID: 35394951 DOI: 10.1249/jsr.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT This article serves as a primer for those practitioners who serve as subject matter experts in cold weather medicine, whether it be medical planning for an outdoor event, making the determination "it is too cold to exercise," or investigating why an athlete is struggling to compete in a frigid environment. Cold weather exercise physiology is reviewed, and medical conditions that may impact performance at cold temperatures are briefly examined. Guidelines for cold weather risk assessment, injury prevention, and performance optimization also are discussed.
Collapse
Affiliation(s)
- Matthew A Bubnis
- National Capital Consortium Military Primary Care Sports Medicine Fellowship, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD
| | | |
Collapse
|
32
|
Dreßler M, Donath H, Quang TU, Hutter M, Trischler J, Zielen S, Schulze J, Blümchen K. Evaluating Children and Adolescents with Suspected Exercise Induced Asthma: Real Life Data. KLINISCHE PADIATRIE 2022; 234:267-276. [PMID: 35114701 DOI: 10.1055/a-1717-2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Exercise-induced bronchoconstriction (EIB) occurs frequently in children and adolescents and may be a sign of insufficient asthma control. EIB is often evaluated by respiratory symptoms, spirometry, eNO measurement and methacholine testing (MCT) instead of time consuming exercise test. Aim of this study was to analyse the amount of patients for which an exercise challenge in a cold chamber (ECC) was needed for a clear EIB diagnosis, to characterize EIB phenotypes and the incidence of exercise induced laryngeal obstruction (EILO) in a large cohort of patients with EIB. METHODS A retrospective analysis was performed in 595 children and adolescents (mean age 12.1 years) with suspected EIB from January 2014 to December 2018. Complete data sets of skin prick test, spirometry, eNO and MCT were available from 336 patients. RESULTS An ECC to confirm the EIB diagnosis was performed in 125 (37.2%) of patients. Three EIB phenotypes were detected: group 1: EIB without allergic sensitization (n=159); group 2: EIB with other than house dust mite (HDM) sensitization (n=87) and group 3: EIB with HDM sensitization (n=90). MCT and eNO showed significant differences between the subgroups: An eNO>46 ppb and/or a MCT<0.1 mg was found in 23.9% vs. 50.6% vs. 57.8% in group 1-3, respectively. Significantly more patients suffered from EILO in group 1 compared to group 2 and 3 (n=13 vs. n=1). CONCLUSION EIB without sensitization is as often as EIB with sensitization. In patients without sensitization, EILO has to be considered as a possible cause of symptoms during exercise.
Collapse
Affiliation(s)
- Melanie Dreßler
- Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Helena Donath
- Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Thao Uyen Quang
- Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Martin Hutter
- Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Jordis Trischler
- Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Johannes Schulze
- Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Katharina Blümchen
- Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| |
Collapse
|
33
|
Rochat I, Côté A, Boulet L. Determinants of lung function changes in athletic swimmers. A review. Acta Paediatr 2022; 111:259-264. [PMID: 34480504 PMCID: PMC9292748 DOI: 10.1111/apa.16095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023]
Abstract
AIM To summarise lung function characteristics of athletic swimmers and discuss mechanisms explaining these changes while putting forward the lack of a clear understanding of the precise physiological factors implicated. METHODS Literature search until 07.2021 on Medline and EMBASE using keywords swimming, athletes, respiratory physiology, lung development, lung function tests. Relevant articles in French and English were reviewed. RESULTS We found insufficient data to perform a meta-analysis. However, there is evidence that swimmers have better expiratory flows and increased baseline lung volumes than non-athletes or non-swimmers. Although these features can result from changes in lung development following intense training over the years, the contribution of a genetic predisposition and positive selection cannot be totally excluded. CONCLUSION Disentangling the participation of constitutional factors and years of hard training to explain the larger lung volumes of athletic swimmers is in favour of an adaptative response of the lungs to early swim training through modification of the pathway of lung development. There seems to be an optimal window of opportunity before the end of growth for these adaptational changes to occur. Precise mechanisms, and contribution of adaptative change on lung physiology, remain to be further studied.
Collapse
Affiliation(s)
- Isabelle Rochat
- Pediatric Pulmonology Unit Lausanne University Hospital Lausanne Switzerland
- Quebec Heart and Lung Institute Laval University Quebec Quebec Canada
| | - Andréanne Côté
- Quebec Heart and Lung Institute Laval University Quebec Quebec Canada
| | | |
Collapse
|
34
|
Pigakis KM, Stavrou VT, Pantazopoulos I, Daniil Z, Kontopodi AK, Gourgoulianis K. Exercise-Induced Bronchospasm in Elite Athletes. Cureus 2022; 14:e20898. [PMID: 35145802 PMCID: PMC8807463 DOI: 10.7759/cureus.20898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 11/05/2022] Open
|
35
|
Lei J, Yang T, Huang S, Li H, Zhu Y, Gao Y, Jiang Y, Wang W, Liu C, Kan H, Chen R. Hourly concentrations of fine and coarse particulate matter and dynamic pulmonary function measurements among 4992 adult asthmatic patients in 25 Chinese cities. ENVIRONMENT INTERNATIONAL 2022; 158:106942. [PMID: 34689038 DOI: 10.1016/j.envint.2021.106942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The short-term associations of fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) with pulmonary function were inconsistent and rarely evaluated by dynamic measurements. Our study aimed to investigate the associations of PM2.5 and PM2.5-10 with real-time pulmonary function. We conducted a longitudinal study based on dynamic pulmonary function measurements among adult asthmatic patients in 25 cities of 19 provincial regions of China from 2017 to 2020. Linear mixed-effects models combined with polynomial distributed lag models were used for statistical analysis. A total of 298,396 records among 4,992 asthmatic patients were evaluated. We found generally inverse associations of PM2.5 and PM2.5-10 with 16 pulmonary function indicators that were independent of gaseous pollutants. The associations occurred at lag 1 d, became the strongest at lag 4 d, and vanished a week later. PM2.5-10 had stronger associations than PM2.5, especially in southern China. Nationally, an interquartile increase in PM2.5-10 (28.0 μg/m3) was significantly associated with decreases in forced expiratory volume in 1 s (FEV1, 41.6 mL), the ratio of FEV1 in forced vital capacity (1.1%), peak expiratory flow (136.9 mL/s), and forced expiratory flow at 25-75% of forced vital capacity (54.3 mL/s). We observed stronger associations in patients of male, BMI ≥ 25 kg/m2, age ≥ 45 years old, and during warm seasons. In conclusion, this study provided robust evidence for impaired pulmonary function by short-term exposure to PM2.5 and PM2.5-10 in asthmatic patients using the largest dataset of dynamic monitoring. The associations can last for one week and PM2.5-10 may be more hazardous.
Collapse
Affiliation(s)
- Jian Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, Center of RespiratorEIy Medicine and National Center for Respiratory Medicine & National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Suijie Huang
- Guangzhou Homesun Medical Technology Co., Ltd, Guangdong Province, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China.
| |
Collapse
|
36
|
Reference Values of Forced Vital Capacity and Expiratory Flow in High-Level Cyclists. Life (Basel) 2021; 11:life11121293. [PMID: 34947824 PMCID: PMC8703380 DOI: 10.3390/life11121293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Several studies have demonstrated that spirometric theoretical values may not be applicable to the high-level sports population. No reference values exist for high-level professional cyclists. We aimed to establish predictive spirometric values by reference equations. One hundred and forty-five French Caucasian high-level professional cyclists, aged 18–38, performed basic anthropometric assessment and spirometry during the medical evaluation at the beginning of the sport season. Measured values were compared with theoretical values. Predictive equations were established from anthropometric parameters to explain variations of spirometric parameters. High-level cyclists had significantly higher spirometric values than the theoretical values established from a general population, except for forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and forced expiratory flow (FEF) at 25% of FVC. Only FVC and FEV1 were well predicted from body height. The FVC variation of 43.5% is explained by body height and weight. The FEV1 variation of 25.8% is explained only by body height. High-level cycling is associated with important respiratory adaptations depending on the body height and the sport specificity: intensive and prolonged endurance training. These findings are interesting for clinical individual application to diagnose obstructive disease and test reversibility with bronchodilator drugs.
Collapse
|
37
|
The Effects of Climate Therapy on Cardiorespiratory Fitness and Exercise-Induced Bronchoconstriction in Children with Asthma. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated whether a 1-week stay in the mountains may have a positive impact on Exercise-Induced Bronchoconstriction (EIB) and cardiorespiratory endurance in asthmatic children from an urban area. Spirometry was performed before and 10 min after a 20 m shuttle run test (20mSRT) on the first and seventh day of a summer asthma camp in the Italian Alps at 900 m of altitude. Spirometry z-scores were derived from the Global Lung Initiative 2012 prediction equations, and percentiles of the 20mSRT performance were assigned according to De Miguel-Etayo’s and Tomkinson’s predictive equations. A FEV1 decrease ≥10% after the exercise was defined as EIB. Particulate matter pollution was monitored during the camp and in the urban area of provenience. Twenty-four subjects (age range 7–16 years) were included. Frequency of EIB decreased from 58% (14/24) at day-1 to 33% (8/24) at the end of the camp (p = 0.08). Most subjects with a 20mSRT in the lowest quartile at day 1 had EIB (9/11). The proportion of children with a 20mSRT <25° percentile decreased from 45% (11/24) at day-1 to 16% (4/24) at day-7 (p = 0.02). Conclusion: One-week climate therapy in the mountains improved both bronchial hyperreactivity and cardiorespiratory endurance in our cohort of asthmatic children.
Collapse
|
38
|
Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med 2021; 52:725-740. [PMID: 34542868 PMCID: PMC8450723 DOI: 10.1007/s40279-021-01561-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
It is well established that physical activity reduces all-cause mortality and can prolong life. Ultra-endurance running (UER) is an extreme sport that is becoming increasingly popular, and comprises running races above marathon distance, exceeding 6 h, and/or running fixed distances on multiple days. Serious acute adverse events are rare, but there is mounting evidence that UER may lead to long-term health problems. The purpose of this review is to present the current state of knowledge regarding the potential long-term health problems derived from UER, specifically potential maladaptation in key organ systems, including cardiovascular, respiratory, musculoskeletal, renal, immunological, gastrointestinal, neurological, and integumentary systems. Special consideration is given to youth, masters, and female athletes, all of whom may be more susceptible to certain long-term health issues. We present directions for future research into the pathophysiological mechanisms that underpin athlete susceptibility to long-term issues. Although all body systems can be affected by UER, one of the clearest effects of endurance exercise is on the cardiovascular system, including right ventricular dysfunction and potential increased risk of arrhythmias and hypertension. There is also evidence that rare cases of acute renal injury in UER could lead to progressive renal scarring and chronic kidney disease. There are limited data specific to female athletes, who may be at greater risk of certain UER-related health issues due to interactions between energy availability and sex-hormone concentrations. Indeed, failure to consider sex differences in the design of female-specific UER training programs may have a negative impact on athlete longevity. It is hoped that this review will inform risk stratification and stimulate further research about UER and the implications for long-term health.
Collapse
|
39
|
Gatterer H, Dünnwald T, Turner R, Csapo R, Schobersberger W, Burtscher M, Faulhaber M, Kennedy MD. Practicing Sport in Cold Environments: Practical Recommendations to Improve Sport Performance and Reduce Negative Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9700. [PMID: 34574624 PMCID: PMC8471173 DOI: 10.3390/ijerph18189700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Although not a barrier to perform sport, cold weather environments (low ambient temperature, high wind speeds, and increased precipitation, i.e., rain/water/snow) may influence sport performance. Despite the obvious requirement for practical recommendations and guidelines to better facilitate training and competition in such cold environments, the current scientific evidence-base is lacking. Nonetheless, this review summarizes the current available knowledge specifically related to the physiological impact of cold exposure, in an attempt to provide practitioners and coaches alike with practical recommendations to minimize any potential negative performance effects, mitigate health issues, and best optimize athlete preparation across various sporting disciplines. Herein, the review is split into sections which explore some of the key physiological effects of cold exposure on performance (i.e., endurance exercise capacity and explosive athletic power), potential health issues (short-term and long-term), and what is currently known with regard to best preparation or mitigation strategies considered to negate the potential negative effects of cold on performance. Specific focus is given to "winter" sports that are usually completed in cold environments and practical recommendations for physical preparation.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy;
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT, Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall i.T., Tirol, Austria and Tirol-Kliniken GmbH, 6020 Innsbruck, Austria; (T.D.); (W.S.)
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy;
| | - Robert Csapo
- Centre for Sport Science and University Sports, University of Vienna, 1010 Vienna, Austria;
| | - Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT, Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall i.T., Tirol, Austria and Tirol-Kliniken GmbH, 6020 Innsbruck, Austria; (T.D.); (W.S.)
- Austrian Society for Alpine and High-Altitude Medicine, 6414 Mieming, Austria; (M.B.); (M.F.)
| | - Martin Burtscher
- Austrian Society for Alpine and High-Altitude Medicine, 6414 Mieming, Austria; (M.B.); (M.F.)
- Department of Sport Science, University Innsbruck, 6020 Innsbruck, Austria
| | - Martin Faulhaber
- Austrian Society for Alpine and High-Altitude Medicine, 6414 Mieming, Austria; (M.B.); (M.F.)
- Department of Sport Science, University Innsbruck, 6020 Innsbruck, Austria
| | - Michael D. Kennedy
- Athlete Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
40
|
Salameh M, Pini L, Quadri F, Spreafico F, Bottone D, Tantucci C. Predictors of exercise-induced bronchoconstriction in subjects with mild asthma. Allergy Asthma Clin Immunol 2021; 17:84. [PMID: 34391448 PMCID: PMC8364109 DOI: 10.1186/s13223-021-00585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Background Physical effort is capable of triggering airway obstruction in asthmatics, the so-called exercise-induced bronchoconstriction in asthma (EIBa). This study was performed in subjects with mild persistent asthma, aiming to find predictors for developing EIBa. Methods In 20 subjects with mild asthma, measurements of baseline functional respiratory parameters and airways responsiveness by a methacholine challenge were obtained on the first day. A maximal, symptom-limited incremental cardiopulmonary exercise test (CPExT) was performed the day after, with subsequent, repeated maneuvers of maximal full forced expiration to monitor the FEV1 change at 1,3,5,7,10 and 15 min after the end of the exercise. Results 19 subjects completed the two-days protocol. No functional parameters both at rest and during effort were useful to predict EIBa after stopping exercise. In asthmatics with EIBa, mean Inspiratory Capacity (IC) did not increase with increasing ventilatory requirements during CPExT because 6 of them (50%) displayed dynamic pulmonary hyperinflation (DH), as documented by their progressive increase of end-expiratory lung volume. This subgroup, showing earlier post-exercise FEV1 fall, had significantly lower forced mean expiratory flow between 25% and 75% of forced vital capacity (FEF25-75%) at rest (p < 0.05) and higher airways responsiveness, expressed as PD20FEV1 (p < 0.05) as compared with other asthmatics with EIBa. Conclusions No functional respiratory parameters seem to predict EIBa in mild asthmatics. However, in those with EIBa, a subgroup developed DH during exercise, and this was associated with a baseline reduced forced expiratory flow rates at lower lung volumes and higher airway hyperresponsiveness, suggesting a prominent small airways impairment.
Collapse
Affiliation(s)
- Maroon Salameh
- Respiratory Medicine Unit, Spedali Civili, Brescia, Piazzale Spedali Civili 1, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Laura Pini
- Respiratory Medicine Unit, Spedali Civili, Brescia, Piazzale Spedali Civili 1, Italy. .,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Federico Quadri
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fabio Spreafico
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Damiano Bottone
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Tantucci
- Respiratory Medicine Unit, Spedali Civili, Brescia, Piazzale Spedali Civili 1, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
41
|
Yu H, Zhou A, Liu J, Tang Y, Yuan Q, Man Y, Xiang L. Management of systemic risk factors ahead of dental implant therapy: A beard well lathered is half shaved. J Leukoc Biol 2021; 110:591-604. [PMID: 34231923 DOI: 10.1002/jlb.6mr0621-760rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
As the most successful therapy for missing teeth, dental implant has become increasingly prevalent around the world. A lot of papers have reported diverse local risk factors affecting the success and survival rate of dental implants, either for a short or a long period. However, there are also many types of systemic disorders or relatively administrated medicine that may jeopardize the security and success of dental implant treatment. Additionally, the coronavirus disease 2019 pandemic also poses a challenge to dental implant clinicians. Some of these risk factors are clinically common but to some extent unfamiliar to dentists, thus optimal measurements are often lacking when they occur in dental clinics. In this review, we analyze potential systemic risk factors that may affect the success rate of dental implants. Some of them may affect bone mineral density or enhance the likelihood of local infection, thus impeding osseointegration. Others may even systemically increase the risk of the surgery and threaten patients' life. In order to help novices receive high-risk patients who need to get dental implant treatment in a more reasonable way, we accordingly review recent research results and clinical experiments to discuss promising precautions, such as stopping drugs that impact bone mineral density or the operation, and addressing any perturbations on vital signs.
Collapse
Affiliation(s)
- Hui Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anqi Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Gowers W, Evans G, Carré J, Ashman M, Jackson A, Hopker J, Dickinson J. Eucapnic voluntary hyperpnea challenge can support management of exercise‐induced bronchoconstriction in elite swimmers. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- William Gowers
- School of Sport and Exercise Sciences University of Kent Chatham UK
| | | | | | | | | | - James Hopker
- School of Sport and Exercise Sciences University of Kent Chatham UK
| | - John Dickinson
- School of Sport and Exercise Sciences University of Kent Chatham UK
| |
Collapse
|
43
|
Management of Exercise-Induced Bronchoconstriction in Athletes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2183-2192. [PMID: 32620432 DOI: 10.1016/j.jaip.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a phenomenon observed in asthma but is also seen in healthy individuals and frequently in athletes. High prevalence rates are observed in athletes engaged in endurance sports, winter sports, and swimming. The pathophysiology of EIB is thought to be related to hyperventilation, cold air, and epithelial damage caused by chlorine and fine particles in inspired air. Several diagnostic procedures can be used; however, the diagnosis of EIB based on self-reported symptoms is not reliable and requires an objective examination. The hyperosmolar inhalation test and eucapnic voluntary hyperpnea test, which involve indirect stimulation of the airway, are useful for the diagnosis of EIB. A short-acting β-agonist is the first choice for prevention of EIB, and an inhaled corticosteroid is essential for patients with asthma. Furthermore, treatment should accommodate antidoping requirements in elite athletes. Tailoring of the therapeutic strategy to the individual case and the prognosis after cessation of athletic activity are issues that should be clarified in the future.
Collapse
|
44
|
Del Giacco S, Couto M, Firinu D, Garcia-Larsen V. Management of Intermittent and Persistent Asthma in Adolescent and High School Athletes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2166-2181. [PMID: 32620431 DOI: 10.1016/j.jaip.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
Asthma is the most common chronic condition during childhood and adolescence, affecting an estimated 8% of children and youngsters below 18 years in the United States and the United Kingdom. In adolescent athletes, asthma-like symptoms may represent a common consequence of regular sport practice. Asthma in young athletes poses several challenges, including the ambiguity of definitions and diagnosis of asthma resulting from exercise-induced symptoms, the best pharmacological treatments, and the nonpharmacological options for the management of disease and the challenges inherent to this age group. At a time when the regular practice of sports is increasingly being recommended for a healthy living, the support network around the young athletes is crucial to reduce the impact of asthma on their physical and emotional well-being. In this review, we examine the main issues around the definitions and clinical differentiations of asthma in young sport athletes. We discuss best practice approaches to improve the adherence to the clinical management, including nonpharmacological strategies directed at the family and trainers of athlete adolescents.
Collapse
Affiliation(s)
- Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Mariana Couto
- Immunoallergology, Hospital CUF Descobertas, Lisbon, Portugal
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| |
Collapse
|
45
|
Hilkens L, Knuiman P, Heijboer M, Kempers R, Jeukendrup AE, van Loon LJ, van Dijk JW. Fragile bones of elite cyclists: to treat or not to treat? J Appl Physiol (1985) 2021; 131:26-28. [PMID: 33703944 DOI: 10.1152/japplphysiol.01034.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Luuk Hilkens
- School of Sport and Exercise, HAN University of Applied Sciences, Netherlands
| | - Pim Knuiman
- School of Biomedical Sciences, University of Leeds, United Kingdom
| | | | | | - Asker E. Jeukendrup
- School of Sport, Exercise and Health Sciences, Loughborough University, United Kingdom
| | - Luc J.C. van Loon
- Department of Human Movement Sciences, Maastricht University Medical Centre, Netherlands
| | - Jan-Willem van Dijk
- School of Sport and Exercise, HAN University of Applied Sciences, Netherlands
| |
Collapse
|
46
|
Jones JC, Sugimoto D, Kobelski GP, Rao P, Miller S, Koilor C, Corrado GD, Shipon DM. Parameters of cardiac symptoms in young athletes using the Heartbytes database. PHYSICIAN SPORTSMED 2021; 49:37-44. [PMID: 32281468 DOI: 10.1080/00913847.2020.1755908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: To determine clinical parameters that are related to abnormal cardiac symptoms in physically active youth. Methods: We used Simon's Heart Heartbytes National Youth Cardiac Registry to collect data from adolescent athletes in southeastern Pennsylvania. We collected age, race/ethnicity, abnormal cardiac symptoms, medical history, medication use, caffeine intake, and family history. We obtained height, weight, blood pressure, cardiac murmur findings, and ECGs. Echocardiogram was obtained if necessary. Binary logistic regression analysis was performed to identify independent associations between abnormal cardiac symptoms and collected variables. The odds ratio (OR), 95% confidence interval (95% CI), and p-values were used as statistical values. Results: Of the 887 athletes (543 males and 344 females, age = 16.9 ± 2.1 years, height = 166.9 ± 11.4 cm, weight = 62.0 ± 16.0 kg), 186 (21%) had abnormal cardiac symptoms including chest pain, passing out, difficulty breathing, extreme fatigue, and heart race. There was an independent association between abnormal symptoms and a past medical history (OR: 4.77, 95%CI: 3.18, 7.17, p = 0.001) and medication use (OR: 1.74, 95%CI: 1.08, 2.79, p = 0.022). In medical history, young athletes with asthma showed a greater propensity of abnormal cardiac symptoms (48.9%) compared to young athletes without (14.0%, p = 0.001). Additionally, young athletes with anxiety or depression demonstrated a higher proportion of abnormal cardiac symptoms (48.9%) than those without (19.5%, p = 0.001). Although the association between the presence of abnormal symptoms and African-American race (OR: 2.04, 95%CI: 0.96, 4.35, p = 0.065) and average daily consumption of at least 2 caffeine drinks (OR: 2.08, 95%CI: 0.86, 5.02, p = 0.103) were not significant, there was a trend to reach the a priori significance level. Conclusions: This study identified several clinical parameters that are associated with symptoms suggestive of abnormal cardiac conditions. Larger studies need to be done to better sort out the clinical history that may contribute to false positives to further reduce false positives at heart screenings.
Collapse
Affiliation(s)
- Jacob C Jones
- The Micheli Center for Sports Injury Prevention , Waltham, MA, USA.,Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital , Waltham, MA, USA.,Department of Orthopaedic Surgery, Harvard Medical School , Boston, MA, USA
| | - Dai Sugimoto
- The Micheli Center for Sports Injury Prevention , Waltham, MA, USA.,Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital , Waltham, MA, USA.,Department of Orthopaedic Surgery, Harvard Medical School , Boston, MA, USA
| | - Greggory P Kobelski
- The Micheli Center for Sports Injury Prevention , Waltham, MA, USA.,Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital , Waltham, MA, USA
| | - Prashant Rao
- Division of Cardiovascular Medicine, Department of Medicine, Thomas Jefferson University Hospitals , Philadelphia, PA, USA
| | - Stanton Miller
- Department of Surgery, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Chris Koilor
- Division of Cardiovascular Medicine, Department of Medicine, Thomas Jefferson University Hospitals , Philadelphia, PA, USA
| | - Gianmichel D Corrado
- The Micheli Center for Sports Injury Prevention , Waltham, MA, USA.,Division of Sports Medicine, Department of Orthopedics, Boston Children's Hospital , Waltham, MA, USA.,Department of Orthopaedic Surgery, Harvard Medical School , Boston, MA, USA
| | - David M Shipon
- Division of Cardiovascular Medicine, Department of Medicine, Thomas Jefferson University Hospitals , Philadelphia, PA, USA
| |
Collapse
|
47
|
Xu L, Yi M, Tan Y, Yi Z, Zhang Y. A comprehensive analysis of microRNAs as diagnostic biomarkers for asthma. Ther Adv Respir Dis 2020; 14:1753466620981863. [PMID: 33357010 PMCID: PMC7768876 DOI: 10.1177/1753466620981863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: It is unclear whether microRNAs could be a potential diagnostic biomarker for asthma or not. The objective of this study is to figure out the diagnostic value of microRNAs in asthma. Methods: Literature retrieval, screening of publications, specific data extraction, and quality evaluation were conducted according to the standard criteria. Stata 14.0 software was used to analyze the diagnostic value of microRNA for asthma, including the combined sensitivity (Sen), specificity (Spe), the area under the curve (AUC), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Results: A total of 72 studies, containing 4143 cases and 2188 controls, were included for this comprehensive analysis. None of the included publications were rated low in quality. We summarized that, compared with controls, more than 100 miRNAs were reported differently expressed in asthma, although the expression trends were inconsistent. Besides, there were five studies among these 72 articles that applied the diagnostic evaluation of microRNAs in asthma. We found that the pooled Sen, Spe, and AUC for the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p in asthma were 0.87 (95%CI: 0.72–0.95), 0.84 (95%CI: 0.74–0.91), and 0.93 (95%CI: 0.89–0.94) individually, and the PLR, NLR, and DOR were 5.5 (95%CI: 3.1–9.7), 0.15 (95%CI: 0.07–0.36), and 35 (95%CI: 10–127) in asthma, respectively. In terms of subgroup analyses, we found that the Sen for these combination miRNAs from serum was higher than that in plasma, while the Spe in plasma worked better than that in serum. Furthermore, compared with children, the combination of above miRNAs from adults had higher Spe and similar Sen. Conclusions: From our analysis, the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p from peripheral blood could potentially act as a diagnostic biomarker for asthma. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixun Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
48
|
Ersson K, Mallmin E, Malinovschi A, Norlander K, Johansson H, Nordang L. Prevalence of exercise-induced bronchoconstriction and laryngeal obstruction in adolescent athletes. Pediatr Pulmonol 2020; 55:3509-3516. [PMID: 33002318 PMCID: PMC7702091 DOI: 10.1002/ppul.25104] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To study the prevalence of exercise-induced bronchoconstriction (EIB) and exercise-induced laryngeal obstruction (EILO) in adolescent athletes. METHODS All adolescents (n = 549) attending first year at a sports high school in 2016 and 2017, were invited to answer a questionnaire on respiratory symptoms. The 367 responding participants were divided into two groups based on whether they reported exercise-induced dyspnea (dyspnea group) or not (nondyspnea group). Randomly selected participants in each group were invited to undergo two standardized exercise tests, an EIB test and a continuous laryngoscopy exercise (CLE) test, to investigate EILO. RESULTS In total, 98 participants completed an EIB test, 75 of whom also completed a CLE test. Positive EIB tests: eight of 41 in the dyspnea group and 16 of 57 in the nondyspnea group. Positive CLE tests: 5 of 34 in the dyspnea group and three of 41 in the nondyspnea group. The estimated prevalence of EIB was 23.1% (95% confidence interval [CI]: 14.5-33.8) and of EILO 8.1% (95% CI: 2.5-18.5) in the whole study population. No differences in prevalence of EIB or EILO were found between the dyspnea and the nondyspnea groups. CONCLUSION EIB was highly prevalent in this cohort of adolescent athletes. EILO was less prevalent, but represents an important differential diagnosis to EIB. Self-reported exercise-induced dyspnea is a weak indicator for both EIB and EILO and standardized testing should be provided.
Collapse
Affiliation(s)
- Karin Ersson
- Department of Medical Sciences, Uppsala University, Sweden.,Department of Neuroscience, Uppsala University, Sweden
| | | | | | | | - Henrik Johansson
- Department of Medical Sciences, Uppsala University, Sweden.,Department of Neuroscience, Uppsala University, Sweden
| | - Leif Nordang
- Department of Surgical Sciences, Uppsala University, Sweden
| |
Collapse
|
49
|
Ueno H, Koya T, Takeuchi H, Tsukioka K, Saito A, Kimura Y, Hayashi M, Watanabe S, Hasegawa T, Arakawa M, Kikuchi T. Cysteinyl Leukotriene Synthesis via Phospholipase A2 Group IV Mediates Exercise-induced Bronchoconstriction and Airway Remodeling. Am J Respir Cell Mol Biol 2020; 63:57-66. [PMID: 32182104 DOI: 10.1165/rcmb.2019-0325oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is well known that the prevalence of asthma is higher in athletes, including Olympic athletes, than in the general population. In this study, we analyzed the mechanism of exercise-induced bronchoconstriction by using animal models of athlete asthma. Mice were made to exercise on a treadmill for a total duration of 1 week, 3 weeks, or 5 weeks. We analyzed airway responsiveness, BAL fluid, lung homogenates, and tissue histology for each period. In mice that were treated (i.e., the treatment model), treatments were administered from the fourth to the fifth week. We also collected induced sputum from human athletes with asthma and analyzed the supernatants. Airway responsiveness to methacholine was enhanced with repeated exercise stimulation, although the cell composition in BAL fluid did not change. Exercise induced hypertrophy of airway smooth muscle and subepithelial collagen deposition. Cysteinyl-leukotriene (Cys-LT) levels were significantly increased with exercise duration. Montelukast treatment significantly reduced airway hyperresponsiveness (AHR) and airway remodeling. Expression of PLA2G4 (phospholipase A2 group IV) and leukotriene C4 synthase in the airway epithelium was upregulated in the exercise model, and inhibition of PLA2 ameliorated AHR and airway remodeling, with associated lower levels of Cys-LTs. The levels of Cys-LTs in sputum from athletes did not differ between those with and without sputum eosinophilia. These data suggest that AHR and airway remodeling were caused by repeated and strenuous exercise. Cys-LTs from the airway epithelium, but not inflammatory cells, may play an important role in this mouse model.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Takeuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Tsukioka
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Saito
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yosuke Kimura
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masachika Hayashi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Hasegawa
- Department of General Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan; and
| | - Masaaki Arakawa
- Niigata Institute for Health and Sports Medicine, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
50
|
Bossé Y, Côté A. Asthma: An Untoward Consequence of Endurance Sports? Am J Respir Cell Mol Biol 2020; 63:7-8. [PMID: 32223717 PMCID: PMC7328247 DOI: 10.1165/rcmb.2020-0092ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuebec, Quebec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuebec, Quebec, Canada
| |
Collapse
|