1
|
Kramer SN, Antarasen J, Reinholt CR, Kisley L. A practical guide to light-sheet microscopy for nanoscale imaging: Looking beyond the cell. JOURNAL OF APPLIED PHYSICS 2024; 136:091101. [PMID: 39247785 PMCID: PMC11380115 DOI: 10.1063/5.0218262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
We present a comprehensive guide to light-sheet microscopy (LSM) to assist scientists in navigating the practical implementation of this microscopy technique. Emphasizing the applicability of LSM to image both static microscale and nanoscale features, as well as diffusion dynamics, we present the fundamental concepts of microscopy, progressing through beam profile considerations, to image reconstruction. We outline key practical decisions in constructing a home-built system and provide insight into the alignment and calibration processes. We briefly discuss the conditions necessary for constructing a continuous 3D image and introduce our home-built code for data analysis. By providing this guide, we aim to alleviate the challenges associated with designing and constructing LSM systems and offer scientists new to LSM a valuable resource in navigating this complex field.
Collapse
Affiliation(s)
- Stephanie N Kramer
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Jeanpun Antarasen
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Cole R Reinholt
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
2
|
Barroso M, Monaghan MG, Niesner R, Dmitriev RI. Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): The next frontier of drug discovery and disease understanding. Adv Drug Deliv Rev 2023; 201:115081. [PMID: 37647987 PMCID: PMC10543546 DOI: 10.1016/j.addr.2023.115081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Organoid models have been used to address important questions in developmental and cancer biology, tissue repair, advanced modelling of disease and therapies, among other bioengineering applications. Such 3D microenvironmental models can investigate the regulation of cell metabolism, and provide key insights into the mechanisms at the basis of cell growth, differentiation, communication, interactions with the environment and cell death. Their accessibility and complexity, based on 3D spatial and temporal heterogeneity, make organoids suitable for the application of novel, dynamic imaging microscopy methods, such as fluorescence lifetime imaging microscopy (FLIM) and related decay time-assessing readouts. Several biomarkers and assays have been proposed to study cell metabolism by FLIM in various organoid models. Herein, we present an expert-opinion discussion on the principles of FLIM and PLIM, instrumentation and data collection and analysis protocols, and general and emerging biosensor-based approaches, to highlight the pioneering work being performed in this field.
Collapse
Affiliation(s)
- Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 02, Ireland
| | - Raluca Niesner
- Dynamic and Functional In Vivo Imaging, Freie Universität Berlin and Biophysical Analytics, German Rheumatism Research Center, Berlin, Germany
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Son J, Mandracchia B, Silva Trenkle AD, Kwong GA, Jia S. Portable light-sheet optofluidic microscopy for 3D fluorescence imaging flow cytometry. LAB ON A CHIP 2023; 23:624-630. [PMID: 36633262 PMCID: PMC9931680 DOI: 10.1039/d2lc01024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Imaging flow cytometry (IFC) combines conventional flow cytometry with optical microscopy, allowing for high-throughput, multi-parameter screening of single-cell specimens with morphological and spatial information. However, current 3D IFC systems are limited by instrumental complexity and incompatibility with available microfluidic devices or operations. Here, we report portable light-sheet optofluidic microscopy (PLSOM) for 3D fluorescence cytometric imaging. PLSOM exploits a compact, open-top light-sheet configuration compatible with commonly adopted microfluidic chips. The system offers a subcellular resolution (2-4 μm) in all three dimensions, high throughput (∼1000 cells per s), and portability (30 cm (l) × 10 cm (w) × 26 cm (h)). We demonstrated PLSOM for 3D IFC using various phantom and cell systems. The low-cost and custom-built architecture of PLSOM permits easy adaptability and dissemination for broad 3D flow cytometric investigations.
Collapse
Affiliation(s)
- Jeonghwan Son
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Aaron D Silva Trenkle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
5
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
6
|
Schneckenburger H. Lasers in Live Cell Microscopy. Int J Mol Sci 2022; 23:ijms23095015. [PMID: 35563406 PMCID: PMC9102032 DOI: 10.3390/ijms23095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser applications in live cell biology are outlined. They include fluorescence diagnosis, in particular in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more generally—in biomedicine.
Collapse
|
7
|
ten Bosch L, Habedank B, Candeo A, Bassi A, Valentini G, Gerhard C. Light sheet fluorescence microscopy for the investigation of blood-sucking arthropods dyed via artificial membrane feeding. Parasit Vectors 2022; 15:52. [PMID: 35151358 PMCID: PMC8841056 DOI: 10.1186/s13071-022-05157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/08/2022] [Indexed: 12/02/2022] Open
Abstract
Physical methods to control pest arthropods are increasing in importance, but detailed knowledge of the effects of some of these methods on the target organisms is lacking. The aim of this study was to use light sheet fluorescence microscopy (LSFM) in anatomical studies of blood-sucking arthropods in vivo to assess the suitability of this method to investigate the morphological structures of arthropods and changes in these structures over time, using the human louse Pediculus humanus (Phthiraptera: Pediculidae) as sample organism. Plasma treatment was used as an example of a procedure employed to control arthropods. The lice were prepared using an artificial membrane feeding method involving the ingestion of human blood alone and human blood with an added fluorescent dye in vitro. It was shown that such staining leads to a notable enhancement of the imaging contrast with respect to unstained whole lice and internal organs that can normally not be viewed by transmission microscopy but which become visible by this approach. Some lice were subjected to plasma treatment to inflict damage to the organisms, which were then compared to untreated lice. Using LSFM, a change in morphology due to plasma treatment was observed. These results demonstrate that fluorescence staining coupled with LSFM represents a powerful and straightforward method enabling the investigation of the morphology—including anatomy—of blood-sucking lice and other arthropods.
Collapse
|
8
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
9
|
Yordanov S, Neuhaus K, Hartmann R, Díaz-Pascual F, Vidakovic L, Singh PK, Drescher K. Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries. BIOMEDICAL OPTICS EXPRESS 2021; 12:3372-3391. [PMID: 34221666 PMCID: PMC8221969 DOI: 10.1364/boe.420788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional fluorescence-based imaging of living cells and organisms requires the sample to be exposed to substantial excitation illumination energy, typically causing phototoxicity and photobleaching. Light sheet fluorescence microscopy dramatically reduces phototoxicity, yet most implementations are limited to objective lenses with low numerical aperture and particular sample geometries that are built for specific biological systems. To overcome these limitations, we developed a single-objective light sheet fluorescence system for biological imaging based on axial plane optical microscopy and digital confocal slit detection, using either Bessel or Gaussian beam shapes. Compared to spinning disk confocal microscopy, this system displays similar optical resolution, but a significantly reduced photobleaching at the same signal level. This single-objective light sheet technique is built as an add-on module for standard research microscopes and the technique is compatible with high-numerical aperture oil immersion objectives and standard samples mounted on coverslips. We demonstrate the performance of this technique by imaging three-dimensional dynamic processes, including bacterial biofilm dispersal, the response of biofilms to osmotic shocks, and macrophage phagocytosis of bacterial cells.
Collapse
Affiliation(s)
- Stoyan Yordanov
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Equal contribution
| | - Konstantin Neuhaus
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Renthof 5, 35037 Marburg, Germany
- Equal contribution
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Francisco Díaz-Pascual
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Lucia Vidakovic
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Renthof 5, 35037 Marburg, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| |
Collapse
|
10
|
Hof L, Moreth T, Koch M, Liebisch T, Kurtz M, Tarnick J, Lissek SM, Verstegen MMA, van der Laan LJW, Huch M, Matthäus F, Stelzer EHK, Pampaloni F. Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biol 2021; 19:37. [PMID: 33627108 PMCID: PMC7903752 DOI: 10.1186/s12915-021-00958-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Organoids are morphologically heterogeneous three-dimensional cell culture systems and serve as an ideal model for understanding the principles of collective cell behaviour in mammalian organs during development, homeostasis, regeneration, and pathogenesis. To investigate the underlying cell organisation principles of organoids, we imaged hundreds of pancreas and cholangiocarcinoma organoids in parallel using light sheet and bright-field microscopy for up to 7 days. RESULTS We quantified organoid behaviour at single-cell (microscale), individual-organoid (mesoscale), and entire-culture (macroscale) levels. At single-cell resolution, we monitored formation, monolayer polarisation, and degeneration and identified diverse behaviours, including lumen expansion and decline (size oscillation), migration, rotation, and multi-organoid fusion. Detailed individual organoid quantifications lead to a mechanical 3D agent-based model. A derived scaling law and simulations support the hypotheses that size oscillations depend on organoid properties and cell division dynamics, which is confirmed by bright-field microscopy analysis of entire cultures. CONCLUSION Our multiscale analysis provides a systematic picture of the diversity of cell organisation in organoids by identifying and quantifying the core regulatory principles of organoid morphogenesis.
Collapse
Affiliation(s)
- Lotta Hof
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Till Moreth
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Koch
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Tim Liebisch
- Frankfurt Institute for Advanced Studies and Faculty of Biological Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Marina Kurtz
- Department of Physics, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Julia Tarnick
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | - Susanna M Lissek
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Meritxell Huch
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Present address: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Franziska Matthäus
- Frankfurt Institute for Advanced Studies and Faculty of Biological Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Blutke A, Sun N, Xu Z, Buck A, Harrison L, Schriever SC, Pfluger PT, Wiles D, Kunzke T, Huber K, Schlegel J, Aichler M, Feuchtinger A, Matiasek K, Hauck SM, Walch A. Light sheet fluorescence microscopy guided MALDI-imaging mass spectrometry of cleared tissue samples. Sci Rep 2020; 10:14461. [PMID: 32879402 PMCID: PMC7468256 DOI: 10.1038/s41598-020-71465-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) of optically cleared biological samples represents a powerful tool to analyze the 3-dimensional morphology of tissues and organs. Multimodal combinations of LSFM with additional analyses of the identical sample help to limit the consumption of restricted specimen and reduce inter-sample variation. Here, we demonstrate the proof-of-concept that LSFM of cleared brain tissue samples can be combined with Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) for detection and quantification of proteins. Samples of freshly dissected murine brain and of archived formalin-fixed paraffin-embedded (FFPE) human brain tissue were cleared (3DISCO). Tissue regions of interest were defined by LSFM and excised, (re)-embedded in paraffin, and sectioned. Mouse sections were coated with sinapinic acid matrix. Human brain sections were pre-digested with trypsin and coated with α-cyano-4-hydroxycinnamic acid matrix. Subsequently, sections were subjected to MALDI-time-of-flight (TOF)-MSI in mass ranges between 0.8 to 4 kDa (human tissue sections), or 2.5–25 kDa (mouse tissue sections) with a lateral resolution of 50 µm. Protein- and peptide-identities corresponding to acquired MALDI-MSI spectra were confirmed by parallel liquid chromatography tandem mass spectrometry (LC–MS/MS) analysis. The spatial abundance- and intensity-patterns of established marker proteins detected by MALDI-MSI were also confirmed by immunohistochemistry.
Collapse
Affiliation(s)
- Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Zhihao Xu
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Luke Harrison
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, 80333, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | | | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Katharina Huber
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Jürgen Schlegel
- Institute for Pathology, Department of Neuropathology, Technische Universität München, 80333, Munich, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany.
| | - Kaspar Matiasek
- Institute for Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Stefanie M Hauck
- Research Unit for Protein Science, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| |
Collapse
|
12
|
Yang FW, Tomášová L, Guttenberg ZV, Chen K, Madzvamuse A. Investigating Optimal Time Step Intervals of Imaging for Data Quality through a Novel Fully-Automated Cell Tracking Approach. J Imaging 2020; 6:jimaging6070066. [PMID: 34460659 PMCID: PMC8321081 DOI: 10.3390/jimaging6070066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023] Open
Abstract
Computer-based fully-automated cell tracking is becoming increasingly important in cell biology, since it provides unrivalled capacity and efficiency for the analysis of large datasets. However, automatic cell tracking’s lack of superior pattern recognition and error-handling capability compared to its human manual tracking counterpart inspired decades-long research. Enormous efforts have been made in developing advanced cell tracking packages and software algorithms. Typical research in this field focuses on dealing with existing data and finding a best solution. Here, we investigate a novel approach where the quality of data acquisition could help improve the accuracy of cell tracking algorithms and vice-versa. Generally speaking, when tracking cell movement, the more frequent the images are taken, the more accurate cells are tracked and, yet, issues such as damage to cells due to light intensity, overheating in equipment, as well as the size of the data prevent a constant data streaming. Hence, a trade-off between the frequency at which data images are collected and the accuracy of the cell tracking algorithms needs to be studied. In this paper, we look at the effects of different choices of the time step interval (i.e., the frequency of data acquisition) within the microscope to our existing cell tracking algorithms. We generate several experimental data sets where the true outcomes are known (i.e., the direction of cell migration) by either using an effective chemoattractant or employing no-chemoattractant. We specify a relatively short time step interval (i.e., 30 s) between pictures that are taken at the data generational stage, so that, later on, we may choose some portion of the images to produce datasets with different time step intervals, such as 1 min, 2 min, and so on. We evaluate the accuracy of our cell tracking algorithms to illustrate the effects of these different time step intervals. We establish that there exist certain relationships between the tracking accuracy and the time step interval associated with experimental microscope data acquisition. We perform fully-automatic adaptive cell tracking on multiple datasets, to identify optimal time step intervals for data acquisition, while at the same time demonstrating the performance of the computer cell tracking algorithms.
Collapse
Affiliation(s)
- Feng Wei Yang
- Department of Chemical and Process Engineering, University of Surrey, Stag Hill, University Campus, Guildford GU2 7XH, UK
- Correspondence: (F.W.Y.); (A.M.)
| | - Lea Tomášová
- Ibidi GmbH Lochhammer Schlag 11, 82166 Gräfelfing, Germany; (L.T.); (Z.v.G.)
| | - Zeno v. Guttenberg
- Ibidi GmbH Lochhammer Schlag 11, 82166 Gräfelfing, Germany; (L.T.); (Z.v.G.)
| | - Ke Chen
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK;
| | - Anotida Madzvamuse
- School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Brighton BN1 9QH, UK
- Department of Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
- Correspondence: (F.W.Y.); (A.M.)
| |
Collapse
|
13
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
14
|
Vizsnyiczai G, Búzás A, Lakshmanrao Aekbote B, Fekete T, Grexa I, Ormos P, Kelemen L. Multiview microscopy of single cells through microstructure-based indirect optical manipulation. BIOMEDICAL OPTICS EXPRESS 2020; 11:945-962. [PMID: 32133231 PMCID: PMC7041459 DOI: 10.1364/boe.379233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Fluorescent observation of cells generally suffers from the limited axial resolution due to the elongated point spread function of the microscope optics. Consequently, three-dimensional imaging results in axial resolution that is several times worse than the transversal. The optical solutions to this problem usually require complicated optics and extreme spatial stability. A straightforward way to eliminate anisotropic resolution is to fuse images recorded from multiple viewing directions achieved mostly by the mechanical rotation of the entire sample. In the presented approach, multiview imaging of single cells is implemented by rotating them around an axis perpendicular to the optical axis by means of holographic optical tweezers. For this, the cells are indirectly trapped and manipulated with special microtools made with two-photon polymerization. The cell is firmly attached to the microtool and is precisely manipulated with 6 degrees of freedom. The total control over the cells' position allows for its multiview fluorescence imaging from arbitrarily selected directions. The image stacks obtained this way are combined into one 3D image array with a multiview image processing pipeline resulting in isotropic optical resolution that approaches the lateral diffraction limit. The presented tool and manipulation scheme can be readily applied in various microscope platforms.
Collapse
Affiliation(s)
- Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - András Búzás
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Badri Lakshmanrao Aekbote
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- School of Engineering, James Watt South Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - István Grexa
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Interdisciplinary Medicine, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Pál Ormos
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
15
|
Suchand Sandeep CS, Sarangapani S, Hong XJJ, Aung T, Baskaran M, Murukeshan VM. Optical sectioning and high resolution visualization of trabecular meshwork using Bessel beam assisted light sheet fluorescence microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900048. [PMID: 31419077 DOI: 10.1002/jbio.201900048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/09/2019] [Accepted: 08/13/2019] [Indexed: 05/08/2023]
Abstract
Glaucoma, one of the leading causes of blindness, is an eye disease caused by irregularities in the ocular aqueous outflow system causing an elevated intraocular pressure. High resolution imaging of the aqueous outflow system comprising trabecular meshwork is immensely valuable to vision analysts and clinicians in comprehending the disease state for the efficacious analysis and treatment of glaucoma. Currently available ocular imaging devices are unable to deliver high resolution images for the visualization of the trabecular meshwork. A method to obtain high resolution (sub-micrometer) images of the trabecular meshwork using Bessel-Gauss beam scanned light sheet fluorescence microscopy is presented and the optical sectioning capability of this technique to obtain three-dimensional volumetric images of the trabecular meshwork of an intact eye without any physical dissection is demonstrated. Figure: Three-dimensional visualization of trabecular meshwork of porcine eye.
Collapse
Affiliation(s)
- C S Suchand Sandeep
- Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
| | - Sreelatha Sarangapani
- Centre for Optical and Laser Engineering (COLE), School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
| | - Xun J J Hong
- Centre for Optical and Laser Engineering (COLE), School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mani Baskaran
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- EYE-ACP, Duke-NUS Medical School, Singapore
| | - Vadakke M Murukeshan
- Centre for Optical and Laser Engineering (COLE), School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
16
|
Taylor JM, Nelson CJ, Bruton FA, Kaveh A, Buckley C, Tucker CS, Rossi AG, Mullins JJ, Denvir MA. Adaptive prospective optical gating enables day-long 3D time-lapse imaging of the beating embryonic zebrafish heart. Nat Commun 2019; 10:5173. [PMID: 31729395 PMCID: PMC6858381 DOI: 10.1038/s41467-019-13112-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional fluorescence time-lapse imaging of the beating heart is extremely challenging, due to the heart's constant motion and a need to avoid pharmacological or phototoxic damage. Although real-time triggered imaging can computationally "freeze" the heart for 3D imaging, no previous algorithm has been able to maintain phase-lock across developmental timescales. We report a new algorithm capable of maintaining day-long phase-lock, permitting routine acquisition of synchronised 3D + time video time-lapse datasets of the beating zebrafish heart. This approach has enabled us for the first time to directly observe detailed developmental and cellular processes in the beating heart, revealing the dynamics of the immune response to injury and witnessing intriguing proliferative events that challenge the established literature on cardiac trabeculation. Our approach opens up exciting new opportunities for direct time-lapse imaging studies over a 24-hour time course, to understand the cellular mechanisms underlying cardiac development, repair and regeneration.
Collapse
Affiliation(s)
- Jonathan M Taylor
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK.
| | - Carl J Nelson
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - Finnius A Bruton
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Aryan Kaveh
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Charlotte Buckley
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Carl S Tucker
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
| | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Martin A Denvir
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Abstract
Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| |
Collapse
|
18
|
Chen Y, Xie W, Glaser AK, Reder NP, Mao C, Dintzis SM, Vaughan JC, Liu JTC. Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1257-1272. [PMID: 30891344 PMCID: PMC6420271 DOI: 10.1364/boe.10.001257] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 01/25/2019] [Indexed: 05/18/2023]
Abstract
Open-top light-sheet microscopy is a technique that can potentially enable rapid ex vivo inspection of large tissue surfaces and volumes. Here, we have optimized an open-top light-sheet (OTLS) microscope and image-processing workflow for the comprehensive examination of surgical margin surfaces, and have also developed a novel fluorescent analog of H&E staining that is robust for staining fresh unfixed tissues. Our tissue-staining method can be achieved within 2.5 minutes followed by OTLS microscopy of lumpectomy surfaces at a rate of up to 1.5 cm2/minute. An image atlas is presented to show that OTLS image quality surpasses that of intraoperative frozen sectioning and can approximate that of gold-standard H&E histology of formalin-fixed paraffin-embedded (FFPE) tissues. Qualitative evidence indicates that these intraoperative methods do not interfere with downstream post-operative H&E histology and immunohistochemistry. These results should facilitate the translation of OTLS microscopy for intraoperative guidance of lumpectomy and other surgical oncology procedures.
Collapse
Affiliation(s)
- Ye Chen
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- These authors contributed equally
| | - Weisi Xie
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- These authors contributed equally
| | - Adam K. Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Nicholas P. Reder
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Chenyi Mao
- Department of Chemistry, University of Washington Seattle, WA 98195, USA
| | - Suzanne M. Dintzis
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington Seattle, WA 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Jonathan T. C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Zhou Y, Zickus V, Zammit P, Taylor JM, Harvey AR. High-speed extended-volume blood flow measurement using engineered point-spread function. BIOMEDICAL OPTICS EXPRESS 2018; 9:6444-6454. [PMID: 31065441 PMCID: PMC6490974 DOI: 10.1364/boe.9.006444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
Experimental characterization of blood flow in living organisms is crucial for understanding the development and function of cardiovascular systems, but there has been no technique reported for snapshot imaging of thick samples in large volumes with high precision. We have combined computational microscopy and the diffraction-free, self-bending property of Airy-beams to track fluorescent beads with sub-micron precision through an extended axial range (up to 600 μm) within the flowing blood of 3 days post-fertilization (dpf) zebrafish embryos. The spatial trajectories of the tracer beads within flowing blood were recorded during transit through both cardinal and intersegmental vessels, and the trajectories were found to be consistent with the segmentation of the vasculature recorded using selective-plane illumination microscopy (SPIM). This method provides sufficiently precise spatial and temporal measurement of 3D blood flow that has the potential for directly probing key biomechanical quantities such as wall shear stress, as well as exploring the fluidic repercussions of cardiovascular diseases. Although we demonstrate the technique for blood flow, the ten-fold better enhancement in the depth range offers improvements in a wide range of applications of high-speed precision measurement of fluid flow, from microfluidics through measurement of cell dynamics to macroscopic aerosol characterizations.
Collapse
Affiliation(s)
- Yongzhuang Zhou
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ,
UK
| | - Vytautas Zickus
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ,
UK
| | - Paul Zammit
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ,
UK
| | - Jonathan M. Taylor
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ,
UK
| | - Andrew R. Harvey
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ,
UK
| |
Collapse
|
20
|
Del Bonis-O’Donnell JT, Chio L, Dorlhiac GF, McFarlane IR, Landry MP. Advances in Nanomaterials for Brain Microscopy. NANO RESEARCH 2018; 11:5144-5172. [PMID: 31105899 PMCID: PMC6516768 DOI: 10.1007/s12274-018-2145-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 05/19/2023]
Abstract
Microscopic imaging of the brain continues to reveal details of its structure, connectivity, and function. To further improve our understanding of the emergent properties and functions of neural circuits, new methods are necessary to directly visualize the relationship between brain structure, neuron activity, and neurochemistry. Advances in engineering the chemical and optical properties of nanomaterials concurrent with developments in deep-tissue microscopy hold tremendous promise for overcoming the current challenges associated with in vivo brain imaging, particularly for imaging the brain through optically-dense brain tissue, skull, and scalp. To this end, developments in nanomaterials offer much promise toward implementing tunable chemical functionality for neurochemical targeting and sensing, and fluorescence stability for long-term imaging. In this review, we summarize current brain microscopy methods and describe the diverse classes of nanomaterials recently leveraged as contrast agents and functional probes for microscopic optical imaging of the brain.
Collapse
Affiliation(s)
| | - Linda Chio
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Gabriel F Dorlhiac
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Ian R McFarlane
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Innovative Genomics Institute (IGI), Berkeley, CA 94720
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
21
|
Chatterjee K, Pratiwi FW, Wu FCM, Chen P, Chen BC. Recent Progress in Light Sheet Microscopy for Biological Applications. APPLIED SPECTROSCOPY 2018; 72:1137-1169. [PMID: 29926744 DOI: 10.1177/0003702818778851] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The introduction of light sheet fluorescence microscopy (LSFM) has overcome the challenges in conventional optical microscopy. Among the recent breakthroughs in fluorescence microscopy, LSFM had been proven to provide a high three-dimensional spatial resolution, high signal-to-noise ratio, fast imaging acquisition rate, and minuscule levels of phototoxic and photodamage effects. The aforementioned auspicious properties are crucial in the biomedical and clinical research fields, covering a broad range of applications: from the super-resolution imaging of intracellular dynamics in a single cell to the high spatiotemporal resolution imaging of developmental dynamics in an entirely large organism. In this review, we provided a systematic outline of the historical development of LSFM, detailed discussion on the variants and improvements of LSFM, and delineation on the most recent technological advancements of LSFM and its potential applications in single molecule/particle detection, single-molecule super-resolution imaging, imaging intracellular dynamics of a single cell, multicellular imaging: cell-cell and cell-matrix interactions, plant developmental biology, and brain imaging and developmental biology.
Collapse
Affiliation(s)
- Krishnendu Chatterjee
- 1 Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- 3 Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Feby Wijaya Pratiwi
- 1 Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- 4 Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Peilin Chen
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Zickus V, Taylor JM. 3D + time blood flow mapping using SPIM-microPIV in the developing zebrafish heart. BIOMEDICAL OPTICS EXPRESS 2018; 9:2418-2435. [PMID: 29760998 PMCID: PMC5946799 DOI: 10.1364/boe.9.002418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 05/08/2023]
Abstract
We present SPIM-μPIV as a flow imaging system, capable of measuring in vivo flow information with 3D micron-scale resolution. Our system was validated using a phantom experiment consisting of a flow of beads in a 50 μm diameter FEP tube. Then, with the help of optical gating techniques, we obtained 3D + time flow fields throughout the full heartbeat in a ∼3 day old zebrafish larva using fluorescent red blood cells as tracer particles. From this we were able to recover 3D flow fields at 31 separate phases in the heartbeat. From our measurements of this specimen, we found the net pumped blood volume through the atrium to be 0.239 nL per beat. SPIM-μPIV enables high quality in vivo measurements of flow fields that will be valuable for studies of heart function and fluid-structure interaction in a range of small-animal models.
Collapse
|
23
|
Lau SC, Chiu HC, Zhao L, Zhao T, Loy MMT, Du S. An integrated single- and two-photon non-diffracting light-sheet microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:043701. [PMID: 29716382 DOI: 10.1063/1.5020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.
Collapse
Affiliation(s)
- Sze Cheung Lau
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hoi Chun Chiu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Luwei Zhao
- Light Innovation Technology Ltd., Tseung Kwan O, Hong Kong, China
| | - Teng Zhao
- Light Innovation Technology Ltd., Tseung Kwan O, Hong Kong, China
| | - M M T Loy
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengwang Du
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
24
|
Baesso P, Randall RS, Sena G. Light Sheet Fluorescence Microscopy Optimized for Long-Term Imaging of Arabidopsis Root Development. Methods Mol Biol 2018. [PMID: 29525955 DOI: 10.1007/978-1-4939-7747-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Light sheet fluorescence microscopy (LSFM) allows sustained and repeated optical sectioning of living specimens at high spatial and temporal resolution, with minimal photodamage. Here, we describe in detail both the hardware and the software elements of a live imaging method based on LSFM and optimized for tracking and 3D scanning of Arabidopsis root tips grown vertically in physiological conditions. The system is relatively inexpensive and with minimal footprint; hence it is well suited for laboratories of any size.
Collapse
Affiliation(s)
- Paolo Baesso
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Giovanni Sena
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
25
|
Automated Segmentation of Light-Sheet Fluorescent Imaging to Characterize Experimental Doxorubicin-Induced Cardiac Injury and Repair. Sci Rep 2017; 7:8603. [PMID: 28819303 PMCID: PMC5561066 DOI: 10.1038/s41598-017-09152-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
This study sought to develop an automated segmentation approach based on histogram analysis of raw axial images acquired by light-sheet fluorescent imaging (LSFI) to establish rapid reconstruction of the 3-D zebrafish cardiac architecture in response to doxorubicin-induced injury and repair. Input images underwent a 4-step automated image segmentation process consisting of stationary noise removal, histogram equalization, adaptive thresholding, and image fusion followed by 3-D reconstruction. We applied this method to 3-month old zebrafish injected intraperitoneally with doxorubicin followed by LSFI at 3, 30, and 60 days post-injection. We observed an initial decrease in myocardial and endocardial cavity volumes at day 3, followed by ventricular remodeling at day 30, and recovery at day 60 (P < 0.05, n = 7-19). Doxorubicin-injected fish developed ventricular diastolic dysfunction and worsening global cardiac function evidenced by elevated E/A ratios and myocardial performance indexes quantified by pulsed-wave Doppler ultrasound at day 30, followed by normalization at day 60 (P < 0.05, n = 9-20). Treatment with the γ-secretase inhibitor, DAPT, to inhibit cleavage and release of Notch Intracellular Domain (NICD) blocked cardiac architectural regeneration and restoration of ventricular function at day 60 (P < 0.05, n = 6-14). Our approach provides a high-throughput model with translational implications for drug discovery and genetic modifiers of chemotherapy-induced cardiomyopathy.
Collapse
|
26
|
Männ L, Klingberg A, Gunzer M, Hasenberg M. Quantitative Visualization of Leukocyte Infiltrate in a Murine Model of Fulminant Myocarditis by Light Sheet Microscopy. J Vis Exp 2017. [PMID: 28605364 DOI: 10.3791/55450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Light-sheet fluorescence microscopy (LSFM), in combination with chemical clearing protocols, has become the gold standard for analyzing fluorescently labelled structures in large biological specimens, and is down to cellular resolution. Meanwhile, the constant refinement of underlying protocols and the enhanced availability of specialized commercial systems enable us to investigate the microstructure of whole mouse organs and even allow for the characterization of cellular behavior in various live-cell imaging approaches. Here, we describe a protocol for the spatial whole-mount visualization and quantification of the CD45+ leukocyte population in inflamed mouse hearts. The method employs a transgenic mouse strain (CD11c.DTR)that has recently been shown to serve as a robust, inducible model for the study of the development of fulminant fatal myocarditis, characterized by lethal cardiac arrhythmias. This protocol includes myocarditis induction, intravital antibody-mediated cell staining, organ preparation, and LSFM with subsequent computer-assisted image post-processing. Although presented as a highly-adapted method for our particular scientific question, the protocol represents the blueprint of an easily adjustable system that can also target completely different fluorescent structures in other organs and even in other species.
Collapse
Affiliation(s)
- Linda Männ
- Department of Translational Skin Cancer Research, University of Duisburg/Essen
| | - Anika Klingberg
- Institute for Experimental Immunology and Imaging, University of Duisburg/Essen
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University of Duisburg/Essen
| | - Mike Hasenberg
- Imaging Center Essen, Electron Microscopy Unit, University Hospital of Essen;
| |
Collapse
|
27
|
Strobl F, Klees S, Stelzer EHK. Light Sheet-based Fluorescence Microscopy of Living or Fixed and Stained Tribolium castaneum Embryos. J Vis Exp 2017. [PMID: 28518097 DOI: 10.3791/55629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The red flour beetle Tribolium castaneum has become an important insect model organism in developmental genetics and evolutionary developmental biology. The observation of Tribolium embryos with light sheet-based fluorescence microscopy has multiple advantages over conventional widefield and confocal fluorescence microscopy. Due to the unique properties of a light sheet-based microscope, three dimensional images of living specimens can be recorded with high signal-to-noise ratios and significantly reduced photo-bleaching as well as photo-toxicity along multiple directions over periods that last several days. With more than four years of methodological development and a continuous increase of data, the time seems appropriate to establish standard operating procedures for the usage of light sheet technology in the Tribolium community as well as in the insect community at large. This protocol describes three mounting techniques suitable for different purposes, presents two novel custom-made transgenic Tribolium lines appropriate for long-term live imaging, suggests five fluorescent dyes to label intracellular structures of fixed embryos and provides information on data post-processing for the timely evaluation of the recorded data. Representative results concentrate on long-term live imaging, optical sectioning and the observation of the same embryo along multiple directions. The respective datasets are provided as a downloadable resource. Finally, the protocol discusses quality controls for live imaging assays, current limitations and the applicability of the outlined procedures to other insect species. This protocol is primarily intended for developmental biologists who seek imaging solutions that outperform standard laboratory equipment. It promotes the continuous attempt to close the gap between the technically orientated laboratories/communities, which develop and refine microscopy methodologically, and the life science laboratories/communities, which require 'plug-and-play' solutions to technical challenges. Furthermore, it supports an axiomatic approach that moves the biological questions into the center of attention.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg
| | - Selina Klees
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg
| | - Ernst H K Stelzer
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg;
| |
Collapse
|
28
|
csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm. Proc Natl Acad Sci U S A 2017; 114:4869-4874. [PMID: 28438995 DOI: 10.1073/pnas.1609278114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.
Collapse
|
29
|
Pampaloni F, Knuppertz L, Hamann A, Osiewacz HD, Stelzer EHK. Three-Dimensional Live Imaging of Filamentous Fungi with Light Sheet-Based Fluorescence Microscopy (LSFM). Methods Mol Biol 2017; 1563:19-31. [PMID: 28324599 DOI: 10.1007/978-1-4939-6810-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a method for the three-dimensional live imaging of filamentous fungi with light sheet-based fluorescence microscopy (LSFM). LSFM provides completely new opportunities to investigate the biology of fungal cells and other microorganisms with high spatial and temporal resolution. As an example, we study the established aging model Podospora anserina. The protocol explains the mounting of the live fungi for the light sheet imaging, the imaging procedure and illustrates basic image processing of data.
Collapse
Affiliation(s)
- Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany.
| | - Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Duocastella M, Arnold CB, Puchalla J. Selectable light-sheet uniformity using tuned axial scanning. Microsc Res Tech 2016; 80:250-259. [PMID: 28132409 DOI: 10.1002/jemt.22795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/27/2016] [Accepted: 09/19/2016] [Indexed: 11/10/2022]
Abstract
Light-sheet fluorescence microscopy (LSFM) is an optical sectioning technique capable of rapid three-dimensional (3D) imaging of a wide range of specimens with reduced phototoxicity and superior background rejection. However, traditional light-sheet generation approaches based on elliptical or circular Gaussian beams suffer an inherent trade-off between light-sheet thickness and area over which this thickness is preserved. Recently, an increase in light-sheet uniformity was demonstrated using rapid biaxial Gaussian beam scanning along the lateral and beam propagation directions. Here we apply a similar scanning concept to an elliptical beam generated by a cylindrical lens. In this case, only z-scanning of the elliptical beam is required and hence experimental implementation of the setup can be simplified. We introduce a simple dimensionless uniformity statistic to better characterize scanned light-sheets and experimentally demonstrate custom tailored uniformities up to a factor of 5 higher than those of unscanned elliptical beams. This technique offers a straightforward way to generate and characterize a custom illumination profile that provides enhanced utilization of the detector dynamic range and field of view, opening the door to faster and more efficient 2D and 3D imaging.
Collapse
Affiliation(s)
- Martí Duocastella
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa, Via Morego 30, 16163, Italy
| | - Craig B Arnold
- Department of Mechanical and Aerospace Engineering, Princeton University, Olden St, Princeton, NJ, 08544, USA
| | - Jason Puchalla
- Department of Physics, Princeton University, Washington Avenue, Princeton, NJ, 08544, USA
| |
Collapse
|
31
|
Liu C, Liu YL, Perillo EP, Dunn AK, Yeh HC. Single-Molecule Tracking and Its Application in Biomolecular Binding Detection. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6804013. [PMID: 27660404 PMCID: PMC5028128 DOI: 10.1109/jstqe.2016.2568160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time and under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. Beyond the capabilities of traditional camera-based tracking techniques, state-of-the-art SMT microscopies developed in recent years can record fluorescence lifetime while tracking a single molecule in the 3D space. This multiparameter detection capability can open the door to a wide range of investigations at the cellular or tissue level, including identification of molecular interaction hotspots and characterization of association/dissociation kinetics between molecules. In this review, we discuss various SMT techniques developed to date, with an emphasis on our recent development of the next generation 3D tracking system that not only achieves ultrahigh spatiotemporal resolution but also provides sufficient working depth suitable for live animal imaging. We also discuss the challenges that current SMT techniques are facing and the potential strategies to tackle those challenges.
Collapse
Affiliation(s)
- Cong Liu
- University of Texas at Austin, Austin, TX 78703 USA
| | | | | | | | | |
Collapse
|
32
|
Bruns T, Bauer M, Bruns S, Meyer H, Kubin D, Schneckenburger H. Miniaturized modules for light sheet microscopy with low chromatic aberration. J Microsc 2016; 264:261-267. [PMID: 27355153 DOI: 10.1111/jmi.12439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/30/2016] [Indexed: 11/27/2022]
Abstract
Two miniaturized fibre-coupled modules for light sheet-based microscopy are described and compared with respect to image quality, chromatic aberration and beam alignment. Whereas in one module the light sheet is created by an achromatic cylindrical lens, reflection by a spherical mirror and concomitant astigmatic distortion are used to create the light sheet in the second module. Test experiments with fluorescent dyes in solution and multicellular tumour spheroids are reported, and some details on construction are given for both systems. Both modules are optimized for imaging individual cell layers of 3D biological samples and can be adapted to fit commercial microscopes.
Collapse
Affiliation(s)
- T Bruns
- Aalen University, Institute of Applied Research, Beethovenstr. 1, 73430, Aalen, Germany
| | - M Bauer
- J&M Analytik AG, Willy-Messerschmitt-Straße 8, 73457, Essingen, Germany
| | - S Bruns
- Aalen University, Institute of Applied Research, Beethovenstr. 1, 73430, Aalen, Germany
| | - H Meyer
- J&M Analytik AG, Willy-Messerschmitt-Straße 8, 73457, Essingen, Germany
| | - D Kubin
- JM Microsystems GmbH, Willy-Messerschmitt-Straße 8, 73457, Essingen, Germany
| | - H Schneckenburger
- Aalen University, Institute of Applied Research, Beethovenstr. 1, 73430, Aalen, Germany
| |
Collapse
|
33
|
Paiè P, Bragheri F, Bassi A, Osellame R. Selective plane illumination microscopy on a chip. LAB ON A CHIP 2016; 16:1556-60. [PMID: 27030116 DOI: 10.1039/c6lc00084c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Selective plane illumination microscopy can image biological samples at a high spatiotemporal resolution. Complex sample preparation and system alignment normally limit the throughput of the method. Using femtosecond laser micromachining, we created an integrated optofluidic device that allows obtaining continuous flow imaging, three-dimensional reconstruction and high-throughput analysis of large multicellular spheroids at a subcellular resolution.
Collapse
Affiliation(s)
- Petra Paiè
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy. and Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Roberto Osellame
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy. and Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
34
|
Fei P, Lee J, Packard RRS, Sereti KI, Xu H, Ma J, Ding Y, Kang H, Chen H, Sung K, Kulkarni R, Ardehali R, Kuo CCJ, Xu X, Ho CM, Hsiai TK. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function. Sci Rep 2016; 6:22489. [PMID: 26935567 PMCID: PMC4776137 DOI: 10.1038/srep22489] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/16/2016] [Indexed: 11/09/2022] Open
Abstract
Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.
Collapse
Affiliation(s)
- Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China.,Department of Mechanical &Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Juhyun Lee
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - René R Sevag Packard
- Department of Bioengineering, UCLA, Los Angeles, CA, USA.,Department of Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, CA, USA.,Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA
| | | | - Hao Xu
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jianguo Ma
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA
| | - Yichen Ding
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA
| | - Hanul Kang
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA.,Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Harrison Chen
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Kevin Sung
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Rajan Kulkarni
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA
| | - C-C Jay Kuo
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chih-Ming Ho
- Department of Mechanical &Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tzung K Hsiai
- Department of Bioengineering, UCLA, Los Angeles, CA, USA.,Department of Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, CA, USA.,Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA.,Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
35
|
Yu B, Yu J, Li W, Cao B, Li H, Chen D, Niu H. Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy. APPLIED OPTICS 2016; 55:449-53. [PMID: 26835916 DOI: 10.1364/ao.55.000449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The double-helix point spread function (DH-PSF) microscopy has become an essential tool for nanoscale three-dimensional (3D) localization and tracking of single molecules in living cells. However, its localization precision is limited by fluorescent contrast in thick samples because the signal-to-noise ratio of the system is low due to the inherent low transfer function efficiency and background fluorescence. Here we combine DH-PSF microscopy with light-sheet illumination to eliminate out-of-focus background fluorescence for high-precision 3D single particle tracking. To demonstrate the capability of the method, we obtain the single fluorescent bead image with light-sheet illumination, with three-dimensional localization accuracy better than that of epi-illumination. We also show that the single fluorescent beads in agarose solution can be tracked, which demonstrates the possibility of our method for the study of dynamic processes in complex biological specimens.
Collapse
|
36
|
Trinh LA, Fraser SE. Imaging the Cell and Molecular Dynamics of Craniofacial Development: Challenges and New Opportunities in Imaging Developmental Tissue Patterning. Curr Top Dev Biol 2015; 115:599-629. [PMID: 26589939 DOI: 10.1016/bs.ctdb.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of the vertebrate head requires cell-cell and tissue-tissue interactions between derivatives of the three germ layers to coordinate morphogenetic movements in four dimensions (4D: x, y, z, t). The high spatial and temporal resolution offered by optical microscopy has made it the main imaging modularity for capturing the molecular and cellular dynamics of developmental processes. In this chapter, we highlight the challenges and new opportunities provided by emerging technologies that enable dynamic, high-information-content imaging of craniofacial development. We discuss the challenges of varying spatial and temporal scales encountered from the biological and technological perspectives. We identify molecular and fluorescence imaging technology that can provide solutions to some of the challenges. Application of the techniques described within this chapter combined with considerations of the biological and technical challenges will aid in formulating the best image-based studies to extend our understanding of the genetic and environmental influences underlying craniofacial anomalies.
Collapse
Affiliation(s)
- Le A Trinh
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Scott E Fraser
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
37
|
Wu D, Zhou X, Yao B, Li R, Yang Y, Peng T, Lei M, Dan D, Ye T. Fast frame scanning camera system for light-sheet microscopy. APPLIED OPTICS 2015; 54:8632-8636. [PMID: 26479797 DOI: 10.1364/ao.54.008632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the interest of improving the temporal resolution for light-sheet microscopy, we designed a fast frame scanning camera system that incorporated a galvanometer scanning mirror into the imaging path of a home-built light-sheet microscope. This system transformed a temporal image sequence to a spatial one so that multiple images could be acquired during one exposure period. The improvement factor of the frame rate was dependent on the number of sub-images that could be tiled on the sensor without overlapping each other and was therefore a trade-off with the image size. As a demonstration, we achieved 960 frames/s (fps) on a CCD camera that was originally capable of recording images at only 30 fps (full frame). This allowed us to observe millisecond or sub-millisecond events with ordinary CCD cameras.
Collapse
|
38
|
Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat Protoc 2015; 10:1486-507. [PMID: 26334868 DOI: 10.1038/nprot.2015.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tribolium castaneum has become an important insect model organism for evolutionary developmental biology, genetics and biotechnology. However, few protocols for live fluorescence imaging of Tribolium have been reported, and little image data is available. Here we provide a protocol for recording the development of Tribolium embryos with light-sheet-based fluorescence microscopy. The protocol can be completed in 4-7 d and provides procedural details for: embryo collection, microscope configuration, embryo preparation and mounting, noninvasive live imaging for up to 120 h along multiple directions, retrieval of the live embryo once imaging is completed, and image data processing, for which exemplary data is provided. Stringent quality control criteria for developmental biology studies are also discussed. Light-sheet-based fluorescence microscopy complements existing toolkits used to study Tribolium development, can be adapted to other insect species, and requires no advanced imaging or sample preparation skills.
Collapse
|
39
|
Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling. Mol Cell Biol 2015; 35:3785-98. [PMID: 26303532 DOI: 10.1128/mcb.00346-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/20/2015] [Indexed: 01/04/2023] Open
Abstract
The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos-c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development.
Collapse
|
40
|
Mathew B, Schmitz A, Muñoz-Descalzo S, Ansari N, Pampaloni F, Stelzer EHK, Fischer SC. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition. BMC Bioinformatics 2015; 16:187. [PMID: 26049713 PMCID: PMC4458345 DOI: 10.1186/s12859-015-0617-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/18/2015] [Indexed: 12/02/2022] Open
Abstract
Background Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. Results We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91 %) whereas the other methods each failed for at least one dataset (F-measure ≤ 69 %). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. Conclusion We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0617-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B Mathew
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - A Schmitz
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - S Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | - N Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - F Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - E H K Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - S C Fischer
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Pernuš A, Langowski J. Imaging Fos-Jun transcription factor mobility and interaction in live cells by single plane illumination-fluorescence cross correlation spectroscopy. PLoS One 2015; 10:e0123070. [PMID: 25875593 PMCID: PMC4397054 DOI: 10.1371/journal.pone.0123070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/27/2015] [Indexed: 11/20/2022] Open
Abstract
We collected mobility and interaction maps of c-Fos-eGFP and c-Jun-mRFP1 transcription factors within living cell nuclei. c-Fos dimerizes with c-Jun to form the transcription activator protein-1 (AP-1) which binds to the specific recognition site. To monitor this process, we used fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS), which provides diffusion coefficient and protein-protein interaction data in the whole image plane simultaneously, instead of just one point on conventional confocal FCS. We find a strong correlation between diffusional mobility and interaction: regions of strong interaction show slow mobility. Controls containing either an eGFP-mRFP dimer, separately expressing eGFP and mRPF, or c-Fos-eGFP and c-Jun-mRFP1 mutants lacking dimerization and DNA-binding domains, showed no such correlation. These results extend our earlier findings from confocal FCCS to include spatial information.
Collapse
Affiliation(s)
- Agata Pernuš
- Division Biophysics of Macromolecules, DKFZ, Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, DKFZ, Heidelberg, Germany
| |
Collapse
|
42
|
Affiliation(s)
- Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences, Fachbereich Lebenswissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Pampaloni F, Richa R, Ansari N, Stelzer EHK. Live spheroid formation recorded with light sheet-based fluorescence microscopy. Methods Mol Biol 2015; 1251:43-57. [PMID: 25391793 DOI: 10.1007/978-1-4939-2080-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We provide a detailed protocol for a three-dimensional long-term live imaging of cellular spheroids with light sheet-based fluorescence microscopy. The protocol allows the recording of all phases of spheroid formation in three dimensions, including cell proliferation, aggregation, and compaction. We employ the human hepatic cell line HepaRG transfected with the fusion protein H2B-GFP, i.e., a fluorescing histone. The protocol allows monitoring the effect of drugs or toxicants.
Collapse
Affiliation(s)
- Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany,
| | | | | | | |
Collapse
|
44
|
Schnell SJ, Ma J, Yang W. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex. Genes (Basel) 2014; 5:1032-49. [PMID: 25393401 PMCID: PMC4276925 DOI: 10.3390/genes5041032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022] Open
Abstract
The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE). Plenty of nuclear pore complexes (NPCs) embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D) movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT) techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.
Collapse
Affiliation(s)
- Steven J Schnell
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Jiong Ma
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
45
|
Mitchell TJ, Saunter CD, O'Nions W, Girkin JM, Love GD. Quantitative high dynamic range beam profiling for fluorescence microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:103713. [PMID: 25362409 DOI: 10.1063/1.4899208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.
Collapse
Affiliation(s)
- T J Mitchell
- Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - C D Saunter
- Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - W O'Nions
- Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - J M Girkin
- Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - G D Love
- Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
46
|
Gualda EJ, Simão D, Pinto C, Alves PM, Brito C. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy. Front Cell Neurosci 2014; 8:221. [PMID: 25161607 PMCID: PMC4123789 DOI: 10.3389/fncel.2014.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/19/2014] [Indexed: 01/02/2023] Open
Abstract
The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.
Collapse
Affiliation(s)
- Emilio J. Gualda
- Cell Imaging Unit, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Daniel Simão
- iBET - Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Catarina Pinto
- iBET - Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Paula M. Alves
- iBET - Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Catarina Brito
- iBET - Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| |
Collapse
|
47
|
Abstract
CLARITY is a method for chemical transformation of intact biological tissues into a hydrogel-tissue hybrid, which becomes amenable to interrogation with light and macromolecular labels while retaining fine structure and native biological molecules. This emerging accessibility of information from large intact samples has created both new opportunities and new challenges. Here we describe protocols spanning multiple dimensions of the CLARITY workflow, ranging from simple, reliable and efficient lipid removal without electrophoretic instrumentation (passive CLARITY) to optimized objectives and integration with light-sheet optics (CLARITY-optimized light-sheet microscopy (COLM)) for accelerating data collection from clarified samples by several orders of magnitude while maintaining or increasing quality and resolution. The entire protocol takes from 7-28 d to complete for an adult mouse brain, including hydrogel embedding, full lipid removal, whole-brain antibody staining (which, if needed, accounts for 7-10 of the days), and whole-brain high-resolution imaging; timing within this window depends on the choice of lipid removal options, on the size of the tissue, and on the number and type of immunostaining rounds performed. This protocol has been successfully applied to the study of adult mouse, adult zebrafish and adult human brains, and it may find many other applications in the structural and molecular analysis of large assembled biological systems.
Collapse
|
48
|
Gao L, Shao L, Chen BC, Betzig E. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat Protoc 2014; 9:1083-101. [DOI: 10.1038/nprot.2014.087] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Gualda E, Moreno N, Tomancak P, Martins GG. Going "open" with mesoscopy: a new dimension on multi-view imaging. PROTOPLASMA 2014; 251:363-372. [PMID: 24442669 DOI: 10.1007/s00709-013-0599-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
OpenSPIM and OpenSpinMicroscopy emerged as open access platforms for Light Sheet and Optical Projection Imaging, often called as optical mesoscopy techniques. Both projects can be easily reproduced using comprehensive online instructions that should foster the implementation and further development of optical imaging techniques with sample rotation control. This additional dimension in an open system offers the possibility to make multi-view microscopy easily modified and will complement the emerging commercial solutions. Furthermore, it is deeply based on other open platforms such as MicroManager and Arduino, enabling development of tailored setups for very specific biological questions. In our perspective, the open access principle of OpenSPIM and OpenSpinMicroscopy is a game-changer, helping the concepts of light sheet and optical projection tomography (OPT) to enter the mainstream of biological imaging.
Collapse
Affiliation(s)
- Emilio Gualda
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | | | | |
Collapse
|
50
|
Mayer J, Robert-Moreno A, Danuser R, Stein JV, Sharpe J, Swoger J. OPTiSPIM: integrating optical projection tomography in light sheet microscopy extends specimen characterization to nonfluorescent contrasts. OPTICS LETTERS 2014; 39:1053-6. [PMID: 24562276 DOI: 10.1364/ol.39.001053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mesoscopic 3D imaging has become a widely used optical imaging technique to visualize intact biological specimens. Selective plane illumination microscopy (SPIM) visualizes samples up to a centimeter in size with micrometer resolution by 3D data stitching but is limited to fluorescent contrast. Optical projection tomography (OPT) works with fluorescent and nonfluorescent contrasts, but its resolution is limited in large samples. We present a hybrid setup (OPTiSPIM) combining the advantages of each technique. The combination of fluorescent and nonfluorescent high-resolution 3D data into integrated datasets enables a more extensive representation of mesoscopic biological samples. The modular concept of the OPTiSPIM facilitates incorporation of the transmission OPT modality into already established light sheet based imaging setups.
Collapse
|