1
|
Pikwong F, Phutiyothin C, Chouyratchakarn W, Baipaywad P, Mongkolpathumrat P, Kumphune S. Gelatin-coated silicon oxide nanoparticles encapsulated recombinant human secretory leukocyte protease inhibitor (rhSLPI) reduced cardiac cell death against an in vitro simulated ischaemia/reperfusion injury. Heliyon 2023; 9:e20150. [PMID: 37809945 PMCID: PMC10559932 DOI: 10.1016/j.heliyon.2023.e20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Ischemic Heart Disease (IHD) is the main global cause of death. Previous studies indicated that recombinant human secretory leukocyte protease inhibitor (rhSLPI) exhibits a cardioprotective effect against myocardial ischaemia/reperfusion (I/R) injury. However, SLPI has a short half-life in vivo due to digestion by protease enzymes in circulation. The application of nanoparticle encapsulation could be beneficial for SLPI delivery. Several types of nanoparticles have been developed to encapsulate SLPI and applied in some disease models. However, silica nanoparticles for rhSLPI delivery, particularly on myocardial I/R injury, have never been studied. In this study, we aimed to fabricate gelatin-covered silica nanoparticles (GSNPs) to encapsulate rhSLPI and cardioprotective effect of GSNP-SLPI against an in vitro simulated ischaemia/reperfusion (sI/R). Silica dioxide nanoparticles (SNPs) were fabricated followed by incubation with 0.33 mg/mL of rhSLPI. Then, SNPs containing rhSLPI were coated with gelatin (GSNPs). The GSNPs and rhSLPI-GSNPs were characterized by particle size, zeta potential, and morphology scanning electron microscope (SEM). The concentration of rhSLPI in rhSLPI-GSNPs and drug release was determined by ELISA. Then, cytotoxicity and cardioprotective effect were determined by incubation of GSNPs or rhSLPI-GSNPs with rat cardiac myoblast cell line (H9c2) subjected to simulated ischaemia/reperfusion (sI/R). The results showed the particle size of SNPs, GSNPs, and rhSLPI-GSNPs was 273, 300, and 301 nm, with a zeta potential of -57.21, -22.40, and -24.50 mV, respectively. One milligram of rhSLPI-GSNPs contains 235 ng of rhSLPI. The rhSLPI-GSNPs showed no cytotoxicity on cardiac cells. Treatment with 10 μg/ml of rhSLPI-GSNPs could significantly reduce sI/R induced cardiac cell injury and death. In conclusion, this is the first study to show successful of fabricating novel rhSLPI-encapsulating gelatin-covered silica nanoparticles (rhSLPI-GSNPs) and the cardioprotective effects of rhSLPI-GSNPs against cardiac cell injury and death from myocardial ischaemia/reperfusion.
Collapse
Affiliation(s)
- Faprathan Pikwong
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Podsawee Mongkolpathumrat
- Cardio-Thoracic Technology program, Chulabhorn International College of Medicine, Thammasat University (Rangsit Center), Cooperative Learning Center, Piyachart 2, 99 Moo 18 Klong Luang, Rangsit, Pathumthani 12120, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| |
Collapse
|
2
|
Zhang C, Hao J, Shi W, Su Y, Mitchell K, Hua W, Jin W, Lee S, Wen L, Jin Y, Zhao D. Sacrificial scaffold-assisted direct ink writing of engineered aortic valve prostheses. Biofabrication 2023; 15:10.1088/1758-5090/aceffb. [PMID: 37579750 PMCID: PMC10566457 DOI: 10.1088/1758-5090/aceffb] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Heart valve disease has become a serious global health problem, which calls for numerous implantable prosthetic valves to fulfill the broader needs of patients. Although current three-dimensional (3D) bioprinting approaches can be used to manufacture customized valve prostheses, they still have some complications, such as limited biocompatibility, constrained structural complexity, and difficulty to make heterogeneous constructs, to name a few. To overcome these challenges, a sacrificial scaffold-assisted direct ink writing approach has been explored and proposed in this work, in which a sacrificial scaffold is printed to temporarily support sinus wall and overhanging leaflets of an aortic valve prosthesis that can be removed easily and mildly without causing any potential damages to the valve prosthesis. The bioinks, composed of alginate, gelatin, and nanoclay, used to print heterogenous valve prostheses have been designed in terms of rheological/mechanical properties and filament formability. The sacrificial ink made from Pluronic F127 has been developed by evaluating rheological behavior and gel temperature. After investigating the effects of operating conditions, complex 3D structures and homogenous/heterogenous aortic valve prostheses have been successfully printed. Lastly, numerical simulation and cycling experiments have been performed to validate the function of the printed valve prostheses as one-way valves.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Jiangtao Hao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Weiliang Shi
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Ya Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Wenbo Jin
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Serena Lee
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Danyang Zhao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
3
|
Maciel BR, Grimm A, Oelschlaeger C, Schepers U, Willenbacher N. Targeted micro-heterogeneity in bioinks allows for 3D printing of complex constructs with improved resolution and cell viability. Biofabrication 2023; 15:045013. [PMID: 37552974 DOI: 10.1088/1758-5090/acee22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Three-dimensional bioprinting is an evolving versatile technique for biomedical applications. Ideal bioinks have complex micro-environment that mimic human tissue, allow for good printing quality and provide high cell viability after printing. Here we present two strategies for enhancing gelatin-based bioinks heterogeneity on a 1-100µm length scale resulting in superior printing quality and high cell viability. A thorough spatial and micro-mechanical characterization of swollen hydrogel heterogeneity was done using multiple particle tracking microrheology. When poly(vinyl alcohol) is added to homogeneous gelatin gels, viscous inclusions are formed due to micro-phase separation. This phenomenon leads to pronounced slip and superior printing quality of complex 3D constructs as well as high human hepatocellular carcinoma (HepG2) and normal human dermal fibroblast (NHDF) cell viability due to reduced shear damage during extrusion. Similar printability and cell viability results are obtained with gelatin/nanoclay composites. The formation of polymer/nanoclay clusters reduces the critical stress of gel fracture, which facilitates extrusion, thus enhancing printing quality and cell viability. Targeted introduction of micro-heterogeneities in bioinks through micro-phase separation is an effective technique for high resolution 3D printing of complex constructs with high cell viability. The size of the heterogeneities, however, has to be substantially smaller than the desired feature size in order to achieve good printing quality.
Collapse
Affiliation(s)
- Bruna R Maciel
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Alisa Grimm
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Claude Oelschlaeger
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ute Schepers
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
4
|
Hirade Y, Kubota M, Kitae K, Yamamoto H, Omori H, Shinoki S, Ohmura T, Tsujikawa K. A novel application of hectorite nanoclay for preparation of colorectal cancer spheroids with malignant potential. LAB ON A CHIP 2023; 23:609-623. [PMID: 36633172 DOI: 10.1039/d2lc00750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) cell culture, which provides an in vivo-like environment in vitro unlike the conventional two-dimensional (2D) cell culture, has attracted much attention from researchers. Although various 3D cell culture methods have been developed, information on a method using inorganic nanoclay is scant. Here, we report that hectorite, an inorganic layered silicate, can be used as an auxiliary material for 3D cell culture. Human colon cancer cell lines cultured in a medium containing 0.01% synthetic hectorite spontaneously formed 3D spheroids in an adherent plate. Morphologically, these spheroids were more dispersed in all directions than control spheroids generated in an ultralow adherent plate. Microarray analysis showed that FGF19, TGM2, and SERPINA3, whose expression is reportedly increased in colon cancer tissues and is related to tumorigenesis or metastasis, were upregulated in HT-29 spheroids formed using synthetic hectorite compared with those in control spheroids. Gene ontology analysis revealed upregulation of genes associated with morphogenesis, cytoskeleton, extracellular matrix, cellular uptake and secretion, signaling pathways, and gene expression regulation. Moreover, fluorescence-labeled hectorite particles were localized in the cytoplasm of individual cells in spheroids. These results suggest that the synthetic hectorite modified the physiological state of and gene expression within the cells, triggering spheroid formation with malignant characteristics. Our findings highlight a novel application of synthetic hectorite for 3D cell culture.
Collapse
Affiliation(s)
- Yoshihiro Hirade
- Graduate School of Pharmaceutical Science, Osaka University, 1-6 Yamada-oka, Suita City, Osaka 565-0871, Japan.
| | - Munehiro Kubota
- Iwaki Laboratory, Kunimine Industries Co, Ltd, 23-5 Kuidesaku, Shimofunao, Iwaki, Fukushima 972-8312, Japan
| | - Kaori Kitae
- Graduate School of Pharmaceutical Science, Osaka University, 1-6 Yamada-oka, Suita City, Osaka 565-0871, Japan.
| | - Harumi Yamamoto
- Graduate School of Pharmaceutical Science, Osaka University, 1-6 Yamada-oka, Suita City, Osaka 565-0871, Japan.
| | - Hiroko Omori
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | - Susumu Shinoki
- Iwaki Laboratory, Kunimine Industries Co, Ltd, 23-5 Kuidesaku, Shimofunao, Iwaki, Fukushima 972-8312, Japan
| | - Takao Ohmura
- Kunimine Industries Co, Ltd, 23-5 Kuidesaku, Shimofunao, Iwaki, Fukushima 972-8312, Japan
| | - Kazutake Tsujikawa
- Graduate School of Pharmaceutical Science, Osaka University, 1-6 Yamada-oka, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Warwar Damouny C, Martin P, Vasilyev G, Vilensky R, Fadul R, Redenski I, Srouji S, Zussman E. Injectable Hydrogels Based on Inter-Polyelectrolyte Interactions between Hyaluronic Acid, Gelatin, and Cationic Cellulose Nanocrystals. Biomacromolecules 2022; 23:3222-3234. [PMID: 35771870 DOI: 10.1021/acs.biomac.2c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work dealt with the development of physically cross-linked injectable hydrogels with potential applications in tissue engineering. The hydrogels were composed of a ternary mixture of a polyanion and a polyampholyte, hyaluronic acid (HA) and gelatin, respectively, bridged by cationic cellulose nanocrystals (cCNCs). A 3D network is formed by employing attractive electrostatic interactions and hydrogen bonding between these components under physiological conditions. The hydrogels demonstrated low viscosity at high stresses, enabling easy injection, structural stability at low stresses (<15 Pa), and nearly complete structure recovery within several minutes. Increasing the cCNC content (>3%) reduced hydrogel swelling and decelerated the degradation in phosphate-buffered saline as compared to that in pure HA and HA-gelatin samples. Biological evaluation of the hydrogel elutions showed excellent cell viability. The proliferation of fibroblasts exposed to elutions of hydrogels with 5% cCNCs reached ∼200% compared to that in the positive control after 11 days. Considering these results, the prepared hydrogels hold great potential in biomedical applications, such as injectable dermal fillers, 3D bioprintable inks, or 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
- Christine Warwar Damouny
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Patrick Martin
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Reema Fadul
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Idan Redenski
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
6
|
Montazerian H, Davoodi E, Baidya A, Baghdasarian S, Sarikhani E, Meyer CE, Haghniaz R, Badv M, Annabi N, Khademhosseini A, Weiss PS. Engineered Hemostatic Biomaterials for Sealing Wounds. Chem Rev 2022; 122:12864-12903. [PMID: 35731958 DOI: 10.1021/acs.chemrev.1c01015] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemostatic biomaterials show great promise in wound control for the treatment of uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. A surge of interest has been directed at boosting hemostatic properties of bioactive materials via mechanisms triggering the coagulation cascade. A wide variety of biocompatible and biodegradable materials has been applied to the design of hemostatic platforms for rapid blood coagulation. Recent trends in the design of hemostatic agents emphasize chemical conjugation of charged moieties to biomacromolecules, physical incorporation of blood-coagulating agents in biomaterials systems, and superabsorbing materials in either dry (foams) or wet (hydrogel) states. In addition, tough bioadhesives are emerging for efficient and physical sealing of incisions. In this Review, we highlight the biomacromolecular design approaches adopted to develop hemostatic bioactive materials. We discuss the mechanistic pathways of hemostasis along with the current standard experimental procedures for characterization of the hemostasis efficacy. Finally, we discuss the potential for clinical translation of hemostatic technologies, future trends, and research opportunities for the development of next-generation surgical materials with hemostatic properties for wound management.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States.,Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Einollah Sarikhani
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Claire Elsa Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Gold KA, Saha B, Rajeeva Pandian NK, Walther BK, Palma JA, Jo J, Cooke JP, Jain A, Gaharwar AK. 3D Bioprinted Multicellular Vascular Models. Adv Healthc Mater 2021; 10:e2101141. [PMID: 34310082 PMCID: PMC9295047 DOI: 10.1002/adhm.202101141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Indexed: 02/06/2023]
Abstract
3D bioprinting is an emerging additive manufacturing technique to fabricate constructs for human disease modeling. However, current cell-laden bioinks lack sufficient biocompatibility, printability, and structural stability needed to translate this technology to preclinical and clinical trials. Here, a new class of nanoengineered hydrogel-based cell-laden bioinks is introduced, that can be printed into 3D, anatomically accurate, multicellular blood vessels to recapitulate both the physical and chemical microenvironments of native human vasculature. A remarkably unique characteristic of this bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process. 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one-month post-fabrication. Leveraging these properties, the nanoengineered bioink is printed into 3D cylindrical blood vessels, consisting of living co-culture of endothelial cells and vascular smooth muscle cells, providing the opportunity to model vascular function and pathophysiology. Upon cytokine stimulation and blood perfusion, this 3D bioprinted vessel is able to recapitulate thromboinflammatory responses observed only in advanced in vitro preclinical models or in vivo. Therefore, this 3D bioprinted vessel provides a potential tool to understand vascular disease pathophysiology and assess therapeutics, toxins, or other chemicals.
Collapse
Affiliation(s)
- Karli A Gold
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Biswajit Saha
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Brandon K Walther
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jorge A Palma
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Javier Jo
- Electrical and Computer Engineering, College of Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Abhishek Jain
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.,Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, 77843, USA.,Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Xu X, Zhuo J, Xiao L, Xu Y, Yang X, Li Y, Du Z, Luo K. Nanosilicate-Functionalized Polycaprolactone Orchestrates Osteogenesis and Osteoblast-Induced Multicellular Interactions for Potential Endogenous Vascularized Bone Regeneration. Macromol Biosci 2021; 22:e2100265. [PMID: 34705332 DOI: 10.1002/mabi.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Massive oral and maxillofacial bone defect regeneration remains a major clinical challenge due to the absence of functionalized bone grafts with ideal mechanical and proregeneration properties. In the present study, Laponite (LAP), a synthetic nanosilicate, is incorporated into polycaprolactone (PCL) to develop a biomaterial for bone regeneration. It is explored whether LAP-embedded PCL would accelerate bone regeneration by orchestrating osteoblasts to directly and indirectly induce bone regeneration processes. The results confirmed the presence of LAP in PCL, and LAP is distributed in the exfoliated structure without aggregates. Incorporation of LAP in PCL slightly improved the compressive properties. LAP-embedded PCL is biocompatible and exerts pronounced enhancements in cell viability, osteogenic differentiation, and extracellular matrix formation of osteoblasts. Furthermore, osteoblasts cultured on LAP-embedded PCL facilitate angiogenesis of vessel endothelial cells and alleviate osteoclastogenesis of osteoclasts in a paracrine manner. The addition of LAP to the PCL endows favorable bone formation in vivo. Based upon these results, LAP-embedded PCL shows great potential as an ideal bone graft that exerts both space-maintaining and vascularized bone regeneration synergistic effects and can be envisioned for oral and maxillofacial bone defect regeneration.
Collapse
Affiliation(s)
- Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jin Zhuo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Long Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Zhibin Du
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, 4059, Australia
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
9
|
López-Angulo D, Bittante AMQ, Luciano CG, Ayala-Valencia G, Flaker CH, Djabourov M, José do Amaral Sobral P. Effect of Laponite® on the structure, thermal stability and barrier properties of nanocomposite gelatin films. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Moore MJ, Malaxos L, Doyle BJ. Development of a shear-thinning biomaterial as an endovascular embolic agent for the treatment of type B aortic dissection. J Mech Behav Biomed Mater 2019; 99:66-77. [PMID: 31344524 DOI: 10.1016/j.jmbbm.2019.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022]
Abstract
False lumen embolisation is a promising treatment strategy in type B aortic dissection (TBAD) but it is limited by the lack of a disease-specific embolic agent. Our aim was to develop a biomaterial that could be delivered minimally-invasively into the TBAD false lumen and embolise the region. We created 24 shear-thinning biomaterials from blends of gelatin, silicate nanoparticles and silk fibroin, and evaluated their suitability as a false lumen embolic agent in TBAD. We determined the stability of mechanical properties by measuring the compressive modulus of samples stored in physiological conditions over a 21 day period. We quantified injectability by measuring the force required to inject each biomaterial through catheters of varying diameter. We also assessed in vitro degradation rates by measuring weight change over 30 days. Finally, we developed an in vitro experimental pulsatile flow setup with two different anatomically-correct TBAD geometries and performed 78 false lumen occlusion experiments under different operating conditions. We found that the compressive moduli changed rapidly on exposure to 37 °C before stabilising by Day 7. A high silicate nanoparticle to gelatin ratio resulted in greater compressive moduli, with a maximum of 117.6 ± 15.2 kPa. By reducing the total solid concentration, we could improve injectability and biomaterials with 8% (w/v) solids required <80 N force to be injected through a 4.0 mm catheter. Our in vitro degradation rates showed that the biomaterial only degraded by 1.5-8.4% over a 30 day period. We found that the biomaterial could occlude flow to the false lumen in 99% of experiments. In conclusion, blends with high silicate nanoparticle and low silk fibroin content warrant further investigation for their potential as false lumen embolic agents and could be a promising alternative to current TBAD repair methods.
Collapse
Affiliation(s)
- Matthew J Moore
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Biomedical Science, The University of Western Australia, Perth, Australia
| | - Lauren Malaxos
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Lv S, Duan T, Li H. Engineering Protein-Clay Nanosheets Composite Hydrogels with Designed Arginine-Rich Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7255-7260. [PMID: 31083892 DOI: 10.1021/acs.langmuir.9b00701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clay nanosheets (CNSs) have been widely used in the design of nanocomposite biomaterials. CNSs display a disk-like morphology with strong negatively charged surfaces. It has been shown that guanidinium-containing molecules can bind CNSs through noncovalent salt-bridge interactions and thus serve as "molecular glues" for CNSs. Making use of the guanidinium side chain in arginine, here, we designed novel arginine-rich elastomeric proteins to engineer protein-CNS nanocomposite hydrogels. Our results showed that these arginine-rich proteins can interact with CNSs effectively and can cross-link CNSs into hydrogels. Rheological measurements showed that mechanical properties of the resultant hydrogels depended on the arginine content in the arginine-rich proteins as well as CNS/protein concentration. Compared with hydrogels constructed from CNSs or proteins alone, the novel protein-CNS nanocomposite hydrogels show much improved mechanical properties. Our work opens up a new avenue to engineer functional protein hydrogels for various applications.
Collapse
Affiliation(s)
- Shanshan Lv
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada
- State Key Laboratory of Organic-Inorganic Composite Materials , Beijing University of Chemical Technology , Beijing , 100029 , P. R. China
| | - Tianyu Duan
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada
| | - Hongbin Li
- Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada
| |
Collapse
|
12
|
Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA. 2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900332. [PMID: 30941811 PMCID: PMC6546555 DOI: 10.1002/adma.201900332] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/23/2019] [Indexed: 05/03/2023]
Abstract
Clay nanomaterials are an emerging class of 2D biomaterials of interest due to their atomically thin layered structure, charged characteristics, and well-defined composition. Synthetic nanoclays are plate-like polyions composed of simple or complex salts of silicic acids with a heterogeneous charge distribution and patchy interactions. Due to their biocompatible characteristics, unique shape, high surface-to-volume ratio, and charge, nanoclays are investigated for various biomedical applications. Here, a critical overview of the physical, chemical, and physiological interactions of nanoclay with biological moieties, including cells, proteins, and polymers, is provided. The state-of-the-art biomedical applications of 2D nanoclay in regenerative medicine, therapeutic delivery, and additive manufacturing are reviewed. In addition, recent developments that are shaping this emerging field are discussed and promising new research directions for 2D nanoclay-based biomaterials are identified.
Collapse
Affiliation(s)
- Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren M Cross
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Charles W Peak
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Karli Gold
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - James K Carrow
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna Brokesh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kanwar Abhay Singh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Kadumudi FB, Jahanshahi M, Mehrali M, Zsurzsan T, Taebnia N, Hasany M, Mohanty S, Knott A, Godau B, Akbari M, Dolatshahi‐Pirouz A. A Protein-Based, Water-Insoluble, and Bendable Polymer with Ionic Conductivity: A Roadmap for Flexible and Green Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801241. [PMID: 30886791 PMCID: PMC6402400 DOI: 10.1002/advs.201801241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Indexed: 05/27/2023]
Abstract
Proteins present an ecofriendly alternative to many of the synthetic components currently used in electronics. They can therefore in combination with flexibility and electroactivity uncover a range of new opportunities in the field of flexible and green electronics. In this study, silk-based ionic conductors are turned into stable thin films by embedding them with 2D nanoclay platelets. More specifically, this material is utilized to develop a flexible and ecofriendly motion-sensitive touchscreen device. The display-like sensor can readily transmit light, is easy to recycle and can monitor the motion of almost any part of the human body. It also displays a significantly lower sheet resistance during bending and stretching regimes than the values typically reported for conventional metallic-based conductors, and remains fully operational after mechanical endurance testing. Moreover, it can operate at high frequencies in the kilohertz (kHz) range under both normal and bending modes. Notably, our new technology is available through a simple one-step manufacturing technique and can therefore easily be extended to large-scale fabrication of electronic devices.
Collapse
Affiliation(s)
- Firoz Babu Kadumudi
- DTU NanotechCentre for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of Denmark2800 Kgs. LyngbyDenmark
| | - Mohammadjavad Jahanshahi
- DTU NanotechCentre for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of Denmark2800 Kgs. LyngbyDenmark
| | - Mehdi Mehrali
- DTU NanotechCentre for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of Denmark2800 Kgs. LyngbyDenmark
| | | | - Nayere Taebnia
- DTU NanotechCentre for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of Denmark2800 Kgs. LyngbyDenmark
| | - Masoud Hasany
- DTU NanotechCentre for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of Denmark2800 Kgs. LyngbyDenmark
| | | | - Arnold Knott
- Department of Electrical EngineeringTechnical University of Denmark2800 Kgs. LyngbyDenmark
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of Victoria3800VictoriaBCCanada
- Centre for Biomedical ResearchUniversity of Victoria3800VictoriaBCCanada
- Centre for Advanced Materials and Related TechnologyUniversity of Victoria3800VictoriaBCCanada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME)Department of Mechanical EngineeringUniversity of Victoria3800VictoriaBCCanada
- Centre for Biomedical ResearchUniversity of Victoria3800VictoriaBCCanada
- Centre for Advanced Materials and Related TechnologyUniversity of Victoria3800VictoriaBCCanada
| | - Alireza Dolatshahi‐Pirouz
- DTU NanotechCentre for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of Denmark2800 Kgs. LyngbyDenmark
| |
Collapse
|
14
|
Bey H, Gtari W, Aschi A. Study of the complex coacervation mechanism between the lysing enzyme from T. harzianum and polyallylamine hydrochloride. Int J Biol Macromol 2019; 124:780-787. [PMID: 30502430 DOI: 10.1016/j.ijbiomac.2018.11.266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Complex coacervation was achieved by mixing the lysing enzyme from T. harzianum (LYS) with polyallylamine hydrochloride (PAH). We show in this work that the study electrostatic complexes conformation can lead to the formation of dense complexes. We systematically investigated the effects of pH and the mass ratio on the structure and properties of the complex. The different transition phases (pHc, pHφ1, and pHφ2) have been determined using dynamic light scattering, zeta potential and turbidimetric measurements. The interpolymeric bonds may be ionic or physical, depending on the pH of the system. For a pH value of 4.9, the mixture system [LYS]/[PAH] gives raise the formation of coacervate droplets. The effects of temperature on the structure of coacervate droplets are studied by small angle light scattering (SALS).
Collapse
Affiliation(s)
- Houda Bey
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire de Physique de la Matière Molle et de la Modélisation Électromagnétique, 2092 Tunis, Tunisia
| | - Wala Gtari
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire de Physique de la Matière Molle et de la Modélisation Électromagnétique, 2092 Tunis, Tunisia
| | - Adel Aschi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire de Physique de la Matière Molle et de la Modélisation Électromagnétique, 2092 Tunis, Tunisia.
| |
Collapse
|
15
|
Carrow JK, Di Luca A, Dolatshahi-Pirouz A, Moroni L, Gaharwar AK. 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regen Biomater 2019; 6:29-37. [PMID: 30740240 PMCID: PMC6362822 DOI: 10.1093/rb/rby024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Additive manufacturing (AM) has shown promise in designing 3D scaffold for regenerative medicine. However, many synthetic biomaterials used for AM are bioinert. Here, we report synthesis of bioactive nanocomposites from a poly(ethylene oxide terephthalate) (PEOT)/poly(butylene terephthalate) (PBT) (PEOT/PBT) copolymer and 2D nanosilicates for fabricating 3D scaffolds for bone tissue engineering. PEOT/PBT have been shown to support calcification and bone bonding ability in vivo, while 2D nanosilicates induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) in absence of osteoinductive agents. The effect of nanosilicates addition to PEOT/PBT on structural, mechanical and biological properties is investigated. Specifically, the addition of nanosilicate to PEOT/PBT improves the stability of nanocomposites in physiological conditions, as nanosilicate suppressed the degradation rate of copolymer. However, no significant increase in the mechanical stiffness of scaffold due to the addition of nanosilicates is observed. The addition of nanosilicates to PEOT/PBT improves the bioactive properties of AM nanocomposites as demonstrated in vitro. hMSCs readily proliferated on the scaffolds containing nanosilicates and resulted in significant upregulation of osteo-related proteins and production of mineralized matrix. The synergistic ability of nanosilicates and PEOT/PBT can be utilized for designing bioactive scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- James K Carrow
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Andrea Di Luca
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Lorenzo Moroni
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, Maastricht, The Netherlands
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science, Texas A&M University, College Station, TX, USA and
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Kaushik P, Rawat K, Aswal VK, Kohlbrecher J, Bohidar HB. Mixing ratio dependent complex coacervation versus bicontinuous gelation of pectin with in situ formed zein nanoparticles. SOFT MATTER 2018; 14:6463-6475. [PMID: 30051132 DOI: 10.1039/c8sm00809d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on the competitive phenomenon of complex coacervation versus bicontinuous gelation between pectin (P, a polyanionic carbohydrate, [P] = 0.01-2% (w/v)) and zein nanoparticles (Z, a hydrophobic protein and a weak polyampholyte, [Z] = 0.1 and 0.5% (w/v), in an ethanolic solution of effective concentration 4 and 27% (v/v)), which was studied below (pH ≈ 4), and above (pH ≈ 7.4) the pI (≈ 6.2) of zein at room temperature, 25 °C. The uniqueness of this study arises from the interaction protocol used, where the pectin used was in the extended polyelectrolyte (persistence length ≈ 10 nm) conformation while zein was used as a charged globular nanoparticle (size ≈ 80-120 nm) that was formed in situ. Their mixing ratio, r = [P] : [Z] (w/w), was varied from 0.02 to 4.0 (for [Z] = 0.5% (w/v)), and from 0.1 to 7.5 (for [Z] = 0.1% (w/v)) in the ionic strength range 10-4 to 10-2 M NaCl. Zeta potential data revealed that at pH ≈ 4, the complementary binding condition, r = 1 : 1 (equivalent to 1 : 5 molecule/nanoparticle) demarcated the coacervate from the gel region. The measured rigidity (G0, low frequency storage modulus) of these materials revealed the following: for r < 1, (low pectin content samples, coacervate region) the material had lower values of Gcoac0, whereas for r > 1, an excess of pectin facilitated gelation with Ggel0 ≫ Gcoac0. Above pI, surface patch binding caused associative interactions and complex coacervation though both biopolymers had similar net charge. The network density was used as a descriptor to distinguish between the coacervate and gel samples. Their microstructures were probed by small angle neutron scattering (SANS), and viscoelastic properties by rheology. Simple modeling shows that formation of the interpolymer complex was favored in higher protein containing samples. Mixing ratio dependent selective coacervation (a kinetic process) and bicontinuous gelation (a thermodynamic process) are rarely seen to coexist in biopolymer interactions.
Collapse
Affiliation(s)
- Priyanka Kaushik
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | |
Collapse
|
17
|
Sheikhi A, Afewerki S, Oklu R, Gaharwar AK, Khademhosseini A. Effect of ionic strength on shear-thinning nanoclay-polymer composite hydrogels. Biomater Sci 2018; 6:2073-2083. [PMID: 29944151 PMCID: PMC6085890 DOI: 10.1039/c8bm00469b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoclay-polymer shear-thinning composites are designed for a broad range of biomedical applications, including tissue engineering, drug delivery, and additive biomanufacturing. Despite the advances in clay-polymer injectable nanocomposites, colloidal properties of layered silicates are not fully considered in evaluating the in vitro performance of shear-thinning biomaterials (STBs). Here, as a model system, we investigate the effect of ions on the rheological properties and injectability of nanoclay-gelatin hydrogels to understand their behavior when prepared in physiological media. In particular, we study the effect of sodium chloride (NaCl) and calcium chloride (CaCl2), common salts in phosphate buffered saline (PBS) and cell culture media (e.g., Dulbecco's Modified Eagle's Medium, DMEM), on the structural organization of nanoclay (LAPONITE® XLG-XR, a hydrous lithium magnesium sodium silicate)-polymer composites, responsible for the shear-thinning properties and injectability of STBs. We show that the formation of nanoclay-polymer aggregates due to the ion-induced shrinkage of the diffuse double layer and eventually the liquid-solid phase separation decrease the resistance of STB against elastic deformation, decreasing the yield stress. Accordingly, the stress corresponding to the onset of structural breakdown (yield zone) is regulated by the ion type and concentration. These results are independent of the STB composition and can directly be translated into the physiological conditions. The exfoliated nanoclay undergoes visually undetectable aggregation upon mixing with gelatin in physiological media, resulting in heterogeneous hydrogels that phase separate under stress. This work provides fundamental insights into nanoclay-polymer interactions in physiological environments, paving the way for designing clay-based injectable biomaterials.
Collapse
Affiliation(s)
- Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
- Center of Nanotechnology, Department of physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
18
|
Alarçin E, Lee TY, Karuthedom S, Mohammadi M, Brennan MA, Lee DH, Marrella A, Zhang J, Syla D, Zhang YS, Khademhosseini A, Jang HL. Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomater Sci 2018; 6:1604-1615. [PMID: 29736522 PMCID: PMC6016025 DOI: 10.1039/c8bm00293b] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone nonunion may occur when the fracture is unstable, or blood supply is impeded. To provide an effective treatment for the healing of nonunion defects, we introduce an injectable osteogenic hydrogel that can deliver cells and vasculogenic growth factors. We used a silicate-based shear-thinning hydrogel (STH) to engineer an injectable scaffold and incorporated polycaprolactone (PCL) nanoparticles that entrap and release vasculogenic growth factors in a controlled manner. By adjusting the solid composition of gelatin and silicate nanoplatelets in the STH, we defined optimal conditions that enable injection of STHs, which can deliver cells and growth factors. Different types of STHs could be simultaneously injected into 3D constructs through a single extrusion head composed of multiple syringes and needles, while maintaining their engineered structure in a continuous manner. The injected STHs were also capable of filling any irregularly shaped defects in bone. Osteogenic cells and endothelial cells were encapsulated in STHs with and without vasculogenic growth factors, respectively, and when co-cultured, their growth and differentiation were significantly enhanced compared to cells grown in monoculture. This study introduces an initial step of developing a new platform of shape-tunable materials with controlled release of angiogenic growth factors by utilizing PCL nanoparticles.
Collapse
Affiliation(s)
- Emine Alarçin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women's Hospital, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jin Y, Shen Y, Yin J, Qian J, Huang Y. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10461-10470. [PMID: 29493213 DOI: 10.1021/acsami.8b00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Stimuli-responsive hydrogels and/or composite hydrogels have been of great interest for various printing applications including four-dimensional printing. Although various responsive hydrogels and/or composite hydrogels have been found to respond to given stimuli and change shapes as designed, the fabrication of three-dimensional (3D) structures from such responsive hydrogels is still a challenge due to their poor 3D printability, and most of the responsive material-based patterns are two-dimensional (2D) in nature. In this study, Laponite nanoclay is studied as an effective additive to improve the self-supporting printability of N-isopropylacrylamide (NIPAAm), a thermoresponsive hydrogel precursor while keeping the responsive functionality of NIPAAm. Graphene oxide (GO) is further added as a nanoscale heater, responding to near-infrared radiation. Due to the different shrinking ratios and mechanical properties of the poly( N-isopropylacrylamide) (pNIPAAm)-Laponite and pNIPAAm-Laponite-GO nanocomposite hydrogels, printed 2D patterns deform in a predictable way. In addition, 3D microfluidic valves are directly printed and cured in air, which can effectively control the flow directions in response to different stimuli as validated in a microfluidic system. Because Laponite nanoclay can be mixed with various responsive hydrogel precursors to improve their 3D printability, the proposed Laponite nanoclay-based nanocomposite hydrogels can be further expanded to prepare various 3D printable responsive nanocomposite hydrogels.
Collapse
|
20
|
Peak CW, Stein J, Gold KA, Gaharwar AK. Nanoengineered Colloidal Inks for 3D Bioprinting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:917-925. [PMID: 28981287 DOI: 10.1021/acs.langmuir.7b02540] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoengineered hydrogels offer the potential to design shear-thinning bioinks for three-dimensional (3D) bioprinting. Here, we have synthesized colloidal bioinks composed of disk-shaped two-dimensional (2D) nanosilicates (Laponite) and poly(ethylene glycol) (PEG). The addition of Laponite reinforces the PEG network and increases viscosity, storage modulus, and network stability. PEG-Laponite hydrogels display shear-thinning and self-recovery characteristics due to rapid internal phase rearrangement. As a result, a range of complex patterns can be printed using PEG-Laponite bioinks. The 3D bioprinted structure has similar mechanical properties compared to the as-casted structure. In addition, encapsulated cells within the PEG-Laponite bioink show high viability after bioprinting. Overall, this study introduces a new class of PEG-Laponite colloidal inks for bioprinting and cell delivery.
Collapse
Affiliation(s)
- Charles W Peak
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Jean Stein
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Karli A Gold
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| | - Akhilesh K Gaharwar
- Biomedical Engineering and ‡Material Science and Engineering, Dwight Look College of Engineering, and §Center for Remote Health Technologies and Systems, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
21
|
Gradient nanocomposite hydrogels for interface tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2465-2474. [PMID: 28554596 DOI: 10.1016/j.nano.2017.02.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/28/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Abstract
Two-dimensional (2D) nanomaterials are an emerging class of materials with unique physical and chemical properties due to their high surface area and disc-like shape. Recently, these 2D nanomaterials have been investigated for a range of biomedical applications including tissue engineering, therapeutic delivery and bioimaging, due to their ability to physically reinforce polymeric networks. Here, we present a facile fabrication of a gradient scaffold with two natural polymers (gelatin methacryloyl (GelMA) and methacrylated kappa carrageenan (MκCA)) reinforced with 2D nanosilicates to mimic the native tissue interface. The addition of nanosilicates results in shear-thinning characteristics of prepolymer solution and increases the mechanical stiffness of crosslinked gradient structure. A gradient in mechanical properties, microstructures and cell adhesion characteristics was obtained using a microengineered flow channel. The gradient structure can be used to understand cell-matrix interactions and to design gradient scaffolds for mimicking tissue interfaces.
Collapse
|
22
|
Jin Y, Liu C, Chai W, Compaan A, Huang Y. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17456-17465. [PMID: 28467835 DOI: 10.1021/acsami.7b03613] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three dimensional (3D) bioprinting technology enables the freeform fabrication of complex constructs from various hydrogels and is receiving increasing attention in tissue engineering. The objective of this study is to develop a novel self-supporting direct hydrogel printing approach to extrude complex 3D hydrogel composite structures in air without the help of a support bath. Laponite, a member of the smectite mineral family, is investigated to serve as an internal scaffold material for the direct printing of hydrogel composite structures in air. In the proposed printing approach, due to its yield-stress property, Laponite nanoclay can be easily extruded through a nozzle as a liquid and self-supported after extrusion as a solid. Its unique crystal structure with positive and negative charges enables it to be mixed with many chemically and physically cross-linked hydrogels, which makes it an ideal internal scaffold material for the fabrication of various hydrogel structures. By mixing Laponite nanoclay with various hydrogel precursors, the hydrogel composites retain their self-supporting capacity and can be printed into 3D structures directly in air and retain their shapes before cross-linking. Then, the whole structures are solidified in situ by applying suitable cross-linking stimuli. The addition of Laponite nanoclay can effectively improve the mechanical and biological properties of hydrogel composites. Specifically, the addition of Laponite nanoclay results in a significant increase in the Young's modulus of each hydrogel-Laponite composite: 1.9-fold increase for the poly(ethylene glycol) diacrylate (PEGDA)-Laponite composite, 7.4-fold increase for the alginate-Laponite composite, and 3.3-fold increase for the gelatin-Laponite composite.
Collapse
Affiliation(s)
- Yifei Jin
- Department of Mechanical and Aerospace Engineering, ‡Department of Materials Science and Engineering, and §Department of Biomedical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Chengcheng Liu
- Department of Mechanical and Aerospace Engineering, ‡Department of Materials Science and Engineering, and §Department of Biomedical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Wenxuan Chai
- Department of Mechanical and Aerospace Engineering, ‡Department of Materials Science and Engineering, and §Department of Biomedical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Ashley Compaan
- Department of Mechanical and Aerospace Engineering, ‡Department of Materials Science and Engineering, and §Department of Biomedical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, ‡Department of Materials Science and Engineering, and §Department of Biomedical Engineering, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
23
|
Pawar N, Kaushik P, Bohidar HB. Hydrophobic hydration and anomalous diffusion of elastin in an ethanolic solution. Phys Chem Chem Phys 2017; 19:13994-14000. [DOI: 10.1039/c7cp01384a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pictorial depiction of solvation of elastin molecule in aqueous and ethanol solutions. Polymer chain collapse in water and swelling in binary solvent.
Collapse
Affiliation(s)
- Nisha Pawar
- Department of Physics, Indian Institute of Technology Kharagpur
- India
| | - Priyanka Kaushik
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - H. B. Bohidar
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
24
|
Toytziaridis A, Dicko C. Fabrication and Optimization of Stable, Optically Transparent, and Reusable pH-Responsive Silk Membranes. Int J Mol Sci 2016; 17:E1897. [PMID: 27854303 PMCID: PMC5133896 DOI: 10.3390/ijms17111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
The fabrication of silk-based membranes that are stable, optically transparent and reusable is yet to be achieved. To address this bottleneck we have developed a method to produce transparent chromogenic silk patches that are optically responsive to pH. The patches were produced by blending regenerated silk fibroin (RSF), Laponite RD (nano clay) and the organic dyes neutral red and Thionine acetate. The Laponite RD played a central role in the patch mechanical integrity and prevention of dye leaching. The process was optimized using a factorial design to maximize the patch response to pH by UV absorbance and fluorescence emission. New patches of the optimized protocol, made from solutions containing 125 μM neutral red or 250 μM of Thionine and 15 mg/mL silk, were further tested for operational stability over several cycles of pH altering. Stability, performance, and reusability were achieved over the tested cycles. The approach could be extended to other reporting molecules or enzymes able to bind to Laponite.
Collapse
Affiliation(s)
- Andreas Toytziaridis
- Pure and Applied Biochemistry, Chemical Center, Lund University, 22241 Lund, Sweden.
| | - Cedric Dicko
- Pure and Applied Biochemistry, Chemical Center, Lund University, 22241 Lund, Sweden.
| |
Collapse
|
25
|
Waters R, Pacelli S, Maloney R, Medhi I, Ahmed RPH, Paul A. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. NANOSCALE 2016; 8:7371-6. [PMID: 26876936 PMCID: PMC4863075 DOI: 10.1039/c5nr07806g] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.
Collapse
Affiliation(s)
- Renae Waters
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Ryan Maloney
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Indrani Medhi
- SRM University, Kattankulathur 603203, Tamilnadu, India
| | - Rafeeq P H Ahmed
- Department of Pathology, University of Cincinnati, 231-Albert Sabin Way, Cincinnati 45267, OH, USA
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
26
|
Das K, Rawat K, Bohidar HB. Surface patch binding induced interaction of anisotropic nanoclays with globular plasma proteins. RSC Adv 2016. [DOI: 10.1039/c6ra11669h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Morphology dependent interaction of model anisotropic nanoparticles with globular plasma proteins.
Collapse
Affiliation(s)
- Kishan Das
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Kamla Rawat
- Special Center for Nanosciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
- Inter University Accelerator Centre (IUAC)
| | - H. B. Bohidar
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
- Special Center for Nanosciences
| |
Collapse
|
27
|
Fabrication of gelatin–laponite composite films: Effect of the concentration of laponite on physical properties and the freshness of meat during storage. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A, Olsen BD. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS NANO 2014; 8:9833-42. [PMID: 25221894 PMCID: PMC4212795 DOI: 10.1021/nn503719n] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/15/2014] [Indexed: 05/19/2023]
Abstract
Internal hemorrhaging is a leading cause of death after traumatic injury on the battlefield. Although several surgical approaches such as the use of fibrin glue and tissue adhesive have been commercialized to achieve hemostasis, these approaches are difficult to employ on the battlefield and cannot be used for incompressible wounds. Here, we present shear-thinning nanocomposite hydrogels composed of synthetic silicate nanoplatelets and gelatin as injectable hemostatic agents. These materials are demonstrated to decrease in vitro blood clotting times by 77%, and to form stable clot-gel systems. In vivo tests indicated that the nanocomposites are biocompatible and capable of promoting hemostasis in an otherwise lethal liver laceration. The combination of injectability, rapid mechanical recovery, physiological stability, and the ability to promote coagulation result in a hemostat for treating incompressible wounds in out-of-hospital, emergency conditions.
Collapse
Affiliation(s)
- Akhilesh K. Gaharwar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reginald K. Avery
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander Assmann
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, 40225 Duesseldorf, Germany
| | - Arghya Paul
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gareth H. McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ali Khademhosseini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Address correspondence to ,
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Address correspondence to ,
| |
Collapse
|
29
|
Pathak J, Rawat K, Aswal VK, Bohidar HB. Hierarchical surface charge dependent phase states of gelatin-bovine serum albumin dispersions close to their common pI. J Phys Chem B 2014; 118:11161-71. [PMID: 25171436 DOI: 10.1021/jp5068846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report interaction between bovine serum albumin ([BSA] = 1% (w/v)) and gelatin B ([GB] = 0.25-3.5% (w/v)) occurring close to their common isoelectric pH (pI). This interaction generated distinguishable multiple soft matter phases like opaque coacervates (phase I) and transparent gels (phase II), where the former are composed of partially charge neutralized intermolecular complexes (zeta potential, ζ ≤ 0) and the latter of overcharged complexes (ζ ≥ 0) that organized into a network pervading the entire sample volume. These phase states were completely governed by the protein mixing ratio r = [GB]:[BSA]. Coacervates, when heated above 32 °C, produced thermoirreversible turbid gels (phase III), stable in the region 32 ≥ T ≤ 50 °C. When the transparent gels were heated to T ≥ 34 °C, these turned into turbid solutions that did form a turbid fragile gel (phase IV) upon cooling. Mechanical and thermal behaviors of aforesaid coacervates (phase I) and gels (phase II) were examined; coacervates had lower storage modulus and melting temperature compared to gels. Cole-Cole plots attributed considerable heterogeneity to coacervate phase, but gels were relatively homogeneous. Raman spectroscopy data suggested differential microenvironment for these phases. Coacervates were mostly hydrated by partially structured water with degree of hydration dependent on gelatin concentration whereas for gels hydration was invariant of [GB]. Small-angle neutron scattering (SANS) data gave static structure factor profiles, I(q), versus wavevector q, that were remarkably different. For transparent gels, data could be split into two distinct regions: (i) 0.01 < q < 0.1 Å(-1), I(q) = IOZ(0)/(1 + q(2)ζgel(2))(2) (Debye-Bueche function) with ζgel = 9-13 nm, and (ii) 0.1 < q < 0.35 Å(-1), I(q) = IOZ(0)/(1 + q(2)ξgel(2)) (Ornstein-Zernike function) with ξgel = 3.1 ± 0.6 nm. Similarly, for coacervate, the aforesaid two q-regions were described by (i) I(q) = IPL(0)q(-α) with α = 1.7 ± 0.1 and (ii) I(q) = IOZ(0)/(1 + q(2)ξcoac(2)) with ξcoac = 1.6 ± 0.2 nm, a value close to the persistence length of gelatin chain (lp ≈ 2 nm). Phase transition from one equilibrium state to another, i.e., phase I to II, was hierarchical in the charge state of the protein-protein complex. Within the same charge state, transition from phase I to III and from phase II to IV was thermally activated. The aforesaid mechanisms are captured in a unique ζ-T phase diagram.
Collapse
Affiliation(s)
- Jyotsana Pathak
- Polymer and Biophysics Laboratory, School of Physical Sciences, and ‡Special Center for Nanosciences, Jawaharlal Nehru University , New Delhi 110067, India
| | | | | | | |
Collapse
|
30
|
Pathak J, Rawat K, Bohidar HB. Is surface patch binding between proteins symmetric about isoelectric pH? RSC Adv 2014. [DOI: 10.1039/c4ra02372b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Karimi F, Taheri Qazvini N, Namivandi-Zangeneh R. Fish gelatin/Laponite biohybrid elastic coacervates: A complexation kinetics–structure relationship study. Int J Biol Macromol 2013; 61:102-13. [DOI: 10.1016/j.ijbiomac.2013.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
|
32
|
Qazvini NT, Bolisetty S, Adamcik J, Mezzenga R. Self-Healing Fish Gelatin/Sodium Montmorillonite Biohybrid Coacervates: Structural and Rheological Characterization. Biomacromolecules 2012; 13:2136-47. [DOI: 10.1021/bm3005319] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nader Taheri Qazvini
- Polymer Division,
School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Sreenath Bolisetty
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| | - Jozef Adamcik
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| |
Collapse
|
33
|
Abstract
A nanocomposite thermogel composed of Pluronic®-based multiblock copolymer and laponite nanoclay was developed to sustain delivery of low-molecular-weight proteins. The rapid release of low-molecular-weight proteins from multiblock copolymer thermogels has been a problem for sustained delivery but was solved by using nanocomposite thermogel. Lysozyme (Mw = 14,700), a relatively low-molecular-weight protein, was successfully loaded into and released from nanocomposite thermogel. In addition, interactions among multiblock copolymer, laponite, and lysozyme were studied in terms of gelation, micellization, particle size, and zeta potential. Critical micellization temperatures and sol–gel transition temperatures of multiblock copolymer solutions were lowered with laponite addition. Positively charged lysozyme was adsorbed onto anionic surface of laponite, which increased with an increase in the lysozyme concentration. Particle size and zeta potential of the laponite–lysozyme complex were also dependent on the lysozyme concentration. The nanocomposite thermogel sustained lysozyme release to 40 days, whereas lysozyme release from multiblock copolymer thermogel lasted for only 18 days. The structural stability of released lysozyme was confirmed by circular dichroism spectroscopy and differential scanning calorimetry.
Collapse
Affiliation(s)
- Vivek K Garripelli
- Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Seongbong Jo
- Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
34
|
Pujala RK, Pawar N, Bohidar HB. Universal sol state behavior and gelation kinetics in mixed clay dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5193-5203. [PMID: 21466239 DOI: 10.1021/la1048453] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sol and gel state behavior, in aqueous salt free dispersions, of clays Laponite (L) and Na montmorillonite (MMT) was studied at various mixing ratios (L:MMT = r = 1:0.5, 1:1, and 1:2). In the sol state, the zeta potential and gelation concentration of L-MMT obeyed the universal relation, X(L-MMT) = (rX(L) + X(MMT))/(1 + r), where X is zeta potential or gelation concentration (c(g)), implying that these properties are linear combinations of the same of their individual components. The low frequency storage modulus (G(0)'), relative viscosity (η(r)), and apparent cluster size (R) could be universally described by the power-law, G(0)' ∼ ((c/c(g)) - 1)(t) (c > c(g)), and η(r), R ∼ (1 - (c/c(g)))(-k,ν) (c < c(g)), with t = 1.5, k = 1.1, and υ = 0.8 close to the gelation concentration, for r = 1:1 cogel, consistent with the percolation model description of gelation. Interestingly, the hyperscaling relation δ = t/(k + t) yielded δ = 0.56 not too different from the predicted value ∼0.7, while the experimental value of δ obtained from G''(ω) ∼ ω(δ) close to c ≈ c(g) yielded δ = 1.5, which was at variance with the hyperscaling result. The experimental data, on hand, mostly supported percolation type gelation mechanism. As the cogels were slowly heated, at a characteristic temperature, T(g), a sharp increase in G' value was noticed, implying a transition to gel hardening (a new phase state). The temperature-dependent behavior followed the power-law description, G' ∼ (T(g) - T)(-γ) (T < T(g)), with γ = 0.40 ± 0.05 invariant of composition of the cogel, whereas for MMT and Laponite, γ = 0.25 and 0.55, respectively. It has been shown that the cogel has significantly enhanced mechanical (G(0) increased by 10 times for r = 1:1 cogel) and thermal properties (T(g) increased by 13 °C for 1:1 cogel) that can be exploited to design customized soft materials.
Collapse
Affiliation(s)
- Ravi Kumar Pujala
- Nanomaterials and Nanocomposite Laboratory School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | |
Collapse
|
35
|
Pawar N, Bohidar HB. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:036107. [PMID: 21230139 DOI: 10.1103/physreve.82.036107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/29/2010] [Indexed: 05/30/2023]
Abstract
Liquid-liquid phase separation leading to complex coacervation in a ternary system (oppositely charged polyion and macroion in a solvent) is discussed within the framework of a statistical thermodynamics model. The polyion and the macroion in the ternary system interact to form soluble aggregates (complexes) in the solvent, which undergoes liquid-liquid phase separation. Four necessary conditions are shown to drive the phase separation: (i) (σ{23}){3}r/Φ{23c}≥(64/9α{2})(χ{23}Φ{3}){2} , (ii) r≥[64(χ{23}Φ{3}){2}/9α{2}σ{23}{3}]{1/2}, (iii) χ{23}≥(2χ{231}-1)/Φ{23c}Φ{3}, and (iv) (σ{23}){2}/sqrt[I]≥8/3α(2χ{231}-1) (where σ{23} is the surface charge on the complex formed due to binding of the polyelectrolyte and macroion, Φ{23c} is the critical volume fraction of the complex, χ{23} is the Flory interaction parameter between polyelectrolyte and macroion, χ{231} is the same between solvent and the complex, Φ{3} is the volume fraction of the macroions, I is the ionic strength of the solution, α is electrostatic interaction parameter and r is typically of the order of molecular weight of the polyions). It has been shown that coacervation always requires a hydrated medium. In the case of a colloidal macroion and polyelectrolyte coacervation, molecular weight of polyelectrolyte must satisfy the condition r≥10{3} Da to exhibit liquid-liquid phase separation. This model has been successfully applied to study the coacervation phenomenon observed in aqueous Laponite (macroion)-gelatin (polyion) system where it was found that the coacervate volume fraction, δΦ{23}∼χ{231}{2} (where δΦ{23} is the volume fraction of coacervates formed during phase separation). The free energy and entropy of this process have been evaluated, and a free-energy landscape has been drawn for this system that maps the pathway leading to phase separation.
Collapse
Affiliation(s)
- Nisha Pawar
- Nanomaterials and Nanocomposites Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|