1
|
Hau HM, Mishra T, Ophus C, Huang TY, Bustilo K, Sun Y, Yang X, Holstun T, Zhao X, Wang S, Ha Y, Lee GH, Song C, Turner J, Bai J, Ma L, Chen K, Wang F, Yang W, McCloskey BD, Cai Z, Ceder G. Earth-abundant Li-ion cathode materials with nanoengineered microstructures. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01787-y. [PMID: 39300225 DOI: 10.1038/s41565-024-01787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Manganese-based materials have tremendous potential to become the next-generation lithium-ion cathode as they are Earth abundant, low cost and stable. Here we show how the mobility of manganese cations can be used to obtain a unique nanosized microstructure in large-particle-sized cathode materials with enhanced electrochemical properties. By combining atomic-resolution scanning transmission electron microscopy, four-dimensional scanning electron nanodiffraction and in situ X-ray diffraction, we show that when a partially delithiated, high-manganese-content, disordered rocksalt cathode is slightly heated, it forms a nanomosaic of partially ordered spinel domains of 3-7 nm in size, which impinge on each other at antiphase boundaries. The short coherence length of these domains removes the detrimental two-phase lithiation reaction present near 3 V in a regular spinel and turns it into a solid solution. This nanodomain structure enables good rate performance and delivers 200 mAh g-1 discharge capacity in a (partially) disordered material with an average primary particle size of ∼5 µm. The work not only expands the synthesis strategies available for developing high-performance Earth-abundant manganese-based cathodes but also offers structural insights into the ability to nanoengineer spinel-like phases.
Collapse
Affiliation(s)
- Han-Ming Hau
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tara Mishra
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tzu-Yang Huang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Karen Bustilo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yingzhi Sun
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiaochen Yang
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tucker Holstun
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xinye Zhao
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shilong Wang
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gi-Hyeok Lee
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John Turner
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianming Bai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Ke Chen
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Feng Wang
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bryan D McCloskey
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zijian Cai
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Gerbrand Ceder
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Xiong X, Yin C, Quan L, Sato R, Matsukuma H, Shimizu Y, Tamiya H, Gao W. Self-Calibration of a Large-Scale Variable-Line-Spacing Grating for an Absolute Optical Encoder by Differencing Spatially Shifted Phase Maps from a Fizeau Interferometer. SENSORS (BASEL, SWITZERLAND) 2022. [PMID: 36502050 DOI: 10.1088/1361-6501/abe9de] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A new method based on the interferometric pseudo-lateral-shearing method is proposed to evaluate the pitch variation of a large-scale planar variable-line-spacing (VLS) grating. In the method, wavefronts of the first-order diffracted beams from a planar VLS grating are measured by a commercial Fizeau form interferometer. By utilizing the differential wavefront of the first-order diffracted beam before and after the small lateral shift of the VLS grating, the pitch variation of the VLS grating can be evaluated. Meanwhile, additional positioning errors of the grating in the lateral shifting process could degrade the measurement accuracy of the pitch variation. To address the issue, the technique referred to as the reference plane technique is also introduced, where the least squares planes in the wavefronts of the first-order diffracted beams are employed to reduce the influences of the additional positioning errors of the VLS grating. The proposed method can also reduce the influence of the out-of-flatness of the reference flat in the Fizeau interferometer by taking the difference between the measured positive and negative diffracted wavefronts; namely, self-calibration can be accomplished. After the theoretical analysis and simulations, experiments are carried out with a large-scale VLS grating to verify the feasibility of the proposed methods. Furthermore, the evaluated VLS parameters are verified by comparing them with the readout signal of an absolute surface encoder employing the evaluated VLS grating as the scale for measurement.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
- The State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Chenguang Yin
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Lue Quan
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Ryo Sato
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Hiraku Matsukuma
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Yuki Shimizu
- Department of Human Mechanical Systems and Design, Hokkaido University, Sapporo 060-0808, Japan
| | - Hideaki Tamiya
- Magnescale Co., Ltd., Suzukawa 45, Isehara 259-1146, Japan
| | - Wei Gao
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
3
|
Xiong X, Yin C, Quan L, Sato R, Matsukuma H, Shimizu Y, Tamiya H, Gao W. Self-Calibration of a Large-Scale Variable-Line-Spacing Grating for an Absolute Optical Encoder by Differencing Spatially Shifted Phase Maps from a Fizeau Interferometer. SENSORS (BASEL, SWITZERLAND) 2022; 22:9348. [PMID: 36502050 PMCID: PMC9736133 DOI: 10.3390/s22239348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
A new method based on the interferometric pseudo-lateral-shearing method is proposed to evaluate the pitch variation of a large-scale planar variable-line-spacing (VLS) grating. In the method, wavefronts of the first-order diffracted beams from a planar VLS grating are measured by a commercial Fizeau form interferometer. By utilizing the differential wavefront of the first-order diffracted beam before and after the small lateral shift of the VLS grating, the pitch variation of the VLS grating can be evaluated. Meanwhile, additional positioning errors of the grating in the lateral shifting process could degrade the measurement accuracy of the pitch variation. To address the issue, the technique referred to as the reference plane technique is also introduced, where the least squares planes in the wavefronts of the first-order diffracted beams are employed to reduce the influences of the additional positioning errors of the VLS grating. The proposed method can also reduce the influence of the out-of-flatness of the reference flat in the Fizeau interferometer by taking the difference between the measured positive and negative diffracted wavefronts; namely, self-calibration can be accomplished. After the theoretical analysis and simulations, experiments are carried out with a large-scale VLS grating to verify the feasibility of the proposed methods. Furthermore, the evaluated VLS parameters are verified by comparing them with the readout signal of an absolute surface encoder employing the evaluated VLS grating as the scale for measurement.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
- The State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Chenguang Yin
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Lue Quan
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Ryo Sato
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Hiraku Matsukuma
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| | - Yuki Shimizu
- Department of Human Mechanical Systems and Design, Hokkaido University, Sapporo 060-0808, Japan
| | - Hideaki Tamiya
- Magnescale Co., Ltd., Suzukawa 45, Isehara 259-1146, Japan
| | - Wei Gao
- Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
4
|
Kunnus K, Guo M, Biasin E, Larsen CB, Titus CJ, Lee SJ, Nordlund D, Cordones AA, Uhlig J, Gaffney KJ. Quantifying the Steric Effect on Metal-Ligand Bonding in Fe Carbene Photosensitizers with Fe 2p3d Resonant Inelastic X-ray Scattering. Inorg Chem 2022; 61:1961-1972. [PMID: 35029978 DOI: 10.1021/acs.inorgchem.1c03124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the electronic structure and chemical bonding of transition metal complexes is important for improving the function of molecular photosensitizers and catalysts. We have utilized X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) at the Fe L3 edge to investigate the electronic structure of two Fe N-heterocyclic carbene complexes with similar chemical structures but different steric effects and contrasting excited-state dynamics: [Fe(bmip)2]2+ and [Fe(btbip)2]2+, bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)pyridine and btbip = 2,6-bis(3-tert-butyl-imidazole-1-ylidene)pyridine. In combination with charge transfer multiplet and ab initio calculations, we quantified how changes in Fe-carbene bond length due to steric effects modify the metal-ligand bonding, including σ/π donation and π back-donation. We find that σ donation is significantly stronger in [Fe(bmip)2]2+, whereas the π back-donation is similar in both complexes. The resulting stronger ligand field and nephelauxetic effect in [Fe(bmip)2]2+ lead to approximately 1 eV destabilization of the quintet metal-centered 5T2g excited state compared to [Fe(btbip)2]2+, providing an explanation for the absence of a photoinduced 5T2g population and a longer metal-to-ligand charge-transfer excited-state lifetime in [Fe(bmip)2]2+. This work demonstrates how combined modeling of XAS and RIXS spectra can be utilized to understand the electronic structure of transition metal complexes governed by correlated electrons and donation/back-donation interactions.
Collapse
Affiliation(s)
- Kristjan Kunnus
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States.,Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu EE-50411, Estonia
| | - Meiyuan Guo
- Department of Chemistry, Lund University, Lund SE-22100, Sweden
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Christopher B Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Charles J Titus
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Sang Jun Lee
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dennis Nordlund
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Jens Uhlig
- Department of Chemistry, Lund University, Lund SE-22100, Sweden
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
5
|
Kao LC, Ha Y, Chang WJ, Feng X, Ye Y, Chen JL, Pao CW, Yang F, Zhu C, Yang W, Guo J, Liou SYH. Trace Key Mechanistic Features of the Arsenite Sequestration Reaction with Nanoscale Zerovalent Iron. J Am Chem Soc 2021; 143:16538-16548. [PMID: 34524811 DOI: 10.1021/jacs.1c06159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoscale zerovalent iron (nZVI) is considered as a highly efficient material for sequestrating arsenite, but the origin of its high efficacy as well as the chemical transformations of arsenite during reaction is not well understood. Here, we report an in situ X-ray absorption spectroscopy (XAS) study to investigate the complex mechanism of nZVI reaction with arsenite under anaerobic conditions at the time scale from seconds to days. The time-resolved XAS analysis revealed a gradual oxidation of AsIII to AsV in the course of minutes to hours in both the solid and liquid phase for the high (above 0.5 g/L) nZVI dose system. When the reaction time increased up to 60 days, AsV became the dominant species. The quick-scanning extended X-ray absorption fine structure (QEAXFS) was introduced to discover the transient intermediate at the highly reactive stage, and a small red-shift in As K-edge absorption edge was observed. The QEAXFS combined with density functional theory (DFT) calculation suggested that the red-shift is likely due to the electron donation in a Fe-O-As complex and possible active sites of As sequestrations include Fe(OH)4 and 4-Fe cluster. This is the first time that the transient reaction intermediate was identified in the As-nZVI sequestration system at the fast-reacting early stage. This study also demonstrated usefulness of in situ monitoring techniques in environmental water research.
Collapse
Affiliation(s)
- Li Cheng Kao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wan-Jou Chang
- Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Feipeng Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Catherine Zhu
- Molecular and Cellular Biology: Biochemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Sofia Ya Hsuan Liou
- Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Yang C, Si M, Zhang X, Yu A, Huang J, Pan Y, Li H, Li L, Wang Z, Zhang S, Xia J, Liu Z, Guo H, You L. Large-area TaN superconducting microwire single photon detectors for X-ray detection. OPTICS EXPRESS 2021; 29:21400-21408. [PMID: 34265928 DOI: 10.1364/oe.422581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
With the development of superconducting nanowire single photon detectors, increasing numbers of important applications are being explored, covering not only low-energy optical photon detection but also high-energy photon and particle detection. In this work, 100-nm-thick TaN superconducting microwire single photon detectors (SMSPDs) with large active areas were prepared for X-ray detection, and their response characteristics to X-rays were studied. The results showed that our TaN SMSPDs were able to detect X-rays at a wide range of bias currents and working temperatures. The detectors could distinguish different energy X-rays under suitable working conditions, and the energy resolving power was strongly related to the bias current.
Collapse
|
7
|
Singh A, Huang HY, Chu YY, Hua CY, Lin SW, Fung HS, Shiu HW, Chang J, Li JH, Okamoto J, Chiu CC, Chang CH, Wu WB, Perng SY, Chung SC, Kao KY, Yeh SC, Chao HY, Chen JH, Huang DJ, Chen CT. Development of the Soft X-ray AGM-AGS RIXS beamline at the Taiwan Photon Source. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:977-986. [PMID: 33950006 PMCID: PMC8127366 DOI: 10.1107/s1600577521002897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/18/2021] [Indexed: 06/01/2023]
Abstract
We report on the development of a high-resolution and highly efficient beamline for soft X-ray resonant inelastic X-ray scattering (RIXS) located at the Taiwan Photon Source. This beamline adopts an optical design that uses an active grating monochromator (AGM) and an active grating spectrometer (AGS) to implement the energy compensation principle of grating dispersion. Active gratings are utilized to diminish defocus, coma and higher-order aberrations, as well as to decrease the slope errors caused by thermal deformation and optical polishing. The AGS is mounted on a rotatable granite platform to enable momentum-resolved RIXS measurements with scattering angles over a wide range. Several high-precision instruments developed in-house for this beamline are described briefly. The best energy resolution obtained from this AGM-AGS beamline was 12.4 meV at 530 eV, achieving a resolving power of 4.2 × 104, while the bandwidth of the incident soft X-rays was kept at 0.5 eV. To demonstrate the scientific impact of high-resolution RIXS, we present an example of momentum-resolved RIXS measurements on a high-temperature superconducting cuprate, i.e. La2-xSrxCuO4. The measurements reveal the A1g buckling phonons in superconducting cuprates, opening a new opportunity to investigate the coupling between these phonons and charge-density waves.
Collapse
Affiliation(s)
- A. Singh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - H. Y. Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Y. Y. Chu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - C. Y. Hua
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - S. W. Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - H. S. Fung
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - H. W. Shiu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J. Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J. H. Li
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J. Okamoto
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - C. C. Chiu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - C. H. Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - W. B. Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - S. Y. Perng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - S. C. Chung
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - K. Y. Kao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - S. C. Yeh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - H. Y. Chao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J. H. Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - D. J. Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - C. T. Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
8
|
Spectroscopic characterization of electronic structures of ultra-thin single crystal La 0.7Sr 0.3MnO 3. Sci Rep 2021; 11:5250. [PMID: 33664335 PMCID: PMC7933230 DOI: 10.1038/s41598-021-84598-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/18/2021] [Indexed: 11/08/2022] Open
Abstract
We have successfully fabricated high quality single crystalline La0.7Sr0.3MnO3 (LSMO) film in the freestanding form that can be transferred onto silicon wafer and copper mesh support. Using soft x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopy in transmission and reflection geometries, we demonstrate that the x-ray emission from Mn 3s-2p core-to-core transition (3sPFY) seen in the RIXS maps can represent the bulk-like absorption signal with minimal self-absorption effect around the Mn L3-edge. Similar measurements were also performed on a reference LSMO film grown on the SrTiO3 substrate and the agreement between measurements substantiates the claim that the bulk electronic structures can be preserved even after the freestanding treatment process. The 3sPFY spectrum obtained from analyzing the RIXS maps offers a powerful way to probe the bulk electronic structures in thin films and heterostructures when recording the XAS spectra in the transmission mode is not available.
Collapse
|
9
|
Shao YC, Karki B, Huang W, Feng X, Sumanasekera G, Guo JH, Chuang YD, Freelon B. Spectroscopic Determination of Key Energy Scales for the Base Hamiltonian of Chromium Trihalides. J Phys Chem Lett 2021; 12:724-731. [PMID: 33400873 DOI: 10.1021/acs.jpclett.0c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The van der Waals (vdW) chromium trihalides (CrX3) exhibit field-tunable, two-dimensional magnetic orders that vary with the halogen species and the number of layers. Their magnetic ground states with proximity in energies are sensitive to the degree of ligand-metal (p-d) hybridization and relevant modulations in the Cr d-orbital interactions. We use soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectroscopy at Cr L-edge along with the atomic multiplet simulations to determine the key energy scales such as the crystal field 10 Dq and interorbital Coulomb interactions under different ligand metal charge transfer (LMCT) in CrX3 (X= Cl, Br, and I). Through this systematic study, we show that our approach compared to the literature has yielded a set of more reliably determined parameters for establishing a base Hamiltonian for CrX3.
Collapse
Affiliation(s)
- Y C Shao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of Houston, Houston, Texas 77204, United States
| | - B Karki
- Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292, United States
| | - W Huang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and InformationTechnology, Chinese Academy of Sciences, Shanghai 200050, China
| | - X Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - G Sumanasekera
- Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292, United States
| | - J-H Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Y-D Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - B Freelon
- Department of Physics, University of Houston, Houston, Texas 77204, United States
- Texas Center for Superconductivity, University of Houston, Houston Texas 77204, United States
| |
Collapse
|
10
|
Lu H, Gauthier A, Hepting M, Tremsin AS, Reid AH, Kirchmann PS, Shen ZX, Devereaux TP, Shao YC, Feng X, Coslovich G, Hussain Z, Dakovski GL, Chuang YD, Lee WS. Time-resolved RIXS experiment with pulse-by-pulse parallel readout data collection using X-ray free electron laser. Sci Rep 2020; 10:22226. [PMID: 33335197 PMCID: PMC7746750 DOI: 10.1038/s41598-020-79210-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
Time-resolved resonant inelastic X-ray scattering (RIXS) is one of the developing techniques enabled by the advent of X-ray free electron laser (FEL). It is important to evaluate how the FEL jitter, which is inherent in the self-amplified spontaneous emission process, influences the RIXS measurement. Here, we use a microchannel plate (MCP) based Timepix soft X-ray detector to conduct a time-resolved RIXS measurement at the Ti L3-edge on a charge-density-wave material TiSe2. The fast parallel Timepix readout and single photon sensitivity enable pulse-by-pulse data acquisition and analysis. Due to the FEL jitter, low detection efficiency of spectrometer, and low quantum yield of RIXS process, we find that less than 2% of the X-ray FEL pulses produce signals, preventing acquiring sufficient data statistics while maintaining temporal and energy resolution in this measurement. These limitations can be mitigated by using future X-ray FELs with high repetition rates, approaching MHz such as the European XFEL in Germany and LCLS-II in the USA, as well as by utilizing advanced detectors, such as the prototype used in this study.
Collapse
Affiliation(s)
- H Lu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - A Gauthier
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M Hepting
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - A S Tremsin
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - A H Reid
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - P S Kirchmann
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Z X Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - T P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, 94305, USA.,Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Y C Shao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - X Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - G Coslovich
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Z Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - G L Dakovski
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Y D Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - W S Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
11
|
Feng X, Sallis S, Shao YC, Qiao R, Liu YS, Kao LC, Tremsin AS, Hussain Z, Yang W, Guo J, Chuang YD. Disparate Exciton-Phonon Couplings for Zone-Center and Boundary Phonons in Solid-State Graphite. PHYSICAL REVIEW LETTERS 2020; 125:116401. [PMID: 32975957 DOI: 10.1103/physrevlett.125.116401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The exciton-phonon coupling in highly oriented pyrolytic graphite is studied using resonant inelastic x-ray scattering (RIXS) spectroscopy. With ∼70 meV energy resolution, multiple low energy excitations associated with coupling to phonons can be clearly resolved in the RIXS spectra. Using resonance dependence and the closed form for RIXS cross section without considering the intermediate state mixing of phonon modes, the dimensionless coupling constant g is determined to be 5 and 0.35, corresponding to the coupling strength of 0.42 eV+/-20 meV and 0.20 eV+/-20 meV, for zone center and boundary phonons, respectively. The reduced g value for the zone-boundary phonon may be related to its double resonance nature.
Collapse
Affiliation(s)
- Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yu-Cheng Shao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Li Cheng Kao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anton S Tremsin
- Space Science Laboratory, University of California, Berkeley, California 94720, USA
| | - Zahid Hussain
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Shvyd'ko Y. Diffraction gratings with two-orders-of-magnitude-enhanced dispersion rates for sub-meV resolution soft X-ray spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1227-1234. [PMID: 32876597 DOI: 10.1107/s1600577520008292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Diffraction gratings with large angular dispersion rates are central to obtaining high spectral resolution in grating spectrometers operating over a broad spectral range from infrared to soft X-ray domains. The greatest challenge is of course to achieve large dispersion rates in the short-wavelength X-ray domain. Here it is shown that crystals in non-coplanar asymmetric X-ray Bragg diffraction can function as high-reflectance broadband soft X-ray diffraction gratings with dispersion rates that are at least two orders of magnitude larger than those that are possible with state-of-the-art man-made gratings. This opens new opportunities to design and implement soft X-ray resonant inelastic scattering (RIXS) spectrometers with spectral resolutions that are up to two orders of magnitude higher than what is currently possible, to further advance a very dynamic field of RIXS spectroscopy, and to make it competitive with inelastic neutron scattering. Examples of large-dispersion-rate crystal diffraction gratings operating near the 930 eV L3 absorption edge in Cu and of the 2.838 keV L3-edge in Ru are presented.
Collapse
Affiliation(s)
- Yuri Shvyd'ko
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
13
|
Kjellsson L, Nanda KD, Rubensson JE, Doumy G, Southworth SH, Ho PJ, March AM, Al Haddad A, Kumagai Y, Tu MF, Schaller RD, Debnath T, Bin Mohd Yusof MS, Arnold C, Schlotter WF, Moeller S, Coslovich G, Koralek JD, Minitti MP, Vidal ML, Simon M, Santra R, Loh ZH, Coriani S, Krylov AI, Young L. Resonant Inelastic X-Ray Scattering Reveals Hidden Local Transitions of the Aqueous OH Radical. PHYSICAL REVIEW LETTERS 2020; 124:236001. [PMID: 32603165 DOI: 10.1103/physrevlett.124.236001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 05/06/2023]
Abstract
Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ionization of pure liquid water produced a short-lived population of OH(aq), which was probed using femtosecond x-rays from an x-ray free-electron laser. We find that RIXS reveals localized electronic transitions that are masked in the ultraviolet absorption spectrum by strong charge-transfer transitions-thus providing a means to investigate the evolving electronic structure and reactivity of the hydroxyl radical in aqueous and heterogeneous environments. First-principles calculations provide interpretation of the main spectral features.
Collapse
Affiliation(s)
- L Kjellsson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - K D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - J-E Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - G Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - P J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A M March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Y Kumagai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M-F Tu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - R D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - T Debnath
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - M S Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - C Arnold
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20146 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | - W F Schlotter
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Moeller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G Coslovich
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J D Koralek
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M P Minitti
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M L Vidal
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - M Simon
- Sorbonne Université and CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75252 Paris Cedex 05, France
| | - R Santra
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20146 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | - Z-H Loh
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - S Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - A I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - L Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
14
|
Chen D, Wu J, Papp JK, McCloskey BD, Yang W, Chen G. Role of Redox-Inactive Transition-Metals in the Behavior of Cation-Disordered Rocksalt Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000656. [PMID: 32363748 DOI: 10.1002/smll.202000656] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Owing to the capacity boost from oxygen redox activities, Li-rich cation-disordered rocksalts (LRCDRS) represent a new class of promising high-energy Li-ion battery cathode materials. Redox-inactive transition-metal (TM) cations, typically d0 TM, are essential in the formation of rocksalt phases, however, their role in electrochemical performance and cathode stability is largely unknown. In the present study, the effect of two d0 TM (Nb5+ and Ti4+ ) is systematically compared on the redox chemistry of Mn-based model LRCDRS cathodes, namely Li1.3 Nb0.3 Mn0.4 O2 (LNMO), Li1.25 Nb0.15 Ti0.2 Mn0.4 O2 (LNTMO), and Li1.2 Ti0.4 Mn0.4 O2 (LTMO). Although electrochemically inactive, d0 TM serves as a modulator for oxygen redox, with Nb5+ significantly enhancing initial charge storage contribution from oxygen redox. Further studies using differential electrochemical mass spectroscopy and resonant inelastic X-ray scattering reveal that Ti4+ is better in stabilizing the oxidized oxygen anions (On - , 0 < n < 2), leading to a more reversible O redox process with less oxygen gas release. As a result, much improved chemical, structural and cycling stabilities are achieved on LTMO. Detailed evaluation on the effect of d0 TM on degradation mechanism further suggests that proper design of redox-inactive TM cations provides an important avenue to balanced capacity and stability in this newer class of cathode materials.
Collapse
Affiliation(s)
- Dongchang Chen
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinpeng Wu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joseph K Papp
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bryan D McCloskey
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Guoying Chen
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
15
|
Chuang YD, Feng X, Glans-Suzuki PA, Yang W, Padmore H, Guo J. A design of resonant inelastic X-ray scattering (RIXS) spectrometer for spatial- and time-resolved spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:695-707. [PMID: 32381770 PMCID: PMC7206552 DOI: 10.1107/s1600577520004440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The optical design of a Hettrick-Underwood-style soft X-ray spectrometer with Wolter type 1 mirrors is presented. The spectrometer with a nominal length of 3.1 m can achieve a high resolving power (resolving power higher than 10000) in the soft X-ray regime when a small source beam (<3 µm in the grating dispersion direction) and small pixel detector (5 µm effective pixel size) are used. Adding Wolter mirrors to the spectrometer before its dispersive elements can realize the spatial imaging capability, which finds applications in the spectroscopic studies of spatially dependent electronic structures in tandem catalysts, heterostructures, etc. In the pump-probe experiments where the pump beam perturbs the materials followed by the time-delayed probe beam to reveal the transient evolution of electronic structures, the imaging capability of the Wolter mirrors can offer the pixel-equivalent femtosecond time delay between the pump and probe beams when their wavefronts are not collinear. In combination with some special sample handing systems, such as liquid jets and droplets, the imaging capability can also be used to study the time-dependent electronic structure of chemical transformation spanning multiple time domains from microseconds to nanoseconds. The proposed Wolter mirrors can also be adopted to the existing soft X-ray spectrometers that use the Hettrick-Underwood optical scheme, expanding their capabilities in materials research.
Collapse
Affiliation(s)
- Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Per-Anders Glans-Suzuki
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Howard Padmore
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Li Q, Yan S, Yang W. Interfacial properties in energy storage systems studied by soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering. J Chem Phys 2020; 152:140901. [PMID: 32295356 DOI: 10.1063/5.0003311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interfacial behaviors and properties play critical roles in determining key practical parameters of electrochemical energy storage systems, such as lithium-ion and sodium-ion batteries. Soft x-ray spectroscopy features shallow penetration depth and demonstrates inherent surface sensitivity to characterize the interfacial behavior with elemental and chemical sensitivities. In this review, we present a brief survey of modern synchrotron-based soft x-ray spectroscopy of the interface in electrochemical energy storage systems. The technical focus includes core-level spectroscopy of conventional x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS). We show that while conventional techniques remain powerful for probing the chemical species on the surface, today's material research studies have triggered much more demanding chemical sensitivity that could only be offered by advanced techniques such as RIXS. Another direction in the field is the rapid development of various in situ/operando characterizations of complex electrochemical systems. Notably, the solid-state battery systems provide unique advantages for future studies of both the surface/interface and the bulk properties under operando conditions. We conclude with perspectives on the bright future of studying electrochemical systems through these advanced soft x-ray spectroscopic techniques.
Collapse
Affiliation(s)
- Qinghao Li
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Shishen Yan
- School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Ramakrishnan S, Park B, Wu J, Yang W, McCloskey BD. Extended Interfacial Stability through Simple Acid Rinsing in a Li-Rich Oxide Cathode Material. J Am Chem Soc 2020; 142:8522-8531. [DOI: 10.1021/jacs.0c02859] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Srinivasan Ramakrishnan
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Byungchun Park
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- LG Chem Research Campus, Battery R&D, Daejeon, South Korea
| | - Jue Wu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bryan D. McCloskey
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Zhuo Z, Liu YS, Guo J, Chuang YD, Pan F, Yang W. Full Energy Range Resonant Inelastic X-ray Scattering of O 2 and CO 2: Direct Comparison with Oxygen Redox State in Batteries. J Phys Chem Lett 2020; 11:2618-2623. [PMID: 32154725 DOI: 10.1021/acs.jpclett.0c00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The evolving oxygen state plays key roles in the performance and stability of high-energy batteries involving oxygen redox reactions. Here, high-efficiency full energy range O-K mapping of resonant inelastic X-ray scattering (mRIXS) was collected from O2 (O0) and CO2 (O2- with strong covalency) molecules and compared directly with Li2O2 (O-) and the oxidized oxygen state in representative Na/Li-ion battery electrodes. Our results confirm again that the critical mRIXS feature around the 523.7 eV emission energy is from intrinsically oxidized oxygen, but not from the highly covalent oxygen state (CO2). The comparison of the mRIXS profile of the four different oxygen states, i.e., O2-, O-, On- (0 < n < 2), and O0, reveals that oxygen redox states in batteries have distinct widths and positions along the excitation energy compared with Li2O2 and O2. The nature of the oxidized oxygen state in oxide electrodes is thus beyond a simple molecular configuration of either peroxide or O2.
Collapse
Affiliation(s)
- Zengqing Zhuo
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Yi-de Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| |
Collapse
|
19
|
Wu J, Zhuo Z, Rong X, Dai K, Lebens-Higgins Z, Sallis S, Pan F, Piper LFJ, Liu G, Chuang YD, Hussain Z, Li Q, Zeng R, Shen ZX, Yang W. Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. SCIENCE ADVANCES 2020; 6:eaaw3871. [PMID: 32083173 PMCID: PMC7007267 DOI: 10.1126/sciadv.aaw3871] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 11/22/2019] [Indexed: 05/30/2023]
Abstract
The oxygen redox (OR) activity is conventionally considered detrimental to the stability and kinetics of batteries. However, OR reactions are often confused by irreversible oxygen oxidation. Here, based on high-efficiency mapping of resonant inelastic x-ray scattering of both the transition metal and oxygen, we distinguish the lattice OR in Na0.6[Li0.2Mn0.8]O2 and compare it with Na2/3[Mg1/3Mn2/3]O2. Both systems display strong lattice OR activities but with distinct electrochemical stability. The comparison shows that the substantial capacity drop in Na0.6[Li0.2Mn0.8]O2 stems from non-lattice oxygen oxidations, and its voltage decay from an increasing Mn redox contribution upon cycling, contrasting those in Na2/3[Mg1/3Mn2/3]O2. We conclude that lattice OR is not the ringleader of the stability issue. Instead, irreversible oxygen oxidation and the changing cationic reactions lead to the capacity and voltage fade. We argue that lattice OR and other oxygen activities should/could be studied and treated separately to achieve viable OR-based electrodes.
Collapse
Affiliation(s)
- Jinpeng Wu
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaohui Rong
- Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Kehua Dai
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Zachary Lebens-Higgins
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902, USA
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Louis F. J. Piper
- Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902, USA
| | - Gao Liu
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yi-de Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Qinghao Li
- Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Zeng
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhi-xun Shen
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Loh ZH, Doumy G, Arnold C, Kjellsson L, Southworth SH, Al Haddad A, Kumagai Y, Tu MF, Ho PJ, March AM, Schaller RD, Bin Mohd Yusof MS, Debnath T, Simon M, Welsch R, Inhester L, Khalili K, Nanda K, Krylov AI, Moeller S, Coslovich G, Koralek J, Minitti MP, Schlotter WF, Rubensson JE, Santra R, Young L. Observation of the fastest chemical processes in the radiolysis of water. Science 2020; 367:179-182. [DOI: 10.1126/science.aaz4740] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023]
Abstract
Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.
Collapse
Affiliation(s)
- Z.-H. Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - G. Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - C. Arnold
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - L. Kjellsson
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- European XFEL GmbH, Schenefeld, Germany
| | - S. H. Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - A. Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Y. Kumagai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - M.-F. Tu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - P. J. Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - A. M. March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - R. D. Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - M. S. Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - T. Debnath
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - M. Simon
- Sorbonne Université and CNRS, Laboratoire de Chemie Physique-Matière et Rayonnement, LCPMR, F-750005 Paris, France
| | - R. Welsch
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - L. Inhester
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - K. Khalili
- Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark
| | - K. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - A. I. Krylov
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - S. Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - G. Coslovich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J. Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M. P. Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - W. F. Schlotter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J.-E. Rubensson
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - R. Santra
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - L. Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Schulz C, Lieutenant K, Xiao J, Hofmann T, Wong D, Habicht K. Characterization of the soft X-ray spectrometer PEAXIS at BESSY II. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:238-249. [PMID: 31868758 PMCID: PMC6927519 DOI: 10.1107/s1600577519014887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/04/2019] [Indexed: 06/02/2023]
Abstract
The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s-1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.
Collapse
Affiliation(s)
- Christian Schulz
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Klaus Lieutenant
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Jie Xiao
- Department of Highly Sensitive X-ray Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Tommy Hofmann
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Deniz Wong
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Klaus Habicht
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
22
|
Lee SJ, Titus CJ, Alonso Mori R, Baker ML, Bennett DA, Cho HM, Doriese WB, Fowler JW, Gaffney KJ, Gallo A, Gard JD, Hilton GC, Jang H, Joe YI, Kenney CJ, Knight J, Kroll T, Lee JS, Li D, Lu D, Marks R, Minitti MP, Morgan KM, Ogasawara H, O'Neil GC, Reintsema CD, Schmidt DR, Sokaras D, Ullom JN, Weng TC, Williams C, Young BA, Swetz DS, Irwin KD, Nordlund D. Soft X-ray spectroscopy with transition-edge sensors at Stanford Synchrotron Radiation Lightsource beamline 10-1. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:113101. [PMID: 31779391 DOI: 10.1063/1.5119155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
We present results obtained with a new soft X-ray spectrometer based on transition-edge sensors (TESs) composed of Mo/Cu bilayers coupled to bismuth absorbers. This spectrometer simultaneously provides excellent energy resolution, high detection efficiency, and broadband spectral coverage. The new spectrometer is optimized for incident X-ray energies below 2 keV. Each pixel serves as both a highly sensitive calorimeter and an X-ray absorber with near unity quantum efficiency. We have commissioned this 240-pixel TES spectrometer at the Stanford Synchrotron Radiation Lightsource beamline 10-1 (BL 10-1) and used it to probe the local electronic structure of sample materials with unprecedented sensitivity in the soft X-ray regime. As mounted, the TES spectrometer has a maximum detection solid angle of 2 × 10-3 sr. The energy resolution of all pixels combined is 1.5 eV full width at half maximum at 500 eV. We describe the performance of the TES spectrometer in terms of its energy resolution and count-rate capability and demonstrate its utility as a high throughput detector for synchrotron-based X-ray spectroscopy. Results from initial X-ray emission spectroscopy and resonant inelastic X-ray scattering experiments obtained with the spectrometer are presented.
Collapse
Affiliation(s)
- Sang-Jun Lee
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | - Douglas A Bennett
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Hsiao-Mei Cho
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - William B Doriese
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Joseph W Fowler
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Kelly J Gaffney
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alessandro Gallo
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Johnathon D Gard
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Gene C Hilton
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Hoyoung Jang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Young Il Joe
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | | | - Jason Knight
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jun-Sik Lee
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dale Li
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Donghui Lu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ronald Marks
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michael P Minitti
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kelsey M Morgan
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | | | - Galen C O'Neil
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Carl D Reintsema
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Daniel R Schmidt
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | | | - Joel N Ullom
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Tsu-Chien Weng
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Betty A Young
- Santa Clara University, Santa Clara, California 95053, USA
| | - Daniel S Swetz
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Kent D Irwin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dennis Nordlund
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
23
|
Evolution of superconductivity in K 2-xFe 4+ySe 5: Spectroscopic studies of X-ray absorption and emission. Proc Natl Acad Sci U S A 2019; 116:22458-22463. [PMID: 31641068 DOI: 10.1073/pnas.1912610116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigates the evolution of superconductivity in K2-xFe4+ySe5 using temperature-dependent X-ray absorption and resonant inelastic X-ray scattering techniques. Magnetization measurements show that polycrystalline superconducting (SC) K1.9Fe4.2Se5 has a critical temperature (T c) of ∼31 K with a varying superconducting volume fraction, which strongly depends on its synthesis temperature. An increase in Fe-structural/vacancy disorder in SC samples with more Fe atoms occupying vacant 4d sites is found to be closely related to the decrease in the spin magnetic moment of Fe. Moreover, the nearest-neighbor Fe-Se bond length in SC samples exceeds that in the non-SC (NS) sample, K2Fe4Se5, which indicates a weaker hybridization between the Fe 3d and Se 4p states in SC samples. These results clearly demonstrate the correlations among the local electronic and atomic structures and the magnetic properties of K2-xFe4+ySe5 superconductors, providing deeper insight into the electron pairing mechanisms of superconductivity.
Collapse
|
24
|
Mitrano M, Lee S, Husain AA, Delacretaz L, Zhu M, de la Peña Munoz G, Sun SXL, Joe YI, Reid AH, Wandel SF, Coslovich G, Schlotter W, van Driel T, Schneeloch J, Gu GD, Hartnoll S, Goldenfeld N, Abbamonte P. Ultrafast time-resolved x-ray scattering reveals diffusive charge order dynamics in La 2-x Ba x CuO 4. SCIENCE ADVANCES 2019; 5:eaax3346. [PMID: 31453340 PMCID: PMC6697434 DOI: 10.1126/sciadv.aax3346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/03/2019] [Indexed: 05/23/2023]
Abstract
Charge order is universal among high-T c cuprates, but its relation to superconductivity is unclear. While static order competes with superconductivity, dynamic order may be favorable and even contribute to Cooper pairing. Using time-resolved resonant soft x-ray scattering at a free-electron laser, we show that the charge order in prototypical La2-x Ba x CuO4 exhibits transverse fluctuations at picosecond time scales. These sub-millielectron volt excitations propagate by Brownian-like diffusion and have an energy scale remarkably close to the superconducting T c. At sub-millielectron volt energy scales, the dynamics are governed by universal scaling laws defined by the propagation of topological defects. Our results show that charge order in La2-x Ba x CuO4 exhibits dynamics favorable to the in-plane superconducting tunneling and establish time-resolved x-rays as a means to study excitations at energy scales inaccessible to conventional scattering techniques.
Collapse
Affiliation(s)
- Matteo Mitrano
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sangjun Lee
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ali A. Husain
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Luca Delacretaz
- Department of Physics, Stanford University, Stanford, CA 94305-4060, USA
| | - Minhui Zhu
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Stella X.-L. Sun
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Young Il Joe
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Alexander H. Reid
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Scott F. Wandel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Giacomo Coslovich
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - William Schlotter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Tim van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - John Schneeloch
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - G. D. Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean Hartnoll
- Department of Physics, Stanford University, Stanford, CA 94305-4060, USA
| | - Nigel Goldenfeld
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peter Abbamonte
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Li Z, Li B. Towards an extremely high resolution broad-band flat-field spectrometer in the `water window'. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1058-1068. [PMID: 31274428 PMCID: PMC6613118 DOI: 10.1107/s1600577519004648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The optical design of a novel spectrometer is presented, combining a cylindrically convex pre-mirror with a cylindrically concave varied-line-spacing grating (both in the meridional) to deliver a resolving power of 100000-200000 in the `water window' (2-5 nm). Most remarkably, the extremely high spectral resolution is achieved for an effective meridional source size of 50 µm (r.m.s.); this property could potentially be applied to diagnose SASE-FEL and well resolve individual single spikes in its radiation spectrum. The overall optical aberrations of the system are well analysed and compensated, providing an excellent flat-field at the detector domain throughout the whole spectral range. Also, a machine-learning scheme - SVM - is introduced to explore and reconstruct the optimal system with high efficiency.
Collapse
Affiliation(s)
- Zhuo Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jiading District, Shanghai 201800, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Zhangjiang Laboratory, Chinese Academy of Sciences, Pudong District, Shanghai 201204, People’s Republic of China
| | - Bin Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jiading District, Shanghai 201800, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Zhangjiang Laboratory, Chinese Academy of Sciences, Pudong District, Shanghai 201204, People’s Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| |
Collapse
|
26
|
Cao Y, Mazzone DG, Meyers D, Hill JP, Liu X, Wall S, Dean MPM. Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170480. [PMID: 30929631 PMCID: PMC6452052 DOI: 10.1098/rsta.2017.0480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 05/07/2023]
Abstract
Many remarkable properties of quantum materials emerge from states with intricate coupling between the charge, spin and orbital degrees of freedom. Ultrafast photo-excitation of these materials holds great promise for understanding and controlling the properties of these states. Here, we introduce time-resolved resonant inelastic X-ray scattering (tr-RIXS) as a means of measuring the charge, spin and orbital excitations out of equilibrium. These excitations encode the correlations and interactions that determine the detailed properties of the states generated. After outlining the basic principles and instrumentations of tr-RIXS, we review our first observations of transient antiferromagnetic correlations in quasi two dimensions in a photo-excited Mott insulator and present possible future routes of this fast-developing technique. The increasing number of X-ray free electron laser facilities not only enables tackling long-standing fundamental scientific problems, but also promises to unleash novel inelastic X-ray scattering spectroscopies. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Y. Cao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - D. G. Mazzone
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - D. Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J. P. Hill
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - X. Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - S. Wall
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - M. P. M. Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
27
|
Liu YS, Jeong S, White JL, Feng X, Seon Cho E, Stavila V, Allendorf MD, Urban JJ, Guo J. In-Situ/Operando X-ray Characterization of Metal Hydrides. Chemphyschem 2019; 20:1261-1271. [PMID: 30737862 DOI: 10.1002/cphc.201801185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/06/2019] [Indexed: 11/09/2022]
Abstract
In this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions. Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility. A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.
Collapse
Affiliation(s)
- Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sohee Jeong
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James L White
- Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eun Seon Cho
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
| | | | | | - Jeffrey J Urban
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
28
|
Hong J, Gent WE, Xiao P, Lim K, Seo DH, Wu J, Csernica PM, Takacs CJ, Nordlund D, Sun CJ, Stone KH, Passarello D, Yang W, Prendergast D, Ceder G, Toney MF, Chueh WC. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. NATURE MATERIALS 2019; 18:256-265. [PMID: 30718861 DOI: 10.1038/s41563-018-0276-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/17/2018] [Indexed: 05/20/2023]
Abstract
Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2-xIr1-ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure-redox coupling arises from the local stabilization of short approximately 1.8 Å metal-oxygen π bonds and approximately 1.4 Å O-O dimers during oxygen redox, which occurs in Li2-xIr1-ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employing oxygen redox chemistry.
Collapse
Affiliation(s)
- Jihyun Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Center for Energy Materials Research, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - William E Gent
- Department of Chemistry, Stanford University, Stanford, CA, USA
- The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Penghao Xiao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kipil Lim
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dong-Hwa Seo
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Jinpeng Wu
- Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter M Csernica
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Cheng-Jun Sun
- The Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Donata Passarello
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Wanli Yang
- The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gerbrand Ceder
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - William C Chueh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
29
|
Beye M, Engel RY, Schunck JO, Dziarzhytski S, Brenner G, Miedema PS. Non-linear soft x-ray methods on solids with MUSIX-the multi-dimensional spectroscopy and inelastic x-ray scattering endstation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:014003. [PMID: 30504529 DOI: 10.1088/1361-648x/aaedf3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the intense and coherent x-ray pulses available from free-electron lasers, the possibility to transfer non-linear spectroscopic methods from the laser lab to the x-ray world arises. Advantages especially regarding selectivity and thus information content as well as an improvement of signal levels are expected. The use of coherences is especially fruitful and the example of coherent x-ray/optical sum-frequency generation is discussed. However, many non-linear x-ray methods still await discovery, partially due to the necessity for extremely adaptable and versatile instrumentation that can be brought to free-electron lasers for the analysis of the spectral content emitted from the sample into a continuous range of emission angles. Such an instrument (called MUSIX) is being developed and employed at FLASH, the free-electron laser in Hamburg and is described in this contribution together with first results.
Collapse
Affiliation(s)
- M Beye
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany. Physics Department, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Zhuo Z, Pemmaraju CD, Vinson J, Jia C, Moritz B, Lee I, Sallies S, Li Q, Wu J, Dai K, Chuang YD, Hussain Z, Pan F, Devereaux TP, Yang W. Spectroscopic Signature of Oxidized Oxygen States in Peroxides. J Phys Chem Lett 2018; 9:6378-6384. [PMID: 30354171 PMCID: PMC6521713 DOI: 10.1021/acs.jpclett.8b02757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent debates on the oxygen redox behaviors in battery electrodes have triggered a pressing demand for the reliable detection and understanding of nondivalent oxygen states beyond conventional absorption spectroscopy. Here, enabled by high-efficiency mapping of resonant inelastic X-ray scattering (mRIXS) coupled with first-principles calculations, we report distinct mRIXS features of the oxygen states in Li2O, Li2CO3, and especially, Li2O2, which are successfully reproduced and interpreted theoretically. mRIXS signals are dominated by valence-band decays in Li2O and Li2CO3. However, the oxidized oxygen in Li2O2 leads to partially unoccupied O-2p states that yield a specific intraband excitonic feature in mRIXS. Such a feature displays a specific emission energy in mRIXS, which disentangles the oxidized oxygen states from the dominating transition-metal/oxygen hybridization features in absorption spectroscopy, thus providing critical hints for both detecting and understanding the oxygen redox reactions in transition-metal oxide based battery materials.
Collapse
Affiliation(s)
- Zengqing Zhuo
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, United States
| | - Chaitanya Das Pemmaraju
- Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - John Vinson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chunjing Jia
- Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Brian Moritz
- Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Ilkyu Lee
- Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Shawn Sallies
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, United States
| | - Qinghao Li
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, United States
| | - Jinpeng Wu
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, United States
| | - Kehua Dai
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, United States
| | - Yi-de Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, United States
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, United States
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
- Corresponding Author FP (); TPD (); WY ()
| | - Thomas P. Devereaux
- Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
- Corresponding Author FP (); TPD (); WY ()
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, United States
- Corresponding Author FP (); TPD (); WY ()
| |
Collapse
|
31
|
Yin Z, Löchel H, Rehanek J, Goy C, Kalinin A, Schottelius A, Trinter F, Miedema P, Jain A, Valerio J, Busse P, Lehmkühler F, Möller J, Grübel G, Madsen A, Viefhaus J, Grisenti RE, Beye M, Erko A, Techert S. X-ray spectroscopy with variable line spacing based on reflection zone plate optics. OPTICS LETTERS 2018; 43:4390-4393. [PMID: 30211872 DOI: 10.1364/ol.43.004390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
X-ray spectroscopy is a method, ideally suited for investigating the electronic structure of matter, which has been enabled by the rapid developments in light sources and instruments. The x-ray fluorescence lines of life-relevant elements such as carbon, nitrogen, and oxygen are located in the soft x-ray regime and call for suitable spectrometer devices. In this Letter, we present a high-resolution spectrum of liquid water, recorded with a soft x-ray spectrometer based on a reflection zone plate (RZP) design. The RZP-based spectrometer with meridional variation of line space density from 2953 to 3757 l/mm offers extremely high detection efficiency and, at the same time, medium energy resolution. We can reproduce the well-known splitting of liquid water in the lone pair regime with 10 s acquisition time.
Collapse
|
32
|
Wu J, Sallis S, Qiao R, Li Q, Zhuo Z, Dai K, Guo Z, Yang W. Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering. J Vis Exp 2018:57415. [PMID: 29733322 PMCID: PMC6100655 DOI: 10.3791/57415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.
Collapse
Affiliation(s)
- Jinpeng Wu
- Geballe Laboratory for Advanced Materials, Stanford University; Advanced Light Source, Lawrence Berkeley National Laboratory
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory; Department of Materials Science and Engineering, Binghamton University
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory
| | - Qinghao Li
- Advanced Light Source, Lawrence Berkeley National Laboratory; School of Physics, National Key Laboratory of Crystal Materials, Shandong University
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory; School of Advanced Materials, Peking University Shenzhen Graduate School
| | - Kehua Dai
- Advanced Light Source, Lawrence Berkeley National Laboratory; School of Metallurgy, Northeastern University
| | - Zixuan Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory; Department of Chemical Engineering, University of California-Santa Barbara
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory;
| |
Collapse
|
33
|
Xu J, Sun M, Qiao R, Renfrew SE, Ma L, Wu T, Hwang S, Nordlund D, Su D, Amine K, Lu J, McCloskey BD, Yang W, Tong W. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat Commun 2018; 9:947. [PMID: 29507369 PMCID: PMC5838240 DOI: 10.1038/s41467-018-03403-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
Recent research has explored combining conventional transition-metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. Here, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess a similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely different oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes. A reversible oxygen redox process contributes extra capacity and understanding this behavior is of high importance. Here, aided by resonant inelastic X-ray scattering, the authors reveal the distinctive anionic oxygen activity of battery electrodes with different transition metals.
Collapse
Affiliation(s)
- Jing Xu
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Meiling Sun
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sara E Renfrew
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Lu Ma
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Tianpin Wu
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Dong Su
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Bryan D McCloskey
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Wei Tong
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
34
|
Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat Commun 2018; 9:861. [PMID: 29491414 PMCID: PMC5830409 DOI: 10.1038/s41467-018-03257-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/30/2018] [Indexed: 12/02/2022] Open
Abstract
The demand of sustainable power supply requires high-performance cost-effective energy storage technologies. Here we report a high-rate long-life low-cost sodium-ion battery full-cell system by innovating both the anode and the electrolyte. The redox couple of manganese(I/II) in Prussian blue analogs enables a high-rate and stable anode. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering provide direct evidence suggesting the existence of monovalent manganese in the charged anode. There is a strong hybridization between cyano ligands and manganese-3d states, which benefits the electronic property for improving rate performance. Additionally, we employ an organic–aqueous cosolvent electrolyte to solve the long-standing solubility issue of Prussian blue analogs. A full-cell sodium-ion battery with low-cost Prussian blue analogs in both electrodes and co-solvent electrolyte retains 95% of its initial discharge capacity after 1000 cycles at 1C and 95% depth of discharge. The revealed manganese(I/II) redox couple inspires conceptual innovations of batteries based on atypical oxidation states. Sodium ion batteries offer more cost-effective storage than lithium and could be used for grid-scale energy storage. Here, the authors demonstrate a full cell based on a MnHCMn anode and an organic-aqueous cosolvent electrolyte. X-ray spectroscopy evidence further suggests the presence of Mn(I).
Collapse
|
35
|
Malvestuto M, Ciprian R, Caretta A, Casarin B, Parmigiani F. Ultrafast magnetodynamics with free-electron lasers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:053002. [PMID: 29315080 DOI: 10.1088/1361-648x/aaa211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.
Collapse
Affiliation(s)
- Marco Malvestuto
- Elettra-Sincrotrone Trieste S.C.p.A. Strada Statale 14-km 163.5 in AREA Science Park 34149 Basovizza, Trieste, Italy
| | | | | | | | | |
Collapse
|
36
|
Gent WE, Lim K, Liang Y, Li Q, Barnes T, Ahn SJ, Stone KH, McIntire M, Hong J, Song JH, Li Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park JH, Doo SK, Toney MF, Yang W, Prendergast D, Chueh WC. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun 2017; 8:2091. [PMID: 29233965 PMCID: PMC5727078 DOI: 10.1038/s41467-017-02041-x] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/02/2017] [Indexed: 01/05/2023] Open
Abstract
Lithium-rich layered transition metal oxide positive electrodes offer access to anion redox at high potentials, thereby promising high energy densities for lithium-ion batteries. However, anion redox is also associated with several unfavorable electrochemical properties, such as open-circuit voltage hysteresis. Here we reveal that in Li1.17-x Ni0.21Co0.08Mn0.54O2, these properties arise from a strong coupling between anion redox and cation migration. We combine various X-ray spectroscopic, microscopic, and structural probes to show that partially reversible transition metal migration decreases the potential of the bulk oxygen redox couple by > 1 V, leading to a reordering in the anionic and cationic redox potentials during cycling. First principles calculations show that this is due to the drastic change in the local oxygen coordination environments associated with the transition metal migration. We propose that this mechanism is involved in stabilizing the oxygen redox couple, which we observe spectroscopically to persist for 500 charge/discharge cycles.
Collapse
Affiliation(s)
- William E Gent
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
- The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Kipil Lim
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Yufeng Liang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Qinghao Li
- The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- School of Physics, National Key Laboratory of Crystal Materials, Shandong University, 27 Shanda South road, Jinan, 250100, China
| | - Taylor Barnes
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Sung-Jin Ahn
- Energy Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 16678, South Korea
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mitchell McIntire
- Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA, 94305, USA
| | - Jihyun Hong
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jay Hyok Song
- Energy1lab, Samsung SDI, 130, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 16678, South Korea
| | - Yiyang Li
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Apurva Mehta
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Stefano Ermon
- Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA, 94305, USA
| | - Tolek Tyliszczak
- The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - David Kilcoyne
- The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - David Vine
- The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jin-Hwan Park
- Energy Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 16678, South Korea
| | - Seok-Kwang Doo
- Energy Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do, 16678, South Korea
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
- Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Wanli Yang
- The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| | - William C Chueh
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
- Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
37
|
Lin F, Liu Y, Yu X, Cheng L, Singer A, Shpyrko OG, Xin HL, Tamura N, Tian C, Weng TC, Yang XQ, Meng YS, Nordlund D, Yang W, Doeff MM. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chem Rev 2017; 117:13123-13186. [DOI: 10.1021/acs.chemrev.7b00007] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Feng Lin
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yijin Liu
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94035, United States
| | - Xiqian Yu
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Beijing
National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Cheng
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrej Singer
- Department
of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Oleg G. Shpyrko
- Department
of Physics, University of California San Diego, La Jolla, California 92093, United States
| | - Huolin L. Xin
- Center for
Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nobumichi Tamura
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chixia Tian
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tsu-Chien Weng
- Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China
| | - Xiao-Qing Yang
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ying Shirley Meng
- Department
of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Dennis Nordlund
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94035, United States
| | - Wanli Yang
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marca M. Doeff
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Transmission zone plates as analyzers for efficient parallel 2D RIXS-mapping. Sci Rep 2017; 7:8849. [PMID: 28821805 PMCID: PMC5562906 DOI: 10.1038/s41598-017-09052-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 12/05/2022] Open
Abstract
We have implemented and successfully tested an off-axis transmission Fresnel zone plate as spectral analyzer for resonant inelastic X-ray scattering (RIXS). The imaging capabilities of zone plates allow for advanced two-dimensional (2D) mapping applications. By varying the photon energy along a line focus on the sample, we were able to simultaneously record the emission spectra over a range of excitation energies. Moreover, by scanning a line focus across the sample in one dimension, we efficiently recorded RIXS spectra spatially resolved in 2D, increasing the throughput by two orders of magnitude. The presented scheme opens up a variety of novel measurements and efficient, ultra-fast time resolved investigations at X-ray Free-Electron Laser sources.
Collapse
|
39
|
Qiao R, Li Q, Zhuo Z, Sallis S, Fuchs O, Blum M, Weinhardt L, Heske C, Pepper J, Jones M, Brown A, Spucces A, Chow K, Smith B, Glans PA, Chen Y, Yan S, Pan F, Piper LFJ, Denlinger J, Guo J, Hussain Z, Chuang YD, Yang W. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:033106. [PMID: 28372380 DOI: 10.1063/1.4977592] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.
Collapse
Affiliation(s)
- Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Qinghao Li
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Oliver Fuchs
- Universität Würzburg, Experimentelle Physik 7, 97074 Würzburg, Germany
| | - Monika Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - Lothar Weinhardt
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - Clemens Heske
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, Nevada 89154-4003, USA
| | - John Pepper
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Michael Jones
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Adam Brown
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Adrian Spucces
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ken Chow
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brian Smith
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Per-Anders Glans
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yanxue Chen
- School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Shishen Yan
- School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Louis F J Piper
- Department of Materials Science and Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Jonathan Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|