1
|
Sio H, Krygier A, Stoupin S, Rudd RE, Bonev SA, Braun DG, Coppari F, Coleman AL, Bhandarkar N, Bitter M, Bradley DK, Buscho J, Corbin J, Dozieres M, Efthimion PC, Eggert JH, Gao L, Hill KW, Hamel S, Hsing W, Kozioziemski B, Kraus BF, Landen OL, Le Galloudec K, Lockard TE, Mackinnon A, May M, McNaney JM, Ose N, Pablant N, Park HS, Riddles J, Sharma M, Schneider MB, Stan C, Thompson N, Thorn DB, Vonhof S, Ping Y. Measurements of K-edge and L-edge extended x-ray absorption fine structure at the national ignition facility (invited). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:103523. [PMID: 39436161 DOI: 10.1063/5.0219575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
High-energy-density laser facilities and advances in dynamic compression techniques have expanded access to material states in the Terapascal regime relevant to inertial confinement fusion, planetary science, and geophysics. However, experimentally determining the material temperature in these extreme conditions has remained a difficult challenge. Extended X-ray Absorption Fine Structure (EXAFS), referring to the modulations in x-ray absorption above an absorption edge from photoelectrons' interactions with neighboring atoms, has proven to be a versatile and robust technique for probing material temperature and density for mid-to-high Z elements under dynamic compression. The current platform at the National Ignition Facility has developed six configurations for EXAFS measurements between 7 and 18 keV for different absorption edges (Fe K, Co K, Cu K, Ta L3, Pb L3, and Zr K) using a curved-crystal spectrometer and a bright, continuum foil x-ray source. In this work, we describe the platform geometry, x-ray source performance, spectrometer resolution and throughput, design considerations, and data in ambient and dynamic-compression conditions.
Collapse
Affiliation(s)
- H Sio
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Krygier
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S Stoupin
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R E Rudd
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S A Bonev
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D G Braun
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A L Coleman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Bhandarkar
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M Bitter
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
| | - D K Bradley
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Buscho
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Corbin
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M Dozieres
- General Atomics, San Diego, California 92121, USA
| | - P C Efthimion
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - L Gao
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
| | - K W Hill
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
| | - S Hamel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - W Hsing
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B Kozioziemski
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B F Kraus
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
| | - O L Landen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - K Le Galloudec
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - T E Lockard
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Mackinnon
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M May
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J M McNaney
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Ose
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Pablant
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
| | - H-S Park
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Riddles
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M Sharma
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M B Schneider
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C Stan
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Thompson
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D B Thorn
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S Vonhof
- General Atomics, San Diego, California 92121, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
2
|
Rubery MS, Kemp GE, Jones MC, Pelepchan N, Stolte WC, Heinmiller J. Soft x-ray power diagnostics for fusion experiments at NIF, Omega, and Z facilities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:031101. [PMID: 37012742 DOI: 10.1063/5.0131949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/08/2023] [Indexed: 06/19/2023]
Abstract
In this Review Article, we discuss a range of soft x-ray power diagnostics at inertial confinement fusion (ICF) and pulsed-power fusion facilities. This Review Article describes current hardware and analysis approaches and covers the following methods: x-ray diode arrays, bolometers, transmission grating spectrometers, and associated crystal spectrometers. These systems are fundamental for the diagnosis of ICF experiments, providing a wide range of critical parameters for the evaluation of fusion performance.
Collapse
Affiliation(s)
- M S Rubery
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808, USA
| | - G E Kemp
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808, USA
| | - M C Jones
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - N Pelepchan
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - W C Stolte
- MSTS, Mission Support and Test Services LLC, Livermore, California 94550-9239, USA
| | - J Heinmiller
- MSTS, Mission Support and Test Services LLC, Livermore, California 94550-9239, USA
| |
Collapse
|
3
|
Chin DA, Nilson PM, Mastrosimone D, Guy D, Ruby JJ, Bishel DT, Seely JF, Coppari F, Ping Y, Rygg JR, Collins GW. High-resolution x-ray spectrometer for x-ray absorption fine structure spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:013101. [PMID: 36725595 DOI: 10.1063/5.0125712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/04/2022] [Indexed: 05/26/2023]
Abstract
Two extended x-ray absorption fine structure flat crystal x-ray spectrometers (EFX's) were designed and built for high-resolution x-ray spectroscopy over a large energy range with flexible, on-shot energy dispersion calibration capabilities. The EFX uses a flat silicon [111] crystal in the reflection geometry as the energy dispersive optic covering the energy range of 6.3-11.4 keV and achieving a spectral resolution of 4.5 eV with a source size of 50 μm at 7.2 keV. A shot-to-shot configurable calibration filter pack and Bayesian inference routine were used to constrain the energy dispersion relation to within ±3 eV. The EFX was primarily designed for x-ray absorption fine structure (XAFS) spectroscopy and provides significant improvement to the Laboratory for Laser Energetics' OMEGA-60 XAFS experimental platform. The EFX is capable of performing extended XAFS measurements of multiple absorption edges simultaneously on metal alloys and x-ray absorption near-edge spectroscopy to measure the electron structure of compressed 3d transition metals.
Collapse
Affiliation(s)
- D A Chin
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - P M Nilson
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - D Mastrosimone
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - D Guy
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - J J Ruby
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D T Bishel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - J F Seely
- Syntek Technologies, Fairfax, Virginia 22031, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J R Rygg
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - G W Collins
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
4
|
Werellapatha K, Hall GN, Krauland C, Krygier A, Bhandarkar N, Bradley DK, Coppari F, Gorman MG, Heinbockel C, Kemp GE, Khan SF, Lazicki A, Masters N, May MJ, Nagel SR, Palmer NE, Eggert JH, Benedetti LR. Optimized x-ray emission from 10 ns long germanium x-ray sources at the National Ignition Facility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:123902. [PMID: 36586918 DOI: 10.1063/5.0106696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.
Collapse
Affiliation(s)
- K Werellapatha
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G N Hall
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C Krauland
- General Atomics, San Diego, California 92121, USA
| | - A Krygier
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Bhandarkar
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D K Bradley
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M G Gorman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C Heinbockel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G E Kemp
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S F Khan
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Lazicki
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Masters
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M J May
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S R Nagel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N E Palmer
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - L R Benedetti
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
5
|
Sévelin-Radiguet N, Torchio R, Berruyer G, Gonzalez H, Pasternak S, Perrin F, Occelli F, Pépin C, Sollier A, Kraus D, Schuster A, Voigt K, Zhang M, Amouretti A, Boury A, Fiquet G, Guyot F, Harmand M, Borri M, Groves J, Helsby W, Branly S, Norby J, Pascarelli S, Mathon O. Towards a dynamic compression facility at the ESRF. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:167-179. [PMID: 34985434 PMCID: PMC8733990 DOI: 10.1107/s1600577521011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Results of the 2018 commissioning and experimental campaigns of the new High Power Laser Facility on the Energy-dispersive X-ray Absorption Spectroscopy (ED-XAS) beamline ID24 at the ESRF are presented. The front-end of the future laser, delivering 15 J in 10 ns, was interfaced to the beamline. Laser-driven dynamic compression experiments were performed on iron oxides, iron alloys and bismuth probed by online time-resolved XAS.
Collapse
Affiliation(s)
- Nicolas Sévelin-Radiguet
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Raffaella Torchio
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Gilles Berruyer
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Hervé Gonzalez
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Sébastien Pasternak
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Florian Perrin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Florent Occelli
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - Charles Pépin
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - Arnaud Sollier
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - Dominik Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23–24, 18059 Rostock, Germany
| | - Anja Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Katja Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Min Zhang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, People’s Republic of China
| | - Alexis Amouretti
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | - Antoine Boury
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | - Guillaume Fiquet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | - Marion Harmand
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | | | - Janet Groves
- STFC, Daresbury Laboratory, Warrington, United Kingdom
| | | | - Stéphane Branly
- Amplitude Technologies, 2–4 Rue du Bois Chaland, CE 2926, 91029 Évry, France
| | - James Norby
- Amplitude Technologies, 2–4 Rue du Bois Chaland, CE 2926, 91029 Évry, France
| | - Sakura Pascarelli
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Olivier Mathon
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| |
Collapse
|
6
|
Pablant NA, Bitter M, Efthimion PC, Gao L, Hill KW, Kraus BF, Kring J, MacDonald MJ, Ose N, Ping Y, Schneider MB, Stoupin S, Yakusevitch Y. Design and expected performance of a variable-radii sinusoidal spiral x-ray spectrometer for the National Ignition Facility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:093904. [PMID: 34598494 DOI: 10.1063/5.0054329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
A novel high-resolution x-ray spectrometer for point-like emission sources has been developed using a crystal shape having both a variable major and a variable minor radius of curvature. This variable-radii sinusoidal spiral spectrometer (VR-Spiral) allows three common spectrometer design goals to be achieved simultaneously: 1. reduction of aberrations and improved spectral (energy) resolution, 2. reduction of source size broadening, and 3. use of large crystals to improve total throughput. The VR-Spiral concept and its application to practical spectrometer design are described in detail. This concept is then used to design a spectrometer for an extreme extended x-ray absorption fine structure experiment at the National Ignition Facility looking at the Pb L3 absorption edge at 13.0352 keV. The expected performance of this VR-Spiral spectrometer, both in terms of energy resolution and spatial resolution, is evaluated through the use of a newly developed raytracing tool, xicsrt. Finally, the expected performance of the VR-Spiral concept is compared to that of spectrometers based on conventional toroidal and variable-radii toroidal crystal geometries showing a greatly improved energy resolution.
Collapse
Affiliation(s)
- N A Pablant
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - M Bitter
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - P C Efthimion
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - L Gao
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - K W Hill
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - B F Kraus
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - J Kring
- Auburn University, Auburn, Alabama 36849, USA
| | - M J MacDonald
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Ose
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M B Schneider
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S Stoupin
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Y Yakusevitch
- University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
7
|
Werellapatha K, Hall GN, Coppari F, Kemp GE, Palmer NE, Krauland C, Khan SF, Lazicki A, Gorman MG, Nagel SR, Heinbockel C, Bhandarkar N, Masters N, Bradley DK, Eggert JH, Benedetti LR. Long duration x-ray source development for x-ray diffraction at the National Ignition Facility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:053904. [PMID: 34243269 DOI: 10.1063/5.0043677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
We present the results of experiments to produce a 10 ns-long, quasi-monochromatic x-ray source. This effort is needed to support time-resolved x-ray diffraction (XRDt) measurements of phase transitions during laser-driven dynamic compression experiments at the National Ignition Facility. To record XRDt of phase transitions as they occur, we use high-speed (∼1 ns) gated hybrid CMOS detectors, which record multiple frames of data over a timescale of a few to tens of ns. Consequently, to make effective use of these imagers, XRDt needs the x-ray source to be narrow in energy and uniform in time as long as the sensors are active. The x-ray source is produced by a laser irradiated Ge foil. Our results indicate that the x-ray source lasts during the whole duration of the main laser pulse. Both time-resolved and time-integrated spectral data indicate that the line emission is dominated by the He-α complex over higher energy emission lines. Time-integrated spectra agree well with a one-dimensional Cartesian simulation using HYDRA that predicts a conversion efficiency of 0.56% when the incident intensity is 2 × 1015 W/cm2 on a Ge backlighter.
Collapse
Affiliation(s)
- K Werellapatha
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G N Hall
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G E Kemp
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N E Palmer
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C Krauland
- General Atomics, San Diego, California 92121, USA
| | - S F Khan
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Lazicki
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M G Gorman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S R Nagel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C Heinbockel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Bhandarkar
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Masters
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D K Bradley
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - L R Benedetti
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
8
|
Bitter M, Pablant N, Hill KW, Gao L, Kraus B, Efthimion PC, Delgado-Apericio L, Stratton B, Schneider M, Coppari F, Kauffman R, MacDonald MJ, MacPhee A, Ping Y, Stoupin S, Thorn D. A new class of focusing crystal shapes for Bragg spectroscopy of small, point-like, x-ray sources in laser produced plasmas. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:043531. [PMID: 34243385 DOI: 10.1063/5.0043599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
This paper describes a new class of focusing crystal forms for the x-ray Bragg crystal spectroscopy of small, point-like, x-ray sources. These new crystal forms are designed with the aid of sinusoidal spirals, a family of curves, whose shapes are defined by only one parameter, which can assume any real value. The potential of the sinusoidal spirals for the design x-ray crystal spectrometers is demonstrated with the design of a toroidally bent crystal of varying major and minor radii for measurements of the extended x-ray absorption fine structure near the Ta-L3 absorption edge at the National Ignition Facility.
Collapse
Affiliation(s)
- M Bitter
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - N Pablant
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - K W Hill
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - Lan Gao
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - B Kraus
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - P C Efthimion
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | | | - B Stratton
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - M Schneider
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Kauffman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M J MacDonald
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A MacPhee
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S Stoupin
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D Thorn
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
9
|
Das P, Klug JA, Sinclair N, Wang X, Toyoda Y, Li Y, Williams B, Schuman A, Zhang J, Turneaure SJ. Single-pulse (100 ps) extended x-ray absorption fine structure capability at the Dynamic Compression Sector. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:085115. [PMID: 32872941 DOI: 10.1063/5.0003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Determining real-time changes in the local atomistic order is important for a mechanistic understanding of shock wave induced structural and chemical changes. However, the single event and short duration (nanosecond times) nature of shock experiments pose challenges in obtaining Extended X-ray Absorption Fine Structure (EXAFS) measurements-typically used for monitoring local order changes. Here, we report on a new single pulse (∼100 ps duration) transmission geometry EXAFS capability for use in laser shock-compression experiments at the Dynamic Compression Sector (DCS), Advanced Photon Source. We used a flat plate of highly oriented pyrolytic graphite (HOPG) as the spectrometer element to energy disperse x rays transmitted through the sample. It provided high efficiency with ∼15% of the x rays incident on the HOPG reaching an x-ray area detector with high quantum efficiency. This combination resulted in a good signal-to-noise ratio (∼103), an energy resolution of ∼10 eV at 10 keV, EXAFS spectra covering 100 s of eV, and a good pulse to pulse reproducibility of our single pulse measurements. Ambient EXAFS spectra for Cu and Au are compared to the reference spectra, validating our measurement system. Comparison of single pulse EXAFS results for ambient and laser shocked Ge(100) shows large changes in the local structure of the short lived state of shocked Ge. The current DCS EXAFS capability can be used to perform single pulse measurements in laser shocked materials from ∼9 keV to 13 keV. These EXAFS developments will be available to all users of the DCS.
Collapse
Affiliation(s)
- Pinaki Das
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Jeffrey A Klug
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Nicholas Sinclair
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Xiaoming Wang
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Yoshimasa Toyoda
- Institute for Shock Physics, Washington State University, Pullman, Washington 99164, USA
| | - Yuelin Li
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Brendan Williams
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Adam Schuman
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Jun Zhang
- Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA
| | - Stefan J Turneaure
- Institute for Shock Physics, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
10
|
Do A, Coppari F, Ping Y, Krygier A, Kemp GE, Schneider MB, McNaney JM. Foil backlighter development at the OMEGA laser facility for extended x-ray absorption fine structure experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:086101. [PMID: 32872967 DOI: 10.1063/5.0015313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Extended x-ray absorption fine structure (EXAFS) measurements require a bright and continuous x-ray source and a detection system with high spectral resolution to capture the modulations of the absorption coefficient above the material absorption edge. When performing EXAFS measurements under laser-driven dynamic compression, it is hence critical to optimize the backlighter x-ray emission. A series of experiments has been conducted at the OMEGA laser facility to characterize titanium (Z = 22), iron (Z = 26), germanium (Z = 32), molybdenum (Z = 42), silver (Z = 47), and gold (Z = 79) foil backlighters irradiated with 3 kJ-12 kJ of laser energy. The spectra have been recorded using a dual crystal spectrometer (DCS), a two-channel transmission spectrometer covering 11 keV-45 keV and 19 keV-90 keV energy bands. The DCS has been calibrated so that the spectral intensities can be compared between different campaigns.
Collapse
Affiliation(s)
- A Do
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Krygier
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G E Kemp
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M B Schneider
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J M McNaney
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
11
|
Sneed D, Kearney JSC, Smith D, Smith JS, Park C, Salamat A. Probing disorder in high-pressure cubic tin (IV) oxide: a combined X-ray diffraction and absorption study. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1245-1252. [PMID: 31274450 DOI: 10.1107/s1600577519003904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
The transparent conducting oxide, SnO2, is a promising optoelectronic material with predicted tailorable properties via pressure-mediated band gap opening. While such electronic properties are typically modeled assuming perfect crystallinity, disordering of the O sublattice under pressure is qualitatively known. Here a quantitative approach is thus employed, combining extended X-ray absorption fine-structure (EXAFS) spectroscopy with X-ray diffraction, to probe the extent of Sn-O bond anharmonicities in the high-pressure cubic (Pa\bar{3}) SnO2 - formed as a single phase and annealed by CO2 laser heating to 2648 ± 41 K at 44.5 GPa. This combinational study reveals and quantifies a large degree of disordering in the O sublattice, while the Sn lattice remains ordered. Moreover, this study describes implementation of direct laser heating of non-metallic samples by CO2 laser alongside EXAFS, and the high quality of data which may be achieved at high pressures in a diamond anvil cell when appropriate thermal annealing is applied.
Collapse
Affiliation(s)
- Daniel Sneed
- Department of Physics and Astronomy, and HiPSEC, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - John S C Kearney
- Department of Physics and Astronomy, and HiPSEC, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Dean Smith
- Department of Physics and Astronomy, and HiPSEC, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Jesse S Smith
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Changyong Park
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Ashkan Salamat
- Department of Physics and Astronomy, and HiPSEC, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
12
|
Bitter M, Hill KW, Gao L, Kraus BF, Efthimion PC, Delgado-Aparicio L, Pablant N, Stratton B, Schneider M, Coppari F, Kauffman R, MacPhee AG, Ping Y, Thorn D. A new toroidal x-ray crystal spectrometer for the diagnosis of high energy density plasmas at the National Ignition Facility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:10F118. [PMID: 30399766 DOI: 10.1063/1.5036806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The here-described spectrometer was developed for the extended x-ray absorption fine structure spectroscopy of high-density plasmas at the National Ignition Facility. It employs as the Bragg reflecting element a new type of toroidally bent crystal with a constant and very large major radius R and a much smaller, locally varying, minor radius r. The focusing properties of this crystal and the experimental arrangement of the source and detector make it possible to (a) fulfill the conditions for a perfect imaging of an ideal point source for each wavelength, (b) obtain a high photon throughput, (c) obtain a high spectral resolution by eliminating the effects of source-size broadening, and (d) obtain a one-dimensional spatial resolution with a high magnification perpendicular to the main dispersion plane.
Collapse
Affiliation(s)
- M Bitter
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - K W Hill
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - Lan Gao
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - B F Kraus
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - P C Efthimion
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | | | - N Pablant
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - B Stratton
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - M Schneider
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Kauffman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A G MacPhee
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D Thorn
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
13
|
Krygier A, Coppari F, Kemp GE, Thorn DB, Craxton RS, Eggert JH, Garcia EM, McNaney JM, Park HS, Ping Y, Remington BA, Schneider MB. Developing a high-flux, high-energy continuum backlighter for extended x-ray absorption fine structure measurements at the National Ignition Facility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:10F114. [PMID: 30399955 DOI: 10.1063/1.5038669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful tool for in situ characterization of matter in the high energy density regime. An EXAFS platform is currently being developed on the National Ignition Facility. Development of a suitable X-ray backlighter involves minimizing the temporal duration and source size while maximizing spectral smoothness and brightness. One approach involves imploding a spherical shell, which generates a high-flux X-ray flash at stagnation. We present results from a series of experiments comparing the X-ray source properties produced by imploded empty and Ar-filled capsules.
Collapse
Affiliation(s)
- A Krygier
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - G E Kemp
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - D B Thorn
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - R S Craxton
- Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd., Rochester, New York 14623-1299, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - E M Garcia
- Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd., Rochester, New York 14623-1299, USA
| | - J M McNaney
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - H-S Park
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - B A Remington
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - M B Schneider
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| |
Collapse
|
14
|
Thorn DB, Coppari F, Döppner T, MacDonald MJ, Regan SP, Schneider MB. X-ray spectrometer throughput model for (selected) flat Bragg crystal spectrometers on laser plasma facilities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:10F119. [PMID: 30399669 DOI: 10.1063/1.5039423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
At large laser faculties, such as OMEGA and the National Ignition Facility (NIF), x-ray spectrometers are provided by the facility to diagnose plasma conditions or monitor backlighters. Often the calibration of these spectrometers is unknown or out of date. As a remedy to this situation, we present a simple ray trace method to calibrate flat crystal spectrometers using only basic information regarding the optical design of the spectrometer. This model is then used to output photometric throughput estimates, dispersion, solid angle, and spectral resolution estimates. This model is applied to the mono angle crystal spectrometer and Super Snout I at the NIF and the X-Ray Spectrometer at the OMEGA laser facility.
Collapse
Affiliation(s)
- D B Thorn
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - T Döppner
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M J MacDonald
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S P Regan
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - M B Schneider
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|