1
|
Pérez-Sánchez JB, Koner A, Raghavan-Chitra S, Yuen-Zhou J. CUT-E as a 1/N expansion for multiscale molecular polariton dynamics. J Chem Phys 2025; 162:064101. [PMID: 39927531 DOI: 10.1063/5.0244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Molecular polaritons arise when the collective coupling between an ensemble of N molecules and an optical mode exceeds individual photon and molecular linewidths. The complexity of their description stems from their multiscale nature, where the local dynamics of each molecule can, in principle, be influenced by the collective behavior of the entire ensemble. To address this, we previously introduced a formalism called collective dynamics using truncated equations (CUT-E). CUT-E approaches the problem in two stages. First, it exploits permutational symmetries to obtain a substantial simplification of the problem. However, this is often insufficient for parameter regimes relevant to most experiments. Second, it takes the exact solution of the problem in the N → ∞ limit as a reference and derives systematic finite-N corrections. Here, we provide a novel derivation of CUT-E based on recently developed bosonization techniques. We lay down its connections with 1/N expansions that are ubiquitous in other fields of physics and present previously unexplored key aspects of this formalism, including various types of approximations and extensions to high-excitation manifolds.
Collapse
Affiliation(s)
- Juan B Pérez-Sánchez
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Arghadip Koner
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Joel Yuen-Zhou
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
2
|
Xu D, Peng ZH, Trovatello C, Cheng SW, Xu X, Sternbach A, Basov DN, Schuck PJ, Delor M. Spatiotemporal imaging of nonlinear optics in van der Waals waveguides. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-024-01849-1. [PMID: 39815068 DOI: 10.1038/s41565-024-01849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Van der Waals (vdW) semiconductors have emerged as promising platforms for efficient nonlinear optical conversion, including harmonic and entangled photon generation. Although major efforts are devoted to integrating vdW materials in nanoscale waveguides for miniaturization, the realization of efficient, phase-matched conversion in these platforms remains challenging. Here, to address this challenge, we report a far-field ultrafast imaging method to track the propagation of both fundamental and harmonic waves within vdW waveguides with femtosecond and sub-50 nanometre spatiotemporal precision. We focus on light propagation in slab waveguides of rhombohedral-stacked MoS2, a vdW semiconductor with large nonlinear susceptibility. Our method allows systematic optimization of nonlinear conversion by determining the phase-matching angles, mode profiles and losses in waveguides without prior knowledge of material optical constants. Using this approach, we show that both multimode and single-mode rhombohedral-stacked MoS2 waveguides support birefringent phase matching, demonstrating the material's potential for efficient on-chip nonlinear optics.
Collapse
Affiliation(s)
- Ding Xu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhi Hao Peng
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Chiara Trovatello
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Shan-Wen Cheng
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Xinyi Xu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Aaron Sternbach
- Department of Physics, Columbia University, New York, NY, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Pyles CG, Simpkins BS, Vurgaftman I, Owrutsky JC, Dunkelberger AD. Revisiting cavity-coupled 2DIR: A classical approach implicates reservoir modes. J Chem Phys 2024; 161:234202. [PMID: 39692498 DOI: 10.1063/5.0239301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Significant debate surrounds the origin of nonlinear optical responses from cavity-coupled molecular vibrations. Several groups, including our own, have previously assigned portions of the nonlinear response to polariton excited-state transitions. Here, we report a new method to approximate two-dimensional infrared spectra under vibrational strong coupling, which properly accounts for inhomogeneous broadening. We find excellent agreement between this model and experimental results for prototypical systems exhibiting both homogeneous and inhomogeneous broadening. This work implies that reservoir excitation is solely responsible for all optical response measured after the polariton modes dephase and represents an important new method for predicting and interpreting the nonlinear optical response of molecular vibrational polaritons.
Collapse
Affiliation(s)
- Cynthia G Pyles
- Chemistry Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA
| | - Blake S Simpkins
- Chemistry Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA
| | - Igor Vurgaftman
- Optical Sciences Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA
| | - Jeffrey C Owrutsky
- Precise Systems, 22290 Exploration Dr, Lexington Park, Maryland 20653, USA
| | - Adam D Dunkelberger
- Chemistry Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA
| |
Collapse
|
4
|
Liu B, Michail E, He G, Sfeir MY, Forrest SR. Ultrafast Dynamics of Bloch Surface Wave Polaritons in Large-Area 2D Semiconductor Monolayers at Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404286. [PMID: 38924714 DOI: 10.1002/adma.202404286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The dynamics of strongly coupled polariton systems integrated with 2D transition metal dichalcogenides (TMDs) is key to enabling efficient coherent processes and achieving high-performance TMD-based polaritonic devices, such as ultralow-threshold polariton lasers and ultrafast optical switches. However, there has been a lack of a comprehensive understanding of the excited state dynamics in TMD-based polariton systems. In this work, ultrafast pump-probe optical spectroscopy is used to investigate the room temperature dynamics of the polariton systems consisting of TMD monolayer excitons strongly coupled with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. The transient response is found for both above-exciton energy pumping and polariton-resonant pumping. The excited state population and ultrafast coherent coupling of the exciton reservoir and lower polariton (LP) branch are observed for resonant pumping. Moreover, it is found that the transient response of the LP first decays on a short-time scale of 0.15-0.25 ps compared to the calculated intrinsic lifetime of 0.11-0.20 ps, and is followed by a longer decay (>100 ps) due to the dynamical evolution of the exciton reservoir. The results provide a fundamental understanding of the dynamics of TMD-based polariton systems while showing the potential for achieving efficient coherent optical processes for device applications.
Collapse
Affiliation(s)
- Bin Liu
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Evripidis Michail
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Stephen R Forrest
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Chen Y, Yu K, Yan Y, Wang GP. Quantitative Complex Refractive Index Changes in Thin Films: A Pump-Probe Spectroscopy Analysis Approach. J Phys Chem Lett 2024; 15:6467-6475. [PMID: 38869188 DOI: 10.1021/acs.jpclett.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Photoexcitation induces intricate changes in both the real and imaginary components of the complex refractive index of thin film materials, which is essential for interpreting transient spectral features. Here, we employ a Kramers-Kronig-based analytical approach to elucidate light-induced changes in the complex refractive index from transient transmission spectra of thin films. Using gold-perovskite films as model systems, we conduct experimental measurements of transient transmission spectra for both individual gold and perovskite films, as well as for the bilayer heterostructure. Our analysis reveals significant changes in the refractive index and absorption for these systems. Notably, we observe negligible photocarrier transfer between the gold and perovskite layers based on transient spectroscopic analysis. These findings have implications for the design and optimization of bilayer heterostructures in optoelectronic applications. This work highlights the importance of spectroscopic techniques in studying the photophysical properties of heterostructure films.
Collapse
Affiliation(s)
- Yungao Chen
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Kuai Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guo Ping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Odewale E, Wanasinghe ST, Rury AS. Assessing the Determinants of Cavity Polariton Relaxation Using Angle-Resolved Photoluminescence Excitation Spectroscopy. J Phys Chem Lett 2024; 15:5705-5713. [PMID: 38768370 PMCID: PMC11146005 DOI: 10.1021/acs.jpclett.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The strong coupling of light and matter within electromagnetic resonators leads to the formation of cavity polaritons whose hybrid nature may help certain ground and excited state chemical processes. To help enable the development of polariton chemistry, we have developed and applied a spectroscopic technique to leverage the relatively larger spatial coherence of polaritons to assess the determinants of relaxation in hybrid light-matter states. By exciting the lower polariton (LP) state in cavity samples filled with different metalloporphyrin chromophores, we measured and modeled angle-resolved photoluminescence excitation spectra. Our results suggest that the shortest lived constituent of the LP state characterized by specific Hopfield coefficients limits the light absorption of the intracavity molecules, which we equate with the effective polariton lifetime. Our results suggest that researchers need to consider the lifetimes of both photons and excitons participating in strong light-matter coupling when designing polaritonic systems and the methods they can use to assess the relaxation of polaritonic states.
Collapse
Affiliation(s)
- Elizabeth
O. Odewale
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United States
| | - Sachithra T. Wanasinghe
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United States
| | - Aaron S. Rury
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Sasaki Y, Georgiou K, Wang S, Bossanyi DG, Jayaprakash R, Yanai N, Kimizuka N, Lidzey DG, Musser AJ, Clark J. Radiative pumping in a strongly coupled microcavity filled with a neat molecular film showing excimer emission. Phys Chem Chem Phys 2024; 26:14745-14753. [PMID: 38716658 DOI: 10.1039/d4cp00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Strong light-matter interactions have attracted much attention as a means to control the physical/chemical properties of organic semiconducting materials with light-matter hybrids called polaritons. To unveil the processes under strong coupling, studies on the dynamics of polaritons are of particular importance. While highly condensed molecular materials with large dipole density are ideal to achieve strong coupling, the emission properties of such films often become a mixture of monomeric and excimeric components, making the role of excimers unclear. Here, we use amorphous neat films of a new bis(phenylethynyl anthracene) derivative showing only excimer emission and investigate the excited-state dynamics of a series of strongly coupled microcavities, with each cavity being characterised by a different exciton-photon detuning. A time-resolved photoluminescence study shows that the excimer radiatively pumps the lower polariton in the relaxation process and the decay profile reflects the density of states. The delayed emission derived from triplet-triplet annihilation is not sensitive to the cavity environment, possibly due to the rapid excimer formation. Our results highlight the importance of controlling intermolecular interactions towards rational design of organic exciton-polariton devices, whose performance depends on efficient polariton relaxation pathways.
Collapse
Affiliation(s)
- Yoichi Sasaki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Kyriacos Georgiou
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Shuangqing Wang
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - David G Bossanyi
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Rahul Jayaprakash
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - David G Lidzey
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jenny Clark
- Department of Physics and Astronomy, The University of Sheffield, S3 7RH, Sheffield, UK.
| |
Collapse
|
8
|
Lee I, Melton SR, Xu D, Delor M. Controlling Molecular Photoisomerization in Photonic Cavities through Polariton Funneling. J Am Chem Soc 2024; 146:9544-9553. [PMID: 38530932 DOI: 10.1021/jacs.3c11292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Strong coupling between photonic modes and molecular electronic excitations, creating hybrid light-matter states called polaritons, is an attractive avenue for controlling chemical reactions. Nevertheless, experimental demonstrations of polariton-modified chemical reactions remain sparse. Here, we demonstrate modified photoisomerization kinetics of merocyanine and diarylethene by coupling the reactant's optical transition with photonic microcavity modes. We leverage broadband Fourier-plane optical microscopy to noninvasively and rapidly monitor photoisomerization within microcavities, enabling systematic investigation of chemical kinetics for different cavity-exciton detunings and photoexcitation conditions. We demonstrate three distinct effects of cavity coupling: first, a renormalization of the photonic density of states, akin to a Purcell effect, leads to enhanced absorption and isomerization rates at certain wavelengths, notably red-shifting the onset of photoisomerization. This effect is present under both strong and weak light-matter couplings. Second, kinetic competition between polariton localization into reactive molecular states and cavity losses leads to a suppression of the photoisomerization yield. Finally, our key result is that in reaction mixtures with multiple reactant isomers, exhibiting partially overlapping optical transitions and distinct isomerization pathways, the cavity resonance can be tuned to funnel photoexcitations into specific reactant isomers. Thus, upon decoherence, polaritons localize into a chosen isomer, selectively triggering the latter's photoisomerization despite initially being delocalized across all isomers. This result suggests that careful tuning of the cavity resonance is a promising avenue to steer chemical reactions and enhance product selectivity in reaction mixtures.
Collapse
Affiliation(s)
- Inki Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sarah R Melton
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
Xiang B, Xiong W. Molecular Polaritons for Chemistry, Photonics and Quantum Technologies. Chem Rev 2024; 124:2512-2552. [PMID: 38416701 PMCID: PMC10941193 DOI: 10.1021/acs.chemrev.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Molecular polaritons are quasiparticles resulting from the hybridization between molecular and photonic modes. These composite entities, bearing characteristics inherited from both constituents, exhibit modified energy levels and wave functions, thereby capturing the attention of chemists in the past decade. The potential to modify chemical reactions has spurred many investigations, alongside efforts to enhance and manipulate optical responses for photonic and quantum applications. This Review centers on the experimental advances in this burgeoning field. Commencing with an introduction of the fundamentals, including theoretical foundations and various cavity architectures, we discuss outcomes of polariton-modified chemical reactions. Furthermore, we navigate through the ongoing debates and uncertainties surrounding the underpinning mechanism of this innovative method of controlling chemistry. Emphasis is placed on gaining a comprehensive understanding of the energy dynamics of molecular polaritons, in particular, vibrational molecular polaritons─a pivotal facet in steering chemical reactions. Additionally, we discuss the unique capability of coherent two-dimensional spectroscopy to dissect polariton and dark mode dynamics, offering insights into the critical components within the cavity that alter chemical reactions. We further expand to the potential utility of molecular polaritons in quantum applications as well as precise manipulation of molecular and photonic polarizations, notably in the context of chiral phenomena. This discussion aspires to ignite deeper curiosity and engagement in revealing the physics underpinning polariton-modified molecular properties, and a broad fascination with harnessing photonic environments to control chemistry.
Collapse
Affiliation(s)
- Bo Xiang
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92126, United States
- Materials
Science and Engineering Program, University
of California, San Diego, California 92126, United States
- Department
of Electrical and Computer Engineering, University of California, San
Diego, California 92126, United States
| |
Collapse
|
10
|
Thomas PA, Barnes WL. Selection Bias in Strong Coupling Experiments. J Phys Chem Lett 2024; 15:1708-1710. [PMID: 38356453 PMCID: PMC10875671 DOI: 10.1021/acs.jpclett.3c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The strong coupling of light and molecules offers a potential new pathway to modify the properties of photonic modes and molecules. There are many reasons to be optimistic about the prospects of strong coupling; however, progress in this field is currently hindered by challenges in reproducibility, problems associated with differentiating between strong coupling and other effects, and the lack of a clear theoretical model to describe the reported effects. Concerning the question of differentiating between strong coupling and other possible mechanisms when examining experimental data, here, we show how cognitive bias can lead us to place undue emphasis on a given interpretation of unsystematic experimental data. We hope that this Viewpoint will, where appropriate, help readers to plan strong coupling experiments more carefully and evaluate the significance of the data obtained from them.
Collapse
Affiliation(s)
- Philip A. Thomas
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United
Kingdom
| | - William L. Barnes
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United
Kingdom
| |
Collapse
|
11
|
Thomas PA, Tan WJ, Kravets VG, Grigorenko AN, Barnes WL. Non-Polaritonic Effects in Cavity-Modified Photochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309393. [PMID: 37997481 DOI: 10.1002/adma.202309393] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Strong coupling of molecules to vacuum fields is widely reported to lead to modified chemical properties such as reaction rates. However, some recent attempts to reproduce infrared strong coupling results have not been successful, suggesting that factors other than strong coupling may sometimes be involved. In the first vacuum-modified chemistry experiment, changes to a molecular photoisomerization process in the ultraviolet-visible spectral range are attributed to strong coupling of the molecules to visible light. Here, this process is re-examined, finding significant variations in photoisomerization rates consistent with the original work. However, there is no evidence that these changes need to be attributed to strong coupling. Instead, it is suggested that the photoisomerization rates involved are most strongly influenced by the absorption of ultraviolet radiation in the cavity. These results indicate that care must be taken to rule out non-polaritonic effects before invoking strong coupling to explain any changes of properties arising in cavity-based experiments.
Collapse
Affiliation(s)
- Philip A Thomas
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Wai Jue Tan
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Vasyl G Kravets
- School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | | | - William L Barnes
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| |
Collapse
|
12
|
Michail E, Rashidi K, Liu B, He G, Menon VM, Sfeir MY. Addressing the Dark State Problem in Strongly Coupled Organic Exciton-Polariton Systems. NANO LETTERS 2024; 24:557-565. [PMID: 38179964 DOI: 10.1021/acs.nanolett.3c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The manipulation of molecular excited state processes through strong coupling has attracted significant interest for its potential to provide precise control of photochemical phenomena. However, the key limiting factor for achieving this control has been the "dark-state problem", in which photoexcitation populates long-lived reservoir states with energies and dynamics similar to those of bare excitons. Here, we use a sensitive ultrafast transient reflection method with momentum and spectral resolution to achieve the selective excitation of organic exciton-polaritons in open photonic cavities. We show that the energy dispersions of these systems allow us to avoid the parasitic effect of the reservoir states. Under phase-matching conditions, we observe the direct population and decay of polaritons on time scales of less than 100 fs and find that momentum scattering processes occur on even faster time scales. We establish that it is possible to overcome the "dark state problem" through the careful design of strongly coupled systems.
Collapse
Affiliation(s)
- Evripidis Michail
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Kamyar Rashidi
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Bin Liu
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Department of Physics, City College of New York, New York, New York 10031, United States
| | - Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Vinod M Menon
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Department of Physics, City College of New York, New York, New York 10031, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
13
|
Tichauer RH, Sokolovskii I, Groenhof G. Tuning the Coherent Propagation of Organic Exciton-Polaritons through the Cavity Q-factor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302650. [PMID: 37818758 PMCID: PMC10667804 DOI: 10.1002/advs.202302650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Indexed: 10/13/2023]
Abstract
Transport of excitons in organic materials can be enhanced through polariton formation when the interaction strength between these excitons and the confined light modes of an optical resonator exceeds their decay rates. While the polariton lifetime is determined by the Q(uality)-factor of the optical resonator, the polariton group velocity is not. Instead, the latter is solely determined by the polariton dispersion. Yet, experiments suggest that the Q-factor also controls the polariton propagation velocity. To understand this observation, the authors perform molecular dynamics simulations of Rhodamine chromophores strongly coupled to Fabry-Pérot cavities with various Q-factors. The results suggest that propagation in the aforementioned experiments is initially dominated by ballistic motion of upper polariton states at their group velocities, which leads to a rapid expansion of the wavepacket. Cavity decay in combination with non-adiabatic population transfer into dark states, rapidly depletes these bright states, causing the wavepacket to contract. However, because population transfer is reversible, propagation continues, but as a diffusion process, at lower velocity. By controlling the lifetime of bright states, the Q-factor determines the duration of the ballistic phase and the diffusion coefficient in the diffusive regime. Thus, polariton propagation in organic microcavities can be effectively tuned through the Q-factor.
Collapse
Affiliation(s)
- Ruth H. Tichauer
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE‐28049Spain
| | - Ilia Sokolovskii
- Nanoscience Center and Department of ChemistryUniversity of JyväskyläP.O. Box 35, 40014JyväskyläFinland
| | - Gerrit Groenhof
- Nanoscience Center and Department of ChemistryUniversity of JyväskyläP.O. Box 35, 40014JyväskyläFinland
| |
Collapse
|
14
|
Fidler AP, Chen L, McKillop AM, Weichman ML. Ultrafast dynamics of CN radical reactions with chloroform solvent under vibrational strong coupling. J Chem Phys 2023; 159:164302. [PMID: 37870135 DOI: 10.1063/5.0167410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Polariton chemistry may provide a new means to control molecular reactivity, permitting remote, reversible modification of reaction energetics, kinetics, and product yields. A considerable body of experimental and theoretical work has already demonstrated that strong coupling between a molecular vibrational mode and the confined electromagnetic field of an optical cavity can alter chemical reactivity without external illumination. However, the mechanisms underlying cavity-altered chemistry remain unclear in large part because the experimental systems examined previously are too complex for detailed analysis of their reaction dynamics. Here, we experimentally investigate photolysis-induced reactions of cyanide radicals with strongly-coupled chloroform (CHCl3) solvent molecules and examine the intracavity rates of photofragment recombination, solvent complexation, and hydrogen abstraction. We use a microfluidic optical cavity fitted with dichroic mirrors to facilitate vibrational strong coupling (VSC) of the C-H stretching mode of CHCl3 while simultaneously permitting optical access at visible wavelengths. Ultrafast transient absorption experiments performed with cavities tuned on- and off-resonance reveal that VSC of the CHCl3 C-H stretching transition does not significantly modify any measured rate constants, including those associated with the hydrogen abstraction reaction. This work represents, to the best of our knowledge, the first experimental study of an elementary bimolecular reaction under VSC. We discuss how the conspicuous absence of cavity-altered effects in this system may provide insights into the mechanisms of modified ground state reactivity under VSC and help bridge the divide between experimental results and theoretical predictions in vibrational polariton chemistry.
Collapse
Affiliation(s)
- Ashley P Fidler
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Liying Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Marissa L Weichman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
15
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
16
|
Abstract
The coherent exchange of energy between materials and optical fields leads to strong light-matter interactions and so-called polaritonic states with intriguing properties, halfway between light and matter. Two decades ago, research on these strong light-matter interactions, using optical cavity (vacuum) fields, remained for the most part the province of the physicist, with a focus on inorganic materials requiring cryogenic temperatures and carefully fabricated, high-quality optical cavities for their study. This review explores the history and recent acceleration of interest in the application of polaritonic states to molecular properties and processes. The enormous collective oscillator strength of dense films of organic molecules, aggregates, and materials allows cavity vacuum field strong coupling to be achieved at room temperature, even in rapidly fabricated, highly lossy metallic optical cavities. This has put polaritonic states and their associated coherent phenomena at the fingertips of laboratory chemists, materials scientists, and even biochemists as a potentially new tool to control molecular chemistry. The exciting phenomena that have emerged suggest that polaritonic states are of genuine relevance within the molecular and material energy landscape.
Collapse
Affiliation(s)
- Kenji Hirai
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
| | - James A Hutchison
- School of Chemistry and ARC Centre of Excellence in Exciton Science, The University of Melbourne, Masson Road, Parkville, Victoria 3052 Australia
| | - Hiroshi Uji-I
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee Leuven Belgium
| |
Collapse
|
17
|
Xu D, Mandal A, Baxter JM, Cheng SW, Lee I, Su H, Liu S, Reichman DR, Delor M. Ultrafast imaging of polariton propagation and interactions. Nat Commun 2023; 14:3881. [PMID: 37391396 DOI: 10.1038/s41467-023-39550-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach that directly images EPs in real space on femtosecond scales in a range of polaritonic architectures. We focus our analysis on EP propagation in layered halide perovskite microcavities. We reveal that EP-phonon interactions lead to a large renormalization of EP velocities at high excitonic fractions at room temperature. Despite these strong EP-phonon interactions, ballistic transport is maintained for up to half-exciton EPs, in agreement with quantum simulations of dynamic disorder shielding through light-matter hybridization. Above 50% excitonic character, rapid decoherence leads to diffusive transport. Our work provides a general framework to precisely balance EP coherence, velocity, and nonlinear interactions.
Collapse
Affiliation(s)
- Ding Xu
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - James M Baxter
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Shan-Wen Cheng
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Inki Lee
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Haowen Su
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, US
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, NY, 10027, US.
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, NY, 10027, US.
| |
Collapse
|
18
|
Laitz M, Kaplan AEK, Deschamps J, Barotov U, Proppe AH, García-Benito I, Osherov A, Grancini G, deQuilettes DW, Nelson KA, Bawendi MG, Bulović V. Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites. Nat Commun 2023; 14:2426. [PMID: 37105984 PMCID: PMC10140020 DOI: 10.1038/s41467-023-37772-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Hybrid perovskites have emerged as a promising material candidate for exciton-polariton (polariton) optoelectronics. Thermodynamically, low-threshold Bose-Einstein condensation requires efficient scattering to the polariton energy dispersion minimum, and many applications demand precise control of polariton interactions. Thus far, the primary mechanisms by which polaritons relax in perovskites remains unclear. In this work, we perform temperature-dependent measurements of polaritons in low-dimensional perovskite wedged microcavities achieving a Rabi splitting of [Formula: see text] = 260 ± 5 meV. We change the Hopfield coefficients by moving the optical excitation along the cavity wedge and thus tune the strength of the primary polariton relaxation mechanisms in this material. We observe the polariton bottleneck regime and show that it can be overcome by harnessing the interplay between the different excitonic species whose corresponding dynamics are modified by strong coupling. This work provides an understanding of polariton relaxation in perovskites benefiting from efficient, material-specific relaxation pathways and intracavity pumping schemes from thermally brightened excitonic species.
Collapse
Affiliation(s)
- Madeleine Laitz
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jude Deschamps
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ulugbek Barotov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew H Proppe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Inés García-Benito
- Department of Organic Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Anna Osherov
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giulia Grancini
- Department of Chemistry & INSTM, University of Pavia, Pavia, Italy
| | - Dane W deQuilettes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Keith A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vladimir Bulović
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
CRUZ CD, STEPHENSON JC, ENGMANN S, BITTLE EG, WAHLSTRAND JK. Pump-probe phase spectroscopy with submilliradian sensitivity and nanosecond time delay using Michelson interferometers. OPTICS EXPRESS 2023; 31:14299-14307. [PMID: 37157297 PMCID: PMC11258875 DOI: 10.1364/oe.483358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 05/10/2023]
Abstract
Using two Michelson interferometers, we describe an experimental scheme for sensitive pump-probe spectral interferometry measurements at long time delays. It has practical advantages over the Sagnac interferometer method typically used when long-time delays are required. First, with the Sagnac interferometer, achieving many nanosecond delays requires expanding the size of the interferometer so that the reference pulse arrives before the probe pulse. Because the two pulses still pass through the same region of the sample, long-lived effects can still affect the measurement. In our scheme, the probe and reference pulses are spatially separated at the sample, alleviating the need for a large interferometer. Second, in our scheme, a fixed delay between probe and reference pulses is straightforward to produce and is continuously adjustable while maintaining alignment. Two applications are demonstrated. First, transient phase spectra are presented in a thin tetracene film with up to 5 ns probe delay. Second, impulsive stimulated Raman measurements are presented in Bi4Ge3O12. The signal-to-noise using the double Michelson technique is comparable to previously described methods with the added advantage of arbitrarily long pump-probe time delays.
Collapse
Affiliation(s)
- C. D. CRUZ
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - J. C. STEPHENSON
- Associate, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - S. ENGMANN
- Associate, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037, USA
| | - E. G. BITTLE
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - J. K. WAHLSTRAND
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
20
|
Ceriotti M, Jensen L, Manolopoulos DE, Martinez T, Reichman DR, Sciortino F, Sherrill CD, Shi Q, Vega C, Wang LS, Weiss EA, Zhu X, Stein J, Lian T. 2021 JCP Emerging Investigator Special Collection. J Chem Phys 2023; 158:060401. [PMID: 36792492 DOI: 10.1063/5.0143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
|
21
|
Simpkins BS, Yang Z, Dunkelberger AD, Vurgaftman I, Owrutsky JC, Xiong W. Comment on "Isolating Polaritonic 2D-IR Transmission Spectra". J Phys Chem Lett 2023; 14:983-988. [PMID: 36727272 PMCID: PMC9900631 DOI: 10.1021/acs.jpclett.2c01264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
This Viewpoint responds to the analysis of 2D IR spectra of vibration cavity polaritons in the study reported in The Journal of Physical Chemistry Letters (Duan et al. 2021, 12, 11406). That report analyzed 2D IR spectra of strongly coupled molecules, such as W(CO)6 and nitroprusside anion, based on subtracting a background signal generated by polariton filtered free space signals. They assigned the resulting response as being due to excited polaritons. We point out in this Viewpoint that virtually all of the response can be properly reproduced using the physics of transmission through an etalon containing a material modeled with a complex dielectric function describing the ground- and excited-state absorber populations. Furthermore, such a coupled system cannot be described as a scaled sum of the bare molecular and cavity responses.
Collapse
Affiliation(s)
| | - Zimo Yang
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | | | - Igor Vurgaftman
- US
Naval Research Laboratory, Washington, DC20375, United States
| | | | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
22
|
Son M, Armstrong ZT, Allen RT, Dhavamani A, Arnold MS, Zanni MT. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nat Commun 2022; 13:7305. [PMID: 36435875 PMCID: PMC9701200 DOI: 10.1038/s41467-022-35046-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Exciton-polaritons are hybrid states formed when molecular excitons are strongly coupled to photons trapped in an optical cavity. These systems exhibit many interesting, but not fully understood, phenomena. Here, we utilize ultrafast two-dimensional white-light spectroscopy to study donor-acceptor microcavities made from two different layers of semiconducting carbon nanotubes. We observe the delayed growth of a cross peak between the upper- and lower-polariton bands that is oftentimes obscured by Rabi contraction. We simulate the spectra and use Redfield theory to learn that energy cascades down a manifold of new electronic states created by intermolecular coupling and the two distinct bandgaps of the donor and acceptor. Energy most effectively enters the manifold when light-matter coupling is commensurate with the energy distribution of the manifold, contributing to long-range energy transfer. Our results broaden the understanding of energy transfer dynamics in exciton-polariton systems and provide evidence that long-range energy transfer benefits from moderately-coupled cavities.
Collapse
Affiliation(s)
- Minjung Son
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Ryan T Allen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Abitha Dhavamani
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Ave, Madison, WI, 53706, USA
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Ave, Madison, WI, 53706, USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA.
| |
Collapse
|
23
|
Tan WJ, Thomas PA, Barnes WL. Origin of an Anticrossing between a Leaky Photonic Mode and an Epsilon-Near-Zero Point of Silver. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19262-19267. [PMID: 36425000 PMCID: PMC9677423 DOI: 10.1021/acs.jpcc.2c05836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Strong light-matter coupling hybridizes light and matter to form states known as polaritons, which give rise to a characteristic anticrossing signature in dispersion plots. Here, we identify conditions under which an anticrossing can occur in the absence of strong coupling. We study planar silver/dielectric structures and find that, around the epsilon-near-zero point in silver, the impedance matching between the silver and dielectric layers gives rise to an anticrossing. Our work shows that care must be taken to ensure that anticrossing arising from impedance matching is not misattributed to strong coupling.
Collapse
|
24
|
Wu F, Finkelstein-Shapiro D, Wang M, Rosenkampff I, Yartsev A, Pascher T, Nguyen- Phan TC, Cogdell R, Börjesson K, Pullerits T. Optical cavity-mediated exciton dynamics in photosynthetic light harvesting 2 complexes. Nat Commun 2022; 13:6864. [PMID: 36369202 PMCID: PMC9652305 DOI: 10.1038/s41467-022-34613-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Strong light-matter interaction leads to the formation of hybrid polariton states and alters the photophysical dynamics of organic materials and biological systems without modifying their chemical structure. Here, we experimentally investigated a well-known photosynthetic protein, light harvesting 2 complexes (LH2) from purple bacteria under strong coupling with the light mode of a Fabry-Perot optical microcavity. Using femtosecond pump probe spectroscopy, we analyzed the polariton dynamics of the strongly coupled system and observed a significant prolongation of the excited state lifetime compared with the bare exciton, which can be explained in terms of the exciton reservoir model. Our findings indicate the potential of tuning the dynamic of the whole photosynthetic unit, which contains several light harvesting complexes and reaction centers, with the help of strong exciton-photon coupling, and opening the discussion about possible design strategies of artificial photosynthetic devices.
Collapse
Affiliation(s)
- Fan Wu
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Daniel Finkelstein-Shapiro
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden ,grid.9486.30000 0001 2159 0001Instituto de Química, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Mao Wang
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ilmari Rosenkampff
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Arkady Yartsev
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Torbjörn Pascher
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Tu C. Nguyen- Phan
- grid.8756.c0000 0001 2193 314XSchool of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Richard Cogdell
- grid.8756.c0000 0001 2193 314XSchool of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Karl Börjesson
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tönu Pullerits
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Pandya R, Ashoka A, Georgiou K, Sung J, Jayaprakash R, Renken S, Gai L, Shen Z, Rao A, Musser AJ. Tuning the Coherent Propagation of Organic Exciton-Polaritons through Dark State Delocalization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105569. [PMID: 35474309 PMCID: PMC9218652 DOI: 10.1002/advs.202105569] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/15/2022] [Indexed: 06/12/2023]
Abstract
While there have been numerous reports of long-range polariton transport at room-temperature in organic cavities, the spatiotemporal evolution of the propagation is scarcely reported, particularly in the initial coherent sub-ps regime, where photon and exciton wavefunctions are inextricably mixed. Hence the detailed process of coherent organic exciton-polariton transport and, in particular, the role of dark states has remained poorly understood. Here, femtosecond transient absorption microscopy is used to directly image coherent polariton motion in microcavities of varying quality factor. The transport is found to be well-described by a model of band-like propagation of an initially Gaussian distribution of exciton-polaritons in real space. The velocity of the polaritons reaches values of ≈ 0.65 × 106 m s-1 , substantially lower than expected from the polariton dispersion. Further, it is found that the velocity is proportional to the quality factor of the microcavity. This unexpected link between the quality-factor and polariton velocity is suggested to be a result of varying admixing between delocalized dark and polariton states.
Collapse
Affiliation(s)
- Raj Pandya
- Cavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
- Laboratoire Kastler BrosselÉcole Normale Superiéure‐Université PSLCNRSSorbonne UniversitéCollege de FranceParis75005France
| | - Arjun Ashoka
- Cavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Kyriacos Georgiou
- Department of Physics and AstronomyUniversity of SheffieldSheffieldS3 7RHUK
- Department of PhysicsUniversity of CyprusP. O. Box 20537Nicosia1678Cyprus
| | - Jooyoung Sung
- Cavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Rahul Jayaprakash
- Department of Physics and AstronomyUniversity of SheffieldSheffieldS3 7RHUK
| | - Scott Renken
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhou311121China
- State Key Laboratory of Coordination and ChemistrySchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210046China
| | - Zhen Shen
- State Key Laboratory of Coordination and ChemistrySchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210046China
| | - Akshay Rao
- Cavendish LaboratoryUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Andrew J. Musser
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNY14853USA
| |
Collapse
|
26
|
Lüttgens JM, Kuang Z, Zorn NF, Buckup T, Zaumseil J. Evidence for a Polariton-Mediated Biexciton Transition in Single-Walled Carbon Nanotubes. ACS PHOTONICS 2022; 9:1567-1576. [PMID: 35607642 PMCID: PMC9121424 DOI: 10.1021/acsphotonics.1c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 06/15/2023]
Abstract
Strong coupling of excitonic resonances with a cavity gives rise to exciton-polaritons which possess a modified energy landscape compared to the uncoupled emitter. However, due to the femtosecond lifetime of the so-called bright polariton states and transient changes of the cavity reflectivity under excitation, it is challenging to directly measure the polariton excited state dynamics. Here, near-infrared pump-probe spectroscopy is used to investigate the ultrafast dynamics of exciton-polaritons based on strongly coupled (6,5) single-walled carbon nanotubes in metal-clad microcavities. We present a protocol for fitting the reflectivity-associated response of the cavity using genetic algorithm-assisted transfer-matrix simulations. With this approach, we are able to identify an absorptive exciton-polariton feature in the transient transmission data. This feature appears instantaneously under resonant excitation of the upper polariton but is delayed for off-resonant excitation. The observed transition energy and detuning dependence point toward a direct upper polariton-to-biexciton transition. Our results provide direct evidence for exciton-polariton intrinsic transitions beyond the bright polariton lifetime in strongly coupled microcavities.
Collapse
Affiliation(s)
- Jan M. Lüttgens
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Zhuoran Kuang
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
27
|
Ashoka A, Tamming RR, Girija AV, Bretscher H, Verma SD, Yang SD, Lu CH, Hodgkiss JM, Ritchie D, Chen C, Smith CG, Schnedermann C, Price MB, Chen K, Rao A. Extracting quantitative dielectric properties from pump-probe spectroscopy. Nat Commun 2022; 13:1437. [PMID: 35301311 PMCID: PMC8931171 DOI: 10.1038/s41467-022-29112-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Optical pump-probe spectroscopy is a powerful tool for the study of non-equilibrium electronic dynamics and finds wide applications across a range of fields, from physics and chemistry to material science and biology. However, a shortcoming of conventional pump-probe spectroscopy is that photoinduced changes in transmission, reflection and scattering can simultaneously contribute to the measured differential spectra, leading to ambiguities in assigning the origin of spectral signatures and ruling out quantitative interpretation of the spectra. Ideally, these methods would measure the underlying dielectric function (or the complex refractive index) which would then directly provide quantitative information on the transient excited state dynamics free of these ambiguities. Here we present and test a model independent route to transform differential transmission or reflection spectra, measured via conventional optical pump-probe spectroscopy, to changes in the quantitative transient dielectric function. We benchmark this method against changes in the real refractive index measured using time-resolved Frequency Domain Interferometry in prototypical inorganic and organic semiconductor films. Our methodology can be applied to existing and future pump-probe data sets, allowing for an unambiguous and quantitative characterisation of the transient photoexcited spectra of materials. This in turn will accelerate the adoption of pump-probe spectroscopy as a facile and robust materials characterisation and screening tool. Photoinduced changes in transmission, reflection and scattering prevent conventional pump-probe spectroscopy to unambiguously assign the origin of spectral signatures. Ashoka et al. have developed an optical modelling technique to extract quantitative and unambiguous changes in the dielectric function from standard pump-probe measurements.
Collapse
Affiliation(s)
- Arjun Ashoka
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Ronnie R Tamming
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012, New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Aswathy V Girija
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hope Bretscher
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Sachin Dev Verma
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Justin M Hodgkiss
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - David Ritchie
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Chong Chen
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Charles G Smith
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Christoph Schnedermann
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Michael B Price
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Kai Chen
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, 9016, New Zealand
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK.
| |
Collapse
|
28
|
Zhang D, Zhu H, Wang C, Kang SY, Zhou Y, Sheng X. Three-Photon-Induced Singlet Excited-State Absorption for the Tunable Ultrafast Optical-Limiting in Distyrylbenzene: A First-Principles Study. Phys Chem Chem Phys 2022; 24:16852-16861. [DOI: 10.1039/d2cp01753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ground and first singlet excited state absorption in distyrylbenzene(DSB) are simulated based on the linear-response time dependent density functional theory(LR-TDDFT). It is found that distyrylbenzene shows strong reverse saturable...
Collapse
|