1
|
Wu K, Zhang Y, Mao D, Iberg CA, Yin-Declue H, Sun K, Keeler SP, Wikfors HA, Young D, Yantis J, Austin SR, Byers DE, Brody SL, Crouch EC, Romero AG, Holtzman MJ. MAPK13 controls structural remodeling and disease after epithelial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596863. [PMID: 38895360 PMCID: PMC11185504 DOI: 10.1101/2024.05.31.596863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All living organisms are charged with repair after injury particularly at epithelial barrier sites, but in some cases this response leads instead to structural remodeling and long-term disease. Identifying the molecular and cellular control of this divergence is key to disease modification. In that regard, stress kinase control of epithelial stem cells is a rational entry point for study. Here we examine the potential for mitogen-activated protein kinase 13 (MAPK13) regulation of epithelial stem cells using models of respiratory viral injury and post-viral lung disease. We show that Mapk13 gene-knockout mice handle acute infectious illness as expected but are protected against structural remodeling manifest as basal-epithelial stem cell (basal-ESC) hyperplasia-metaplasia, immune activation, and mucinous differentiation. In corresponding cell models, Mapk13-deficiency directly attenuates basal-ESC growth and organoid formation. Extension to human studies shows marked induction/activation of basal-cell MAPK13 in clinical samples of comparable remodeling found in asthma and COPD. Here again, MAPK13 gene-knockdown inhibits human basal-ESC growth in culture. Together, the data identify MAPK13 as a control for structural remodeling and disease after epithelial injury and as a suitable target for down-regulation as a disease-modifying strategy.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A. Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen R. Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C. Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
2
|
Lv X, Zheng L, Zhang T, Wang W, Chen Y, Li J, Cai Z, Guo X, Song L. CLCA1 exacerbates lung inflammation via p38 MAPK pathway in acute respiratory distress syndrome. Exp Lung Res 2024; 50:85-95. [PMID: 38597420 DOI: 10.1080/01902148.2024.2334262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Recent research has revealed that airway epithelial calcium-activated chloride channel-1 (CLCA1) is implicated in the inflammation of multiple human respiratory diseases, but the specific role in acute respiratory distress syndrome (ARDS) remains unknown. To investigate the role of CLCA1 in ARDS, 80 participants, including 26 ARDS patients, 26 patients with community-acquired pneumonia (CAP) and 28 control subjects, were enrolled in this study. As the result shows, the level of CLCA1 was significantly increased in ARDS patients and positively correlated with neutrophil infiltration and the poor prognosis of ARDS. Then, the level of CLCA1 also elevated in the LPS-induced ARDS mouse model, and the administration of CLCA1 significantly regulated the phenotypes of ARDS in mice, such as lung injury score, BALF protein concentration, neutrophils infiltration and the secretions of inflammatory factors. Furthermore, administration of CLCA1 substantially altered the phosphorylation of p38 in the ARDS mouse model, whereas repressing the expression of CLCA1 or inhibiting the activation of p38 both alleviated the inflammatory response of ARDS. In summary, CLCA1 was notably correlated with ARDS and exacerbated the ARDS phenotypes through the p38 MAPK pathway.
Collapse
Affiliation(s)
- Xing Lv
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Long Zheng
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Weijia Wang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Chen
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhigui Cai
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingxing Guo
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Waldstein KA, Ganama M, Varga SM, Tilley S, Hua X. Topical Adenosine Inhibits Inflammation and Mucus Production in Viral Acute Rhinosinusitis. Laryngoscope 2023; 133:2095-2103. [PMID: 36576070 PMCID: PMC10300229 DOI: 10.1002/lary.30541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Viral acute rhinosinusitis (ARS) is the leading cause of work and school absence and antibiotic over-prescription. There are limited treatment options available to ameliorate the symptoms caused by viral ARS. We have previously demonstrated that topical adenosine treatment enhances mucociliary clearance in the sino-nasal tract. Here, we assessed the therapeutic potential of topical adenosine in a mouse model of viral ARS. METHODS The effect of topical adenosine on inflammatory response and mucin gene expression was examined in a mouse model of viral ARS induced by respiratory syncytial virus (RSV) nasal-only infection. We also investigated the inflammatory effect of both endogenous and exogenous adenosine in the sino-nasal tract. RESULTS Topical adenosine significantly inhibited the expression of pro-inflammatory cytokines, goblet hyperplasia, mucin expression, and cell damage in the nose of mice with viral ARS. This treatment did not prolong virus clearance. This inhibitory effect was primarily mediated by the A2A adenosine receptor (AR). Although previous studies have shown that adenosine induces a robust inflammatory response in the lungs, neither endogenous nor exogenous adenosine produced inflammation in the sino-nasal tract. Instead, exogenous adenosine inhibited the baseline expression of TNF and IL-1β in the nose. Additionally, baseline expression of ARs was lower in the nose than that in the trachea and lungs. CONCLUSION We demonstrated that intranasal adenosine administration effectively decreased inflammation and mucus production in a mouse model of viral ARS. LEVEL OF EVIDENCE N/A Laryngoscope, 133:2095-2103, 2023.
Collapse
Affiliation(s)
- Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Maria Ganama
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Stephen Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaoyang Hua
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Chen W, Cao Y, Zhong Y, Sun J, Dong J. The Mechanisms of Effector Th Cell Responses Contribute to Treg Cell Function: New Insights into Pathogenesis and Therapy of Asthma. Front Immunol 2022; 13:862866. [PMID: 35898499 PMCID: PMC9309477 DOI: 10.3389/fimmu.2022.862866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
CD4 + helper T (Th) cell subsets are critically involved in the pathogenesis of asthma. Naive Th cells differentiate into different subsets under the stimulation of different sets of cytokines, and the differentiation process is dominantly driven by lineage specific transcription factors, such as T-bet (Th1), GATA3 (Th2), RORγt (Th17) and Foxp3 (Treg). The differentiation mechanisms driven by these transcription factors are mutually exclusive, resulting in functional inhibition of these Th subsets to each other, particularly prominent between effector Th cells and Treg cells, such as Th2 versus Treg cells and Th17 versus Treg cells. Being of significance in maintaining immune homeostasis, the balance between effector Th cell response and Treg cell immunosuppression provides an immunological theoretical basis for us to understand the immunopathological mechanism and develop the therapy strategies of asthma. However, recent studies have found that certain factors involved in effector Th cells response, such as cytokines and master transcription factors (IL-12 and T-bet of Th1, IL-4 and GATA3 of Th2, IL-6 and RORγt of Th17), not only contribute to immune response of effector Th cells, but also promote the development and function of Treg cells, therefore bridging the interplay between effector Th cell immune responses and Treg cell immunosuppression. Although we have an abundant knowledge concerning the role of these cytokines and transcription factors in effector Th cell responses, our understanding on their role in Treg cell development and function is scattered thus need to be summarized. This review summarized the role of these cytokines and transcription factors involved in effector Th cell responses in the development and function of Treg cells, in the hope of providing new insights of understanding the immunopathological mechanism and seeking potential therapy strategies of asthma.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jing Sun, ; Jingcheng Dong,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jing Sun, ; Jingcheng Dong,
| |
Collapse
|
5
|
An Inhibitor of Nuclear Factor-Kappa B Pathway Attenuates the Release of TGF-β1 and Inhibits the Fibrogenic Progress in a Model of Airway Remodeling Induced by Acrolein. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4984634. [PMID: 35432586 PMCID: PMC9007674 DOI: 10.1155/2022/4984634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Airway inflammation, airway hypersecretion, and airway remodeling are believed to be involved in the process of lung fibrosis. Nowadays, acrolein is widely used to establish the model of airway remodeling. An active component of propolis, named caffeic acid phenethyl ester (CAPE), is recognized as an inhibitor of the NF-κB pathway and shows anti-inflammatory effect. The purpose of this study was to investigate the protective effect of CAPE on acrolein-induced airway remodeling. 24 mice were divided into 4 groups: control group; acrolein group, mice received acrolein (inhalation of acrolein for 20 days); CAPE group, mice received CAPE (30 mg/kg); and acrolein+CAPE group, mice received acrolein and CAPE. After 20 days, lung tissue was removed for histopathology and immunohistochemical evaluations. TGF-β1 and Muc5ac levels were measured at the protein and molecular levels. Additionally, the phospho-P65/P65 values in the airway smooth muscle cells treated with TGF-β1 or CAPE were detected by Western blot. The results showed that compared with the control, subepithelial collagen deposition, airway inflammation, and peribronchus fibrosis were inhibited in the group treated with CAPE. Furthermore, TGF-β1 was significantly decreased in the acrolein+CAPE group compared with the acrolein group. Additionally, we identified CAPE inhibited P65 phosphorylation. However, CAPE did not inhibit the Muc5ac overproduction and hypersecretion induced by acrolein. In conclusion, as an inhibitor of the NF-κB pathway, CAPE attenuated the release of TGF-β1, which inhibited the fibrogenic progress induced by acrolein in mice and took no effect on inhibiting airway mucus hypersecretion.
Collapse
|
6
|
Wang Q, Wang Z, Zhang Z, Zhang W, Zhang M, Shen Z, Ye Y, Jiang K, Wang S. Landscape of cell heterogeneity and evolutionary trajectory in ulcerative colitis-associated colon cancer revealed by single-cell RNA sequencing. Chin J Cancer Res 2021; 33:271-288. [PMID: 34158745 PMCID: PMC8181874 DOI: 10.21147/j.issn.1000-9604.2021.02.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The goal of this study was to get preliminary insight on the intra-tumor heterogeneity in colitis-associated cancer (CAC) and to reveal a potential evolutionary trajectory from ulcerative colitis (UC) to CAC at the single-cell level. Methods Fresh samples of tumor tissues and adjacent UC tissues from a CAC patient with pT3N1M0 stage cancer were examined by single-cell RNA sequencing (scRNA-seq). Data from The Cancer Genome Atlas (TCGA) and The Human Protein Atlas were used to confirm the different expression levels in normal and tumor tissues and to determine their relationships with patient prognosis. Results Ultimately, 4,777 single-cell transcriptomes (1,220 genes per cell) were examined, of which 2,250 (47%) and 2,527 (53%) originated from tumor and adjacent UC tissues, respectively. We defined the composition of cancer-associated stromal cells and identified six cell clusters, including myeloid, T and B cells, fibroblasts, endothelial and epithelial cells. Notable pathways and transcription factors involved in these cell clusters were analyzed and described. Moreover, the precise cellular composition and developmental trajectory from UC to UC-associated colon cancer were graphed, and it was predicted that CD74, CLCA1, and DPEP1 played a potential role in disease progression.
Conclusions scRNA-seq technology revealed intra-tumor cell heterogeneity in UC-associated colon cancer, and might provide a promising direction to identify novel potential therapeutic targets in the evolution from UC to CAC.
Collapse
Affiliation(s)
- Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Zhu Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhen Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Wei Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Mengmeng Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
7
|
Song MK, Kim DI, Lee K. Kathon Induces Fibrotic Inflammation in Lungs: The First Animal Study Revealing a Causal Relationship between Humidifier Disinfectant Exposure and Eosinophil and Th2-Mediated Fibrosis Induction. Molecules 2020; 25:molecules25204684. [PMID: 33066398 PMCID: PMC7587358 DOI: 10.3390/molecules25204684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Currently available toxicity data on humidifier disinfectants are primarily limited to polyhexamethylene guanidine phosphate-induced lung fibrosis. We, therefore, investigated whether the sterilizer component Kathon, which is a mixture of chloromethylisothiazolinone and methylisothiazolinone, induces fibrotic lung injury following direct lung exposure in an animal model. Mice were intratracheally instilled with either the vehicle or Kathon. Differential cell counts, cytokine analysis, and histological analysis of lung tissue were then performed to characterize the injury features, and we investigated whether Kathon altered fibrosis-related gene expression in lung tissues via RNA-Seq and bioinformatics. Cell counting showed that Kathon exposure increased the proportion of macrophages, eosinophils, and neutrophils. Moreover, T helper 2 (Th2) cytokine levels in the bronchoalveolar lavage were significantly increased in the Kathon groups. Histopathological analysis revealed increased perivascular/alveolar inflammation, eosinophilic cells, mucous cell hyperplasia, and pulmonary fibrosis following Kathon exposure. Additionally, Kathon exposure modulated the expression of genes related to fibrotic inflammation, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, extracellular signal regulated kinase (ERK)1 and ERK2 cascade, extracellular matrix (ECM)-receptor interaction pathway, transforming growth factor beta receptor signaling pathway, cellular response to tumor necrosis factor, and collagen fibril organization. Our results suggest that Kathon exposure is associated with fibrotic lung injury via a Th2-dependent pathway and is thus a possible risk factor for fibrosis.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30 Baehak1-gil, Jongeup, Jeollabuk-do 56212, Korea; (M.-K.S.); (D.I.K.)
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30 Baehak1-gil, Jongeup, Jeollabuk-do 56212, Korea; (M.-K.S.); (D.I.K.)
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30 Baehak1-gil, Jongeup, Jeollabuk-do 56212, Korea; (M.-K.S.); (D.I.K.)
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: or ; Tel.: +82-63-570-8740
| |
Collapse
|
8
|
Li X, Jin F, Lee HJ, Lee CJ. Recent Advances in the Development of Novel Drug Candidates for Regulating the Secretion of Pulmonary Mucus. Biomol Ther (Seoul) 2020; 28:293-301. [PMID: 32133827 PMCID: PMC7327140 DOI: 10.4062/biomolther.2020.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Hypersecretion of pulmonary mucus is a major pathophysiological feature in allergic and inflammatory respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). Overproduction and/or oversecretion of mucus cause the airway obstruction and the colonization of pathogenic microbes. Developing a novel pharmacological agent to regulate the production and/or secretion of pulmonary mucus can be a useful strategy for the effective management of pathologic hypersecretion of mucus observed in COPD and asthma. Thus, in the present review, we tried to give an overview of the conventional pharmacotherapy for mucus-hypersecretory diseases and recent research results on searching for the novel candidate agents for controlling of pulmonary mucus hypersecretion, aiming to shed light on the potential efficacious pharmacotherapy of mucus-hypersecretory diseases.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Fengri Jin
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
9
|
Sugimoto N, Suzukawa M, Nagase H, Koizumi Y, Ro S, Kobayashi K, Yoshihara H, Kojima Y, Kamiyama-Hara A, Hebisawa A, Ohta K. IL-9 Blockade Suppresses Silica-induced Lung Inflammation and Fibrosis in Mice. Am J Respir Cell Mol Biol 2019; 60:232-243. [PMID: 30240278 DOI: 10.1165/rcmb.2017-0287oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recapitulative animal models of idiopathic pulmonary fibrosis (IPF) and related diseases are lacking, which inhibits our ability to fully clarify the pathogenesis of these diseases. Although lung fibrosis in mouse models is often induced by bleomycin, silica-induced lung fibrosis is more sustainable and more progressive. Therefore, in this study, we sought to elucidate the mediator(s) responsible for the pathogenesis of lung fibrosis, through the use of a mouse model of silica-induced lung fibrosis. With a single nasal administration of 16 mg of silica, lung inflammation (assessed by elevated cellular components in the BAL fluids [BALFs]) and lung fibrosis (assessed by lung histology and lung hydroxyproline levels) were induced and sustained for as long as 24 weeks. Of the mediators measured in the BALFs, IL-9 was characteristically elevated gradually, and peaked at 24 weeks after silica administration. Treatment of silica-challenged mice with anti-IL-9-neutralizing antibody inhibited lung fibrosis, as assessed by lung hydroxyproline level, and suppressed the levels of major mediators, including IL-1β, IL-6, IL-12, CCL2, CXCL1, and TNF-α in BALFs. Moreover, human lung specimens from patients with IPF have shown high expression of IL-9 in alveolar macrophages, CD4-positive cells, and receptors for IL-9 in airway epithelial cells. Collectively, these data suggest that IL-9 plays an important role in the pathogenesis of lung fibrosis in diseases such as IPF.
Collapse
Affiliation(s)
- Naoya Sugimoto
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Maho Suzukawa
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Nagase
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Yuta Koizumi
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Shoki Ro
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Konomi Kobayashi
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Hisanao Yoshihara
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Yasuhiro Kojima
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Asae Kamiyama-Hara
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Akira Hebisawa
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Ken Ohta
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Resolution of allergic asthma. Semin Immunopathol 2019; 41:665-674. [PMID: 31705318 DOI: 10.1007/s00281-019-00770-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Allergic asthma is an inflammatory disease of the airways characterized by recurrent episodes of wheezing and bronchoconstriction. Chronic inflammation may finally lead to structural damage followed by airway remodeling. Various studies in recent years contributed to unravel important aspects of the immunopathogenesis of asthma and adapted new pharmaceutical developments. Here, I consider some novel insights into the immunopathogenesis of asthma and the protective and pathogenic roles of some innate and adaptive immune cells as well as the function of soluble mediators such as cytokines. Particular attention will be given to new concepts on resolution of chronic airway inflammation for prevention of airway structural damage.
Collapse
|
11
|
Bolmarcich J, Wilbert S, Jackson GR, Oldach J, Bachelor M, Kenney T, Wright CD, Hayden PJ. In VitroHuman Airway Models for Study of Goblet Cell Hyperplasia and Mucus Production: Effects of Th2 Cytokines, Double-Stranded RNA, and Tobacco Smoke. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Tanca A, Abbondio M, Palomba A, Fraumene C, Marongiu F, Serra M, Pagnozzi D, Laconi E, Uzzau S. Caloric restriction promotes functional changes involving short-chain fatty acid biosynthesis in the rat gut microbiota. Sci Rep 2018; 8:14778. [PMID: 30283130 PMCID: PMC6170429 DOI: 10.1038/s41598-018-33100-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is known to promote health and longevity, likely via modification of the gut microbiota (GM). However, functional and metabolic changes induced in the GM during CR are still unidentified. Here, we investigated the short- and long-term effects of CR on the rat GM using a metaproteogenomic approach. We show that a switch from ad libitum (AL) low fat diet to CR in young rats is able to induce rapid and deep changes in their GM metaproteomic profile, related to a reduction of the Firmicutes/Bacteroidetes ratio and an expansion of lactobacilli. Specifically, we observed a significant change in the expression of the microbial enzymes responsible for short-chain fatty acid biosynthesis, with CR boosting propionogenesis and limiting butyrogenesis and acetogenesis. Furthermore, these CR-induced effects were maintained up to adulthood and started to be reversed after a short-term diet change. We also found that CR alters the abundance of an array of host proteins released in stool, mainly related to epithelial barrier integrity and inflammation. Hence, our results provide thorough information about CR-induced modifications to GM and host functional activity, and might constitute the basis for novel GM-based approaches aimed at monitoring the effectiveness of dietary interventions.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
13
|
Liu Z, Han B, Chen X, Wu Q, Wang L, Li G. Pycnogenol Ameliorates Asthmatic Airway Inflammation and Inhibits the Function of Goblet Cells. DNA Cell Biol 2016; 35:730-739. [PMID: 27643741 DOI: 10.1089/dna.2016.3264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pycnogenol® (PYC) is utilized in the treatment of various diseases ranging from chronic inflammation to circulatory diseases, but its efficacy and functional mechanism in pediatric asthma continue to remain obscure. Therefore, the purpose of this study was to investigate the effectiveness and molecular mechanism of PYC on regulation of asthmatic airway inflammation. We found that PYC with tail intravenous injection of 50 mg/kg or intragastric administration of 100 mg/kg all reduced ovalbumin (OVA)-induced airway injury. Pharmacokinetics of PYC was evaluated by high-performance liquid chromatography assay, indicating that PYC was quickly absorbed into the blood after intragastric administration, and PYC metabolism was later improved gradually with increase of time after PYC administration. PYC has a higher bioavailability of 71.96%, and it was more easily absorbed by the body. PYC inhibited the number of total inflammatory cells and levels of interleukin (IL)-4, IL-5, IL-9, and IL-13 in bronchoalveolar lavage fluid of OVA-induced mice. PYC inhibited IL-13 secretion from the Th2 cells, thereby causing a reduction in expression of the signaling molecules in JAK/STAT6 pathway in airway epithelial cells. STAT6 silence suppressed IL-13-increased acetylcholine level. STAT6 overexpression promoted expression of goblet cell metaplasia-associated molecules (FOXA3, SPDEF, and Muc5ac). PYC suppressed OVA-induced expression of FOXA3, SPDEF, and Muc5ac in lung. Our findings indicate that PYC has a higher bioavailability and it prevents emergence of OVA-induced airway injury and airway inflammation in mice by inhibiting IL-13/JAK/STAT6 pathway and blocking release of acetylcholine to reduce goblet cell metaplasia.
Collapse
Affiliation(s)
- Zhaoe Liu
- 1 Department of Neonatology, Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, People's Republic of China
| | - Bo Han
- 2 Department of Pediatrics, Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, People's Republic of China
| | - Xing Chen
- 2 Department of Pediatrics, Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, People's Republic of China
| | - Qiaoling Wu
- 3 Department of Neonatal, Maternity and Child Care Hospital , Jinan, Shandong, People's Republic of China
| | - Lijun Wang
- 1 Department of Neonatology, Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, People's Republic of China
| | - Gang Li
- 1 Department of Neonatology, Provincial Hospital Affiliated to Shandong University , Jinan, Shandong, People's Republic of China
| |
Collapse
|
14
|
Kim HK, Kook JH, Kang KR, Oh DJ, Kim TH, Lee SH. Increased expression of hCLCA1 in chronic rhinosinusitis and its contribution to produce MUC5AC. Laryngoscope 2016; 126:E347-E355. [PMID: 27296651 DOI: 10.1002/lary.26109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Mucus hypersecretion is a hallmarks of chronic rhinosinusitis. The expression of MUC5AC, a major respiratory mucin gene, is increased in chronic rhinosinusitis. The mechanisms inducing mucus hypersecretion have not been fully evaluated in chronic rhinosinusitis. Human Ca2+ -activated Cl- channel 1 (hCLCA1) is implicated in the regulation of mucus production, airway fluid, and electrolyte transport. The present study objectives was to investigate the expression of hCLCA1 in chronic rhinosinusitis and evaluate whether its level is altered by stimulation with type 1 T helper (Th1) and Th2 cytokines, and to determine the possible role of hCLCA1 on the regulation of mucin 5AC (MUC5AC) production. STUDY DESIGN Controlled prospective study. METHODS The expression of hCLCA1 and MUC5AC in normal and inflammatory ethmoid mucosa was determined by real-time polymerase chain reaction, immunohistochemistry, and Western blot. In cultured cells, the expression of hCLCA1 and MUC5AC was measured after stimulation with Th1 and Th2 cytokines. In a supernatant, the MUC5AC level was analyzed using enzyme-linked immunosorbent assay after treatment with niflumic acid. RESULTS The levels of hCLCA1 and MUC5AC were increased in chronic rhinosinusitis, irrespective of nasal polyp presence, where they were distributed in superficial epithelial cells and submucosal glands. In cultured cells treated with interleukin (IL)-9, IL-4, IL-13, tumor necrosis factor-α, transforming growth factor-β, interferon-γ, and IL-1β, the expression of hCLCA1 and MUC5AC was increased. In cells treated with niflumic acid, the production of MUC5AC was inhibited. CONCLUSIONS The current findings indicate that the expression of hCLCA1 is increased in chronic rhinosinusitis and may be regulated by Th1 and Th2 cytokines, possibly contributing to the production of MUC5AC. LEVEL OF EVIDENCE NA Laryngoscope, 126:E347-E355, 2016.
Collapse
Affiliation(s)
- Ha Kyun Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Ho Kook
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Hallym University, ChunCheon, South Korea
| | - Ka Ram Kang
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Dong Ju Oh
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
15
|
Mertens TCJ, Hiemstra PS, Taube C. Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells. Pulm Pharmacol Ther 2016; 39:14-20. [PMID: 27246785 DOI: 10.1016/j.pupt.2016.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
Abstract
The T helper 2 (Th2) cytokine interleukin(IL)-13 is a central regulator in goblet cell metaplasia and induces the recently described Th2 gene signature consisting of periostin (POSTN), chloride channel regulator 1 (CLCA1) and serpin B2 (SERPINB2) in airway epithelial cells. This Th2 gene signature has been proposed as a biomarker to classify asthma into Th2-high and Th2-low phenotypes. Clinical studies have shown that the macrolide antibiotic azithromycin reduced clinical symptoms in neutrophilic asthma, but not in the classical Th2-mediated asthma despite the ability of azithromycin to reduce IL-13-induced mucus production. We therefore hypothesize that azithromycin differentially affects the IL-13-induced expression profile. To investigate this, we focus on IL-13-induced mucin and Th2-signature expression in human bronchial epithelial cells and how this combined expression profile is affected by azithromycin treatment. Primary bronchial epithelial cells were differentiated at air liquid interface in presence of IL-13 with or without azithromycin. Azithromycin inhibited IL-13-induced MUC5AC, which was accompanied by inhibition of IL-13-induced CLCA1 and SERPINB2 expression. In contrast, IL-13-induced expression of POSTN was further increased in cells treated with azithromycin. This indicates that azithromycin has a differential effect on the IL-13-induced Th2 gene signature. Furthermore, the ability of azithromycin to decrease IL-13-induced MUC5AC expression may be mediated by a reduction in CLCA1.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Neurath MF, Finotto S. IL-9 signaling as key driver of chronic inflammation in mucosal immunity. Cytokine Growth Factor Rev 2016; 29:93-9. [PMID: 26976761 DOI: 10.1016/j.cytogfr.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 12/24/2022]
Abstract
Recent studies have highlighted a crucial regulatory role of the cytokine IL-9 in driving immune responses in chronic inflammatory and autoimmune diseases at mucosal surfaces. IL-9 activates various types of immune and non-immune cells carrying the membrane bound IL-9R. IL-9 signaling plays a pivotal role in controlling the differentiation and activation of these cells by inducing the Jak/STAT pathway. In particular, IL-9 induces activation of T helper cells and affects the function of various tissue resident cells such as mast cells and epithelial cells in the mucosa. Importantly, recent findings suggest that blockade of IL-9 signaling is effective in treating experimental models of autoimmune and chronic inflammatory diseases such as inflammatory bowel diseases, allergic disorders such as food allergy and asthma. Thus, blockade of IL-9 and IL-9R signaling emerges as potentially novel approach for therapy of inflammatory diseases in the mucosal immune system.
Collapse
Affiliation(s)
- Markus F Neurath
- 1st Department of Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| | - Susetta Finotto
- Department of Molecular Pulmonology, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
17
|
Erickson NA, Nyström EEL, Mundhenk L, Arike L, Glauben R, Heimesaat MM, Fischer A, Bereswill S, Birchenough GMH, Gruber AD, Johansson MEV. The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. PLoS One 2015; 10:e0131991. [PMID: 26162072 PMCID: PMC4498832 DOI: 10.1371/journal.pone.0131991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
The secreted, goblet cell-derived protein Clca1 (chloride channel regulator, calcium-activated-1) has been linked to diseases with mucus overproduction, including asthma and cystic fibrosis. In the intestine Clca1 is found in the mucus with an abundance and expression pattern similar to Muc2, the major structural mucus component. We hypothesized that Clca1 is required for the synthesis, structure or barrier function of intestinal mucus and therefore compared wild type and Clca1-deficient mice under naive and at various time points of DSS (dextran sodium sulfate)-challenged conditions. The mucus phenotype in Clca1-deficient compared to wild type mice was systematically characterized by assessment of the mucus protein composition using proteomics, immunofluorescence and expression analysis of selected mucin genes on mRNA level. Mucus barrier integrity was assessed in-vivo by analysis of bacterial penetration into the mucus and translocation into sentinel organs combined analysis of the fecal microbiota and ex-vivo by assessment of mucus penetrability using beads. All of these assays revealed no relevant differences between wild type and Clca1-deficient mice under steady state or DSS-challenged conditions in mouse colon. Clca1 is not required for mucus synthesis, structure and barrier function in the murine colon.
Collapse
Affiliation(s)
- Nancy A. Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | | | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Rainer Glauben
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology—Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Malin E. V. Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
18
|
Hong CH, Chang KL, Wang HJ, Yu HS, Lee CH. IL-9 induces IL-8 production via STIM1 activation and ERK phosphorylation in epidermal keratinocytes: A plausible mechanism of IL-9R in atopic dermatitis. J Dermatol Sci 2015; 78:206-14. [PMID: 25840641 DOI: 10.1016/j.jdermsci.2015.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND IL-9 and its receptor play important roles in the pathogenesis of asthma. Its role in atopic dermatitis (AD) was examined in just a few studies, including nucleotide polymorphisms, increased transcriptional levels of IL-9 and IL-9R in diseased skin, and an association of blood IL-9 levels with clinical severity. OBJECTIVE Little was known about the pathophysiological regulation of IL-9/IL-9R in AD skin. We asked whether IL-9R was expressed in epidermal keratinocytes; if so, what the functional outcome, cytokine production, and signaling pathway of IL-9/IL-9R in keratinocytes are. METHODS We measured and compared the expression of IL-9R in skin from AD patients and controls by immunofluorescence. We also performed in vitro studies on the IL-9-treated primary keratinocytes, including flow cytometry for IL-9R expressions, Western blotting for mTOR, S6K, ERK, p38, and STAT3 activations, ELISA for cytokine levels, and immunofluorescence for STIM1. RESULTS We found that IL-9R was indeed expressed in keratinocytes but not in fibroblasts. Its expression in keratinocytes was enhanced by IL-4 but not by TGF-beta1. IL-9 induced a moderate production of IL-8 but not CXCL16, CCL22, TSLP, nor IL-33. IL-9 induced formation of STIM1-puncta. IL-9 induced ERK phosphorylation both dose- and time-dependently, but not mTOR, S6K, p38, or STAT3. Pretreatment with U0126 (ERK inhibitor) but not rapamycin (mTOR inhibitor) abrogated the IL-9-mediated IL-8 production. Blockage of STIM1 with BTP2 or SKF96265 abrogated ERK phosphorylation and IL-8 production induced by IL-9. CONCLUSION This study represents the first to show the regulation of the IL-9-STIM1-ERK-IL-8 axis in keratinocyte, and how the axis might play an important role in the pathophysiology of AD.
Collapse
Affiliation(s)
- Chien-Hui Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Dermatology, National Yang-Ming University College of Medicine, Taipei, Taiwan
| | - Kee-Lung Chang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan; National Environmental Health Research Center, National Health Research Institute, Miao-Li, Taiwan.
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Dermatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Host proteome correlates of vaccine-mediated enhanced disease in a mouse model of respiratory syncytial virus infection. J Virol 2015; 89:5022-31. [PMID: 25694607 DOI: 10.1128/jvi.03630-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants. Despite over 50 years of research, to date no safe and efficacious RSV vaccine has been licensed. Many experimental vaccination strategies failed to induce balanced T-helper (Th) responses and were associated with adverse effects such as hypersensitivity and immunopathology upon challenge. In this study, we explored the well-established recombinant vaccinia virus (rVV) RSV-F/RSV-G vaccination-challenge mouse model to study phenotypically distinct vaccine-mediated host immune responses at the proteome level. In this model, rVV-G priming and not rVV-F priming results in the induction of Th2 skewed host responses upon RSV challenge. Mass spectrometry-based spectral count comparisons enabled us to identify seven host proteins for which expression in lung tissue is associated with an aberrant Th2 skewed response characterized by the influx of eosinophils and neutrophils. These proteins are involved in processes related to the direct influx of eosinophils (eosinophil peroxidase [Epx]) and to chemotaxis and extravasation processes (Chil3 [chitinase-like-protein 3]) as well as to eosinophil and neutrophil homing signals to the lung (Itgam). In addition, the increased levels of Arg1 and Chil3 proteins point to a functional and regulatory role for alternatively activated macrophages and type 2 innate lymphoid cells in Th2 cytokine-driven RSV vaccine-mediated enhanced disease. IMPORTANCE RSV alone is responsible for 80% of acute bronchiolitis cases in infants worldwide and causes substantial mortality in developing countries. Clinical trials performed with formalin-inactivated RSV vaccine preparations in the 1960s failed to induce protection upon natural RSV infection and even predisposed patients for enhanced disease. Despite the clinical need, to date no safe and efficacious RSV vaccine has been licensed. Since RSV vaccines have a tendency to prime for unbalanced responses associated with an exuberant influx of inflammatory cells and enhanced disease, detailed characterization of primed host responses has become a crucial element in RSV vaccine research. We investigated the lung proteome of mice challenged with RSV upon priming with vaccine preparations known to induce phenotypically distinct host responses. Seven host proteins whose expression levels are associated with vaccine-mediated enhanced disease have been identified. The identified protein biomarkers support the development as well as detailed evaluation of next-generation RSV vaccines.
Collapse
|
20
|
Liu M, Tian HL, Wu JH, Cang RR, Wang RX, Qi XH, Xu Q, Chen XH. Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). HORTICULTURE RESEARCH 2015; 2:15011. [PMID: 26504566 PMCID: PMC4595990 DOI: 10.1038/hortres.2015.11] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 05/03/2023]
Abstract
The tea plant (Camellia sinensis L.) is an important commercial crop with remarkably high catechin concentrations. Tea is popular worldwide given the plant's health benefits. Catechins are the main astringent substance in tea and are synthesized mainly via the phenylpropanoid pathway. In this study, eight cultivars of tea plants harvested both in spring and autumn were used to investigate differences in catechin concentrations by using high-performance liquid chromatography. The expression levels of genes associated with catechin biosynthesis were investigated using reverse transcription-quantitative polymerase chain reaction. The results indicated that the total catechin (TC) concentrations were significantly higher in tea plants harvested in autumn than in those harvested in spring, based on higher concentrations of epigallocatechin (EGC) in autumn tea (P<0.01). The expression of the genes phenylalanine ammonia-lyase (PAL), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) is closely related to the TC content of tea plants in both spring and autumn. Positive correlations between PAL, cinnamate 4-hydroxylase (C4H), F3H, and DFR expression and EGC accumulation in autumn tea were identified, with correlation coefficients of 0.710, 0.763, 0.884, and 0.707, respectively. A negative correlation between ANS expression level and EGC concentrations in tea plants harvested in spring was noted (r=-0.732). Additionally, negative correlations between F3H and ANS expression levels and the catechin content were identified in spring tea, whereas the correlations were positive in autumn tea. Significant differences in the F3H and ANS expression levels between spring and autumn tea indicate that F3H and ANS are potentially key genes affecting catechin accumulation in tea plants.
Collapse
Affiliation(s)
- Min Liu
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
| | - Heng-lu Tian
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
| | - Jian-Hua Wu
- Vocational and Technical College of Agriculture and Forestry (School of Agriculture), 18 Wenchang East Road, Jurong, Jiangsu 212400, P. R. China
| | - Ren-Rong Cang
- Tea Research Institute, Jurong, Jiangsu 212400, P. R. China
| | - Run-Xian Wang
- Tea Research Institute, Jurong, Jiangsu 212400, P. R. China
| | - Xiao-Hua Qi
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
| | - Xue-Hao Chen
- School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, P. R. China
- ()
| |
Collapse
|
21
|
Sherkat R, Yazdani R, Ganjalikhani Hakemi M, Homayouni V, Farahani R, Hosseini M, Rezaei A. Innate lymphoid cells and cytokines of the novel subtypes of helper T cells in asthma. Asia Pac Allergy 2014; 4:212-21. [PMID: 25379481 PMCID: PMC4215431 DOI: 10.5415/apallergy.2014.4.4.212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In this study, the expression of interleukin-9 (IL-9), IL-17, IL-22, and IL-25 genes that might be the potential predisposing factors for asthma as well as count of innate lymphoid cells (ILCs) as another source of inflammatory cytokines have been evaluated. OBJECTIVE The aim of this study was to evaluate the expression of newly identified helper T cells signature cytokines and amount of ILCs. METHODS Blood and sputum samples from 23 patients with moderate to severe asthma and 23 healthy volunteers were collected. The types of allergens to which our patients were sensitive were defined using immunoblotting method. Gene expression of studied cytokines was evaluated using quantitative transcription-polymerase chain reaction and ILCs were counted by the flow cytometry method. RESULTS In this research, the gene expressions of IL-9, IL-17, IL-22, and IL-25 were significantly higher in asthmatics, especially in the severe form of the disease. This increase was even higher in serum samples compared with sputum samples. Counting ILCs revealed their increase in comparison with normal people. CONCLUSION We showed the importance of IL-25, IL-22, IL-17, and IL-9 cytokines in patients with asthma as their expression levels are increased and these increase are correlated with the severity of the disease. We also showed that the increased amount of ILCs in asthmatics could confirm their potential role in the immunopathogenesis of asthma as another source of inflammatory cytokines.
Collapse
Affiliation(s)
- Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Reza Yazdani
- Immunology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Vida Homayouni
- Immunology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rahim Farahani
- Immunology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Hosseini
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Abbas Rezaei
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
22
|
Mutational Consequences of Aberrant Ion Channels in Neurological Disorders. J Membr Biol 2014; 247:1083-127. [DOI: 10.1007/s00232-014-9716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
|
23
|
Abstract
The clinical manifestations of asthma are caused by obstruction of the conducting airways of the lung. Two airway cell types are critical for asthma pathogenesis: epithelial cells and smooth muscle cells. Airway epithelial cells, which are the first line of defense against inhaled pathogens and particles, initiate airway inflammation and produce mucus, an important contributor to airway obstruction. The other main cause of airway obstruction is contraction of airway smooth muscle. Complementary experimental approaches involving cultured cells, animal models, and human clinical studies have provided many insights into diverse mechanisms that contribute to airway epithelial and smooth muscle cell pathology in this complex disease.
Collapse
Affiliation(s)
- David J Erle
- Lung Biology Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Dean Sheppard
- Lung Biology Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
24
|
Nitric oxide enhances Th9 cell differentiation and airway inflammation. Nat Commun 2014; 5:4575. [PMID: 25099390 PMCID: PMC4131005 DOI: 10.1038/ncomms5575] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/03/2014] [Indexed: 11/08/2022] Open
Abstract
Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4+ T cells. NO de-represses the tumor suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2−/− mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared to wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells.
Collapse
|
25
|
Hong G, Wang J, Zhang Y, Hochstetter D, Zhang S, Pan Y, Shi Y, Xu P, Wang Y. Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 78:49-52. [PMID: 24632491 DOI: 10.1016/j.plaphy.2014.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/22/2014] [Indexed: 05/18/2023]
Abstract
Tea (Camellia sinensis L.) is a crop with both commercial and medicinal value with remarkably high polyphenol content in the form of catechins. To understand the molecular regulation of catechin biosynthesis in tea, we treated the tea plants with darkness. We used qRT-PCR to validate the expression of genes involved in catechin biosynthesis. It indicated that dark treatment displayed different effects on the genes participating in tea flavonoid (FL) pathway. The early genes of FL biosynthesis pathway, CHSI, F3H and DFR, remained at steady expression levels when treated by darkness. It is noteworthy that the expression level of LAR increased and the level of ANS decreased under dark conditions. The vanillin assay showed that the dark-treated plants contained lower levels of total catechins than those grown under normal conditions. The HPLC analysis further demonstrated the changes in biosynthesis of catechins under these conditions. In accordance with the gene expression pattern, the content of epicatechins (ECs) declined and that of catechins (Cs) was elevated in response to the darkness. Our study uncovered the molecular mechanisms and biochemical changes of shading in tea cultivation.
Collapse
Affiliation(s)
- Gaojie Hong
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jie Wang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong Zhang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Danielle Hochstetter
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shuping Zhang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yue Pan
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yunlong Shi
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Chinese Ministry of Agriculture, Hangzhou 310029, China.
| |
Collapse
|
26
|
Song L, Liu D, Wu C, Wu S, Yang J, Ren F, Li Y. Antibody to mCLCA3 suppresses symptoms in a mouse model of asthma. PLoS One 2013; 8:e82367. [PMID: 24349268 PMCID: PMC3857274 DOI: 10.1371/journal.pone.0082367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background Asthma is a complex and heterogeneous chronic inflammatory disorder that is associated with mucous cell metaplasia and mucus hypersecretion. Functional genomic analysis indicates that mucous cell metaplasia and mucus hypersecretion depend on members of the calcium-activated chloride channel (CLCA) gene family. It has been reported that the inhibition of CLCAs could relieve the symptoms of asthma. Thus, the mCLCA3 antibody may be a promising strategy to treat allergic diseases such as asthma. Methods We constructed asthmatic mouse models of OVA-induced chronic airway inflammatory disorder to study the function of the mCLCA3 antibody. Airway inflammation was measured by HE staining; goblet cell hyperplasia and mucus hypersecretion were detected by PAS staining; muc5ac, IL-13, IFN-γ levels in bronchoalveolar lavage fluid (BALF) were examined by ELISA; Goblet cell apoptosis was measured by TUNEL assay and alcian blue staining; mCLCA3, Bcl-2 and Bax expression were detected by RT-PCR, Western blotting and immunohistochemical analysis. Results In our study, mice treated with mCLCA3 antibody developed fewer pathological changes compared with control mice and asthmatic mice, including a remarkable reduction in airway inflammation, the number of goblet cells and mCLCA3 expression in lung tissue. The levels of muc5ac and IL-13 were significantly reduced in BALF. We also found that the rate of goblet cell apoptosis was increased after treatment with mCLCA3 antibody, which was accompanied by an increase in Bax levels and a decrease in Bcl-2 expression in goblet cells. Conclusions Taken together, our results indicate that mCLCA3 antibody may have the potential as an effective pharmacotherapy for asthma.
Collapse
Affiliation(s)
- Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dapeng Liu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changgui Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shouzhen Wu
- Department of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Junlan Yang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fangping Ren
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Cardiovascular Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
|
28
|
Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells. J Allergy (Cairo) 2012; 2012:903659. [PMID: 22523502 PMCID: PMC3303585 DOI: 10.1155/2012/903659] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/14/2011] [Accepted: 10/04/2011] [Indexed: 12/12/2022] Open
Abstract
Protease activity is a characteristic common to many allergens. Allergen source-derived proteases interact with lung epithelial cells, which are now thought to play vital roles in both innate and adaptive immune responses. Allergen source-derived proteases act on airway epithelial cells to induce disruption of the tight junctions between epithelial cells, activation of protease-activated receptor-2, and the production of thymic stromal lymphopoietin. These facilitate allergen delivery across epithelial layers and enhance allergenicity or directly activate the immune system through a nonallergic mechanism. Furthermore, they cleave regulatory cell surface molecules involved in allergic reactions. Thus, allergen source-derived proteases are a potentially critical factor in the development of allergic sensitization and appear to be strongly associated with heightened allergenicity.
Collapse
|
29
|
Abstract
Interleukin-9 (IL-9), cloned more than 20 years ago, was initially thought to be a Th2-specific cytokine. This assumption was initially confirmed by functional analyses showing that both IL-9 and Th2 cells play an important role in the pathogenesis of asthma, IgE class switch recombination, and resolution of parasitic infections. However, recently it was shown that IL-9-producing CD4(+) T cells represent the discrete T helper subset Th9 cells. Herein, we will review the cytokines and transcription factors known to promote the development of Th9 cells and their potential functional properties in relation to the biological activities of IL-9. In addition, we will discuss how Th9 cells are related to Th2, Th17, and T(reg) cells, as both an alternative source of IL-9 and in view of the fact that plasticity of CD4(+) T cell differentiation is currently a strong matter of debate in immunologic research.
Collapse
Affiliation(s)
- Michael Stassen
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
30
|
Huang F, Wong X, Jan LY. International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 2011; 64:1-15. [PMID: 22090471 DOI: 10.1124/pr.111.005009] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) are widely expressed in various tissues and implicated in physiological processes such as sensory transduction, epithelial secretion, and smooth muscle contraction. Transmembrane proteins with unknown function 16 (TMEM16A) has recently been identified as a major component of CaCCs. Detailed molecular analysis of TMEM16A will be needed to understand its structure-function relationships. The role this channel plays in physiological systems remains to be established and is currently a subject of intense investigation.
Collapse
Affiliation(s)
- Fen Huang
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, Mission Bay Campus, San Francisco, CA 94158-2811, USA
| | | | | |
Collapse
|
31
|
Lu M, Dawicki W, Zhang X, Huang H, Nayyar A, Gordon JR. Therapeutic induction of tolerance by IL-10-differentiated dendritic cells in a mouse model of house dust mite-asthma. Allergy 2011; 66:612-20. [PMID: 21241316 DOI: 10.1111/j.1398-9995.2010.02526.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND It has been reported that retrovirally transduced IL-10-expressing dendritic cells can reverse the asthma phenotype in mice, but that i.v. delivery of dendritic cells differentiated with IL-10 alone (DC10) does not. We report herein DC10 can be highly effective therapeutically in experimental asthma. METHODS BALB/c mice were sensitized by airway exposure to house dust mite (HDM) without use of adjuvants, then treated with 10⁶ allergen-presenting DC10. We assessed the airway hyperresponsiveness (AHR) to methacholine, circulating levels of IgE and IgG1, and airway recall responses to HDM allergen, including eosinophilia and Th2 cytokines. We also asked whether the DC10 treatments induced tolerance through activation of pulmonary regulatory T cell activities. RESULTS In vitro, cognate-, but not irrelevant-, allergen-presenting DC10 productively engaged pulmonary Th2-phenotype CD4(+) cells magnetically sorted from HDM-asthmatic mice in Forster (or fluorescence) resonance energy transfer assays. In vivo, treatment of HDM-asthmatic mice with HDM, but not ovalbumin-presenting DC10 abrogated AHR within 4 weeks, and significantly reduced airway eosinophilia, IL-4, IL-5, and IL-13 responses, and circulating HDM-specific IgE and IgG1 levels (each, P ≤ 0.01 versus control mice). CD4(+) CD25(+) Foxp3(+) cells from the lungs of the DC10-treated mice, but not those from asthmatic animals, up-regulated expression of the activated regulatory T cell markers CTLA4 and LAG3, and passive transfer of pulmonary CD4(+) T cells from these mice induced allergen tolerance in HDM-asthmatic recipients. CONCLUSIONS These findings indicate that allergen-presenting DC10 treatments up-regulate T cell regulatory activities and thereby induce allergen-specific tolerance in a relevant model of human asthma.
Collapse
Affiliation(s)
- M Lu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
32
|
Parker JM, Oh CK, LaForce C, Miller SD, Pearlman DS, Le C, Robbie GJ, White WI, White B, Molfino NA. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med 2011; 11:14. [PMID: 21356110 PMCID: PMC3058114 DOI: 10.1186/1471-2466-11-14] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 02/28/2011] [Indexed: 01/08/2023] Open
Abstract
Background Interleukin-9 (IL-9)-targeted therapies may offer a novel approach for treating asthmatics. Two randomized placebo-controlled studies were conducted to assess the safety profile and potential efficacy of multiple subcutaneous doses of MEDI-528, a humanized anti-IL-9 monoclonal antibody, in asthmatics. Methods Study 1: adults (18-65 years) with mild asthma received MEDI-528 (0.3, 1, 3 mg/kg) or placebo subcutaneously twice weekly for 4 weeks. Study 2: adults (18-50 years) with stable, mild to moderate asthma and exercise-induced bronchoconstriction received 50 mg MEDI-528 or placebo subcutaneously twice weekly for 4 weeks. Adverse events (AEs), pharmacokinetics (PK), immunogenicity, asthma control (including asthma exacerbations), and exercise challenge test were evaluated in study 1, study 2, or both. Results In study 1 (N = 36), MEDI-528 showed linear serum PK; no anti-MEDI-528 antibodies were detected. Asthma control: 1/27 MEDI-528-treated subjects had 1 asthma exacerbation, and 2/9 placebo-treated subjects had a total of 4 asthma exacerbations (one considered a serious AE). In study 2, MEDI-528 (n = 7) elicited a trend in the reduction in mean maximum decrease in FEV1 post-exercise compared to placebo (n = 2) (-6.49% MEDI-528 vs -12.60% placebo; -1.40% vs -20.10%; -5.04% vs -15.20% at study days 28, 56, and 150, respectively). Study 2 was halted prematurely due to a serious AE in an asymptomatic MEDI-528-treated subject who had an abnormal brain magnetic resonance imaging that was found to be an artifact on further evaluation. Conclusions In these studies, MEDI-528 showed an acceptable safety profile and findings suggestive of clinical activity that support continued study in subjects with mild to moderate asthma. Trial registration ClinicalTrials (NCT): NCT00507130 and ClinicalTrials (NCT): NCT00590720
Collapse
|
33
|
Lai H, Rogers DF. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways. J Aerosol Med Pulm Drug Deliv 2010; 23:219-31. [PMID: 20695774 DOI: 10.1089/jamp.2009.0802] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Airway mucus hypersecretion is a pathophysiological feature of asthma and chronic obstructive pulmonary disease (COPD). The hypersecretion is associated with phenotypic changes in the airways, notably, increases in the number of surface epithelial goblet cells (hyperplasia) and in the size of the submucosal glands (hypertrophy). The hyperplasia and hypertrophy are associated with increased production of mucin, the gel-forming component of mucus. The excess mucus production contributes to morbidity and mortality in many patients, particularly in those with more severe disease. Although current pharmacotherapy is effective in clinical management of patients with stable asthma, severe asthma is poorly treated and there is no current drug treatment for COPD. In neither disease is there specific, effective pharmacotherapy for the hypersecretion. Consequently, identification of potential drug targets for treatment of hypersecretion in asthma and COPD is warranted. The inflammatory mediators and the associated intracellular signaling pathways underlying upregulation of mucin synthesis and development of goblet cell hyperplasia are gradually being elucidated. These include Th2 cytokines (predominantly IL-9 and IL-13), and IL-1 beta, tumor necrosis factor-alpha (TNF-alpha) and cyclooxygenase (COX)-2. IL-9 may act predominantly via calcium-activated chloride channels (CLCA), IL-13 via STAT-6 and FOXA2, TNF-alpha via NF-kappaB, and IL-1 beta via COX-2. Epidermal growth factor receptor (EGF-R) signaling and FOXA2 appear to be convergent intracellular pathways for a number of inflammatory mediators, with EGF-R upregulated in the airways of asthmatic and COPD patients. Thus, preclinical studies have clearly identified a number of intracellular signaling pathways as possible targets for pharmacotherapy of airway mucus hypersecretion in asthma and COPD. Of these, the EGF-R and Th2 cytokine pathways may have the greatest potential for inhibition of excessive mucus production. However, because these targets are so often intimately involved with different aspects of airway (and systemic) homeostasis, there is potential for development of unwanted side effects with drug intervention. Thus, translation of the promising preclinical studies to the clinic will depend on development of drug moieties with low off-target activity. This may be accomplished by maximizing airway selectivity, which may be facilitated by appropriate delivery device design.
Collapse
Affiliation(s)
- HonYee Lai
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
34
|
Cho HJ, Choi JY, Yang YM, Hong JH, Kim CH, Gee HY, Lee HJ, Shin DM, Yoon JH. House dust mite extract activates apical Cl(-) channels through protease-activated receptor 2 in human airway epithelia. J Cell Biochem 2010; 109:1254-63. [PMID: 20186875 DOI: 10.1002/jcb.22511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adequate fluid secretion from airway mucosa is essential for maintaining mucociliary clearance, and fluid hypersecretion is a prominent feature of inflammatory airway diseases such as allergic rhinitis. House dust mite extract (HDM) has been reported to activate protease-activated receptors (PARs), which play various roles in airway epithelia. However, the role of HDM in regulating ion transporters and fluid secretion has not been investigated. We examined the effect of HDM on ion transport in human primary nasal epithelial cells. The Ca(2+)-sensitive dye Fura2-AM was used to determine intracellular Ca(2+) concentration ([Ca(2+)](i)) by means of spectrofluorometry in human normal nasal epithelial cells (NHNE). Short-circuit current (Isc) was measured using Ussing chambers. Fluid secretion from porcine airway mucosa was observed by optical measurement. HDM extract (10 microg/Ml) effectively cleaved the PAR-2 peptide and induced an increase of [Ca(2+)](i) that was abolished by desensitization with trypsin, but not with thrombin. Apical application of HDM-induced Isc sensitive to both a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor and a Ca(2+)-activated Cl(-) channel (CaCC) inhibitor. HDM extract also stimulated fluid secretion from porcine airway mucosa. HDM extract activated PAR-2 and apical Cl(-) secretion via CaCC and CFTR, and HDM-induced fluid secretion in porcine airway mucosa. Our results suggest a role for PAR-2 in mucociliary clearance and fluid hypersecretion of airway mucosa in response to air-borne allergens such as HDM.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Department of Otorhinolaryngology, Hallym University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mucus hypersecretion in asthma: intracellular signalling pathways as targets for pharmacotherapy. Curr Opin Allergy Clin Immunol 2010; 10:67-76. [PMID: 19907312 DOI: 10.1097/aci.0b013e328334643a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Airway mucus hypersecretion is a pathophysiological feature of asthma and, in many patients, contributes to morbidity and mortality. Although current pharmacotherapy is effective in patients with stable disease, severe asthma is poorly treated, and there is no specific treatment for the hypersecretion. Consequently, identification of potential targets for pharmacotherapy of hypersecretion in asthma is warranted. This review identifies intracellular signalling pathways as rational targets for treatment of excessive airway mucus production. RECENT FINDINGS The inflammatory mediators and the associated intracellular signalling pathways underlying development of goblet cell hyperplasia, an index of mucus hypersecretion, are becoming ever clearer, and include T-helper type 2 (Th2) cytokines, in particular interleukin (IL)-9 and IL-13, as well as IL-1beta, tumour necrosis factor (TNF)-alpha and cyclooxygenase (COX)-2. IL-9 may act predominantly via calcium-activated chloride channels (CLCAs), IL-13 via STAT-6 and FOXA2, TNF-alpha via nuclear factor (NF)-kappaB, and IL-1beta via COX-2. Epidermal growth factor receptor (EGF-R) and FOXA2 appear to be convergent pathways for a number of mediator signals, with EGF-R up-regulated in the airways of asthmatic patients. SUMMARY Although many potential intracellular signalling pathways have been identified as possible targets for pharmacotherapy of airway mucus hypersecretion in asthma, the EGF-R and Th2 cytokine pathways offer the greatest potential for inhibition of excessive mucus production.
Collapse
|
36
|
Gerber V, De Feijter-Rupp H, Wagner J, Venta P, Harkema JR, Robinson NE. Differential association of MUC5AC and CLCA1 expression in small cartilaginous airways of RAO-affected and control horses. Equine Vet J 2010; 41:817-23. [PMID: 20095232 DOI: 10.2746/042516409x443305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Airway mucus accumulation is associated with indoor irritant and allergen exposure in horses with recurrent airway obstruction (RAO). Epidermal growth factor receptor (EGFR) and a chloride channel (calcium activated, family member 1; CLCA1) are key signalling molecules involved in mucin gene expression. OBJECTIVES We hypothesised that exposure to irritants and aeroallergens would lead to increased expression of the mucin gene eqMUC5AC and increased stored mucosubstance in the airways of RAO-affected horses, associated with increased neutrophils and CLCA1 and EGFR mRNA levels. METHODS We performed quantitative RT-PCR of eqMUC5AC, CLCA1 and EGFR; volume density measurements of intraepithelial mucosubstances; and cytological differentiation of intraluminal inflammatory cells in small cartilaginous airways from cranial left and right and caudal left and right lung lobes of 5 clinically healthy and 5 RAO-affected horses that had been exposed to indoor stable environment for 5 days before euthanasia. RESULTS Neutrophils were increased in RAO-affected horses compared to clinically healthy controls. EqMUC5AC mRNA levels were positively correlated with both CLCA1 and EGFR mRNA levels in RAO-affected horses but only with CLCA1 in controls. The relationship between eqMUC5AC and CLCA1 differed in the 2 groups of horses with RAO-affected animals overexpressing CLCA1 in relation to eqMUC5AC. CONCLUSIONS These data implicate CLCA1 as a signalling molecule in the expression of eqMUC5AC in horses but also suggest differential regulation by CLCA1 and EGFR between horses with RAO and those with milder degrees of airway inflammation.
Collapse
Affiliation(s)
- V Gerber
- Equine Clinic, Department of Veterinary Clinical Sciences, Vetsuisse-Faculty, University of Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Braun J, Bothe MK, Mundhenk L, Beck CL, Gruber AD. Murine mCLCA5 is expressed in granular layer keratinocytes of stratified epithelia. Histochem Cell Biol 2009; 133:285-99. [PMID: 20012443 DOI: 10.1007/s00418-009-0667-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 11/24/2022]
Abstract
CLCA proteins represent a large family of proteins widely expressed in mammalian tissues with a unique expression pattern for each family member analyzed so far. However, their functions in normal and diseased tissues are poorly understood. Here, we present the cellular expression pattern of mCLCA5 in murine tissues using immunohistochemistry, confocal laser scanning microscopy and immune electron microscopy with specific antibodies and RT-qPCR following laser-capture microdissection. The mCLCA5 protein was localized to granular layer keratinocytes of virtually all stratified squamous epithelia of the body. Biochemical protein characterizations revealed that the amino-terminal cleavage product is fully secreted by the cell, while the carboxy-terminal cleavage product remains associated with the cell. The results imply that mCLCA5 may play a role in maturation and keratinization of squamous epithelial cells.
Collapse
Affiliation(s)
- Josephine Braun
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag Strasse 15, 14163, Berlin, Germany
| | | | | | | | | |
Collapse
|
38
|
Patel AC, Brett TJ, Holtzman MJ. The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 2009; 71:425-49. [PMID: 18954282 DOI: 10.1146/annurev.physiol.010908.163253] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. On the basis of this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions.
Collapse
Affiliation(s)
- Anand C Patel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
39
|
Pinelli V, Marchica CL, Ludwig MS. Allergen-induced asthma in C57Bl/6 mice: hyper-responsiveness, inflammation and remodelling. Respir Physiol Neurobiol 2009; 169:36-43. [PMID: 19686870 DOI: 10.1016/j.resp.2009.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/17/2009] [Accepted: 08/10/2009] [Indexed: 12/22/2022]
Abstract
The relationship among airway responsiveness, inflammation and remodelling in asthma is incompletely understood. To investigate potential mechanistic associations, allergen-induced asthma was studied in C57Bl/6 mice. Mice were sensitized and challenged with ovalbumin (OVA) using sub-acute (SA) or chronic (C) protocols. Responsiveness was assessed by measuring respiratory impedence which was partitioned into airway resistance (Raw) and distal lung components (Gti, Hti) during methacholine-induced constriction. Inflammation, airway mucus, airway smooth muscle, collagen, biglycan and decorin were quantified. The airways were sub-divided into central or peripheral. In SA and C OVA, Raw, Gti and Hti responsiveness were significantly increased; the peripheral response was significantly greater in SA vs C OVA. Airway inflammation and mucus were increased in both groups, but more significantly in peripheral airways in SA OVA. In the SA OVA model, inflammation and mucus appear to drive the mechanical response, especially in the lung periphery; airway remodelling seems to contribute to hyper-responsiveness to an equivalent degree, after both challenge protocols.
Collapse
Affiliation(s)
- Valentina Pinelli
- Meakins Christie Laboratories, McGill University Hospital Centre, 3626 St. Urbain St., Montreal, PQ, Canada H2X 2P2
| | | | | |
Collapse
|
40
|
Camateros P, Kanagaratham C, Henri J, Sladek R, Hudson TJ, Radzioch D. Modulation of the allergic asthma transcriptome following resiquimod treatment. Physiol Genomics 2009; 38:303-18. [PMID: 19491150 DOI: 10.1152/physiolgenomics.00057.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Resiquimod is a compound belonging to the imidazoquinoline family of compounds known to signal through Toll-like receptor 7. Resiquimod treatment has been demonstrated to inhibit the development of allergen induced asthma in experimental models. The aim of the present study was to elucidate the molecular processes that were altered following resiquimod treatment and allergen challenge in a mouse model of allergic asthma. Employing microarray analysis, we have characterized the "asthmatic" transcriptome of the lungs of A/J and C57BL/6 mice and determined that it includes genes involved in the control of cell cycle progression, the complement and coagulation cascades, and chemokine signaling. Our results demonstrated that resiquimod treatment resulted in the normalization of the expression of genes involved with airway remodeling, and generally, chemokine signaling. Resiquimod treatment also altered the expression of cell adhesion molecules, and molecules involved in natural killer (NK) cell-mediated cytotoxicity. Furthermore, we have demonstrated that systemic resiquimod administration resulted in the recruitment of NK cells to the lungs and livers of the mice, although no causal relationship between NK cell recruitment and treatment efficacy was found. Overall, our findings identified several genes, important in the development of asthma pathology, that were normalized following resiquimod treatment, thus improving our understanding of the molecular consequences of resiquimod treatment in the lung milieu. The recruitment of NK cells to the lungs may also have application in the treatment of virally induced asthma exacerbations.
Collapse
Affiliation(s)
- Pierre Camateros
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec
| | | | | | | | | | | |
Collapse
|
41
|
Dragon S, Takhar MK, Shan L, Hayglass KT, Simons FE, Gounni AS. T(H)2 cytokines modulate the IL-9R expression on human neutrophils. Biochem Biophys Res Commun 2009; 384:167-72. [PMID: 19401191 DOI: 10.1016/j.bbrc.2009.04.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/19/2009] [Indexed: 10/20/2022]
Abstract
Interleukin (IL)-9 is associated with key pathological features of asthma such as airway hyperresponsiveness, bronchoconstriction and mucus production. Inflammatory responses mediated by IL-9 rely on the expression of the IL-9R which has been reported on lung epithelial cells, T lymphocytes and recently on airway granulocyte infiltrates. In this study, we assessed the regulatory and constitutive cell surface expression of the IL-9Ralpha in unfractionated and purified human neutrophils from atopic asthmatics, atopic non-asthmatics and healthy normal controls. We demonstrate that T(H)2 cytokines (IL-4 or IL-13) and granulocyte macrophage-colony stimulating factor (GM-CSF) up-regulated mRNA and cell surface expression levels of the IL-9Ralpha in primary human and HL-60 differentiated neutrophils. Pharmacological inhibition of NF-kappaB did not affect T(H)2-mediated IL-9Ralpha expression in human neutrophils although IFN-gamma and IL-10 down-regulated IL-9Ralpha expression when co-incubated with IL-4, IL-13 or GM-CSF. Collectively, our results reveal a regulatory function for IFN-gamma and IL-10 on modulating the inducible IL-9Ralpha expression levels on peripheral blood neutrophils by T(H)2 cytokines.
Collapse
Affiliation(s)
- Stéphane Dragon
- Department of Immunology and the CIHR National Training Program in Allergy and Asthma, University of Manitoba, Winnipeg, Mannitoba, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Hamann M, Gibson A, Davies N, Jowett A, Walhin JP, Partington L, Affleck K, Trezise D, Main M. Human ClCa1 modulates anionic conduction of calcium-dependent chloride currents. J Physiol 2009; 587:2255-74. [PMID: 19307298 PMCID: PMC2691903 DOI: 10.1113/jphysiol.2009.170159] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Proteins of the CLCA gene family including the human ClCa1 (hClCa1) have been suggested to constitute a new family of chloride channels mediating Ca(2+)-dependent Cl- currents. The present study examines the relationship between the hClCa1 protein and Ca(2+)-dependent Cl- currents using heterologous expression of hClCa1 in HEK293 and NCIH522 cell lines and whole cell recordings. By contrast to previous reports claiming the absence of Cl- currents in HEK293 cells, we find that HEK293 and NCIH522 cell lines express constitutive Ca(2+)-dependent Cl- currents and show that hClCa1 increases the amplitude of Ca(2+)-dependent Cl- currents in those cells. We further show that hClCa1 does not modify the permeability sequence but increases the Cl- conductance while decreasing the G(SCN-)/G(Cl-) conductance ratio from approximately 2-3 to approximately 1. We use an Eyring rate theory (two barriers, one site channel) model and show that the effect of hClCa1 on the anionic channel can be simulated by its action on lowering the first and the second energy barriers. We conclude that hClCa1 does not form Ca(2+)-dependent Cl- channels per se or enhance the trafficking/insertion of constitutive channels in the HEK293 and NCIH522 expression systems. Rather, hClCa1 elevates the single channel conductance of endogenous Ca(2+)-dependent Cl- channels by lowering the energy barriers for ion translocation through the pore.
Collapse
Affiliation(s)
- Martine Hamann
- Leicester University, Department of Cell Physiology and Pharmacology, Medical Sciences Building, PO Box 138, University Road, Leicester LE1 9HN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight seminal and current literature that informs our understanding of the clinical and investigative utility of biomarkers in asthma. Biomarkers derive from a variety of sources [bronchiolar lavage (BAL), sputum, exhaled breath, and blood], and have widely variant performance characteristics, and applicability. RECENT FINDINGS Increasing attention is given to biomarkers in exhaled breath, both gaseous (exhaled nitric oxide) and higher molecular weight moieties [in exhaled breath condensate (EBC)]. Current research in EBC analysis has focused on validation, standardization, and technical considerations, whereas research on exhaled nitric oxide (ENO) has moved to testing its predictive value in clinical situations. The use of advanced biostatistical techniques, and combinatorial analyses has led to additional advances in the utility of biomarkers. SUMMARY To date, the best validated, and best performing biomarkers for clinical asthma appear to be measures of inflammation in induced sputum, and measures of ENO. Some trials using ENO appear particularly promising for early clinical use. EBC metrics are at present too inchoate for clinical purposes. However, not all important clinical and research questions can be addressed with sputum, EBC, or ENO metrics, leaving an important place for BAL, bronchial biopsy, and perhaps EBC measurements in the research arena.
Collapse
|
44
|
Chen L, Wang T, Zhang JY, Zhang SF, Liu DS, Xu D, Wang X, Chen YJ, Wen FQ. Toll-like Receptor 4 Relates to Lipopolysaccharide-induced Mucus Hypersecretion in Rat Airway. Arch Med Res 2009; 40:10-7. [DOI: 10.1016/j.arcmed.2008.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/22/2008] [Indexed: 11/27/2022]
|
45
|
Athanasiadou S, Pemberton A, Jackson F, Inglis N, Miller HRP, Thévenod F, Mackellar A, Huntley JF. Proteomic approach to identify candidate effector molecules during the in vitro immune exclusion of infective Teladorsagia circumcincta in the abomasum of sheep. Vet Res 2008; 39:58. [PMID: 18715541 DOI: 10.1051/vetres:2008035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 08/13/2008] [Indexed: 11/14/2022] Open
Abstract
In the present study we have employed an in vitro organ challenge model to study the post-challenge responses in parasite naïve and immune gastric tissue of sheep, in an attempt to identify the host derived factors involved in immune exclusion of Teladorsagia circumcincta larvae. Proteins present in the epithelial cells and mucus from ovine abomasa following parasite challenge in previously naïve and immune animals were analysed through Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-Tof)-MS and shotgun proteomics. MALDI-ToF analysis of epithelial cell lysates revealed that a number of proteins identified were differentially expressed in naïve and immune cells. These included intelectin and lysozymes, which were present at higher levels in epithelial cell lysates derived from immune samples. A large number of proteins were identified in the mucosal wash from immune tissue which were not present in the mucosal wash of the naïve tissue. Some of these proteins were present in washes of immune tissue prior to the parasite challenge including immunoglobulin A, galectin 14 and 15 and sheep mast cell protease 1. However, other proteins, such as calcium activated chloride channel and intelectin were only detected in the washings from the challenged tissue. The latter may be related to an enhanced mucus release, which may result in entrapment of infective larvae and thus reduced establishment in tissue that has been previously challenged with the parasite. In conclusion, several proteins have been identified which may be involved, either directly or indirectly, in the exclusion and immune elimination of incoming infective larvae. In the present study, the usefulness of the in vitro model has been confirmed, and the global proteomic approach has identified proteins that had not previously been associated with parasite exclusion from abomasal mucosa, such as the calcium activated chloride channel.
Collapse
Affiliation(s)
- Spiridoula Athanasiadou
- Animal Nutrition and Health, Scottish Agricultural College, Bush Estate, Penicuik, EH26 0PH, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ryhner T, Müller N, Balmer V, Gerber V. Increased mucus accumulation in horses chronically affected with recurrent airway obstruction is not associated with up-regulation of CLCA1, EGFR, MUC5AC, Bcl-2, IL-13 and INF-gamma expression. Vet Immunol Immunopathol 2008; 125:8-17. [PMID: 18597857 DOI: 10.1016/j.vetimm.2008.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 04/03/2008] [Accepted: 05/19/2008] [Indexed: 11/19/2022]
Abstract
The mechanisms leading to mucus accumulation in equine inflammatory airway disease (IAD) and recurrent airway obstruction (RAO) are unclear. In airways of human patients with asthma and/or chronic obstructive pulmonary disease as well as in animal models of these diseases, associations of mucus hyperproduction with increased calcium-activated chloride channel 1 (CLCA1), epidermal growth factor receptor (EGFR), mucin 5AC (MUC5AC), B-cell lymphoma 2 (Bcl-2), interleukin (IL)-13 and interferon (IFN)-gamma expression have been reported. We hypothesized that increased mucus accumulation in RAO and IAD are associated with alterations in inflammatory cytokine (IL-13 and IFN-gamma) and epithelial gene (CLCA1, EGFR, Bcl-2 and MUC5AC) profiles. Therefore, mRNA expression of these genes in cell pellets extracted from bronchoalveolar lavage fluid (BALF) and bronchial epithelial brushing (BEB) was compared between 11 clinically healthy (Control group), 7 IAD- and 12 RAO-affected horses by reverse transcription polymerase chain reaction. We also performed arterial blood gas analysis, endoscopic scoring of mucus accumulation in the trachea and cytology of tracheo-bronchial secretions (TBS) and of BALF. Tracheal mucus accumulation, along with TBS and BALF neutrophils were significantly increased and arterial pO(2) was decreased in RAO-affected horses compared to the Control group. IL-13 in BALF samples was significantly lower in the RAO group. None of the other genes' relative mRNA levels displayed significant differences between groups. Our findings suggest that mucus production in equine RAO is induced by pathways independent of IL-13, CLCA1, EGFR, MUC5AC and Bcl-2 up-regulation.
Collapse
Affiliation(s)
- Thea Ryhner
- Department of Veterinary Clinical Studies, Vetsuisse-Faculty University of Berne, Länggassstrasse 124, CH-3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
47
|
Range F, Mundhenk L, Gruber AD. A soluble secreted glycoprotein (eCLCA1) is overexpressed due to goblet cell hyperplasia and metaplasia in horses with recurrent airway obstruction. Vet Pathol 2007; 44:901-11. [PMID: 18039903 DOI: 10.1354/vp.44-6-901] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The equine putative chloride channel protein eCLCA1 is thought to be critically involved in the pathogenesis of recurrent airway obstruction (RAO) via modulation of the hydration of airway mucins. A recent study revealed a strong increase of eCLCA1 messenger ribonucleic acid (mRNA) in the lungs of horses with RAO. In this study, eCLCA1 protein and mRNA expression were quantified in airway goblet cells of 9 horses affected with RAO and 9 control horses by using immunohistochemistry and laser microdissection followed by real-time quantitative reverse transcription polymerase chain reaction, respectively. Horses affected by RAO had strong goblet cell metaplasia in bronchioles and goblet cell hyperplasia in bronchi and the trachea. Expression of the eCLCA1 protein was tightly linked to all airway goblet cells in both groups. No differences were detected in the ratio of eCLCA1 mRNA copy numbers to the mRNA copy numbers of the housekeeping gene EF-1a per goblet cell between horses affected with RAO and unaffected horses, suggesting that the increase in eCLCA1 expression is because of increased numbers of goblet cells and not transcriptional upregulation of the eCLCA1 gene. In addition, biochemical analyses of the eCLCA1 protein after in vitro translation and heterologous expression in cultured cells revealed that eCLCA1 is a secreted glycoprotein and not an integral membrane protein. Taken together, the results suggest that eCLCA1 mediates its effect as a soluble constituent of airway mucins that is overexpressed in RAO airways because of goblet cell hyperplasia and metaplasia, not transcriptional upregulation.
Collapse
Affiliation(s)
- F Range
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, D-14163 Berlin, Germany
| | | | | |
Collapse
|
48
|
Park SG, Choi JW, Kim HJ, Roh GS, Bok J, Go MJ, Kwack K, Oh B, Kim Y. Genome-Wide Profiling of Antigen-Induced Time Course Expression Using Murine Models for Acute and Chronic Asthma. Int Arch Allergy Immunol 2007; 146:44-56. [DOI: 10.1159/000112502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 09/06/2007] [Indexed: 12/29/2022] Open
|
49
|
Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A 2007; 104:15858-63. [PMID: 17898169 PMCID: PMC2000427 DOI: 10.1073/pnas.0707413104] [Citation(s) in RCA: 651] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Airway inflammation and epithelial remodeling are two key features of asthma. IL-13 and other cytokines produced during T helper type 2 cell-driven allergic inflammation contribute to airway epithelial goblet cell metaplasia and may alter epithelial-mesenchymal signaling, leading to increased subepithelial fibrosis or hyperplasia of smooth muscle. The beneficial effects of corticosteroids in asthma could relate to their ability to directly or indirectly decrease epithelial cell activation by inflammatory cells and cytokines. To identify markers of epithelial cell dysfunction and the effects of corticosteroids on epithelial cells in asthma, we studied airway epithelial cells collected from asthmatic subjects enrolled in a randomized controlled trial of inhaled corticosteroids, from healthy subjects and from smokers (disease control). By using gene expression microarrays, we found that chloride channel, calcium-activated, family member 1 (CLCA1), periostin, and serine peptidase inhibitor, clade B (ovalbumin), member 2 (serpinB2) were up-regulated in asthma but not in smokers. Corticosteroid treatment down-regulated expression of these three genes and markedly up-regulated expression of FK506-binding protein 51 (FKBP51). Whereas high baseline expression of CLCA1, periostin, and serpinB2 was associated with a good clinical response to corticosteroids, high expression of FKBP51 was associated with a poor response. By using airway epithelial cells in culture, we found that IL-13 increased expression of CLCA1, periostin, and serpinB2, an effect that was suppressed by corticosteroids. Corticosteroids also induced expression of FKBP51. Taken together, our findings show that airway epithelial cells in asthma have a distinct activation profile and identify direct and cell-autonomous effects of corticosteroid treatment on airway epithelial cells that relate to treatment responses and can now be the focus of specific mechanistic studies.
Collapse
Affiliation(s)
- Prescott G. Woodruff
- *Division of Pulmonary and Critical Care Medicine and
- Cardiovascular Research Institute, and
| | - Homer A. Boushey
- *Division of Pulmonary and Critical Care Medicine and
- Cardiovascular Research Institute, and
| | | | | | - Yee Hwa Yang
- School of Mathematics and Statistics, University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | - Carlos Pantoja
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | - David J. Erle
- *Division of Pulmonary and Critical Care Medicine and
- **Lung Biology Center, Department of Medicine
- Cardiovascular Research Institute, and
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
- To whom correspondence may be addressed at:
University of California at San Francisco, Box 2280, Genentech Hall S572D, 600 16th Street, San Francisco, CA 94158-2517. E-mail:
| | - John V. Fahy
- *Division of Pulmonary and Critical Care Medicine and
- Cardiovascular Research Institute, and
- To whom correspondence may be addressed at:
University of California at San Francisco, Box 0130, 505 Parnassus Avenue, San Francisco, CA 94143. E-mail:
| |
Collapse
|
50
|
Endo Y, Isono K, Kondo M, Tamaoki J, Nagai A. Interleukin-9 and Interleukin-13 augment UTP-induced Cl ion transport via hCLCA1 expression in a human bronchial epithelial cell line. Clin Exp Allergy 2007; 37:219-24. [PMID: 17250694 DOI: 10.1111/j.1365-2222.2007.02646.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND IL-9 and IL-13 induce airway goblet cell metaplasia, which is associated with expression of a Ca(2+)-activated Cl channel, hCLCA1. OBJECTIVE As UTP stimulates both mucin secretion and Cl ion transport via a Ca(2+)-dependent pathway, the purpose of this study is to determine whether IL-9 and IL-13 affect UTP-induced Cl ion transport in human bronchial epithelial cell line 16HBE cells, and if they do, to elucidate whether such an effect is associated with hCLCA1 expression. METHODS The increases in short-circuit current (I(sc)) in response to UTP were measured in the presence of amiloride by the Ussing chamber method. The morphology of epithelial cells was assessed by light microscopic findings, and hCLCA1 expression was investigated by immunocytochemistry and immunoblotting. RESULTS UTP-induced increases in I(sc) in the cells treated with IL-9 or IL-13 for 48 h were greater than those in non-treated cells, and the potency of IL-13 was greater than that of IL-9. Pre-treatment with Ca(2+)-activated Cl channel inhibitors diisothocyanatostilbene-2, 2-disulphonic acid and niflumic acid completely inhibited the augmenting effects of IL-9 and IL-13 on I(sc). The epithelial layer of the cells treated with IL-9 or IL-13 was thicker than that of non-treated cells. The expression of hCLCA1 protein was induced by IL-13 in a concentration-dependent manner. These effects of IL-13 were more potent than those of IL-9. CONCLUSION IL-9 and IL-13 augmented UTP-induced Cl ion transport, probably via proliferation of the cells with hCLCA1 expression, and IL-13 was more potent than IL-9 in producing such an effect in 16HBE cells.
Collapse
Affiliation(s)
- Y Endo
- First Department of Medicine, Tokyo Woman's Medical University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|