1
|
Jeon H, Perez CR, Kyung T, Birnbaum ME, Han J. Separation of Activated T Cells Using Multidimensional Double Spiral (MDDS) Inertial Microfluidics for High-Efficiency CAR T Cell Manufacturing. Anal Chem 2024; 96:10780-10790. [PMID: 38889002 DOI: 10.1021/acs.analchem.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study introduces a T cell enrichment process, capitalizing on the size differences between activated and unactivated T cells to facilitate the isolation of activated, transducible T cells. By employing multidimensional double spiral (MDDS) inertial sorting, our approach aims to remove unactivated or not fully activated T cells post-activation, consequently enhancing the efficiency of chimeric antigen receptor (CAR) T cell manufacturing. Our findings reveal that incorporating a simple, label-free, and continuous MDDS sorting step yields a purer T cell population, exhibiting significantly enhanced viability and CAR-transducibility (with up to 85% removal of unactivated T cells and approximately 80% recovery of activated T cells); we found approximately 2-fold increase in CAR transduction efficiency for a specific sample, escalating from ∼10% to ∼20%, but this efficiency highly depends on the original T cell sample as MDDS sorting would be more effective for samples possessing a higher proportion of unactivated T cells. This new cell separation process could augment the efficiency, yield, and cost-effectiveness of CAR T cell manufacturing, potentially broadening the accessibility of this transformative therapy and contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SEOULTECH), 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | | | | | - Michael E Birnbaum
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, 1 CREATE Way, No. 04-13/14 Enterprise Wing, 138602, Singapore
- Ragon Institute of Mass General, MIT, and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Jongyoon Han
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, 1 CREATE Way, No. 04-13/14 Enterprise Wing, 138602, Singapore
| |
Collapse
|
2
|
Kuwabara T, Ishikawa F, Ikeda M, Ide T, Kohwi-Shigematsu T, Tanaka Y, Kondo M. SATB1-dependent mitochondrial ROS production controls TCR signaling in CD4 T cells. Life Sci Alliance 2021; 4:4/11/e202101093. [PMID: 34583974 PMCID: PMC8500228 DOI: 10.26508/lsa.202101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
SATB1 regulates mitochondrial function and reactive oxygen species (ROS) production through the expression of mitochondrial transcription factor A. SATB1-mediated ROS production is necessary for TCR stimulation and T-cell function. Special AT-rich sequence binding protein-1 (SATB1) is localized to the nucleus and remodels chromatin structure in T cells. SATB1-deficient CD4 T cells cannot respond to TCR stimulation; however, the cause of this unresponsiveness is to be clarified. Here, we demonstrate that SATB1 is indispensable to proper mitochondrial functioning and necessary for the activation of signal cascades via the TCR in CD4 T cells. Naïve SATB1-deficient CD4 T cells contain fewer mitochondria than WT T cells, as the former do not express mitochondrial transcription factor A (TFAM). Impaired mitochondrial function in SATB1-deficient T cells subverts mitochondrial ROS production and SHP-1 inactivation by constitutive oxidization. Ectopic TFAM expression increases mitochondrial mass and mitochondrial ROS production and rescues defects in the antigen-specific response in the SATB1-deficient T cells. Thus, SATB1 is vital for maintaining mitochondrial mass and function by regulating TFAM expression, which is necessary for TCR signaling.
Collapse
Affiliation(s)
- Taku Kuwabara
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| | - Fumio Ishikawa
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan.,Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Terumi Kohwi-Shigematsu
- Department of Orofacial Science, University of California San Francisco School of Dentistry, San Francisco, CA, USA
| | - Yuriko Tanaka
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| | - Motonari Kondo
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Marrodan M, Farez MF, Balbuena Aguirre ME, Correale J. Obesity and the risk of Multiple Sclerosis. The role of Leptin. Ann Clin Transl Neurol 2020; 8:406-424. [PMID: 33369280 PMCID: PMC7886048 DOI: 10.1002/acn3.51291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To investigate the effects of leptin on different T-cell populations, in order to gain more insight into the link between leptin and obesity. METHODS Three hundred and nine RRMS patients and 322 controls participated in a cross-sectional survey, to confirm whether excess weight/obesity in adolescence or early adulthood increased the risk of MS. Serum leptin levels were determined by ELISA. MBP83-102 , and MOG63-87 peptide-specific T cells lines were expanded from peripheral blood mononuclear cells. Leptin receptor expression was measured by RT-PCR and flow cytometry. Bcl-2, p-STAT3, pERK1/2, and p27kip1 expression were assayed using ELISA, and apoptosis induction was determined by Annexin V detection. Cytokines were assessed by ELISPOT and ELISA, and regulatory T cells (Tregs) by flow cytometry. RESULTS Logistic regression analysis, showed excess weight at age 15, and obesity at 20 years of age increased MS risk (OR = 2.16, P = 0.01 and OR = 3.9, P = 0.01). Leptin levels correlated with BMI in both groups. The addition of Leptin increased autoreactive T-cell proliferation, reduced apoptosis induction, and promoted proinflammatory cytokine secretion. Obese patients produced more proinflammatory cytokines compared to overweight/normal/underweight subjects. Inverse correlation was found between leptin levels and circulating Treg cells (r = -0.97, P < 0.0001). Leptin inhibited Treg proliferation. Effects of leptin on CD4+ CD25- effector T cells were mediated by increased STAT3 and ERK1/2 phosphorylation, and down modulation of the cell cycle inhibitor P27kip1 . In contrast, leptin effects on Tregs resulted from decreased phosphorylation of ERK1/2 and upregulation of p27kip1 . INTERPRETATION Leptin promotes autoreactive T-cell proliferation and proinflammatory cytokine secretion, but inhibits Treg-cell proliferation.
Collapse
|
4
|
van den Heuvel H, Heutinck KM, van der Meer-Prins EMW, Franke-van Dijk MEI, van Miert PPMC, Zhang X, Ten Berge IJM, Claas FHJ. The avidity of cross-reactive virus-specific T cells for their viral and allogeneic epitopes is variable and depends on epitope expression. Hum Immunol 2017; 79:39-50. [PMID: 29100943 DOI: 10.1016/j.humimm.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Virus-specific T cells can recognize allogeneic HLA (allo-HLA) through cross-reactivity of their T-cell receptor (TCR). In a transplantation setting, such allo-HLA cross-reactivity may contribute to harmful immune responses towards the allograft, provided that the cross-reactive T cells get sufficiently activated upon recognition of the allo-HLA. An important determinant of T-cell activation is TCR avidity, which to date, has remained largely unexplored for allo-HLA-cross-reactive virus-specific T cells. For this purpose, cold target inhibition assays were performed using allo-HLA-cross-reactive virus-specific memory CD8+ T-cell clones as responders, and syngeneic cells loaded with viral peptide and allogeneic cells as hot (radioactively-labeled) and cold (non-radioactively-labeled) targets. CD8 dependency of the T-cell responses was assessed using interferon γ (IFNγ) enzyme-linked immunosorbent assay (ELISA) in the presence and absence of CD8-blocking antibodies. At high viral-peptide loading concentrations, T-cell clones consistently demonstrated lower avidity for allogeneic versus viral epitopes, but at suboptimal concentrations the opposite was observed. In line, anti-viral reactivity was CD8 independent at high, but not at suboptimal viral-peptide-loading concentrations. The avidity of allo-HLA-cross-reactive virus-specific memory CD8+ T cells is therefore highly dependent on epitope expression, and as a consequence, can be both higher and lower for allogeneic versus viral targets under different (patho)physiological conditions.
Collapse
Affiliation(s)
- Heleen van den Heuvel
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Kirstin M Heutinck
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands; Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Ellen M W van der Meer-Prins
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marry E I Franke-van Dijk
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Paula P M C van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoqian Zhang
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ineke J M Ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Chen J, Chernatynskaya AV, Li JW, Kimbrell MR, Cassidy RJ, Perry DJ, Muir AB, Atkinson MA, Brusko TM, Mathews CE. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep 2017; 7:10835. [PMID: 28883439 PMCID: PMC5589742 DOI: 10.1038/s41598-017-11056-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/18/2017] [Indexed: 02/05/2023] Open
Abstract
T lymphocytes constitute a major effector cell population in autoimmune type 1 diabetes. Despite essential functions of mitochondria in regulating activation, proliferation, and apoptosis of T cells, little is known regarding T cell metabolism in the progression of human type 1 diabetes. In this study, we report, using two independent cohorts, that T cells from patients with type 1 diabetes exhibited mitochondrial inner-membrane hyperpolarization (MHP). Increased MHP was a general phenotype observed in T cell subsets irrespective of prior antigen exposure, and was not correlated with HbA1C levels, subject age, or duration of diabetes. Elevated T cell MHP was not detected in subjects with type 2 diabetes. T cell MHP was associated with increased activation-induced IFNγ production, and activation-induced IFNγ was linked to mitochondria-specific ROS production. T cells from subjects with type 1 diabetes also exhibited lower intracellular ATP levels. In conclusion, intrinsic mitochondrial dysfunction observed in type 1 diabetes alters mitochondrial ATP and IFNγ production; the latter is correlated with ROS generation. These changes impact T cell bioenergetics and function.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Anna V. Chernatynskaya
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Jian-Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
- Present Address: Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Matthew R. Kimbrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Richard J. Cassidy
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
- Present Address: Department of Radiation Oncology, Emory University, Atlanta, GA USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Andrew B. Muir
- Department of Pediatrics, Emory University, Atlanta, GA USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| |
Collapse
|
6
|
Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms. Immunogenetics 2017; 69:631-641. [PMID: 28718002 PMCID: PMC5537314 DOI: 10.1007/s00251-017-0989-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Transplant recipients can be sensitized against allo-HLA antigens by previous transplantation, blood transfusion, or pregnancy. While there is growing awareness that multiple components of the immune system can act as effectors of the alloresponse, the role of infectious pathogen exposure in triggering sensitization and allograft rejection has remained a matter of much debate. Here, we describe that exposure to pathogens may enhance the immune response to allogeneic HLA antigens via different pathways. The potential role of allo-HLA cross-reactivity of virus-specific memory T cells, activation of innate immunity leading to a more efficient induction of the adaptive alloimmune response by antigen-presenting cells, and bystander activation of existing memory B cell activation will be discussed in this review.
Collapse
|
7
|
Deng L, Pang P, Zheng K, Nie J, Xu H, Wu S, Chen J, Chen X. Forsythoside A Controls Influenza A Virus Infection and Improves the Prognosis by Inhibiting Virus Replication in Mice. Molecules 2016; 21:molecules21050524. [PMID: 27128889 PMCID: PMC6273045 DOI: 10.3390/molecules21050524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The objective of this study was to observe the effects of forsythoside A on controlling influenza A virus (IAV) infection and improving the prognosis of IAV infection. METHODS Forty-eight SPF C57BL/6j mice were randomly divided into the following four groups: Group A: normal control group (normal con); Group B: IAV control group (V con); Group C: IAV+ oseltamivir treatment group (V oseltamivir; 0.78 mg/mL, 0.2 mL/mouse/day); Group D: IAV+ forsythoside A treatment group (V FTA; 2 μg/mL, 0.2 mL/mouse/day). Real-time fluorescence quantitative PCR (RT-qPCR) was used to measure mRNA expression of the TLR7, MyD88, TRAF6, IRAK4 and NF-κB p65 mRNA in TLR7 signaling pathway and the virus replication level in lung. Western blot was used to measure TLR7, MyD88 and NF-κB p65 protein. Flow cytometry was used to detect the proportion of the T cell subsets Th1/Th2 and Th17/Treg. RESULTS The body weight began to decrease after IAV infection, while FTA and oseltamivir could reduce the rate of body weight loss. The pathological damages in the FTA and oseltamivir group were less serious. TLR7, MyD88, TRAF6, IRAK4 and NF-κB p65 mRNA were up-regulated after virus infection (p < 0.01) while down-regulated after oseltamivir and FTA treatment (p < 0.01). The results of TLR7, MyD88 and NF-κB p65 protein consisted with correlative mRNA. Flow cytometry showed the Th1/Th2 differentiated towards Th2, and the Th17/Treg cells differentiated towards Treg after FTA treatment. CONCLUSIONS Our study suggests forsythoside A can control influenza A virus infection and improve the prognosis of IAV infection by inhibiting influenza A virus replication.
Collapse
Affiliation(s)
- Li Deng
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Peng Pang
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Ke Zheng
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiao Nie
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Huachong Xu
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Sizhi Wu
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jia Chen
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Xiaoyin Chen
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Effects of active immunisation with myelin basic protein and myelin-derived altered peptide ligand on pain hypersensitivity and neuroinflammation. J Neuroimmunol 2015; 286:59-70. [PMID: 26298325 DOI: 10.1016/j.jneuroim.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
Neuropathic pain is a debilitating condition in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Specific myelin basic protein (MBP) peptides are encephalitogenic, and myelin-derived altered peptide ligands (APLs) are capable of preventing and ameliorating EAE. We investigated the effects of active immunisation with a weakly encephalitogenic epitope of MBP (MBP87-99) and its mutant APL (Cyclo-87-99[A(91),A(96)]MBP87-99) on pain hypersensitivity and neuroinflammation in Lewis rats. MBP-treated rats exhibited significant mechanical and thermal pain hypersensitivity associated with infiltration of T cells, MHC class II expression and microglia activation in the spinal cord, without developing clinical signs of paralysis. Co-immunisation with APL significantly decreased pain hypersensitivity and neuroinflammation emphasising the important role of neuroimmune crosstalk in neuropathic pain.
Collapse
|
9
|
Barrera-Vargas A, Gómez-Martín D, Alcocer-Varela J. T cell receptor-associated protein tyrosine kinases: the dynamics of tolerance regulation by phosphorylation and its role in systemic lupus erythematosus. Hum Immunol 2014; 75:945-52. [PMID: 25173412 DOI: 10.1016/j.humimm.2014.08.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/10/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
Abstract
There are different abnormalities that lead to the autoreactive phenotype in T cells from systemic lupus erythematosus (SLE) patients. Proximal signaling, involving the T-cell receptor (TCR) and its associated protein tyrosine kinases (PTKs), is significantly affected in SLE. This ultimately leads to aberrant responses, which include enhanced tyrosine phosphorylation and calcium release, as well as decreased IL-2 secretion. Lck, ZAP70 and Syk, which are PTKs with a major role in proximal signaling, all present abnormal functioning that contributes to an altered T cell response in these patients. A number of other molecules, especially regulatory proteins, are also involved. This review will focus on the PTKs that participate in proximal signaling, with specific emphasis on their relevance in maintaining peripheral tolerance, their abnormalities in SLE and how these contribute to an altered T cell response.
Collapse
Affiliation(s)
- Ana Barrera-Vargas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Jorge Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| |
Collapse
|
10
|
Maciolek JA, Pasternak JA, Wilson HL. Metabolism of activated T lymphocytes. Curr Opin Immunol 2014; 27:60-74. [PMID: 24556090 DOI: 10.1016/j.coi.2014.01.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 01/04/2023]
Abstract
Activated T cells undergo metabolic reprogramming which promotes glycolytic flux and lactate production as well as elevated production of lipids, proteins, nucleic acids and other carbohydrates (i.e. induction of biomass) even in the presence of oxygen. Activated T cells show induced expression of, among other things, Glucose Transporter 1 and several glycolytic enzymes, including ADP-Dependent Glucokinase and the low affinity isoform Pyruvate Kinase-M2 (which promote glycolytic flux), as well Glutamine Transporters and Glycerol-3-phosphate Dehydrogenase 2 which make available glutamate and glycerol-3-phosphate as mitochondrial energy sources. Intracellular leucine concentrations critically regulate mammalian target of rapamycin (mTOR) signaling to promote Th1, Th2, and Th17 CD4(+) T effector cell differentiation. In contrast, T regulatory (Treg) cells are generated when AMP-Activating Protein Kinase signaling is activated and mTOR activation is suppressed. Unlike effector CD4(+) and CD8(+) T cells, Tregs and memory T cells oxidize fatty acids for fuel. Effector and memory T cells perform different functions and thus show distinct metabolic profiles which are exquisitely controlled by cellular signaling. Upon activation, T cells express the insulin and leptin receptors on their surface and become sensitive to insulin signaling and nutrient availability and show changes in differentiation. Thus, metabolism and nutrient availability influence T cell activation and function.
Collapse
Affiliation(s)
- Jason A Maciolek
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - J Alex Pasternak
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada.
| |
Collapse
|
11
|
Sun B, Ji Z, Liao YP, Wang M, Wang X, Dong J, Chang CH, Li R, Zhang H, Nel AE, Xia T. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS NANO 2013; 7:10834-49. [PMID: 24261790 PMCID: PMC3899397 DOI: 10.1021/nn404211j] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adjuvants based on aluminum salts (Alum) are commonly used in vaccines to boost the immune response against infectious agents. However, the detailed mechanism of how Alum enhances adaptive immunity and exerts its adjuvant immune effect remains unclear. Other than being comprised of micrometer-sized aggregates that include nanoscale particulates, Alum lacks specific physicochemical properties to explain activation of the innate immune system, including the mechanism by which aluminum-based adjuvants engage the NLRP3 inflammasome and IL-1β production. This is putatively one of the major mechanisms required for an adjuvant effect. Because we know that long aspect ratio nanomaterials trigger the NLRP3 inflammasome, we synthesized a library of aluminum oxyhydroxide (AlOOH) nanorods to determine whether control of the material shape and crystalline properties could be used to quantitatively assess NLRP3 inflammasome activation and linkage of the cellular response to the material's adjuvant activities in vivo. Using comparison to commercial Alum, we demonstrate that the crystallinity and surface hydroxyl group display of AlOOH nanoparticles quantitatively impact the activation of the NLRP3 inflammasome in human THP-1 myeloid cells or murine bone marrow-derived dendritic cells (BMDCs). Moreover, these in vitro effects were correlated with the immunopotentiation capabilities of the AlOOH nanorods in a murine OVA immunization model. These results demonstrate that shape, crystallinity, and hydroxyl content play an important role in NLRP3 inflammasome activation and are therefore useful for quantitative boosting of antigen-specific immune responses. These results show that the engineered design of aluminum-based adjuvants in combination with dendritic cell property-activity analysis can be used to design more potent aluminum-based adjuvants.
Collapse
Affiliation(s)
- Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Juyao Dong
- Department of Chemistry, University of California, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Haiyuan Zhang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
12
|
Fulop T, Le Page A, Garneau H, Azimi N, Baehl S, Dupuis G, Pawelec G, Larbi A. Aging, immunosenescence and membrane rafts: the lipid connection. LONGEVITY & HEALTHSPAN 2012; 1:6. [PMID: 24764511 PMCID: PMC3886260 DOI: 10.1186/2046-2395-1-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/13/2012] [Indexed: 11/10/2022]
Abstract
The decreased efficiency of immune responses in older people is partly a consequence of alterations in T lymphocyte functions caused by modifications in the early events of signal transduction. Several alterations in the signaling pathways of T lymphocytes have been described in older humans and animals. A unifying cause could be modifications in the physicochemical properties of the plasma membrane resulting from changes in its lipid composition and the distribution and function of lipid rafts (LR). The latter serve to assemble the initial components of the signaling cascade. Accumulating data suggest that the function of plasma membrane LR is altered with aging; we hypothesize that this would significantly contribute to immune dysregulation. The role of aging and cholesterol in LR functions in T lymphocytes is reviewed and discussed here.
Collapse
Affiliation(s)
- Tamas Fulop
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada ; Research Center on Aging, University of Sherbrooke, 1036, rue Belvedere Sud, Sherbrooke, Qc, J1H 4C4, Canada
| | - Aurélie Le Page
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Hugo Garneau
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Naheed Azimi
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Sarra Baehl
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Graham Pawelec
- Center for Medical Research, Tübingen Aging and Tumor Immunology Group, University of Tübingen, Waldhörnlestrasse 22, Tübingen, D-72072, Germany
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Immunos Building/Biopolis, Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
13
|
Chueh FY, Yu CL. Engagement of T-cell antigen receptor and CD4/CD8 co-receptors induces prolonged STAT activation through autocrine/paracrine stimulation in human primary T cells. Biochem Biophys Res Commun 2012; 426:242-6. [PMID: 22935418 DOI: 10.1016/j.bbrc.2012.08.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 08/15/2012] [Indexed: 01/27/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins are key signaling molecules in response to cytokines and in regulating T cell biology. However, there are contradicting reports on whether STAT is involved in T-cell antigen receptor (TCR) signaling. To better define the role of STAT in TCR signaling, we activated the CD4/CD8-associated Lck kinase by co-crosslinking TCR and CD4/CD8 co-receptors in human peripheral blood T cells. Sequential STAT1, STAT3 and STAT5 activation was observed 1 h after TCR stimulation suggesting that STAT proteins are not the immediate targets in the TCR complex. We further identified interferon-γ as the key cytokine in STAT1 activation upon TCR engagement. In contrast to transient STAT activation in cytokine response, this autocrine/paracrine-induced STAT activation was sustained. It correlated with the absence of two suppressors of cytokine signaling (SOCS) proteins, SOCS3 and cytokine-inducible SH2 containing protein that are negative feedback regulators of STAT signaling. Moreover, enforced expression of SOCS3 inhibited tyrosine phosphorylation of zeta-associated protein kinase of 70 kD in TCR-stimulated human Jurkat T cells. This is the first report demonstrating delayed and prolonged STAT activation coordinated with the loss of SOCS expression in human primary T cells after co-crosslinking of TCR and CD4/CD8 co-receptors.
Collapse
Affiliation(s)
- Fu-Yu Chueh
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | |
Collapse
|
14
|
Ortiz YM, García LF, Álvarez CM. Differences in phosphorylation patterns of intracellular signaling proteins in T cells from kidney transplant patients with different outcomes. Clin Transplant 2012; 26:935-48. [PMID: 22774864 DOI: 10.1111/j.1399-0012.2012.01683.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
Transplant patients with long-term graft survival (LTS) may have developed mechanisms that prevent rejection and allow graft function under low or no immunosuppressive therapy. In murine models, T cell tolerance is associated with alterations in the expression/activation of proteins involved in T cell signaling. These alterations have not been reported in transplanted patients with different outcomes. This study aimed to evaluate calcium mobilization, the phosphorylation of different proteins involved in T cell signaling and the expression of molecules associated with anergy, in T cells from kidney transplant patients. No differences were observed in calcium mobilization, although transplanted patients had a tendency toward augmented calcium flux. Chronic rejection patients (ChrRx) displayed lower Lck basal phosphorylation levels compared with LTS patients, and the phosphorylation profile of proteins evaluated was different. Among the groups, phosphorylation of Zap-70 was higher in LTS patients compared with ChrRx, and LAT phosphorylation was lower in LTS and ChrRx patients compared with healthy controls. The expression of molecules related to the anergic phenotype was similar among the study groups. Results suggest that phosphorylation patterns, rather than phosphorylation levels, may correlate with transplant outcome and that anergy may not be the main mechanism mediating LTS.
Collapse
Affiliation(s)
- Yaneth M Ortiz
- Laboratorio de Inmunología de Trasplantes, Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
15
|
Lehman HK, Simpson-Abelson MR, Conway TF, Kelleher RJ, Bernstein JM, Bankert RB. Memory T cells in the chronic inflammatory microenvironment of nasal polyposis are hyporesponsive to signaling through the T cell receptor. J Assoc Res Otolaryngol 2012; 13:423-35. [PMID: 22310933 PMCID: PMC3346897 DOI: 10.1007/s10162-012-0313-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/10/2012] [Indexed: 12/17/2022] Open
Abstract
A majority of T cells from chronic inflammatory tissues derived from patients with nasal polyposis were found to express an effector memory phenotype. We report here that these memory T cells failed to activate NF-κB in response to TCR stimulation but responded normally when the proximal TCR signaling molecules were bypassed with PMA and ionomycin. The dysfunction of these cells was associated with a decrease in the phosphorylation of several TCR proximal signaling molecules including ZAP70, Lck and SLP-76. In addition to the disruption in the TCR signaling pathway, the nasal polyp-associated T cells were shown to have a defect in their ability to translocate LAMP-1 to the cell surface. The results presented here establish that the phenotype and anergy of the T cells in the nasal polyp are similar to those which is seen in memory T cells derived from human tumors and other sites of chronic inflammation.
Collapse
Affiliation(s)
- Heather K. Lehman
- Department of Pediatrics, University at Buffalo School of Medicine and Biomedical Sciences, 239 Bryant St., 2nd Floor, Buffalo, NY 14222 USA
| | - Michelle R. Simpson-Abelson
- Department of Microbiology and Immunology, University at Buffalo School at Medicine and Biomedical Sciences, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
- Department of Immunology, University of Pittsburgh, S708 BST South, Pittsburgh, PA 15261 USA
| | - Thomas F. Conway
- Department of Microbiology and Immunology, University at Buffalo School at Medicine and Biomedical Sciences, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Raymond J. Kelleher
- Department of Microbiology and Immunology, University at Buffalo School at Medicine and Biomedical Sciences, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Joel M. Bernstein
- Department of Otolaryngology, University at Buffalo School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214 USA
| | - Richard B. Bankert
- Department of Microbiology and Immunology, University at Buffalo School at Medicine and Biomedical Sciences, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| |
Collapse
|
16
|
Cardinale A, Nastrucci C, Cesario A, Russo P. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol 2011; 42:68-89. [PMID: 22050423 DOI: 10.3109/10408444.2011.623150] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, tobacco smoking is the cause of ~5-6 million deaths per year, counting 31% and 6% of all cancer deaths (affecting 18 different organs) in middle-aged men and women, respectively. Nicotine is the addictive component of tobacco acting on neuronal nicotinic receptors (nAChR). Functional nAChR, are also present on endothelial, haematological and epithelial cells. Although nicotine itself is regularly not referred to as a carcinogen, there is an ongoing debate whether nicotine functions as a 'tumour promoter'. Nicotine, with its specific binding to nAChR, deregulates essential biological processes like regulation of cell proliferation, apoptosis, migration, invasion, angiogenesis, inflammation and cell-mediated immunity in a wide variety of cells including foetal (regulation of development), embryonic and adult stem cells, adult tissues as well as cancer cells. Nicotine seems involved in fundamental aspects of the biology of malignant diseases, as well as of neurodegeneration. Investigating the biological effects of nicotine may provide new tools for therapeutic interventions and for the understanding of neurodegenerative diseases and tumour biology.
Collapse
|
17
|
Avelino-Silva VI, Ho YL, Avelino-Silva TJ, Santos SDS. Aging and HIV infection. Ageing Res Rev 2011; 10:163-72. [PMID: 20974294 DOI: 10.1016/j.arr.2010.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Population aging has become a global phenomenon, and HIV infection among older individuals is also increasing. Because age can affect the progression of HIV infection, we aimed to evaluate the present knowledge on HIV infection in older patients. METHODS Literature review of the last 20 years. RESULTS Older HIV-infected patients have lower CD4(+) T cell counts, higher viral load and are more frequently symptomatic at diagnosis. The infection progresses more rapidly, with higher morbidity and lethality rates. However, older patients are more compliant to antiretroviral treatment; they experience a better virologic response, and treatment represents a positive clinical impact. Aging affects the complex interaction between HIV infection and the immune system. Both conditions contribute to the dysfunction of immune cells, including a decrease in the phagocytes' microbicidal capability, natural killer cells' cytolytic function, expression of toll-like receptors and production of interleukin-12. Chronic immune activation responsible for the depletion of CD4(+) and CD8(+) T cells in HIV infection appears to worsen with senescence. Older patients also exhibit a less robust humoral response, with the production of less avid and specific antibodies. CONCLUSION Both HIV and aging contribute to immune dysfunction, morbidity and mortality. However, highly active antiretroviral therapy (HAART) is beneficial for older patients, and treatment of older patients should not be discouraged.
Collapse
|
18
|
Chae HD, Siefring JE, Hildeman DA, Gu Y, Williams DA. RhoH regulates subcellular localization of ZAP-70 and Lck in T cell receptor signaling. PLoS One 2010; 5:e13970. [PMID: 21103055 PMCID: PMC2980477 DOI: 10.1371/journal.pone.0013970] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/19/2010] [Indexed: 01/26/2023] Open
Abstract
RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh(-/-) bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway.
Collapse
Affiliation(s)
- Hee-Don Chae
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jamie E. Siefring
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Gu
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David A. Williams
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kemp KL, Levin SD, Stein PL. Lck regulates IL-10 expression in memory-like Th1 cells. Eur J Immunol 2010; 40:3210-9. [PMID: 21061443 DOI: 10.1002/eji.201040699] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/19/2010] [Accepted: 08/26/2010] [Indexed: 01/22/2023]
Abstract
The Src family kinase Lck is thought to facilitate Th2 differentiation; however, its role in Th1 cells has not been well explored. Using mice that lack Lck in mature T cells, we find that lck(-/-) Th1 skewed cells have normal expression of T-bet and produce IFN-γ at WT levels. However, there is a 3-fold increase in IL-10 producing cells in the mutant cultures. These cells do not have elevated levels of IL-4, GATA3, IL-17 or Foxp3, indicating that they are not Th2, Th17, or Foxp3(+) T regulatory cells (Treg). Nor do these cells behave in a similar manner as the type 1 Treg. Most of the IL-10 in the lck(-/-) Th1 cultures is derived from the memory/activated subset, as the cytokine profile from Th1 cultures established from purified CD62L(+) (naïve) cells are similar to WT cells. Furthermore, this IL-10 expression appears to be dependent on IL-12 and correlates with elevated c-Maf. These data highlight a previously unappreciated role for Lck in regulating IL-10 in Th1 cells.
Collapse
Affiliation(s)
- Kyeorda L Kemp
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
20
|
Loza MJ, Penn RB. Regulation of T cells in airway disease by beta-agonist. Front Biosci (Schol Ed) 2010; 2:969-79. [PMID: 20515836 DOI: 10.2741/s113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is widely recognized that Th2 cytokines derived from T cells play a major role in the development of allergic lung inflammation that causes most asthma. Beta-agonists are important rescue and maintenance therapies for asthma, yet our understanding of beta-agonist effects on T cell biology is surprisingly poor. Recent studies using both cell culture and more integrative models are beginning to reveal beta-agonist regulation of T cell signaling and function that may be important in the pathogenesis and treatment of asthma and possibly other inflammatory diseases. Here we provide a comprehensive review of the literature concerning beta-agonist effects on T cells, and discuss the relevance of emerging paradigms of beta-adrenergic receptor signaling to T cell function.
Collapse
Affiliation(s)
- Matthew J Loza
- Department of Medicine, Division of Pulmonary and Critical Care Medicine University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
21
|
Barnas JL, Simpson-Abelson MR, Yokota SJ, Kelleher RJ, Bankert RB. T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2010; 3:29-47. [PMID: 21209773 PMCID: PMC2990491 DOI: 10.1007/s12307-010-0044-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/02/2010] [Indexed: 12/16/2022]
Abstract
The immune system of cancer patients recognizes tumor-associated antigens expressed on solid tumors and these antigens are able to induce tumor-specific humoral and cellular immune responses. Diverse immunotherapeutic strategies have been used in an attempt to enhance both antibody and T cell responses to tumors. While several tumor vaccination strategies significantly increase the number of tumor-specific lymphocytes in the blood of cancer patients, most vaccinated patients ultimately experience tumor progression. CD4+ and CD8+ T cells with an effector memory phenotype infiltrate human tumor microenvironments, but most are hyporesponsive to stimulation via the T cell receptor (TCR) and CD28 under conditions that activate memory T cells derived from the peripheral blood of the cancer patients or normal donors. Attempts to identify cells and molecules responsible for the TCR signaling arrest of tumor-infiltrating T cells have focused largely upon the immunosuppressive effects of tumor cells, tolerogenic dendritic cells and regulatory T cells. Here we review potential mechanisms by which human T cell function is arrested in the tumor microenvironment with a focus on the immunomodulatory effects of stromal fibroblasts. Determining in vivo which cells and molecules are responsible for the TCR arrest in human tumor-infiltrating T cells will be necessary to formulate and test strategies to prevent or reverse the signaling arrest of the human T cells in situ for a more effective design of tumor vaccines. These questions are now addressable using novel human xenograft models of tumor microenvironments.
Collapse
Affiliation(s)
- Jennifer L. Barnas
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Michelle R. Simpson-Abelson
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Sandra J. Yokota
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Raymond J. Kelleher
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Richard B. Bankert
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| |
Collapse
|
22
|
Kemp KL, Levin SD, Bryce PJ, Stein PL. Lck mediates Th2 differentiation through effects on T-bet and GATA-3. THE JOURNAL OF IMMUNOLOGY 2010; 184:4178-84. [PMID: 20237292 DOI: 10.4049/jimmunol.0901282] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Src family kinase Lck has been shown to be crucial in T cell signaling and development. However, its role in Th effector functions is not well understood. Lck has previously been shown to play a role in the cytokine expression of Th2 cells, but the mechanism by which Lck influences Th2 effector functions is unknown. Using a mouse model, we report that Lck is important in regulating the expression of IL-4 in Th2 skewed cells but is not as necessary for the expression of Th2 cytokines IL-5, IL-10, and IL-13. Furthermore, in the absence of Lck, T-bet and GATA-3 expression is aberrant. Moreover, this atypical expression pattern of T-bet and GATA-3 correlates with increased histone 3 acetylation at the Ifng locus and production of the Th1 cytokine IFN-gamma. We find overexpression of GATA-3 restores IL-4 expression in lck(-/-) Th2 cells; this indicates that the decreased IL-4 expression is due in part to reduced amounts of GATA-3. Taken together, these data imply that Lck mediates Th2 differentiation through effects on T-bet and GATA-3.
Collapse
Affiliation(s)
- Kyeorda L Kemp
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
23
|
A multifactorial mechanism in the superior antimalarial activity of alpha-C-GalCer. J Biomed Biotechnol 2009; 2010:283612. [PMID: 20069056 PMCID: PMC2801455 DOI: 10.1155/2010/283612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/04/2009] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that the C-glycoside analog of α-galactosylceramide (α-GalCer), α-C-GalCer, displays a superior inhibitory activity against the liver stages of the rodent malaria parasite Plasmodium yoelii than its parental glycolipid, α-GalCer. In this study, we demonstrate that NK cells, as well as IL-12, are a key contributor for the superior activity displayed by α-C-GalCer. Surprisingly, the diminished production of Th2 cytokines, including IL-4, by α-C-GalCer has no affect on its superior therapeutic activity relative to α-GalCer. Finally, we show that the in vivo administration of α-C-GalCer induces prolonged maturation of dendritic cells (DCs), as well as an enhanced proliferative response of mouse invariant Vα14 (Vα14i) NKT cells, both of which may also contribute to some degree to the superior activity of α-C-GalCer in vivo.
Collapse
|
24
|
Nizri E, Irony-Tur-Sinai M, Lory O, Orr-Urtreger A, Lavi E, Brenner T. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:6681-8. [PMID: 19846875 DOI: 10.4049/jimmunol.0902212] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) was recently described as an anti-inflammatory target in both macrophages and T cells. Its expression by immune cells may explain the epidemiological data claiming a negative link between cigarette smoking and several inflammatory diseases. In this study, we determined the immunological effects of alpha7 nAChR activation by nicotine. Our results indicate that the alpha7 nAChR is expressed on the surface of CD4(+) T cells and that this expression is up-regulated upon immune activation. Nicotine reduced T cell proliferation in response to an encephalitogenic Ag, as well as the production of Th1 (TNF-alpha and IFN-gamma) and Th17 cytokines (IL-17, IL-17F, IL-21, and IL-22). IL-4 production was increased in the same setting. Attenuation of the Th1 and Th17 lineages was accompanied by reduced T-bet (50%) and increased GATA-3 (350%) expression. Overall, nicotine induced a shift to the Th2 lineage. However, alpha7(-/-)-derived T cells were unaffected by nicotine. Furthermore, nicotine reduced NF-kappaB-mediated transcription as measured by IL-2 and IkappaB transcription. In vivo, administration of nicotine (2 mg/kg s.c.) suppressed the severity of CD4(+) T cell-mediated disease experimental autoimmune encephalomyelitis. alpha7(-/-) mice were refractory to nicotine treatment, although disease severity in those animals was reduced, due to impairment in Ag presentation. Accordingly, CD4(+) and CD11b(+) cells infiltration into the CNS, demyelination, and axonal loss were reduced. Our data implicate a role for the alpha7 nAChR in immune modulation and suggest that alpha7 nAChR agonists may be effective in the treatment of inflammatory disorders.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation/drug effects
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- GATA3 Transcription Factor/agonists
- GATA3 Transcription Factor/immunology
- GATA3 Transcription Factor/metabolism
- Glycoproteins/immunology
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Interleukin-4/agonists
- Interleukin-4/immunology
- Interleukin-4/metabolism
- Interleukins/antagonists & inhibitors
- Interleukins/immunology
- Interleukins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Nicotine/pharmacology
- Peptide Fragments/immunology
- RNA, Messenger/drug effects
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/immunology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
- T-Box Domain Proteins/antagonists & inhibitors
- T-Box Domain Proteins/immunology
- T-Box Domain Proteins/metabolism
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- alpha7 Nicotinic Acetylcholine Receptor
- Interleukin-22
Collapse
Affiliation(s)
- Eran Nizri
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
25
|
MacMillan HF, Lee T, Issekutz AC. Intravenous immunoglobulin G-mediated inhibition of T-cell proliferation reflects an endogenous mechanism by which IgG modulates T-cell activation. Clin Immunol 2009; 132:222-33. [DOI: 10.1016/j.clim.2009.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 03/18/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
|
26
|
Reactive oxygen intermediate-induced pathomechanisms contribute to immunosenescence, chronic inflammation and autoimmunity. Mech Ageing Dev 2009; 130:564-87. [PMID: 19632262 DOI: 10.1016/j.mad.2009.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 02/07/2023]
Abstract
Deregulation of reactive oxygen intermediates (ROI) resulting in either too high or too low concentrations are commonly recognized to be at least in part responsible for many changes associated with aging. This article reviews ROI-dependent mechanisms critically contributing to the decline of immune function during physiologic - or premature - aging. While ROI serve important effector functions in cellular metabolism, signalling and host defence, their fine-tuned generation declines over time, and ROI-mediated damage to several cellular components and/or signalling deviations become increasingly prevalent. Although distinct ROI-associated pathomechanisms contribute to immunosenescence of the innate and adaptive immune system, mutual amplification of dysfunctions may often result in hyporesponsiveness and immunodeficiency, or in chronic inflammation with hyperresponsiveness/deregulation, or both. In this context, we point out how imbalanced ROI contribute ambiguously to driving immunosenescence, chronic inflammation and autoimmunity. Although ROI may offer a distinct potential for therapeutic targeting along with the charming opportunity to rescue from deleterious processes of aging and chronic inflammatory diseases, such modifications, owing to the complexity of metabolic interactions, may carry a marked risk of unforeseen side effects.
Collapse
|
27
|
Twohig JP, Pappworth IY, Sivasankar B, Kulik L, Bull M, Holers VM, Wang EC, Marchbank KJ. Defective B cell ontogeny and humoral immune response in mice prematurely expressing human complement receptor 2 (CR2, CD21) is similar to that seen in aging wild type mice. Mol Immunol 2009; 46:2002-13. [PMID: 19359041 PMCID: PMC2706330 DOI: 10.1016/j.molimm.2009.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/12/2009] [Accepted: 03/14/2009] [Indexed: 02/03/2023]
Abstract
Mice prematurely expressing human CR2 (hCR2) in the B cell lineage have a defective B cell ontogeny and humoral immune response. We have previously determined altered tyrosine phosphorylation patterns within hCR2 transgenic mice, suggesting that irreversible changes in B cell signaling pathways had occurred, which could explain the B cell unresponsiveness associated with hCR2 transgene expression. In support of that assertion, we found that increasing antigen dose or addition of adjuvant had a minimal impact on the ability of B cells to respond to antigen. However, analysis of aged hCR2high mice (1 year plus) revealed that both B cell numbers, B cell sub-population distribution including expansion of a newly described B regulatory cell subset, and immune responses were comparable with age-matched hCR2 negative mice. Finally, we established that B cell unresponsiveness to antigen in aging wild type mice (1 year plus) was equivalent to that noted in 3-month-old hCR2high mice. This data provides evidence that 3-month-old hCR2high mice have a humoral immune system resembling aged mice and suggests that further examination of the precise molecular and cellular parallells between aged wild type mice and 3-month-old hCR2high mice could provide an important insight into the mechanisms which lead to B cell unresponsiveness in the aging immune system.
Collapse
Affiliation(s)
- Jason P. Twohig
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Isabel Y. Pappworth
- Institute of Human Genetics, Newcastle University, Center for Life, Central Parkway, Newcastle NE1 3BZ, UK
| | | | - Liudmila Kulik
- Departments of Medicine and Immunology, University of Colorado, SOM, Denver, CO, USA
| | - Melanie Bull
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - V. Michael Holers
- Departments of Medicine and Immunology, University of Colorado, SOM, Denver, CO, USA
| | - Eddie C.Y. Wang
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Kevin J. Marchbank
- Institute of Human Genetics, Newcastle University, Center for Life, Central Parkway, Newcastle NE1 3BZ, UK
- Corresponding author. Tel.: +44 191 222 5998; fax: +44 191 222 8988.
| |
Collapse
|
28
|
Ku LT, Gercel-Taylor C, Nakajima ST, Taylor DD. Alterations of T cell activation signalling and cytokine production by postmenopausal estrogen levels. IMMUNITY & AGEING 2009; 6:1. [PMID: 19265538 PMCID: PMC2656459 DOI: 10.1186/1742-4933-6-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 03/05/2009] [Indexed: 11/27/2022]
Abstract
Background Immunosenescence is an age-associated disorder occurring primarily in T cell compartments, including altered subset composition, functions, and activation. In women, evidence implicates diminished estrogen in the postmenopausal period as a contributing factor to diminished T cell responsiveness. Since hypoestrogenism is present in postmenopausal women, our objective focused on whether T cell activation, defined as signalling molecule expressions and activation, and function, identified as IL-2 production, were affected by low estrogen. Methods Using Jurkat 6.1 T cells, consequences of 4 pg/ml (corresponding to postmenopausal levels) or 40 pg/ml (premenopausal levels) of estradiol (E2) were analyzed on signalling proteins, CD3-zeta, JAK2, and JAK3, determined by Western immunoblotting. These consequences were correlated with corresponding gene expressions, quantified by real time-polymerase chain reaction. Tyrosine phosphorylation of CD3-zeta was defined by immunoprecipitation and western immunoblotting following activation by T cell receptor (TcR) cross-linking. CD3-zeta expression and modulation was also confirmed in T cells from pre- and postmenopausal women. To assess functional consequences, IL-2 production, induced by PMA and ionomycin, was determined using enzyme-linked immunosorbent spot assay (ELISpot). Results At 40 pg/ml E2, the level of signalling protein CD3-zeta was elevated 1.57-fold, compared with cells exposed to 4 pg/ml E2. The CD3-zeta proteins also exhibited altered levels of activation-induced phosphorylation in the presence of 40 pg/ml E2 versus 4 pg/ml: 23 kD phosphorylated form increased 2.64-fold and the 21 kD form was elevated 2.95-fold. Examination of kinases associated with activation signalling also demonstrated that, in the presence of 40 pg/ml E2, JAK2 protein expression was increased 1.64-fold (p < 0.001) and JAK3 enhanced 1.79-fold (p < 0.001) compared to 4 pg/ml. mRNA levels for CD3-zeta, JAK2, and JAK3 were significantly increased following exposure to 40 pg/ml E2 (2.39, 2.01, and 2.21 fold, respectively) versus 4 pg/ml. These findings were confirmed in vivo, since T cells from postmenopausal women exhibited 7.2-fold diminished CD3-zeta expression, compared to pre-menopausal controls and this expression was elevated 3.8-fold by addition of 40 pg/ml E2. Functionally, Jurkat cells exposed to 40 pg/ml E2 and activated exhibited significantly elevated numbers of IL-2 producing colonies compared to 4 pg/ml (75.3 ± 2.2 versus 55.7 ± 2.1 colonies, p < 0.0001). Conclusion Jurkat T cells exposed to 4 pg/ml E2 expressed significantly diminished activation signalling proteins, correlating with reduced IL-2 production. Lower signalling protein levels appear to result from decreased CD3-zeta, JAK2, and JAK3 gene expressions. These findings may provide a molecular basis for immunosenescence associated with the postmenopausal state.
Collapse
Affiliation(s)
- Lowell T Ku
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| | | | | | | |
Collapse
|
29
|
Ribeiro de Almeida C, Heath H, Krpic S, Dingjan GM, van Hamburg JP, Bergen I, van de Nobelen S, Sleutels F, Grosveld F, Galjart N, Hendriks RW. Critical role for the transcription regulator CCCTC-binding factor in the control of Th2 cytokine expression. THE JOURNAL OF IMMUNOLOGY 2009; 182:999-1010. [PMID: 19124743 DOI: 10.4049/jimmunol.182.2.999] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Differentiation of naive CD4+ cells into Th2 cells is accompanied by chromatin remodeling at the Th2 cytokine locus allowing the expression of the IL-4, IL-5, and IL-13 genes. In this report, we investigated the role in Th2 differentiation of the transcription regulator CCCTC-binding factor (CTCF). Chromatin immunoprecipitation analysis revealed multiple CTCF binding sites in the Th2 cytokine locus. Conditional deletion of the Ctcf gene in double-positive thymocytes allowed development of peripheral T cells, but their activation and proliferation upon anti-CD3/anti-CD28 stimulation in vitro was severely impaired. Nevertheless, when TCR signaling was circumvented with phorbol ester and ionomycin, we observed proliferation of CTCF-deficient T cells, enabling the analysis of Th2 differentiation in vitro. We found that in CTCF-deficient Th2 polarization cultures, transcription of IL-4, IL-5, and IL-13 was strongly reduced. By contrast, CTCF deficiency had a moderate effect on IFN-gamma production in Th1 cultures and IL-17 production in Th17 cultures was unaffected. Consistent with a Th2 cytokine defect, CTCF-deficient mice had very low levels of IgG1 and IgE in their serum, but IgG2c was close to normal. In CTCF-deficient Th2 cultures, cells were polarized toward the Th2 lineage, as substantiated by induction of the key transcriptional regulators GATA3 and special AT-rich binding protein 1 (SATB1) and down-regulation of T-bet. Also, STAT4 expression was low, indicating that in the absence of CTCF, GATA3 still operated as a negative regulator of STAT4. Taken together, these findings show that CTCF is essential for GATA3- and SATB1-dependent regulation of Th2 cytokine gene expression.
Collapse
|
30
|
Fulop T, Pawelec G, Castle S, Loeb M. Immunosenescence and vaccination in nursing home residents. Clin Infect Dis 2009; 48:443-8. [PMID: 19140756 DOI: 10.1086/596475] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The elderly population continues to increase in most countries. Concomitantly, the number of individuals who are institutionalized is also increasing, unfortunately, with more and more individuals being institutionalized at greater ages. These elderly individuals are very different from healthy, community-dwelling elderly individuals, in that many are considered to be frail and have various chronic diseases. It is apparent that the immune response diminishes even in healthy elderly people and that the pathologies that occur in nursing home patients, together with malnutrition, further impair immunity required for an effective vaccine response. Therefore, it is important to take secondary age-related effects, attributable to factors such as chronic diseases, inflammation, frailty, nutrition, functional status, and stress, into account when assessing vaccination strategies. Despite these alterations that can affect immune function and their potential interaction with vaccination, vaccination is still worthwhile and is recommended for elderly nursing home residents. Research efforts should continue attempts to elucidate the immunological basis of impaired immunity in nursing home residents to design improved prevention strategies for this vulnerable group.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Immunology Program, Geriatric Division, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
31
|
Wasserman HA, Beal CD, Zhang Y, Jiang N, Zhu C, Evavold BD. MHC variant peptide-mediated anergy of encephalitogenic T cells requires SHP-1. THE JOURNAL OF IMMUNOLOGY 2008; 181:6843-9. [PMID: 18981103 DOI: 10.4049/jimmunol.181.10.6843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our lab has demonstrated that encephalitogenic T cells can be effectively anergized by treatment with MHC variant peptides, which are analogues of immunogenic peptides containing an amino acid substitution at an MHC anchor residue. The MHC variant peptide of myelin oligodendrocyte glycoprotein (MOG)(35-55) proves an effective treatment as it does not induce symptoms of experimental autoimmune encephalomyelitis and fails to recruit macrophages or MOG(35-55)-specific T cells to the CNS. In this study, we sought to characterize the signaling pathways required for the induction of anergy by building upon the observations identifying the tyrosine phosphatase SHP-1 as a critical regulator of T cell responsiveness. Motheaten viable heterozygous mice, which contain a mutation in the SHP-1 gene resulting in a reduction in functional SHP-1, were challenged with MOG(35-55) or the MOG(35-55) MHC variant 45D. These mice display symptoms of experimental autoimmune encephalomyelitis upon immunization with MHC variant peptide and have significant CNS infiltration of tetramer-positive CD4(+) cells and macrophages, unlike B6 mice challenged with the variant peptide. The effects of SHP-1 are directly on the T cell as Motheaten viable heterozygous mice autoreactive T cells are not anergized in vitro. Lastly, we demonstrate no distinguishable difference in the initial interaction between the TCR and agonist or MHC variant. Rather, an unstable interaction between peptide and MHC attenuates the T cell response, seen in a decreased half-life relative to MOG(35-55). These results identify SHP-1 as a mediator of T cell anergy induced by destabilized peptide:MHC complexes.
Collapse
Affiliation(s)
- Heather A Wasserman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30332, USA
| | | | | | | | | | | |
Collapse
|
32
|
Dasatinib exerts an immunosuppressive effect on CD8+ T cells specific for viral and leukemia antigens. Exp Hematol 2008; 36:1297-308. [DOI: 10.1016/j.exphem.2008.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/05/2008] [Accepted: 05/09/2008] [Indexed: 11/18/2022]
|
33
|
Merino E, Avila-Flores A, Shirai Y, Moraga I, Saito N, Mérida I. Lck-dependent tyrosine phosphorylation of diacylglycerol kinase alpha regulates its membrane association in T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:5805-15. [PMID: 18424699 DOI: 10.4049/jimmunol.180.9.5805] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR engagement triggers phospholipase Cgamma1 activation through the Lck-ZAP70-linker of activated T cell adaptor protein pathway. This leads to generation of diacylglycerol (DAG) and mobilization of intracellular Ca(2+), both essential for TCR-dependent transcriptional responses. TCR ligation also elicits transient recruitment of DAG kinase alpha (DGKalpha) to the lymphocyte plasma membrane to phosphorylate DAG, facilitating termination of DAG-regulated signals. The precise mechanisms governing dynamic recruitment of DGKalpha to the membrane have not been fully elucidated, although Ca(2+) influx and tyrosine kinase activation were proposed to be required. We show that DGKalpha is tyrosine phosphorylated, and identify tyrosine 335 (Y335), at the hinge between the atypical C1 domains and the catalytic region, as essential for membrane localization. Generation of an Ab that recognizes phosphorylated Y335 demonstrates Lck-dependent phosphorylation of endogenous DGKalpha during TCR activation and shows that pY335DGKalpha is a minor pool located exclusively at the plasma membrane. Our results identify Y335 as a residue critical for DGKalpha function and suggest a mechanism by which Lck-dependent phosphorylation and Ca(2+) elevation regulate DGKalpha membrane localization. The concerted action of these two signals results in transient, receptor-regulated DGKalpha relocalization to the site at which it exerts its function as a negative modulator of DAG-dependent signals.
Collapse
Affiliation(s)
- Ernesto Merino
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Simpson-Abelson M, Bankert RB. Targeting the TCR signaling checkpoint: a therapeutic strategy to reactivate memory T cells in the tumor microenvironment. Expert Opin Ther Targets 2008; 12:477-90. [DOI: 10.1517/14728222.12.4.477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Nielsen C, Hansen D, Husby S, Lillevang ST. Sex-specific association of the human PTPN22 1858T-allele with type 1 diabetes. Int J Immunogenet 2008; 34:469-73. [PMID: 18001305 DOI: 10.1111/j.1744-313x.2007.00720.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type 1 diabetes (T1D) is a common organ-specific autoimmune disease of complex aetiology, involving the interaction of a large number of disease-associated genes. By comparison of a Danish population sample of 253 Caucasian children and adolescents with T1D and a control group consisted of 354 unrelated healthy blood donors, the present study provides evidence of an isolated association of the disease-associated PTPN22 1858T-allele with T1D to the female sex. Furthermore, the present data suggest that PTPN22 genotypes affect the age of onset in a sex-specific manner. The increased frequency of the risk allele and its association with age at onset in female T1D children and adolescents indicates that the genetic contribution to disease pathogenesis is more prominent in females in this population of Danish patients.
Collapse
Affiliation(s)
- C Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
| | | | | | | |
Collapse
|
36
|
Pinchuk LM, Filipov NM. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. IMMUNITY & AGEING 2008; 5:1. [PMID: 18267021 PMCID: PMC2268915 DOI: 10.1186/1742-4933-5-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 02/11/2008] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite several reports on age-related phenotypic changes of the immune system's cells, studies that use a multipoint age comparison between the specific and innate immune cell populations of prototypical Th1- and Th2-type polarized mouse strains are still lacking. RESULTS Using a multipoint age comparison approach, cells from the two major immune system compartments, peripheral blood and spleen, and flow cytometry analysis, we found several principal differences in T cell and professional antigen presenting cell (APC) populations originating from a prototypical T helper (Th) 1 mouse strain, C57BL/6, and a prototypical Th2 strain, BALB/c. For example, regardless of age, there were strain differences in both peripheral blood mononuclear cells (PBMC) and spleens in the proportion of CD4+ (higher in the BALB/c strain), CD8+ T cells and CD11b+/CD11c+ APC (greater in C57BL/6 mice). Other differences were present only in PBMC (MHC class II + and CD19+ were greater in C57BL/6 mice) or differences were evident in the spleens but not in circulation (CD3+ T cells were greater in C57BL/6 mice). There were populations of cells that increased with age in PBMC and spleens of both strains (MHC class II+), decreased in the periphery and spleens of both strains (CD11b+) or did not change in the PBMC and spleens of both strains (CD8+). We also found strain and age differences in the distribution of naïve and memory/activated splenic T cells, e.g., BALB/c mice had more memory/activated and less naive CD8+ and CD4+ T cells and the C57BL/6 mice. CONCLUSION Our data provide important information on the principal differences, within the context of age, in T cell and professional APC populations between the prototypical Th1 mouse strain C57BL/6 and the prototypical Th2 strain BALB/c. Although the age-related changes that occur may be rather subtle, they may be very relevant in conditions of disease and stress. Importantly, our data indicate that age and strain should be considered in concert in the selection of appropriate mouse models for immunological research.
Collapse
Affiliation(s)
- Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| | | |
Collapse
|
37
|
Malcher-Lopes R, Franco A, Tasker JG. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch. Eur J Pharmacol 2008; 583:322-39. [PMID: 18295199 DOI: 10.1016/j.ejphar.2007.12.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/12/2007] [Accepted: 12/16/2007] [Indexed: 11/24/2022]
Abstract
Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-containing endocannabinoids biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX(2)) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response.
Collapse
|
38
|
Fülöp T, Larbi A, Hirokawa K, Mocchegiani E, Lesourds B, Castle S, Wikby A, Franceschi C, Pawelec G. Immunosupportive therapies in aging. Clin Interv Aging 2008; 2:33-54. [PMID: 18044074 PMCID: PMC2684090 DOI: 10.2147/ciia.2007.2.1.33] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The primary role of the immune system is to protect the organism against pathogens, but age-associated alterations to immunity increase the susceptibility of the elderly to infectious disease. The exact nature of these changes is still controversial, but the use of screening procedures, such as the SENIEUR protocol to exclude underlying illness, helped to better characterize the changes actually related to physiological aging rather than pathology. It is generally agreed that the most marked changes occur in the cellular immune response reflecting profound alterations in T cells. Much of this is due to thymic involution as well as changes in the proportions of T cell subpopulations resulting from antigen exposure, and altered T cell activation pathways. However, a body of data indicates that innate immune responses, including the critical bridge between innate and adaptive immunity, and antigen presenting capacity are not completely resistant to senescence processes. The consequences of all these alterations are an increased incidence of infections, as well as possibly cancers, autoimmune disorders, and chronic inflammatory diseases. The leading question is what, if anything, can we do to prevent these deleterious changes without dangerously dysregulating the precarious balance of productive immunity versus immunopathology? There are many potential new therapeutic means now available to modulate immunosenescence and many others are expected to be available shortly. One main problem in applying these experimental therapies is ethical: there is a common feeling that as ageing is not a disease; the elderly are not sick and therefore do not require adventurous therapies with unpredictable side-effects in mostly frail individuals. Animal models are not helpful in this context. In this chapter we will first briefly review what we think we know about human immunosenescence and its consequences for the health status of elderly individuals. We will then discuss possible interventions that might one day become applicable in an appropriate ethical environment.
Collapse
Affiliation(s)
- Tamas Fülöp
- Research Center on Aging, Immunology Program, Geriatric Division, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kaposi AS, Veress G, Vásárhelyi B, Macardle P, Bailey S, Tulassay T, Treszl A. Cytometry-acquired calcium-flux data analysis in activated lymphocytes. Cytometry A 2008; 73:246-53. [DOI: 10.1002/cyto.a.20518] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Abstract
The discovery that a single-nucleotide polymorphism (SNP) in lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene, is associated with type 1 diabetes (T1D) has now been verified by numerous studies and has been expanded to rheumatoid arthritis, juvenile rheumatoid arthritis (JRA), systemic lupus erythematosus, Graves' disease, generalized vitiligo and other human autoimmune diseases. In this paper, we discuss the association of PTPN22 with autoimmunity, the biochemistry of the PTPN22-encoded phosphatase, and the molecular mechanism(s) by which the disease-predisposing allele contributes to the development of human disease.
Collapse
MESH Headings
- Alleles
- Autoimmune Diseases/enzymology
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmunity
- Genetic Predisposition to Disease
- Humans
- Polymorphism, Single Nucleotide
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/chemistry
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Torkel Vang
- The Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
41
|
Morton AM, McManus B, Garside P, Mowat AM, Harnett MM. Inverse Rap1 and Phospho-ERK Expression Discriminate the Maintenance Phase of Tolerance and Priming of Antigen-Specific CD4+ T Cells In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:8026-34. [DOI: 10.4049/jimmunol.179.12.8026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Razani-Boroujerdi S, Boyd RT, Dávila-García MI, Nandi JS, Mishra NC, Singh SP, Pena-Philippides JC, Langley R, Sopori ML. T cells express alpha7-nicotinic acetylcholine receptor subunits that require a functional TCR and leukocyte-specific protein tyrosine kinase for nicotine-induced Ca2+ response. THE JOURNAL OF IMMUNOLOGY 2007; 179:2889-98. [PMID: 17709503 DOI: 10.4049/jimmunol.179.5.2889] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute and chronic effects of nicotine on the immune system are usually opposite; acute treatment stimulates while chronic nicotine suppresses immune and inflammatory responses. Nicotine acutely raises intracellular calcium ([Ca(2+)](i)) in T cells, but the mechanism of this response is unclear. Nicotinic acetylcholine receptors (nAChRs) are present on neuronal and non-neuronal cells, but while in neurons, nAChRs are cation channels that participate in neurotransmission; their structure and function in nonexcitable cells are not well-defined. In this communication, we present evidence that T cells express alpha7-nAChRs that are critical in increasing [Ca(2+)](i) in response to nicotine. Cloning and sequencing of the receptor from human T cells showed a full-length transcript essentially identical to the neuronal alpha7-nAChR subunit (>99.6% homology). These receptors are up-regulated and tyrosine phosphorylated by treatment with nicotine, anti-TCR Abs, or Con A. Furthermore, knockdown of the alpha7-nAChR subunit mRNA by RNA interference reduced the nicotine-induced Ca(2+) response, but unlike the neuronal receptor, alpha-bungarotoxin and methyllycaconitine not only failed to block, but also actually raised [Ca(2+)](i) in T cells. The nicotine-induced release of Ca(2+) from intracellular stores in T cells did not require extracellular Ca(2+), but, similar to the TCR-mediated Ca(2+) response, required activation of protein tyrosine kinases, a functional TCR/CD3 complex, and leukocyte-specific tyrosine kinase. Moreover, CD3zeta and alpha7-nAChR co-immunoprecipitated with anti-CD3zeta or anti-alpha7-nAChR Abs. These results suggest that in T cells, alpha7-nAChR, despite its close sequence homology with neuronal alpha7-nAChR, fails to form a ligand-gated Ca(2+) channel, and that the nicotine-induced rise in [Ca(2+)](i) in T cells requires functional TCR/CD3 and leukocyte-specific tyrosine kinase.
Collapse
MESH Headings
- Aconitine/analogs & derivatives
- Aconitine/pharmacology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bungarotoxins/pharmacology
- CD3 Complex/metabolism
- Calcium/metabolism
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Humans
- Immunoprecipitation
- Jurkat Cells
- Leukocytes/enzymology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Neurons/metabolism
- Nicotine/pharmacology
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-fyn/metabolism
- Pyridines/metabolism
- Pyridines/pharmacology
- RNA, Small Interfering/pharmacology
- Rats
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- Seddigheh Razani-Boroujerdi
- Immunology Division, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Ageing is a complex process that negatively impacts the development of the immune system and its ability to function. The mechanisms that underlie these age-related defects are broad and range from defects in the haematopoietic bone marrow to defects in peripheral lymphocyte migration, maturation and function. The thymus is a central lymphoid organ responsible for production of naïve T cells, which play a vital role in mediating both cellular and humoral immunity. Chronic involution of the thymus gland is thought to be one of the major contributing factors to loss of immune function with increasing age. It has recently been demonstrated that thymic atrophy is mediated by a shift from a stimulatory to a suppressive cytokine microenvironment. In this review we present an overview of the morphological, cellular and biochemical changes that have been implicated in the decline of thymic and peripheral immune function with ageing. We conclude with the clinical implications of age-associated immunosenescence to vaccine development for tumours and infectious disease. A fundamental understanding of the complex mechanisms by which ageing attenuates immune function will enable translational research teams to develop new therapies and vaccines specifically aimed at overcoming these defects in immunological function in the aged.
Collapse
Affiliation(s)
- AL Gruver
- Duke University Human Vaccine Institute and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - LL Hudson
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - GD Sempowski
- Duke University Human Vaccine Institute and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Correspondence to: GD Sempowski, DUMC Box 3258, Research Park Building I, Room 113, Research Drive, Durham, NC 27710, USA. E-mail:
| |
Collapse
|
44
|
Szczepankiewicz A, Breborowicz A, Skibińska M, Wiłkość M, Tomaszewska M, Hauser J. Association analysis of tyrosine kinase FYN gene polymorphisms in asthmatic children. Int Arch Allergy Immunol 2007; 145:43-7. [PMID: 17703099 DOI: 10.1159/000107465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 06/18/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND FYN is nonreceptor tyrosine kinase that represents the earliest detectable signaling response after antigen-activated inflammatory cells. Studies in animal models of allergic asthma have shown that inhibitors of tyrosine kinases exert an anti-inflammatory effect. In the FYN gene, several polymorphisms have been described. There have, however, been no studies analyzing the impact of FYN gene polymorphisms on the course and severity of asthma. The aim of this study was to analyze the possible relationship between three polymorphisms (-93A/G, Intron10+37C/T and Ex12+894T/G) in the FYN gene and asthma. METHODS We analyzed 120 pediatric asthmatic patients aged from 6 to 18 years. The diagnosis of allergic asthma was based on clinical manifestation, lung function test and positive skin prick tests and/or an increased IgE level. The control group consisted of 187 healthy subjects. The polymorphisms were genotyped with use of the PCR-RFLP method. RESULTS We observed an association of the -93A/G polymorphism and the presence of asthma (p = 0.014 for genotypes and p = 0.019 for alleles) and in the subgroup of 55 patients with severe asthma (p = 0.042 for genotypes and p = 0.021 for alleles). We also found an association of the Ex12+894T/G polymorphism in the whole group analyzed (p = 0.067 for genotypes and p = 0.024 for alleles), but not in the subgroup with severe asthma. For the Intron10+37T/C polymorphism, we did not find a significant difference between the whole group of asthmatic patients and the control group nor between the subgroup with severe asthma and the control group. In the linkage disequilibrium analysis, we observed a modest linkage between -93A/G and Intron10+37T/C polymorphisms (lod = 18.7, D' = 0.62, 95% CI: 0.51-0.71, r2 = 0.29); however, it was not strong enough to generate any haplotypes. CONCLUSIONS The results may suggest a relationship between the FYN polymorphisms and allergic asthma.
Collapse
Affiliation(s)
- Aleksandra Szczepankiewicz
- Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
45
|
Tomoiu A, Larbi A, Fortin C, Dupuis G, Fulop T. Do membrane rafts contribute to human immunosenescence? Ann N Y Acad Sci 2007; 1100:98-110. [PMID: 17460168 DOI: 10.1196/annals.1395.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aging is associated with an alteration of the immune response called immunosenescence. It is now well accepted that all parts of the immune system, the adaptive as well as the innate, undergo immunosenescence. However, the adaptive immune response and especially T cell functions are the most affected by aging. Aging is associated with profound changes in lymphocytes subpopulations, however, the functional changes within these subsets are more important to elucidate. Indeed, T cells present functional modifications resulting in a decreased clonal expansion and interleukin-2 (IL-2) production. So there should be an alteration in the activation process of T cells with aging involving the T cell receptor (TCR) and CD28 receptor signaling cascades. The alterations in membrane rafts composition and function can underline this altered activation of T cells with aging and then contribute to human immunosenescence. The experimental data in favor of this hypothesis will be reviewed.
Collapse
Affiliation(s)
- Andru Tomoiu
- Research Center on Aging, Immunology Program, Geriatric Division, Faculty of Medicine, University of Sherbrooke, 1036 rue Belvedere sud, Sherbrooke J1H 4C4, Quebec, Canada
| | | | | | | | | |
Collapse
|
46
|
Bandyopadhyay G, De A, Laudanski K, Li F, Lentz C, Bankey P, Miller-Graziano C. Negative signaling contributes to T-cell anergy in trauma patients. Crit Care Med 2007; 35:794-801. [PMID: 17255857 DOI: 10.1097/01.ccm.0000256847.61085.a5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Maintenance of postinjury T-lymphocyte immune paralysis or anergy could result from failure to activate costimulatory receptors during T-cell receptor activation and/or from chronic stimulation of a competing set of elevated corepressor receptors. Our objective was to assess whether elevated posttrauma T-lymphocyte surface expression of corepressor receptors was associated with immunodepressed lymphocyte responses and corresponded to increased inhibitory and decreased activating signal transduction molecules. DESIGN Prospective observational study. SETTING University trauma intensive care unit and research laboratory. PATIENTS Sixty-one severe thermal and mechanical trauma patients. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Isolated trauma patients' and controls' peripheral blood T cells were assayed for negative and positive costimulation receptor expression. These receptor expression levels were compared (flow cytometry) between the two groups and correlated to T-cell levels of inhibitory and activating signal transduction molecules and proliferation capacity. Patients' proliferation hyporesponsive (anergic) T cells had increased expression of novel inhibitory receptors (corepressors) PD-1 (p < .05) and CD47 (p < .05) vs. patients' T-cell proliferation competent or controls' T cells. Patients' T-cell CD152 (CTLA-4) expression was also elevated vs. controls. Only patients' anergic T cells had simultaneously increased levels of the inhibitory signal transduction proteins, c-Cbl, a ubiquitin-ligase (p < .01) and SHP-1, a phosphatase (p < .01), concomitant to depressed phosphorylation of the activating signal kinases Erk, Zap70, and CD3Euro. T-cell receptor complex phosphorylation and activation of the interleukin-2 pivotal transcriptional complex protein CREB were also simultaneously depressed as c-Cbl and SHP-1 were elevated. CONCLUSIONS Up-regulated corepressor receptor expression is novelly shown to characterize trauma patients' anergic T cells and correlate with predominance of inhibitory overactivating signal transduction molecules during T-cell stimulation. This could contribute to postinjury immunosuppression.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- University of Rochester Medical Center, Department of Surgery, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Kovaiou RD, Grubeck-Loebenstein B. Age-associated changes within CD4+ T cells. Immunol Lett 2006; 107:8-14. [PMID: 16949678 DOI: 10.1016/j.imlet.2006.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 07/21/2006] [Accepted: 07/21/2006] [Indexed: 11/16/2022]
Abstract
As individuals age their ability to respond and clear pathogens declines, leading to a greater incidence and severity of infectious diseases. Additionally, the efficacy of vaccines is frequently decreased in elderly persons. Increased susceptibility to infections and reduced protection after vaccination reflect the impact of age-related changes on the immune system. The immune system undergoes a wide range of changes with increasing age. The aim of this review is to summarize cellular and molecular aspects of aging CD4(+) T cells. CD4(+) T cells play an essential role in mediating both humoral and cellular immune responses. Therefore, age-associated dysfunctions within CD4(+) T cells have a strong clinical impact. Improving our understanding of the aged CD4(+) T cells, in particular but also of the aged immune system in general, is crucial for developing effective prevention and treatment programs which will facilitate healthy aging and improve the quality of life of the elderly population.
Collapse
Affiliation(s)
- Rania D Kovaiou
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | | |
Collapse
|
48
|
Fulop T, Larbi A, Wikby A, Mocchegiani E, Hirokawa K, Pawelec G. Dysregulation of T-cell function in the elderly : scientific basis and clinical implications. Drugs Aging 2006; 22:589-603. [PMID: 16038574 DOI: 10.2165/00002512-200522070-00005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The function of the immune system is to maintain body integrity by defending against infections, cancers, autoimmune diseases and inflammation-related chronic diseases. The immune response is known to become defective with aging, leading to decreased longevity and appearance of age-related disease. The most important changes occur in T-cell immunity, and are manifested particularly as altered clonal expansion of cells of limited antigen specificity. The causes of these alterations are multifactorial, and include thymic involution, T-cell subset changes and signal transduction alterations. The clinical consequences of these changes are not well defined, except for their extremely important negative impact on defence against infections, especially by new pathogens, and decreased responses to vaccination. Considering the public health consequences of decreased immune competence in old age, strategies for immune response modulation are desirable to decrease the health burden for the elderly and improve their quality of life.
Collapse
Affiliation(s)
- Tamas Fulop
- Immunology Program, Geriatric Division, Research Center on Aging, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
We recently discovered that a single-nucleotide polymorphism (SNP) in the lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene on chromosome 1p13, correlates strongly with the incidence of type 1 diabetes (T1D) in two independent populations. This findings has now been verified by numerous studies and it has been expanded to rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus, Graves' disease, generalized vitiligo and other autoimmune disease. Here we review the genetics of the SNP and its association with autoimmunity, discuss the function of the phosphatase in signaling, the biochemistry of the disease-predisposing allele, and the possible mechanisms by which PTPN22 contributes to the development of human disease.
Collapse
Affiliation(s)
- Nunzio Bottini
- Institute for Genetic Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States
| | | | | | | |
Collapse
|
50
|
Sharabiani MTA, Siermala M, Lehtinen TO, Vihinen M. Dynamic covariation between gene expression and proteome characteristics. BMC Bioinformatics 2005; 6:215. [PMID: 16131395 PMCID: PMC1236912 DOI: 10.1186/1471-2105-6-215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 08/30/2005] [Indexed: 02/07/2023] Open
Abstract
Background Cells react to changing intra- and extracellular signals by dynamically modulating complex biochemical networks. Cellular responses to extracellular signals lead to changes in gene and protein expression. Since the majority of genes encode proteins, we investigated possible correlations between protein parameters and gene expression patterns to identify proteome-wide characteristics indicative of trends common to expressed proteins. Results Numerous bioinformatics methods were used to filter and merge information regarding gene and protein annotations. A new statistical time point-oriented analysis was developed for the study of dynamic correlations in large time series data. The method was applied to investigate microarray datasets for different cell types, organisms and processes, including human B and T cell stimulation, Drosophila melanogaster life span, and Saccharomyces cerevisiae cell cycle. Conclusion We show that the properties of proteins synthesized correlate dynamically with the gene expression profile, indicating that not only is the actual identity and function of expressed proteins important for cellular responses but that several physicochemical and other protein properties correlate with gene expression as well. Gene expression correlates strongly with amino acid composition, composition- and sequence-derived variables, functional, structural, localization and gene ontology parameters. Thus, our results suggest that a dynamic relationship exists between proteome properties and gene expression in many biological systems, and therefore this relationship is fundamental to understanding cellular mechanisms in health and disease.
Collapse
Affiliation(s)
| | - Markku Siermala
- Institute of Medical Technology, FI-33014 University of Tampere, Finland
| | - Tommi O Lehtinen
- Institute of Medical Technology, FI-33014 University of Tampere, Finland
| | - Mauno Vihinen
- Institute of Medical Technology, FI-33014 University of Tampere, Finland
- Research Unit, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|