1
|
Zhuge Z, McCann Haworth S, Nihlén C, Carvalho LRR, Heuser SK, Kleschyov AL, Nasiell J, Cortese-Krott MM, Weitzberg E, Lundberg JO, Carlström M. Red blood cells from endothelial nitric oxide synthase-deficient mice induce vascular dysfunction involving oxidative stress and endothelial arginase I. Redox Biol 2023; 60:102612. [PMID: 36681048 PMCID: PMC9868875 DOI: 10.1016/j.redox.2023.102612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND & AIMS Nitric oxide bioactivity (NO) from endothelial NO synthase (eNOS) importantly contributes to the maintenance of vascular homeostasis, and reduced eNOS activity has been associated with cardiovascular disease. Emerging evidence suggests interaction(s) between red blood cells (RBCs) and the endothelium in vascular control; however, the specific role of RBC eNOS is less clear. We aimed to investigate the hypothesis that a lack of RBC eNOS induces endothelial dysfunction. METHODS & RESULTS RBCs from global eNOS knockout (KO) and wildtype (WT) mice were co-incubated ex vivo overnight with healthy mouse aortic rings, followed by functional and mechanistic analyses of endothelium-dependent and independent relaxations. RBCs from eNOS KO mice induced endothelial dysfunction and vascular oxidative stress, whereas WT RBC did not. No differences were observed for endothelium-independent relaxations. This eNOS KO RBC-induced endothelial dysfunctional phenotype was prevented by concomitant co-incubation with reactive oxygen species scavenger (TEMPOL), arginase inhibitor (nor-NOHA), NO donor (detaNONOate) and NADPH oxidase 4 (NOX4) inhibitor. Moreover, vessels from endothelial cell-specific arginase 1 KO mice were resistant to eNOS KO-RBC-induced endothelial dysfunction. Finally, in mice aortae co-incubated with RBCs from women with preeclampsia, we observed a significant reduction in endothelial function compared to when using RBCs from healthy pregnant women or from women with uncomplicated gestational hypertension. CONCLUSIONS RBCs from mice lacking eNOS, and patients with preeclampsia, induce endothelial dysfunction in adjacent blood vessels. Thus, RBC-derived NO bioactivity acts to prevent induction of vascular oxidative stress occurring via RBC NOX4-derived ROS in a vascular arginase-dependent manner. Our data highlight the intrinsic protective role of RBC-derived NO bioactivity in preventing the damaging potential of RBCs. This provides novel insight into the functional relationship between RBCs and the vasculature in health and cardiovascular disease, including preeclampsia.
Collapse
Affiliation(s)
- Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah McCann Haworth
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carina Nihlén
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrei L. Kleschyov
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Nasiell
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden,Department of Obstetrics and Gynecology, Danderyd Hospital, Stockholm, Sweden
| | - Miriam M. Cortese-Krott
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022; 11:cells11223704. [PMID: 36429131 PMCID: PMC9688146 DOI: 10.3390/cells11223704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.
Collapse
|
3
|
Notariale R, Infantino R, Palazzo E, Manna C. Erythrocytes as a Model for Heavy Metal-Related Vascular Dysfunction: The Protective Effect of Dietary Components. Int J Mol Sci 2021; 22:6604. [PMID: 34203038 PMCID: PMC8235350 DOI: 10.3390/ijms22126604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Heavy metals are toxic environmental pollutants associated with severe ecological and human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore, following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary components is also discussed.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
4
|
Yeong MS, Hee MS, Choon CH. Characterization of High-Ornithine-Producing Weissella koreensis DB1 Isolated from Kimchi and Its Application in Rice Bran Fermentation as a Starter Culture. Foods 2020; 9:E1545. [PMID: 33114563 PMCID: PMC7693252 DOI: 10.3390/foods9111545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
High-ornithine-producing Weissella koreensis DB1 were isolated from kimchi. Ornithine is produced from arginine via the intracellular arginine deiminase pathway in microorganisms; thus, high cell growth is important for producing ornithine in large quantities. In this study, excellent W. koreensis DB1 growth (A600: 5.15-5.39) was achieved in de Man, Rogosa, and Sharpe (MRS) medium supplemented with 1.0-3.0% arginine (pH 5.0) over 24-48 h at 30 °C, and the highest ornithine (15,059.65 mg/L) yield was obtained by culture in MRS containing 3.0% arginine for 48 h. W. koreensis DB1 was further investigated as a functional starter culture for rice bran fermentation. After 48 h of fermentation at 30 °C, the fermented rice bran was freeze-dried and ground. The prepared fermented rice bran contained 43,074.13 mg/kg of ornithine and 27,336.37 mg/kg of citrulline, which are used as healthcare supplements due to their beneficial effects. Furthermore, the organoleptic quality of the fermented rice bran was significantly improved, and the fermented product contained viable cells (8.65 log CFU/mL) and abundant dietary fiber. In addition, an investigation of its safety status showed that it has no harmful characteristics. These results indicate that the fermented rice bran product produced is a promising functional food candidate.
Collapse
Affiliation(s)
| | | | - Chang Hae Choon
- Kimchi Research Center, Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (M.S.Y.); (M.S.H.)
| |
Collapse
|
5
|
Pernow J, Mahdi A, Yang J, Zhou Z. Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovasc Res 2020; 115:1596-1605. [PMID: 31198931 DOI: 10.1093/cvr/cvz156] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/07/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The primary role of red blood cells (RBCs) is to transport oxygen to the tissues and carbon dioxide to the lungs. However, emerging evidence suggests an important role of the RBC beyond being just a passive carrier of the respiratory gases. The RBCs are of importance for redox balance and are actively involved in the regulation of vascular tone, especially during hypoxic and ischaemic conditions by the release of nitric oxide (NO) bioactivity and adenosine triphosphate. The role of the RBC has gained further interest after recent discoveries demonstrating a markedly altered function of the cell in several pathological conditions. Such alterations include increased adhesion capability, increased formation of reactive oxygen species as well as altered protein content and enzymatic activities. Beyond signalling increased oxidative stress, the altered function of RBCs is characterized by reduced export of NO bioactivity regulated by increased arginase activity. Of further importance, the altered function of RBCs has important implications for several cardiovascular disease conditions. RBCs have been shown to induce endothelial dysfunction and to increase cardiac injury during ischaemia-reperfusion in diabetes mellitus. Finally, this new knowledge has led to novel therapeutic possibilities to intervene against cardiovascular disease by targeting signalling in the RBC. These novel data open up an entirely new view on the underlying pathophysiological mechanisms behind the cardiovascular disease processes in diabetes mellitus mediated by the RBC. This review highlights the current knowledge regarding the role of RBCs in cardiovascular regulation with focus on their importance for cardiovascular dysfunction in pathological conditions and therapeutic possibilities for targeting RBCs in cardiovascular disease.
Collapse
Affiliation(s)
- John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Vitak T, Yurkiv B, Wasser S, Nevo E, Sybirna N. Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus. World J Diabetes 2017; 8:187-201. [PMID: 28572880 PMCID: PMC5437617 DOI: 10.4239/wjd.v8.i5.187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/13/2017] [Accepted: 03/12/2017] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is the third most common non-infectious disease leading to early disability and high mortality. Moreover, the number of patients is growing every year. The main symptom of DM is hyperglycemia. Increased levels of blood glucose activate polyol, hexosamine, and protein kinase metabolic pathways cause the intensification of non-enzymatic glycosylation and nitration of macromolecules. This, in turn, leads to the development of oxidative and nitrative stresses and secondary complications, such as different kinds of micro- and macroangiopathies. Metabolic disorders caused by insulin deficiency in diabetes significantly impede the functioning of a homeostasis system, which change the physical, biochemical, morphological, and functional properties of blood cells. As a result, the oxygen-transport function of red blood cells (RBCs), rheological properties of the blood, and functions of immunocompetent cells as well as the process of apoptosis are primarily affected. Modern pharmacotherapy focuses on the search for new preparations that aim to decrease blood glucose levels. Undesirable side effects and adverse reactions caused by synthetic medicines led to the search and investigation of new preparations of natural origin. Medicinal mushrooms play an important role among such new preparations. They are a source of a large number of high- and low-molecular compounds with pronounced biological effects. Our investigations show pronounced hypoglycemic and anti-anemic action of submerged cultivated mycelium powder of medicinal mushrooms Agaricus brasiliensis (A. brasiliensis) and Ganoderma lucidum (G. lucidum) on streptozotocin-induced DM in rats. Also, we showed that mycelium powders have membrane protective properties as evidenced by the redistribution of RBC populations towards the growth of full functional cell numbers. Normalization of parameters of leukocyte formula and suppression of apoptosis of white blood cells in diabetic rats treated with A. brasiliensis and G. lucidum mycelia indicates pronounced positive effects of these strains of mushrooms. Thus, the use of medicinal mushrooms for treatment of DM and in prevention development of its secondary complications might be a new effective approach of this disease's cure. This article is aimed at summarizing and analyzing the literature data and basic achievements concerning DM type 1 treatment using medicinal mushrooms and showing the results obtained in our research.
Collapse
|
7
|
Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 2015; 72:4561-75. [PMID: 26390975 PMCID: PMC4628887 DOI: 10.1007/s00018-015-2021-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.
Collapse
Affiliation(s)
- Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Lauren Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
8
|
The red blood cell: a new key player in cardiovascular homoeostasis? Focus on the nitric oxide pathway. Biochem Soc Trans 2015; 42:996-1000. [PMID: 25109992 DOI: 10.1042/bst20140122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RBCs (red blood cells) have a fundamental role in the regulation of vascular homoeostasis thanks to the ability of these cells to carry O2 (oxygen) between respiratory surfaces and metabolizing tissues and to release vasodilator compounds, such as ATP and NO (nitric oxide), in response to tissue oxygenation. More recently it has been shown that RBCs are also able to produce NO endogenously as they express a functional NOS (nitric oxide synthase), similar to the endothelial isoform. In addition, RBCs carry important enzymes and molecules involved in L-arginine metabolism, such as arginase, NO synthesis inhibitors and the cationic amino acid transporters. Altogether these findings strongly support the role of these cells as producers, vehicles and scavengers of NO, therefore affecting several physiological processes such as blood rheology and cell adhesion. Consequently, the importance of alterations in the L-arginine/NO metabolic pathway induced by specific conditions, e.g. oxidative stress, in different pathological settings have been investigated. In the present review we discuss the role of RBCs in vascular homoeostasis, focusing our attention on the importance of the NO pathway alterations in cardiovascular diseases and their relationship to major risk factors.
Collapse
|
9
|
Gambaryan S, Tsikas D. A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from L-arginine or nitrite? Amino Acids 2015; 47:1779-93. [PMID: 25929585 DOI: 10.1007/s00726-015-1986-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023]
Abstract
The NO/sGC/cGMP/PKG system is one of the most powerful mechanisms responsible for platelet inhibition. In numerous publications, expression of functional NO synthase (NOS) in human and mouse platelets has been reported. Constitutive and inducible NOS isoforms convert L-arginine to NO and L-citrulline. The importance of this pathway in platelets and in endothelial cells for the regulation of platelet function is discussed since decades. However, there are serious doubts in the literature concerning both expression and functionality of NOS in platelets. In this review, we aim to present and critically evaluate recent data concerning NOS expression and function in platelets, and to especially emphasise potential pitfalls of detection of NOS proteins and measurement of NOS activity. Prevailing analytical problems are probably the main sources of contradictory data on occurrence, activity and function of NOS in platelets. In this review we also address issues of how these problems can be resolved. NO donors including organic nitrites (RONO) and organic nitrate (RONO2) are inhibitors of platelet activation. Endogenous inorganic nitrite (NO2 (-)), the product of NO autoxidation, and exogenous inorganic nitrite are increasingly investigated as NO donors in the circulation. The role of platelets in the generation of NO from nitrite is also discussed.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Prosp, St. Petersburg, 194223, Russia,
| | | |
Collapse
|
10
|
Zwemer CF, Davenport RD, Gomez-Espina J, Blanco-Gonzalez E, Whitesall SE, D'Alecy LG. Packed red blood cells are an abundant and proximate potential source of nitric oxide synthase inhibition. PLoS One 2015; 10:e0119991. [PMID: 25793525 PMCID: PMC4368738 DOI: 10.1371/journal.pone.0119991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/26/2015] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE We determined, for packed red blood cells (PRBC) and fresh frozen plasma, the maximum content, and ability to release the endogenous nitric oxide synthase (NOS) inhibitors asymmetric dimethylarginine (ADMA) and monomethylarginine (LNMMA). BACKGROUND ADMA and LNMMA are near equipotent NOS inhibitors forming blood's total NOS inhibitory content. The balance between removal from, and addition to plasma determines their free concentrations. Removal from plasma is by well-characterized specific hydrolases while formation is restricted to posttranslational protein methylation. When released into plasma they can readily enter endothelial cells and inhibit NOS. Fresh rat and human whole blood contain substantial protein incorporated ADMA however; the maximum content of ADMA and LNMMA in PRBC and fresh frozen plasma has not been determined. METHODS We measured total (free and protein incorporated) ADMA and LNMMA content in PRBCs and fresh frozen plasma, as well as their incubation induced release, using HPLC with fluorescence detection. We tested the hypothesis that PRBC and fresh frozen plasma contain substantial inhibitory methylarginines that can be released chemically by complete in vitro acid hydrolysis or physiologically at 37°C by enzymatic blood proteolysis. RESULTS In vitro strong-acid-hydrolysis revealed a large PRBC reservoir of ADMA (54.5 ± 9.7 µM) and LNMMA (58.9 ± 28.9 μM) that persisted over 42-d at 6° or -80°C. In vitro 5h incubation at 37°C nearly doubled free ADMA and LNMMNA concentration from PRBCs while no change was detected in fresh frozen plasma. CONCLUSION The compelling physiological ramifications are that regardless of storage age, 1) PRBCs can rapidly release pathologically relevant quantities of ADMA and LNMMA when incubated and 2) PRBCs have a protein-incorporated inhibitory methylarginines reservoir 100 times that of normal free inhibitory methylarginines in blood and thus could represent a clinically relevant and proximate risk for iatrogenic NOS inhibition upon transfusion.
Collapse
Affiliation(s)
- Charles F. Zwemer
- Department of Biology, Dickinson College, Carlisle, PA, United States of America
- * E-mail:
| | - Robertson D. Davenport
- Pathology Department, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Juan Gomez-Espina
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Elisa Blanco-Gonzalez
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Steven E. Whitesall
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Louis G. D'Alecy
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
11
|
Harisa GI, Mariee AD, Abo-Salem OM, Attiaa SM. Erythrocyte nitric oxide synthase as a surrogate marker for mercury-induced vascular damage: the modulatory effects of naringin. ENVIRONMENTAL TOXICOLOGY 2014; 29:1314-1322. [PMID: 23650045 DOI: 10.1002/tox.21862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
In this study, endothelial nitric oxide synthase activity and nitric oxide (NO) production by human erythrocytes in the presence and absence of mercuric chloride (HgCl2 ), L-arginine (L-ARG), N ω- nitro-L-arginine methyl ester (L-NAME), and naringin (NAR) were investigated. In addition, the levels of reduced glutathione (GSH) and related enzymes were estimated in erythrocytes hemolysate. The protein carbonyl content (PCC) and thiobarbituric acid-reactive substances (TBARS) levels were also determined. The results of this study revealed that the treatment of erythrocytes with either HgCl2 or L-NAME induced a significant decrease in NOS activity and nitrite levels compared with control cells. Furthermore, mercury exposure significantly increased the levels of PCC and TBARS but reduced the GSH level. The activities of glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, and glutathione-S-transferase (GST) were inhibited. The exposure of erythrocytes to HgCl2 in combination with L-ARG, NAR, or both ameliorated the investigated parameters compared with erythrocytes incubated with HgCl2 alone. These results indicate that mercury exposure decreased both erythrocyte NOS activity and nitrite production, and that these parameters might be indicative of mercury exposure. The data also suggest that concomitant treatment with NAR can restore NO bioavailability through either its metal-chelating properties or its antioxidant activity.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Biochemistry, College of Pharmacy, Al-Azhar University (Boys), Cairo, Egypt
| | | | | | | |
Collapse
|
12
|
Abstract
Reports on expression and functionality of nitric oxide synthase (NOS) activity in human blood platelets and erythrocytes are contradictory. We used a specific gas chromatography-mass spectrometry (GC-MS) method to detect NOS activity in human platelets. The method measures simultaneously [(15)N]nitrite and [(15)N]nitrate formed from oxidized (15)N-labeled nitric oxide ((15)NO) upon its NOS-catalyzed formation from the substrate l-[guanidino-(15)N2]-arginine. Using this GC-MS assay, we did not detect functional NOS in non-stimulated platelets and in intact platelets activated by various agonists (adenosine diphosphate, collagen, thrombin, or von Willebrand factor) or lysed platelets. l-[guanidino-nitro]-Arginine-inhibitable NOS activity was measured after addition of recombinant human endothelial NOS to lysed platelets. Previous and recent studies from our group challenge expression and functionality of NOS in human platelets and erythrocytes.
Collapse
Affiliation(s)
- Anke Böhmer
- Hannover Medical School, Institute of Clinical Pharmacology , Hannover , Germany
| | | | | |
Collapse
|
13
|
El-Bassossy HM, El-Fawal R, Fahmy A, Watson ML. Arginase inhibition alleviates hypertension in the metabolic syndrome. Br J Pharmacol 2014; 169:693-703. [PMID: 23441715 DOI: 10.1111/bph.12144] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that arginase inhibition alleviates hypertension associated with in a diabetic animal model. Here, we investigated the protective effect of arginase inhibition on hypertension in metabolic syndrome. EXPERIMENTAL APPROACH Metabolic syndrome was induced in rats by administration of fructose (10% in drinking water) for 12 weeks to induce vascular dysfunction. Three arginase inhibitors (citrulline, norvaline and ornithine) were administered daily in the last 6 weeks of study before and tail BP was recorded in conscious animals. Concentration response curves for phenylephrine (PE), KCl and ACh in addition to ACh-induced NO generation were obtained in thoracic aorta rings. Serum glucose, insulin, uric acid and lipid profile were determined as well as reactive oxygen species (ROS) and arginase activity. KEY RESULTS Arginase activity was elevated in metabolic syndrome while significantly inhibited by citrulline, norvaline or ornithine treatment. Metabolic syndrome was associated with elevations in systolic and diastolic BP, while arginase inhibition significantly reduced elevations in diastolic and systolic BP. Metabolic syndrome increased vasoconstriction responses of aorta to PE and KCl and decreased vasorelaxation to ACh, while arginase inhibition completely prevented impaired responses to ACh. In addition, arginase inhibition prevented impaired NO generation and exaggerated ROS formation in metabolic syndrome. Furthermore, arginase inhibition significantly reduced hyperinsulinaemia and hypertriglyceridaemia without affecting hyperuricaemia or hypercholesterolaemia associated with metabolic syndrome. CONCLUSIONS AND IMPLICATIONS Arginase inhibition alleviates hypertension in metabolic syndrome directly through endothelial-dependent relaxation/NO signalling protection and indirectly through inhibition of insulin resistance and hypertriglyceridaemia.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|
14
|
Wang S, Fang F, Jin WB, Wang X, Zheng DAW. Assessment of serum arginase I as a type 2 diabetes mellitus diagnosis biomarker in patients. Exp Ther Med 2014; 8:585-590. [PMID: 25009624 PMCID: PMC4079409 DOI: 10.3892/etm.2014.1768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/20/2014] [Indexed: 12/02/2022] Open
Abstract
Previous studies have reported that levels of serum arginase I are increased in certain diseases. However, the exact association between arginase I and diabetes mellitus (DM) has yet to be determined. The aim of the present study was to investigate the correlation between arginase I activity and DM to determine whether arginase I activity may be used as a diagnostic biomarker for DM. DM was induced by a streptozotocin injection, while the arginase inhibitor, citrulline, was administered daily. Serum levels of glucose, reactive oxygen species (ROS) and arginase I activity were analyzed, and quantitative polymerase chain reaction and western blot analysis were performed to detect the mRNA and protein expression levels of arginase I, respectively. In addition, western blot analysis was used to determine the protein expression of the Tie 2 receptor. Pearson’s analysis was used to determine the correlation between arginase I activity and Tie 2 expression, while concordance analysis was performed using the Cohen’s test to obtain the Kappa statistic. The results demonstrated that serum arginase I activity levels in the rats with DM were significantly elevated compared with the control group, and positively correlated with the blood glucose levels. In addition, the blood glucose and ROS levels were increased significantly in the rats with DM. Arginase I mRNA and protein expression levels were significantly elevated in the diabetic rats when compared with the control group, and Tie 2 expression levels increased and were shown to correlate with arginase I activity in the diabetic rats. In addition, arginase I activity was shown to correlate with glucose intolerance and post-load glucose values. Good concordance was observed between arginase I activity and the clinical diagnosis for DM (κ=0.876; P<0.001). Therefore, the results indicated that arginase I may function as a diagnostic biomarker for DM rats model.
Collapse
Affiliation(s)
- Song Wang
- Department of Endocrinology, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| | - Fang Fang
- Department of Computed Tomography, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| | - Wen-Bo Jin
- Department of Endocrinology, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| | - Xia Wang
- Department of Nursing, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| | - DA-Wei Zheng
- Department of Respiratory Medicine, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| |
Collapse
|
15
|
Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol 2014; 2:251-8. [PMID: 24494200 PMCID: PMC3909820 DOI: 10.1016/j.redox.2013.12.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 02/06/2023] Open
Abstract
Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as "NO sinks", but exert an erythrocrine function - i.e an endocrine function of RBC - by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Modrego J, Azcona L, Martín-Palacios N, Zamorano-León JJ, Segura A, Rodríguez P, Guerra R, Tamargo J, Macaya C, López-Farré AJ. Platelet content of nitric oxide synthase 3 phosphorylated at Serine 1177 is associated with the functional response of platelets to aspirin. PLoS One 2013; 8:e82574. [PMID: 24376548 PMCID: PMC3869699 DOI: 10.1371/journal.pone.0082574] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To analyse if platelet responsiveness to aspirin (ASA) may be associated with a different ability of platelets to generate nitric oxide (NO). PATIENTS/METHODS Platelets were obtained from 50 patients with stable coronary ischemia and were divided into ASA-sensitive (n = 26) and ASA-resistant (n = 24) using a platelet functionality test (PFA-100). RESULTS ASA-sensitive platelets tended to release more NO (determined as nitrite + nitrate) than ASA-resistant platelets but it did not reach statistical significance. Protein expression of nitric oxide synthase 3 (NOS3) was higher in ASA-sensitive than in ASA-resistant platelets but there were no differences in the platelet expression of nitric oxide synthase 2 (NOS2) isoform. The highest NOS3 expression in ASA-sensitive platelets was independent of the presence of T-to-C mutation at nucleotide position -786 (T(-786) → C) in the NOS3-coding gene. However, platelet content of phosphorylated NOS3 at Serine (Ser)(1177), an active form of NOS3, was higher in ASA-sensitive than in ASA-resistant platelets. The level of platelet NOS3 Ser(1177) phosphorylation was positively associated with the closure time in the PFA-100 test. In vitro, collagen failed to stimulate the aggregation of ASA-sensitive platelets, determined by lumiaggregometry, and it was associated with a significant increase (p = 0.018) of NOS3 phosphorylation at Ser(1177). On the contrary, collagen stimulated the aggregation of ASA-resistant platelets but did not significantly modify the platelet content of phosphorylated NOS3 Ser(1177). During collagen stimulation the release of NO from ASA-sensitive platelets was significantly enhanced but it was not modified in ASA-resistant platelets. CONCLUSIONS Functional platelet responsiveness to ASA was associated with the platelet content of phosphorylated NOS3 at Ser(1177).
Collapse
Affiliation(s)
- Javier Modrego
- Cardiovascular Research Unit, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Azcona
- Cardiovascular Research Unit, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
- Hemodynamic Unit, Cardiology Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Naiara Martín-Palacios
- Cardiovascular Research Unit, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - José J. Zamorano-León
- Cardiovascular Research Unit, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Segura
- Health Science Institute, Talavera de la Reina, Toledo, Spain
| | - Pablo Rodríguez
- Cardiovascular Research Unit, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Reddy Guerra
- Hemodynamic Unit, Cardiology Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Tamargo
- Pharmacology Department, School of Medicine, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Macaya
- Cardiovascular Research Unit, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
- Hemodynamic Unit, Cardiology Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio J. López-Farré
- Cardiovascular Research Unit, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Abstract
S-nitrosothiols (RSNO) are involved in post-translational modifications of many proteins analogous to protein phosphorylation. In addition, RSNO have many physiological roles similar to nitric oxide ((•)NO), which are presumably involving the release of (•)NO from the RSNO. However, the much longer life span in biological systems for RSNO than (•)NO suggests a dominant role for RSNO in mediating (•)NO bioactivity. RSNO are detected in plasma in low nanomolar levels in healthy human subjects. These RSNO are believed to be redirecting the (•)NO to the vasculature. However, the mechanism for the formation of RSNO in vivo has not been established. We have reviewed the reactions of (•)NO with oxygen, metalloproteins, and free radicals that can lead to the formation of RSNO and have evaluated the potential for each mechanism to provide a source for RSNO in vivo.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Rm No. 5B131, Baltimore, MD, 21224, USA,
| | | |
Collapse
|
18
|
Yang J, Gonon AT, Sjöquist PO, Lundberg JO, Pernow J. Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity. Proc Natl Acad Sci U S A 2013; 110:15049-54. [PMID: 23980179 PMCID: PMC3773799 DOI: 10.1073/pnas.1307058110] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The theory that red blood cells (RBCs) generate and release nitric oxide (NO)-like bioactivity has gained considerable interest. However, it remains unclear whether it can be produced by endothelial NO synthase (eNOS), which is present in RBCs, and whether NO can escape scavenging by hemoglobin. The aim of this study was to test the hypothesis that arginase reciprocally controls NO formation in RBCs by competition with eNOS for their common substrate arginine and that RBC-derived NO is functionally active following arginase blockade. We show that rodent and human RBCs contain functional arginase 1 and that pharmacological inhibition of arginase increases export of eNOS-derived nitrogen oxides from RBCs under basal conditions. The functional importance was tested in an ex vivo model of myocardial ischemia-reperfusion injury. Inhibitors of arginase significantly improved postischemic functional recovery in rat hearts if administered in whole blood or with RBCs in plasma. By contrast, arginase inhibition did not improve postischemic recovery when administered with buffer solution or plasma alone. The protective effect of arginase inhibition was lost in the presence of a NOS inhibitor. Moreover, hearts from eNOS(-/-) mice were protected when the arginase inhibitor was given with blood from wild-type donors. In contrast, when hearts from wild-type mice were given blood from eNOS(-/-) mice, the arginase inhibitor failed to protect against ischemia-reperfusion. These results strongly support the notion that RBCs contain functional eNOS and release NO-like bioactivity. This process is under tight control by arginase 1 and is of functional importance during ischemia-reperfusion.
Collapse
Affiliation(s)
| | - Adrian T. Gonon
- Divison of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden; and
| | | | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - John Pernow
- Divison of Cardiology, Department of Medicine, and
| |
Collapse
|
19
|
Nitric oxide synthetic pathway in red blood cells is impaired in coronary artery disease. PLoS One 2013; 8:e66945. [PMID: 23940508 PMCID: PMC3734222 DOI: 10.1371/journal.pone.0066945] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
Background All the enzymatic factors/cofactors involved in nitric oxide (NO) metabolism have been recently found in red blood cells. Increased oxidative stress impairs NO bioavailability and has been described in plasma of coronary artery disease (CAD) patients. The aim of the study was to highlight a potential dysfunction of the metabolic profile of NO in red blood cells and in plasma from CAD patients compared with healthy controls. Methods We determined L-arginine/NO pathway by liquid-chromatography tandem mass spectrometry and high performance liquid chromatography methods. The ratio of oxidized and reduced forms of glutathione, as index of oxidative stress, was measured by liquid-chromatography tandem mass spectrometry method. NO synthase expression and activity were evaluated by immunofluorescence staining and ex-vivo experiments of L-[15N2]arginine conversion to L-[15N]citrulline respectively. Results Increased amounts of asymmetric and symmetric dimethylarginines were found both in red blood cells and in plasma of CAD patients in respect to controls. Interestingly NO synthase expression and activity were reduced in CAD red blood cells. In contrast, oxidized/reduced glutathione ratio was increased in CAD and was associated to arginase activity. Conclusion Our study analyzed for the first time the whole metabolic pathway of L-arginine/NO, both in red blood cells and in plasma, highlighting an impairment of NO pathway in erythrocytes from CAD patients, associated with decreased NO synthase expression/activity and increased oxidative stress.
Collapse
|
20
|
Grau M, Pauly S, Ali J, Walpurgis K, Thevis M, Bloch W, Suhr F. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One 2013; 8:e56759. [PMID: 23424675 PMCID: PMC3570529 DOI: 10.1371/journal.pone.0056759] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Background Red blood cells (RBC) possess a nitric oxide synthase (RBC-NOS) whose activation depends on the PI3-kinase/Akt kinase pathway. RBC-NOS-produced NO exhibits important biological functions like maintaining RBC deformability. Until now, the cellular target structure for NO, to exert its influence on RBC deformability, remains unknown. In the present study we analyzed the modification of RBC-NOS activity by pharmacological treatments, the resulting influence on RBC deformability and provide first evidence for possible target proteins of RBC-NOS-produced NO in the RBC cytoskeletal scaffold. Methods/Findings Blood from fifteen male subjects was incubated with the NOS substrate L-arginine to directly stimulate enzyme activity. Direct inhibition of enzyme activity was induced by L-N5-(1-Iminoethyl)-ornithin (L-NIO). Indirect stimulation and inhibition of RBC-NOS were achieved by applying insulin and wortmannin, respectively, substances known to affect PI3-kinase/Akt kinase pathway. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were additionally applied as NO positive and negative controls, respectively. Immunohistochemical staining was used to determine phosphorylation and thus activation of RBC-NOS. As a marker for NO synthesis nitrite was measured in plasma and RBCs using chemiluminescence detection. S-nitrosylation of erythrocyte proteins was determined by biotin switch assay and modified proteins were identified using LC-MS. RBC deformability was determined by ektacytometry. The data reveal that activated RBC-NOS leads to increased NO production, S-nitrosylation of RBC proteins and RBC deformability, whereas RBC-NOS inhibition resulted in contrary effects. Conclusion/Significance This study first-time provides strong evidence that RBC-NOS-produced NO modifies RBC deformability through direct S-nitrosylation of cytoskeleton proteins, most likely α- and β-spectrins. Our data, therefore, gain novel insights into biological functions of RBC-NOS by connecting impaired RBC deformability abilities to specific posttranslational modifications of RBC proteins. By identifying likely NO-target proteins in RBC, our results will stimulate new therapeutic approaches for patients with microvascular disorders.
Collapse
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Böhmer A, Niemann J, Schwedhelm KS, Meyer HH, Gambaryan S, Tsikas D. Potential pitfalls with the use of acetoxy (CH3COO) drugs in studies on nitric oxide synthase in platelets. Nitric Oxide 2013; 28:14-6. [DOI: 10.1016/j.niox.2012.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 01/22/2023]
|
22
|
Is Endothelial Nitric Oxide Synthase a Moonlighting Protein Whose Day Job is Cholesterol Sulfate Synthesis? Implications for Cholesterol Transport, Diabetes and Cardiovascular Disease. ENTROPY 2012. [DOI: 10.3390/e14122492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
El-Bassossy HM, El-Fawal R, Fahmy A. Arginase inhibition alleviates hypertension associated with diabetes: Effect on endothelial dependent relaxation and NO production. Vascul Pharmacol 2012; 57:194-200. [DOI: 10.1016/j.vph.2012.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/16/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
|
24
|
Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood 2012; 120:4229-37. [PMID: 23007404 DOI: 10.1182/blood-2012-07-442277] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-(3)H-arginine to L-(3)H-citrulline in a Ca(2+)/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.
Collapse
|
25
|
|
26
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
27
|
Pellegrini M, Manconi B, Olianas A, Sanna MT, Meloni C, Pirastru M, Mereu P, Leoni G, Masala B, Manca L. Functional properties of the newly observed (G)γ-chain fetal hemoglobin variant Hb F-Monserrato-Sassari (HBG2:c.280T>C) or [(G)γ93 (F9) Cys→Arg]. Biochim Biophys Acta Gen Subj 2011; 1810:1272-7. [PMID: 21763402 DOI: 10.1016/j.bbagen.2011.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 06/11/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND HbF-Monserrato-Sassari is a newly discovered abnormal fetal hemoglobin observed in an apparently normal newborn baby during a hemoglobinopathies survey at birth in North Sardinian population. METHODS Electrophoretic analysis of the cord blood lysate evidenced for an abnormal tetramer due to a mutated fetal globin chain. Electrospray ionisation-mass spectrometry and gene sequencing were used to identify the mutation. Oxygen binding ability of the variant Hb was determined. RESULTS Sequencing of the γ globin genes revealed the TGT→CGT transition at codon 93 in one of the two (G)γ genes, which leads to the Arg for Cys amino acid replacement at position 9 of the F α-helix. The amino acid substitution was confirmed by mass spectrometric analysis of the globin chains. Since modifications or substitutions at position β93 are known to affect the arrangement of a salt bridge at the α1β2 sliding contacts that are crucial for subunit cooperativity, the functional properties of the variant were studied to evaluate the effect of the replacement at the same position in the γ globin chain. With respect to normal HbF, the variant showed a significant increase in oxygen affinity and a slight decrease of both Bohr effect and cooperativity. GENERAL SIGNIFICANCE Result indicates a key role of the Cys γ93 residue for subunit cooperativity in the T→R transition of the HbF tetramer. Substitutions at the F9 position of the (G)γ globin may result in stabilization of the high affinity R-state of the Hb tetramer. Because of the loss of Cys γ93 residue, this variant is considered to be potentially compromised in nitric oxide transport.
Collapse
|
28
|
Gkaliagkousi E, Corrigall V, Becker S, de Winter P, Shah A, Zamboulis C, Ritter J, Ferro A. Decreased platelet nitric oxide contributes to increased circulating monocyte-platelet aggregates in hypertension. Eur Heart J 2009; 30:3048-54. [DOI: 10.1093/eurheartj/ehp330] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
29
|
Chen K, Pittman RN, Popel AS. Hemorrhagic shock and nitric oxide release from erythrocytic nitric oxide synthase: a quantitative analysis. Microvasc Res 2009; 78:107-18. [PMID: 19285090 PMCID: PMC2782400 DOI: 10.1016/j.mvr.2009.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/21/2009] [Accepted: 02/23/2009] [Indexed: 01/15/2023]
Abstract
A large loss of blood during hemorrhage can result in profound shock, a state of hypotension associated with hemodynamic abnormalities. One of the hypotheses to account for this collapse of homeostasis is that the production of nitric oxide (NO), a gas molecule that dilates blood vessels, is significantly impaired during hemorrhage, resulting in a mismatch between O(2) delivery and the metabolic activity in the tissues. NO can be released from multiple sources in the vasculature. Recent studies have shown that erythrocytes express functional endothelial nitric oxide synthase (NOS3), which potentially serves as an intraluminal NO source. NO delivery from this source is complex: erythrocytes are not only NO producers but also act as potent sinks because of the high affinity of NO for hemoglobin. To test our hypothesis that the loss of erythrocytic NOS3 during hemorrhage contributes to NO deficiency-related shock, we have constructed a multicellular computational model that simulates NO production and transport to allow us to quantify the loss of NO under different hemorrhagic conditions. Our model shows that: (1) during mild hemorrhage and subsequent hemodilution (hematocrit >30%), NO from this intraluminal source is only slightly decreased in the vascular smooth muscle, but the NO level is significantly reduced under severe hemorrhagic conditions (hematocrit <30%); (2) whether a significant amount of NO from this source can be delivered to vascular smooth muscle is strongly dependent on the existence of a protective mechanism for NO delivery; (3) if the expression level of NOS3 on erythrocytes is similar to that on endothelial cells, we estimate approximately 13 pM NO at the vascular smooth muscle from this source when such a protective mechanism is involved. This study provides a basis for detailed studies to characterize the impairment of NO release pathways during hemorrhage and yield important insights for the development of resuscitation methods.
Collapse
Affiliation(s)
- Kejing Chen
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 613 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
30
|
Abstract
Nitric oxide (NO) is a potent regulator of vascular tone and hemorheology. The signaling function of NO was largely unappreciated until approximately 30 years ago, when the endothelium-derived relaxing factor (EDRF) was identified as NO. Since then, NO from the endothelium has been considered the major source of NO in the vasculature and a contributor to the paracrine regulation of blood hemodynamics. Because NO is highly reactive, and its half-life in vivo is only a few seconds (even less in the bloodstream), any NO bioactivity derived from the intraluminal region has traditionally been considered insignificant. However, the availability and significance of NO signaling molecules derived from intraluminal sources, particularly erythrocytes, have gained attention in recent years. Multiple potential sources of NO bioactivity have been identified in the blood, but unresolved questions remain concerning these proposed sources and how the NO released via these pathways actually interacts with intravascular and extravascular targets. Here we review the hypotheses that have been put forward concerning blood-borne NO and its contribution to hemorheological properties and the regulation of vascular tone, with an emphasis on the quantitative aspects of these processes.
Collapse
Affiliation(s)
- Kejing Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
31
|
Čokić VP, Schechter AN. Chapter 7 Effects of Nitric Oxide on Red Blood Cell Development and Phenotype. Curr Top Dev Biol 2008; 82:169-215. [DOI: 10.1016/s0070-2153(07)00007-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Fischer UM, Schindler R, Brixius K, Mehlhorn U, Bloch W. Extracorporeal Circulation Activates Endothelial Nitric Oxide Synthase in Erythrocytes. Ann Thorac Surg 2007; 84:2000-3. [DOI: 10.1016/j.athoracsur.2007.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 02/07/2023]
|
33
|
Abstract
Hydroxyurea, a drug widely used for treating myeloproliferative diseases, has also been approved for the treatment of sickle cell disease by raising fetal hemoglobin (HbF). We have shown that nitric oxide (NO) and the soluble guanylyl cyclase (sGC) pathways are involved in hydroxyurea induction of HbF levels in erythroid progenitor cells (EPCs). We demonstrate now that during erythroid differentiation, endothelial NO synthase mRNA and protein levels decline steadily, as does the production of NO derivatives and cyclic adenosine monophosphate (cAMP) levels, but guanosine 3',5'-cyclic monophosphate (cGMP) levels are stable. Hydroxyurea increased intracellular cGMP levels and cAMP levels in EPCs. The NO donor, DEANONOate, induced much higher cGMP levels, but reduced cAMP levels. Hydroxyurea (1 mM) induced production of approximately 45 pM cGMP/minute/ng of purified sGC, similar to induction by 1 muM DEANONOate. We found that hydroxyurea and ProliNONOate produced iron-nitrosyl derivatives of sGC. Thus, we confirm that hydroxyurea can directly interact with the deoxy-heme of sGC, presumably by a free-radical nitroxide pathway, and activate cGMP production. These data add to an expanding appreciation of the role of hydroxyurea as an inducer of the NO/cGMP pathway in EPCs. These mechanisms may also be involved in the cytostatic effects of hydroxyurea, as well as the induction of HbF.
Collapse
|
34
|
Rougé C, Des Robert C, Robins A, Le Bacquer O, Volteau C, De La Cochetière MF, Darmaun D. Manipulation of citrulline availability in humans. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1061-7. [PMID: 17901164 DOI: 10.1152/ajpgi.00289.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To determine whether circulating citrulline can be manipulated in vivo in humans, and, if so, whether citrulline availability affects the levels of related amino acids, nitric oxide, urinary citrulline, and urea nitrogen, 10 healthy volunteers were studied on 3 separate days: 1) under baseline conditions; 2) after a 24-h treatment with phenylbutyrate (0.36 g.kg(-1).day(-1)), a glutamine "trapping" agent; and 3) during oral L-citrulline supplementation (0.18 g.kg(-1).day(-1)), in randomized order. Plasma, erythrocyte (RBC), and urinary citrulline concentrations were determined by gas chromatography-mass spectrometry at 3-h intervals between 1100 and 2000 on each study day. Regardless of treatment, RBC citrulline was lower than plasma citrulline, with an RBC-to-plasma ratio of 0.60 +/- 0.04, and urinary citrulline excretion accounted for <1% of the citrulline load filtered by kidney. Phenylbutyrate induced an approximately 7% drop in plasma glutamine (P = 0.013), and 18 +/- 14% (P < 0.0001) and 19 +/- 17% (P < 0.01) declines in plasma and urine citrulline, respectively, with no alteration in RBC citrulline. Oral L-citrulline administration was associated with 1) a rise in plasma, urine, and RBC citrulline (39 +/- 4 vs. 225 +/- 44 micromol/l, 0.9 +/- 0.3 vs. 6.2 +/- 3.8 micromol/mmol creatinine, and 23 +/- 1 vs. 52 +/- 9 micromol/l, respectively); and 2) a doubling in plasma arginine level, without altering blood urea or urinary urea nitrogen excretion, and thus enhanced nitrogen balance. We conclude that 1) depletion of glutamine, the main precursor of citrulline, depletes plasma citrulline; 2) oral citrulline can be used to enhance systemic citrulline and arginine availability, because citrulline is bioavailable and very little citrulline is lost in urine; and 3) further studies are warranted to determine the mechanisms by which citrulline may enhance nitrogen balance in vivo in humans.
Collapse
Affiliation(s)
- Carole Rougé
- UMR 1280, Physiologie des Adaptations Nutritionnelles, Centre de Recherche en Nutrition Humaine, Hotel-Dieu Hospital, Nantes Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Nahavandi M, Tavakkoli F, Millis RM, Wyche MQ, Habib MJ, Tavakoli N. Effects of hydroxyurea and L-arginine on the production of nitric oxide metabolites in cultures of normal and sickle erythrocytes. ACTA ACUST UNITED AC 2007; 11:291-4. [PMID: 17178670 DOI: 10.1080/10245330600921998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous in vitro studies suggest that erythrocytes may be a source of nitric oxide (NO) produced by nitric oxide synthase (NOS) or by oxyhemoglobin-mediated oxidation of hydroxyurea (HU). This study was performed to determine the roles of HU and NOS in the production of NO by normal and sickle erythrocytes. Red blood cells (RBCs) from normal adult hemoglobin (HbAA) and homozygous sickle cell subjects (HbSS) were incubated with PBS containing 0.2 mM hydrogen peroxide (control) for 2 h at 37 degrees C in the presence and absence of l-arginine, the substrate for NOS, and with l-arginine plus HU in the presence and absence of l-NMMA, a specific inhibitor of NOS. The nitrate and nitrite metabolites of NO, expressed as [NOx], were measured. [NOx] in the HbAA and HbSS RBC cultures was not significantly different in the presence and absence of 1.0 mM l-arginine (p>0.1). [NOx] in the HbAA and HbSS cultures treated with a clinically relevant dose of HU (1.0 mM) plus 1.0 mM l-arginine was significantly greater than that in controls incubated with PBS and with l-arginine p < 0.01. However, [NOx] in the HbAA and HbSS cultures treated with 50 microg/ml l-NMMA was not significantly different than that in the cultures treated with HU plus l-arginine in the absence of l-NMMA. These findings suggest that NOx production by erythrocytes may be increased by treatment with HU and may not be decreased by inhibiting NOS. Therefore, we conclude that a therapeutic dose of HU may increase the plasma concentration of NO by a mechanism that does not require erythrocytes NOS activity.
Collapse
Affiliation(s)
- Masoud Nahavandi
- Departments of Anesthesiology, Howard University College of Medicine, Washington, DC 20059, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Sureda A, Tauler P, Aguiló A, Fuentespina E, Córdova A, Tur JA, Pons A. Blood cell NO synthesis in response to exercise. Nitric Oxide 2006; 15:5-12. [PMID: 16376593 DOI: 10.1016/j.niox.2005.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/10/2005] [Accepted: 11/14/2005] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is important for the maintenance of cardiovascular homeostasis and is also involved in immunity and inflammation. The aim of our work was to determine the effects of intense exercise on plasma and blood cell NO handling. Nine voluntary male professional cyclists participated in the study. Blood samples were taken in basal conditions and 3h after finishing a mountain cycling stage. Exercise-induced neutrophilia, lymphopenia, and hemolysis. Plasma and erythrocytes maintained basal nitrite levels, whereas neutrophils and lymphocytes decreased nitrite concentration after intense exercise. Basal iNOS levels and SOD activity were similar in neutrophils and lymphocytes. iNOS levels and SOD activity dropped in neutrophils and rose in lymphocytes after exercise. Arginase activity rose only in lymphocytes. Neutrophil nitrite was correlated with SOD activity and iNOS levels, but not in lymphocytes. iNOS levels were correlated with SOD in both neutrophils and lymphocytes. Intense exercise maintained plasma basal arginine and ornithine concentration, and decreased citrulline concentration. Intense exercise induced important changes in NO handling in neutrophils and lymphocytes, yet the basal picture was maintained in erythrocytes.
Collapse
Affiliation(s)
- Antoni Sureda
- Laboratori de Ciències de l'Activitat Física, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, Crtra. Valldemossa Km 7.5. E-07122-Palma de Mallorca, Illes Balears, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Nitric oxide (NO) generated from L-arginine by NO synthases in the endothelium and in other cells plays a central role in several aspects of vascular biology and has been linked to many regulatory functions in mammalian cells. Whereas for a long time the signaling actions of NO in the vasculature have been thought to be short-lived as a result of the rapid reaction of NO with hemoglobin, recent studies changed the biochemical thinking of NO. NO is not anymore the paracrine agent with only local effects, but, like a hormone, it disseminates throughout the body. Thus, a circulating pool of NO exists, opening new considerable pharmacological and therapeutical avenues in the diagnosis and therapy of cardiovascular diseases. In this review we briefly discuss the major routes of NO metabolism and transport in the mammalian circulation, considering plasma, red blood cell and tissue compartments separately, with a special focus on the implication of the circulating NO pool in clinical research.
Collapse
Affiliation(s)
- Tienush Rassaf
- University Hospital Aachen, Department of Cardiology and Pulmonary Diseases, Aachen, Germany
| | | | | |
Collapse
|
38
|
Sureda A, Batle JM, Tauler P, Ferrer MD, Tur JA, Pons A. Vitamin C supplementation influences the antioxidant response and nitric oxide handling of erythrocytes and lymphocytes to diving apnea. Eur J Clin Nutr 2006; 60:838-46. [PMID: 16482080 DOI: 10.1038/sj.ejcn.1602388] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We have investigated the influence of vitamin C diet supplementation on the antioxidant response and nitrite levels in lymphocytes and erythrocytes during diving apnea. SUBJECTS Seven male professional apnea divers participated in a double blind crossover study. Divers were randomly assigned to either vitamin C supplemented or placebo groups. The subjects did not take any other supplements than the ones provided for this study. INTERVENTION One group was supplemented with vitamin C capsules (1 g per day) for 7 days while the other group took a placebo composed of lactose. The usual dietary habits of participants were assessed using a self-reported 7-days 24-h recall before the day of the study. Blood samples were taken under basal conditions, immediately after diving apnea for 4 h and after 1 h of recovery. RESULTS Catalase activity increased in erythrocytes (23%) and superoxide dismutase increased in lymphocytes (35%) during the recovery only in the placebo group. Lymphocyte ascorbate levels increased in the supplemented group after diving (85%) and maintained high at recovery. Plasma nitrite levels increased about twofold in both groups during the recovery. Erythrocyte nitrite levels increased after diving (50%) and about twofold during the recovery in the supplemented group. Nitrite levels and iNOS levels in lymphocytes were higher in the placebo group than in the supplemented during the recovery. Erythrocyte carbonyl derivates were unchanged in all situations. CONCLUSIONS Vitamin C supplementation influenced the antioxidant response and NO handling in erythrocytes and lymphocytes to the oxidative stress induced by hypoxia-reoxygenation.
Collapse
Affiliation(s)
- A Sureda
- Laboratori de Ciències de l'Activitat Física, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Barvitenko NN, Adragna NC, Weber RE. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 2005; 15:1-18. [PMID: 15665511 DOI: 10.1159/000083634] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2004] [Indexed: 11/19/2022] Open
Abstract
Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate.
Collapse
Affiliation(s)
- Nadezhda N Barvitenko
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | | | | |
Collapse
|
40
|
Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol 2005; 24:419-27. [PMID: 15551380 DOI: 10.1002/jat.993] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetylcholine has been detected in human blood. Acetylcholine receptors and acetylcholinesterase are present in erythrocyte membranes. We tested the acetylcholine and choline effects on nitric oxide metabolites (NOx), namely nitrites and nitrates, and observed if they are dependent on interactions with muscarinic receptors and acetylcholinesterase. Human erythrocyte suspensions were incubated with acetylcholine and choline in the absence or presence of 10 microM atropine or 10 microM velnacrine maleate. The nitrite and nitrate concentrations were determined by the Griess method. Acetylcholine or choline increased NOx control concentrations (P <0.001). The nitrite concentrations decreased in the presence of atropine or velnacrine maleate (P <0.03). The nitrate concentrations only decreased when velnacrine maleate was incubated with acetylcholine or choline (10 microM, P <0.03). These results demonstrated that acetylcholine and choline modulate nitric oxide metabolites on erythrocytes and this effect is mediated by interactions with erythrocyte membrane muscarinic receptors and membrane enzyme acetylcholinesterase. A hypothesis for the signal transduction mechanism has been discussed for acetylcholinesterase and muscarinic receptor (M1) participation.
Collapse
Affiliation(s)
- Filomena A Carvalho
- Instituto de Bioquímica, Faculdade de Medicina de Lisboa, Unidade de Biopatologia Vascular, Instituto de Medicina Molecular, 1649-028 Lisboa, Portugal.
| | | | | | | |
Collapse
|
41
|
Abstract
Nitric oxide (NO) was identified as a physiological mediator of vascular tone in 1987. NO produced by endothelial cells causes vasodilatation and also inhibits platelet aggregation and leucocyte adhesion. Red cells metabolize NO to nitrate but may possibly carry and release, or even produce, NO in hypoxic conditions. NO physiology may have important implications for transfusion medicine, ranging from adverse effects of haemoglobin substitutes to preservation of stored platelets and to detrimental effects of stored red cells.
Collapse
Affiliation(s)
- J P Wallis
- Department of Haematology, Freeman Hospital, High Heaton, Newcastle Upon Tyne, UK.
| |
Collapse
|
42
|
Bor-Kucukatay M, Wenby RB, Meiselman HJ, Baskurt OK. Effects of nitric oxide on red blood cell deformability. Am J Physiol Heart Circ Physiol 2003; 284:H1577-84. [PMID: 12521942 DOI: 10.1152/ajpheart.00665.2002] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability.
Collapse
Affiliation(s)
- Melek Bor-Kucukatay
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070 Turkey
| | | | | | | |
Collapse
|
43
|
Clementi ME, Orsini F, Schininà ME, Noia G, Giardina B. Effect of nitric oxide on the transport and release of oxygen in fetal blood. Biochem Biophys Res Commun 2003; 302:515-9. [PMID: 12615064 DOI: 10.1016/s0006-291x(03)00118-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is well known that nitric oxide (NO), the most important vasodilator agent, plays an important role in lowering vascular resistance in the human umbilical-placental circulation and that its deficiency is related to the pathogenesis of pre-eclamptic disorder. Besides it has recently been demonstrated that human hemoglobin (HbA) is able to transport nitric oxide, as S-nitrosohemoglobin (SNO-Hb), from the arterial to the venous blood. In the present study we examine the functional properties of the adult and fetal nitrosated hemoglobins to see if the double transport of oxygen and NO may influence the fetal oxygenation and the relation between maternal and fetal blood. Our results show that S-nitrosation significantly increases the oxygen affinity of the adult Hb (HbA) with respect to native protein (no-nitrosated) while the functional properties of HbF are less influenced. The oxygen affinity modification, found for SNO-HbA, was ascribed to the nitrosation of cysteine beta 93: really, the same residue is also present in the gamma chains of fetal hemoglobin, while the increase of affinity is less evidenced; hence, it is probable that the 39 aminoacidic substitutions between beta and gamma chains allay the effects of S-nitrosation. As regards the physiological modulators (protons, chloride ions, 2,3-diphosphoglyceric acid, and temperature), they influence the oxygen affinity of the two hemoglobins S-nitrosated, in equal mode with respect to the native forms determining the same variation on the oxygen affinity. Hence, our results evidence the fact that the NO release by SNO-HbA "in vivo" would be limited to regions of extremely low oxygen tension (such as hypoxic regions), while in fetus, SNO-HbF would unload nitric oxide and oxygen at pressure values close to normal.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- CNR Institute Chimica del riconoscimento Molecolare, Catholic University, Largo F. Vito 1, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
44
|
Romero JR, Suzuka SM, Nagel RL, Fabry ME. Arginine supplementation of sickle transgenic mice reduces red cell density and Gardos channel activity. Blood 2002; 99:1103-8. [PMID: 11830454 DOI: 10.1182/blood.v99.4.1103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO), essential for maintaining vascular tone, is produced from arginine by nitric oxide synthase. Plasma arginine levels are low in sickle cell anemia, and it is reported here that low plasma arginine is also found in our sickle transgenic mouse model that expresses human alpha, human beta(S), and human beta(S-Antilles) and is homozygous for the mouse beta(major) deletion (S+S-Antilles). S+S-Antilles mice were supplemented with a 4-fold increase in arginine that was maintained for several months. Mean corpuscular hemoglobin concentration (MCHC) decreased and the percent high-density red cells was reduced. Deoxy K(+) efflux is characteristic of red cells in sickle cell disease and contributes to the disease process by increasing the MCHC and rendering the cells more susceptible to polymer formation. This flux versus the room air flux was reduced in S+S-Antilles red cells from an average value of 1.6 +/- 0.3 mmol per liter of red cells x minute (FU) in nonsupplemented mice to 0.9 +/- 0.3 FU (n = 4, P < .02, paired t test) in supplemented mice. In room air, V(max) of the Ca(++)-activated K(+) channel (Gardos) was reduced from 4.1 +/- 0.6 FU (off diet) to 2.6 +/- 0.4 FU (n = 7 and 8, P < .04, t test) in arginine-supplemented mice versus clotrimazole. In conclusion, the major mechanism by which arginine supplementation reduces red cell density (MCHC) in S+S-Antilles mice is by inhibiting the Ca(++)-activated K(+) channel.
Collapse
Affiliation(s)
- José R Romero
- Endocrine-Hypertension Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
45
|
Sakurai M, Higashide T, Takeda H, Shirao Y. Characterization and diabetes-induced impairment of nitric oxide synthase in rat choroid. Curr Eye Res 2002; 24:139-46. [PMID: 12187486 DOI: 10.1076/ceyr.24.2.139.8163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE To examine the nitric oxide (NO) system in the choroid of normal rats and rats with streptozotocin (STZ)-induced diabetes. METHODS We assayed NO synthase (NOS) activity by monitoring the conversion of L-[(14)C] arginine to L-[(14 )C] citrulline, identified the NOS isoforms by immunoblotting, and examined the effects of STZ-induced diabetes on NOS in the rat choroid. RESULTS Calcium-independent NOS activity was insignificant in the choroid of normal and diabetic rats. Choroidal calcium-dependent NOS activity was high and comparable to that in the cerebellum. Neuronal (n) NOS protein in the choroid was found in both the membrane and cytosolic fractions and showed similar subcellular distribution as NOS activity, while endothelial (e) NOS protein in the choroid was present almost solely in the membrane fraction. Total NOS activity (nNOS + eNOS) and protein levels of nNOS and eNOS in the choroid were significantly reduced 6 weeks after the induction of diabetes. CONCLUSIONS The high NOS activity in the choroid measured in vitro appears to come mostly from nNOS. Because choroidal nNOS exists in the parasympathetic perivascular nerve fibers, the decrease in choroidal nNOS in diabetic eyes suggests that the choroid undergoes a diabetes-induced neuronal disorder. Thus, diabetic choroidopathy encompasses diabetic neuropathy and microangiopathy.
Collapse
Affiliation(s)
- Mayumi Sakurai
- Department of Ophthalmology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | |
Collapse
|
46
|
Kang ES, Acchiardo SR, Kang AH. Implications for the role of endogenous nitric oxide inhibitors in hemodialysis hypotension. Free Radic Res 2001; 35:341-65. [PMID: 11697132 DOI: 10.1080/10715760100300871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypotensive episodes during hemodialysis in patients with end-stage renal disease in the absence of inadequate maintenance of the plasma volume, pre-existence of cardiovascular disease, or autonomic nervous system dysfunction is accompanied by increase in the plasma concentrations of the end-products of nitric oxide metabolism, above the levels expected based on the reduction of urea. Factors that can influence the synthesis of nitric oxide or the regulation of the effects of this free radical in patients with chronic renal failure are reviewed. Convergence of these factors and their interactions during the hemodialysis procedure are discussed as the basis for the generation of excessive amounts of nitric oxide that serves as an important contributing factor in the development of symptomatic hypotension.
Collapse
Affiliation(s)
- E S Kang
- Departments of Pediatrics, Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee, USA
| | | | | |
Collapse
|
47
|
Mehta JL, Mehta P, Li D. Nitric oxide synthase in adult red blood cells: vestige of an earlier age or a biologically active enzyme? THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 135:430-1. [PMID: 10850640 DOI: 10.1067/mlc.2000.106802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|