1
|
Guven C, Taskin E, Aydın Ö, Kaya ST, Sevgiler Y. Diazoxide attenuates DOX-induced cardiotoxicity in cultured rat myocytes. Biotech Histochem 2024; 99:113-124. [PMID: 38439686 DOI: 10.1080/10520295.2024.2324368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity is a well known clinical problem, and many investigations have been made of its possible amelioration. We have investigated whether diazoxide (DIA), an agonist at mitochondrial ATP-sensitive potassium channels (mitoKATP), could reverse DOX-induced apoptotic myocardial cell loss, in cultured rat cardiomyocytes. The role of certain proteins in this pathway was also studied. The rat cardiomyocyte cell line (H9c2) was treated with DOX, and also co-treated with DOX and DIA, for 24 h. Distribution of actin filaments, mitochondrial membrane potential, superoxide dismutase (SOD) activity, total oxidant and antioxidant status (TOS and TAS, respectively), and some protein expressions, were assessed. DOX significantly decreased SOD activity, increased ERK1/2 protein levels, and depolarised the mitochondrial membrane, while DIA co-treatment inhibited such changes. DIA co-treatment ameliorated DOX-induced cytoskeletal changes via F-actin distribution and mitoKATP structure. Co-treatment also decreased ERK1/2 and cytochrome c protein levels. Cardiomyocyte loss due to oxidative stress-mediated apoptosis is a key event in DOX-induced cytotoxicity. DIA had protective effects on DOX-induced cardiotoxicity, via mitoKATP integrity, especially with elevated SUR2A levels; but also by a cascade including SOD/AMPK/ERK1/2. Therefore, DIA may be considered a candidate agent for protecting cardiomyocytes against DOX chemotherapy.
Collapse
Affiliation(s)
- Celal Guven
- Department of Biophysics, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Eylem Taskin
- Department of Physiology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Özgül Aydın
- Department of Biology, Institute of Natural and Applied Sciences, Adıyaman University, Adıyaman, Turkey
| | - Salih Tunç Kaya
- Department of Biology, Faculty of Science and Letters, Düzce University, Düzce, Turkey
| | - Yusuf Sevgiler
- Department of Biology, Faculty of Science and Letters, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
2
|
Brown SM, Larsen NK, Thankam FG, Agrawal DK. Fetal cardiomyocyte phenotype, ketone body metabolism, and mitochondrial dysfunction in the pathology of atrial fibrillation. Mol Cell Biochem 2020; 476:1165-1178. [PMID: 33188453 DOI: 10.1007/s11010-020-03980-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Even though hypertension, congestive heart failure, pulmonary disease, and coronary artery disease are the potential risk factors for AF, the underlying molecular pathology is largely unknown. The reversion of the mature cardiomyocytes to fetal phenotype, impaired ketone body metabolism, mitochondrial dysfunction, and the cellular effect of reactive oxygen species (ROS) are the major underlying biochemical events associated with the molecular pathology of AF. On this background, the present manuscript sheds light into these biochemical events in regard to the metabolic derangements in cardiomyocyte leading to AF, especially with respect to structural, contractile, and electrophysiological properties. In addition, the article critically reviews the current understanding, potential demerits, and translational strategies in the management of AF.
Collapse
Affiliation(s)
- Sean M Brown
- Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
3
|
Transit and integration of extracellular mitochondria in human heart cells. Sci Rep 2017; 7:17450. [PMID: 29234096 PMCID: PMC5727261 DOI: 10.1038/s41598-017-17813-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Tissue ischemia adversely affects the function of mitochondria, which results in impairment of oxidative phosphorylation and compromised recovery of the affected organ. The impact of ischemia on mitochondrial function has been extensively studied in the heart because of the morbidity and mortality associated with injury to this organ. As conventional methods to preserve cardiac cell viability and contractile function following ischemia are limited in their efficacy, we developed a unique approach to protect the heart by transplanting respiration-competent mitochondria to the injured region. Our previous animal experiments showed that transplantation of isolated mitochondria to ischemic heart tissue leads to decreases in cell death, increases in energy production, and improvements in contractile function. We also discovered that exogenously-derived mitochondria injected or perfused into ischemic hearts were rapidly internalised by cardiac cells. Here, we used three-dimensional super-resolution microscopy and transmission electron microscopy to determine the intracellular fate of endocytosed exogenous mitochondria in human iPS-derived cardiomyocytes and primary cardiac fibroblasts. We found isolated mitochondria are incorporated into cardiac cells within minutes and then transported to endosomes and lysosomes. The majority of exogenous mitochondria escape from these compartments and fuse with the endogenous mitochondrial network, while some of these organelles are degraded through hydrolysis.
Collapse
|
4
|
Shin B, Cowan DB, Emani SM, Del Nido PJ, McCully JD. Mitochondrial Transplantation in Myocardial Ischemia and Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:595-619. [PMID: 28551809 DOI: 10.1007/978-3-319-55330-6_31] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ischemic heart disease remains the leading cause of death worldwide. Mitochondria are the power plant of the cardiomyocyte, generating more than 95% of the cardiac ATP. Complex cellular responses to myocardial ischemia converge on mitochondrial malfunction which persists and increases after reperfusion, determining the extent of cellular viability and post-ischemic functional recovery. In a quest to ameliorate various points in pathways from mitochondrial damage to myocardial necrosis, exhaustive pharmacologic and genetic tools have targeted various mediators of ischemia and reperfusion injury and procedural techniques without applicable success. The new concept of replacing damaged mitochondria with healthy mitochondria at the onset of reperfusion by auto-transplantation is emerging not only as potential therapy of myocardial rescue, but as gateway to a deeper understanding of mitochondrial metabolism and function. In this chapter, we explore the mechanisms of mitochondrial dysfunction during ischemia and reperfusion, current developments in the methodology of mitochondrial transplantation, mechanisms of cardioprotection and their clinical implications.
Collapse
Affiliation(s)
- Borami Shin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Douglas B Cowan
- Department of Anesthesiology, Division of Cardiac Anesthesia Research, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Sitaram M Emani
- Division of Cardiovascular Critical Care, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, William E. Ladd Professor of Child Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - James D McCully
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, USA.
| |
Collapse
|
5
|
Onukwufor JO, Stevens D, Kamunde C. Combined effects of cadmium, temperature and hypoxia-reoxygenation on mitochondrial function in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:129-141. [PMID: 27893995 DOI: 10.1016/j.aquatox.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/16/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Although aquatic organisms face multiple environmental stressors that may interact to alter adverse outcomes, our knowledge of stressor-stressor interaction on cellular function is limited. We investigated the combined effects of cadmium (Cd), hypoxia-reoxygenation (H-R) and temperature on mitochondrial function. Liver mitochondria from juvenile rainbow trout were exposed to Cd (0-20μM) and H-R (0 and 5min) at 5, 13 and 25°C followed by measurements of mitochondrial Cd load, volume, complex І active (A)↔deactive (D) transition, membrane potential, ROS release and ultrastructural changes. At high temperature Cd exacerbated H-R-imposed reduction of maximal complex I (CI) respiration whereas at low temperature 5 and 10μM stimulated maximal CI respiration post H-R. The basal respiration showed a biphasic response at high temperatures with low Cd concentrations reducing the stimulatory effect of H-R and high concentrations enhancing this effect. At low temperature Cd monotonically enhanced H-R-induced stimulation of basal respiration. Cd and H-R reduced both the P/O ratio and the RCR at all 3 temperatures. Temperature rise alone increased mitochondrial Cd load and toxicity, but combined H-R and temperature exposure reduced mitochondrial Cd load but surprisingly exacerbated the mitochondrial dysfunction. Mitochondrial dysfunction induced by H-R was associated with swelling of the organelle and blocking of conversion of CІ D to A form. However, low amounts of Cd protected against H-R induced swelling and prevented the inhibition of H-R-induced CI D to A transition. Both H-R and Cd dissipated mitochondrial membrane potential Δψm and damaged mitochondrial structure. We observed increased reactive oxygen species (H2O2) release that together with the protection afforded by EGTA, vitamin E and N-acetylcysteine against the Δψm dissipation suggested direct involvement of Cd and oxidative stress. Overall, our findings indicate that mitochondrial sensitivity to Cd toxicity was enhanced by the effects of H-R and temperature, and changes in mitochondrial Cd load did not always explain this effect.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
6
|
Onukwufor JO, Kibenge F, Stevens D, Kamunde C. Hypoxia-reoxygenation differentially alters the thermal sensitivity of complex I basal and maximal mitochondrial oxidative capacity. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:87-94. [DOI: 10.1016/j.cbpa.2016.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
7
|
Cowan DB, Yao R, Akurathi V, Snay ER, Thedsanamoorthy JK, Zurakowski D, Ericsson M, Friehs I, Wu Y, Levitsky S, del Nido PJ, Packard AB, McCully JD. Intracoronary Delivery of Mitochondria to the Ischemic Heart for Cardioprotection. PLoS One 2016; 11:e0160889. [PMID: 27500955 PMCID: PMC4976938 DOI: 10.1371/journal.pone.0160889] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/26/2016] [Indexed: 12/05/2022] Open
Abstract
We have previously shown that transplantation of autologously derived, respiration-competent mitochondria by direct injection into the heart following transient ischemia and reperfusion enhances cell viability and contractile function. To increase the therapeutic potential of this approach, we investigated whether exogenous mitochondria can be effectively delivered through the coronary vasculature to protect the ischemic myocardium and studied the fate of these transplanted organelles in the heart. Langendorff-perfused rabbit hearts were subjected to 30 minutes of ischemia and then reperfused for 10 minutes. Mitochondria were labeled with 18F-rhodamine 6G and iron oxide nanoparticles. The labeled mitochondria were either directly injected into the ischemic region or delivered by vascular perfusion through the coronary arteries at the onset of reperfusion. These hearts were used for positron emission tomography, microcomputed tomography, and magnetic resonance imaging with subsequent microscopic analyses of tissue sections to confirm the uptake and distribution of exogenous mitochondria. Injected mitochondria were localized near the site of delivery; while, vascular perfusion of mitochondria resulted in rapid and extensive dispersal throughout the heart. Both injected and perfused mitochondria were observed in interstitial spaces and were associated with blood vessels and cardiomyocytes. To determine the efficacy of vascular perfusion of mitochondria, an additional group of rabbit hearts were subjected to 30 minutes of regional ischemia and reperfused for 120 minutes. Immediately following regional ischemia, the hearts received unlabeled, autologous mitochondria delivered through the coronary arteries. Autologous mitochondria perfused through the coronary vasculature significantly decreased infarct size and significantly enhanced post-ischemic myocardial function. In conclusion, the delivery of mitochondria through the coronary arteries resulted in their rapid integration and widespread distribution throughout the heart and provided cardioprotection from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Douglas B. Cowan
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (DBC); (JDM)
| | - Rouan Yao
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Vamsidhar Akurathi
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Erin R. Snay
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Jerusha K. Thedsanamoorthy
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - David Zurakowski
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States of America
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Yaotang Wu
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Sidney Levitsky
- Department of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Alan B. Packard
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - James D. McCully
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (DBC); (JDM)
| |
Collapse
|
8
|
Hou S, Shen PP, Zhao MM, Liu XP, Xie HY, Deng F, Feng JC. Mechanism of Mitochondrial Connexin43's Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2016; 17:ijms17050679. [PMID: 27164087 PMCID: PMC4881505 DOI: 10.3390/ijms17050679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 02/08/2023] Open
Abstract
We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. MtCx43, p-mtCx43, protein kinase C (PKC), and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX) and diazoxide (DZX) groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD) groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA) reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists.
Collapse
Affiliation(s)
- Shuai Hou
- Department of Neurology and Neuroscience center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Ping-Ping Shen
- Department of Neurology and Neuroscience center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Ming-Ming Zhao
- Department of Neurology and Neuroscience center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Xiu-Ping Liu
- Department of Neurology and Neuroscience center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Hong-Yan Xie
- Department of Neurology and Neuroscience center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Fang Deng
- Department of Neurology and Neuroscience center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Jia-Chun Feng
- Department of Neurology and Neuroscience center, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
McCully JD, Levitsky S, del Nido PJ, Cowan DB. Mitochondrial transplantation for therapeutic use. Clin Transl Med 2016; 5:16. [PMID: 27130633 PMCID: PMC4851669 DOI: 10.1186/s40169-016-0095-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023] Open
Abstract
Mitochondria play a key role in the homeostasis of the vast majority of the body's cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium is restored, and significantly decrease myocardial contractile function and myocardial cell survival. We hypothesized that the augmentation or replacement of mitochondria damaged by ischemia would provide a mechanism to enhance cellular function and cellular rescue following the restoration of blood flow. To test this hypothesis we have used a model of myocardial ischemia and reperfusion. Our studies demonstrate that the transplantation of autologous mitochondria, isolated from the patient's own body, and then directly injected into the myocardial during early reperfusion augment the function of native mitochondria damaged during ischemia and enhances myocardial post-ischemic functional recovery and cellular viability. The transplanted mitochondria act both extracellularly and intracellularly. Extracellularly, the transplanted mitochondria enhance high energy synthesis and cellular adenosine triphosphate stores and alter the myocardial proteome. Once internalized the transplanted mitochondria rescue cellular function and replace damaged mitochondrial DNA. There is no immune or auto-immune reaction and there is no pro-arrhythmia as a result of the transplanted mitochondria. Our studies and those of others demonstrate that mitochondrial transplantation can be effective in a number of cell types and diseases. These include cardiac and skeletal muscle, pulmonary and hepatic tissue and cells and in neuronal tissue. In this review we discuss the mechanisms leading to mitochondrial dysfunction and the effects on cellular function. We provide a methodology for the isolation of mitochondria to allow for clinical relevance and we discuss the methods we and others have used for the uptake and internalization of mitochondria. We foresee that mitochondrial transplantation will be a valued treatment in the armamentarium of all clinicians and surgeons for the treatment of varied ischemic disorders, mitochondrial diseases and related disorders.
Collapse
Affiliation(s)
- James D. McCully
- />Division of Cardiac Surgery, Boston Children’s Hospital, 300 Longwood Ave., Enders Building, EN 407, Boston, MA 02115 USA
- />Harvard Medical School, Boston, MA USA
| | - Sidney Levitsky
- />Division of Cardiac Surgery, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite 2A, Boston, MA 02115 USA
- />Harvard Medical School, Boston, MA USA
| | - Pedro J. del Nido
- />Division of Cardiac Surgery, Boston Children’s Hospital, 300 Longwood Ave., Enders Building, EN 407, Boston, MA 02115 USA
- />Harvard Medical School, Boston, MA USA
| | - Douglas B. Cowan
- />Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Ave., Endres Building, EN 312, Boston, MA 02115 USA
- />Harvard Medical School, Boston, MA USA
| |
Collapse
|
10
|
Cardiomyocyte Remodeling in Atrial Fibrillation and Hibernating Myocardium: Shared Pathophysiologic Traits Identify Novel Treatment Strategies? BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221599 PMCID: PMC4499626 DOI: 10.1155/2015/587361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia and is associated with a high risk of morbidity and mortality. However, there are limited treatment strategies for prevention of disease onset and progression. Development of novel therapies for primary and secondary prevention of AF is critical and requires improved understanding of the cellular and molecular mechanisms underlying the AF disease process. Translational and clinical studies conducted over the past twenty years have revealed that atrial remodeling in AF shares several important pathophysiologic traits with the remodeling processes exhibited by hibernating myocardium that develop in response to chronic ischemia. These shared features, which include an array of structural, metabolic, and electrophysiologic changes, appear to represent a conserved adaptive myocyte response to chronic stress that involves dedifferentiation towards a fetal phenotype to promote survival. In this review, we discuss the pathophysiology of AF, summarize studies supporting a common remodeling program in AF and hibernating myocardium, and propose future therapeutic implications of this emerging paradigm. Ultimately, better understanding of the molecular mechanisms of atrial myocyte remodeling during the onset of AF and the transition from paroxysmal to persistent stages of the disease may facilitate discovery of new therapeutic targets.
Collapse
|
11
|
Galli GLJ, Lau GY, Richards JG. Beating oxygen: chronic anoxia exposure reduces mitochondrial F1FO-ATPase activity in turtle (Trachemys scripta) heart. ACTA ACUST UNITED AC 2014; 216:3283-93. [PMID: 23926310 DOI: 10.1242/jeb.087155] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The freshwater turtle Trachemys scripta can survive in the complete absence of O2 (anoxia) for periods lasting several months. In mammals, anoxia leads to mitochondrial dysfunction, which culminates in cellular necrosis and apoptosis. Despite the obvious clinical benefits of understanding anoxia tolerance, little is known about the effects of chronic oxygen deprivation on the function of turtle mitochondria. In this study, we compared mitochondrial function in hearts of T. scripta exposed to either normoxia or 2 weeks of complete anoxia at 5°C and during simulated acute anoxia/reoxygenation. Mitochondrial respiration, electron transport chain activities, enzyme activities, proton conductance and membrane potential were measured in permeabilised cardiac fibres and isolated mitochondria. Two weeks of anoxia exposure at 5°C resulted in an increase in lactate, and decreases in ATP, glycogen, pH and phosphocreatine in the heart. Mitochondrial proton conductance and membrane potential were similar between experimental groups, while aerobic capacity was dramatically reduced. The reduced aerobic capacity was the result of a severe downregulation of the F1FO-ATPase (Complex V), which we assessed as a decrease in enzyme activity. Furthermore, in stark contrast to mammalian paradigms, isolated turtle heart mitochondria endured 20 min of anoxia followed by reoxygenation without any impact on subsequent ADP-stimulated O2 consumption (State III respiration) or State IV respiration. Results from this study demonstrate that turtle mitochondria remodel in response to chronic anoxia exposure and a reduction in Complex V activity is a fundamental component of mitochondrial and cellular anoxia survival.
Collapse
Affiliation(s)
- Gina L J Galli
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
12
|
Galli GLJ, Richards JG. Mitochondria from anoxia-tolerant animals reveal common strategies to survive without oxygen. J Comp Physiol B 2014; 184:285-302. [DOI: 10.1007/s00360-014-0806-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
|
13
|
Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 2013; 140:167-75. [PMID: 23792087 DOI: 10.1016/j.pharmthera.2013.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 02/02/2023]
Abstract
Diazoxide has been identified over the past 50years to have a number of physiological effects, including lowering the blood pressure and rectifying hypoglycemia. Today it is used clinically to treat these conditions. More recently, another important mode of action emerged: diazoxide has powerful protective properties against cardiac ischemia. The heart has intrinsic protective mechanisms against ischemia injury; one of which is ischemic preconditioning. Diazoxide mimics ischemic preconditioning. The purpose of this treatise is to review the literature in an attempt to identify the many effectors of diazoxide and discuss how they may contribute to diazoxide's cardioprotective properties. Particular emphasis is placed on the concentration ranges in which diazoxide affects its different targets and how this compares with the concentrations commonly used to study cardioprotection. It is concluded that diazoxide may have several potential effectors that may potentially contribute to cardioprotection, including KATP channels in the pancreas, smooth muscle, endothelium, neurons and the mitochondrial inner membrane. Diazoxide may also affect other ion channels and ATPases and may directly regulate mitochondrial energetics. It is possible that the success of diazoxide lies in this promiscuity and that the compound acts to rebalance multiple physiological processes during cardiac ischemia.
Collapse
Affiliation(s)
- William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, United States; Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
14
|
Cardiac subsarcolemmal and interfibrillar mitochondria display distinct responsiveness to protection by diazoxide. PLoS One 2012; 7:e44667. [PMID: 22973464 PMCID: PMC3433441 DOI: 10.1371/journal.pone.0044667] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/09/2012] [Indexed: 01/11/2023] Open
Abstract
Objective Cardiac subsarcolemmal (SSM) and interfibrillar (IFM) mitochondrial subpopulations possess distinct biochemical properties and differ with respect to their protein and lipid compositions, capacities for respiration and protein synthesis, and sensitivity to metabolic challenge, yet their responsiveness to mitochondrially active cardioprotective therapeutics has not been characterized. This study assessed the differential responsiveness of the two mitochondrial subpopulations to diazoxide, a cardioprotective agent targeting mitochondria. Methods Mitochondrial subpopulations were freshly isolated from rat ventricles and their morphologies assessed by electron microscopy and enzymatic activities determined using standard biochemical protocols with a plate reader. Oxidative phosphorylation was assessed from State 3 respiration using succinate as a substrate. Calcium dynamics and the status of Ca2+-dependent mitochondrial permeability transition (MPT) pore and mitochondrial membrane potential were assessed using standard Ca2+ and TPP+ ion-selective electrodes. Results Compared to IFM, isolated SSM exhibited a higher sensitivity to Ca2+ overload-mediated inhibition of adenosine triphosphate (ATP) synthesis with decreased ATP production (from 375±25 to 83±15 nmol ATP/min/mg protein in SSM, and from 875±39 to 583±45 nmol ATP/min/mg protein in IFM). In addition, SSM exhibited reduced Ca2+-accumulating capacity as compared to IFM (230±13 vs. 450±46 nmol Ca2+/mg protein in SSM and IFM, respectively), suggestive of increased Ca2+ sensitivity of MPT pore opening. Despite enhanced susceptibility to stress, SSM were more responsive to the protective effect of diazoxide (100 μM) against Ca2+ overload-mediated inhibition of ATP synthesis (67% vs. 2% in SSM and IFM, respectively). Conclusion These results provide evidence for the distinct sensitivity of cardiac SSM and IFM toward Ca2+-dependent metabolic stress and the protective effect of diazoxide on mitochondrial energetics.
Collapse
|
15
|
McCarthy J, Lochner A, Opie LH, Sack MN, Essop MF. PKCε promotes cardiac mitochondrial and metabolic adaptation to chronic hypobaric hypoxia by GSK3β inhibition. J Cell Physiol 2011; 226:2457-68. [PMID: 21660969 PMCID: PMC3411281 DOI: 10.1002/jcp.22592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PKCε is central to cardioprotection. Sub-proteome analysis demonstrated co-localization of activated cardiac PKCε (aPKCε) with metabolic, mitochondrial, and cardioprotective modulators like hypoxia-inducible factor 1α (HIF-1α). aPKCε relocates to the mitochondrion, inactivating glycogen synthase kinase 3β (GSK3β) to modulate glycogen metabolism, hypertrophy and HIF-1α. However, there is no established mechanistic link between PKCε, p-GSK3β and HIF1-α. Here we hypothesized that cardiac-restricted aPKCε improves mitochondrial response to hypobaric hypoxia by altered substrate fuel selection via a GSK3β/HIF-1α-dependent mechanism. aPKCε and wild-type (WT) mice were exposed to 14 days of hypobaric hypoxia (45 kPa, 11% O(2)) and cardiac metabolism, functional parameters, p-GSK3β/HIF-1α expression, mitochondrial function and ultrastructure analyzed versus normoxic controls. Mitochondrial ADP-dependent respiration, ATP production and membrane potential were attenuated in hypoxic WT but maintained in hypoxic aPKCε mitochondria (P < 0.005, n = 8). Electron microscopy revealed a hypoxia-associated increase in mitochondrial number with ultrastructural disarray in WT versus aPKCε hearts. Concordantly, left ventricular work was diminished in hypoxic WT but not aPKCε mice (glucose only perfusions). However, addition of palmitate abrogated this (P < 0.05 vs. WT). aPKCε hearts displayed increased glucose utilization at baseline and with hypoxia. In parallel, p-GSK3β and HIF1-α peptide levels were increased in hypoxic aPKCε hearts versus WT. Our study demonstrates that modest, sustained PKCε activation blunts cardiac pathophysiologic responses usually observed in response to chronic hypoxia. Moreover, we propose that preferential glucose utilization by PKCε hearts is orchestrated by a p-GSK3β/HIF-1α-mediated mechanism, playing a crucial role to sustain contractile function in response to chronic hypobaric hypoxia.
Collapse
Affiliation(s)
- Joy McCarthy
- Hatter Institute for Cardiovascular Research, University of Cape Town Medical School, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
16
|
Emmanuel R, Alexandre D, Benoit V, Sidi Mohamed H, Remi N. Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. Pharmacol Rep 2011; 63:1189-94. [DOI: 10.1016/s1734-1140(11)70638-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 06/21/2011] [Indexed: 12/20/2022]
|
17
|
Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res 2011; 28:2695-730. [PMID: 21863476 DOI: 10.1007/s11095-011-0566-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/10/2011] [Indexed: 12/23/2022]
Abstract
Succinate:quinone reductase (SQR) of Complex II occupies a unique central point in the mitochondrial respiratory system as a major source of electrons driving reactive oxygen species (ROS) production. It is an ideal pharmaceutical target for modulating ROS levels in normal cells to prevent oxidative stress-induced damage or alternatively,increase ROS in cancer cells, inducing cell death.The value of drugs like diazoxide to prevent ROS production,protecting normal cells, whereas vitamin E analogues promote ROS in cancer cells to kill them is highlighted. As pharmaceuticals these agents may prevent degenerative disease and their modes of action are presently being fully explored. The evidence that SDH/Complex II is tightly coupled to the NADH/NAD+ ratio in all cells,impacted by the available supplies of Krebs cycle intermediates as essential NAD-linked substrates, and the NAD+-dependent regulation of SDH/Complex II are reviewed, as are links to the NAD+-dependent dehydrogenases, Complex I and the E3 dihiydrolipoamide dehydrogenase to produce ROS. This review collates and discusses diverse sources of information relating to ROS production in different biological systems, focussing on evidence for SQR as the main source of ROS production in mitochondria, particularly its relevance to protection from oxidative stress and to the mitochondrial-targeted anti cancer drugs (mitocans) as novel cancer therapies [corrected].
Collapse
|
18
|
Kelly RF, Cabrera JA, Ziemba EA, Crampton M, Anderson LB, McFalls EO, Ward HB. Continued depression of maximal oxygen consumption and mitochondrial proteomic expression despite successful coronary artery bypass grafting in a swine model of hibernation. J Thorac Cardiovasc Surg 2011; 141:261-8. [DOI: 10.1016/j.jtcvs.2010.08.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 10/18/2022]
|
19
|
Opening of the mitoKATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation. Mol Cell Biochem 2009; 337:25-38. [PMID: 19851835 DOI: 10.1007/s11010-009-0283-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/08/2009] [Indexed: 02/07/2023]
Abstract
Diazoxide, a mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener, protects the heart from ischemia-reperfusion injury. Diazoxide also inhibits mitochondrial complex II-dependent respiration in addition to its preconditioning effect. However, there are no prior studies of the role of diazoxide on post-ischemic myocardial oxygenation. In the current study, we determined the effect of diazoxide on the suppression of post-ischemic myocardial tissue hyperoxygenation in vivo, superoxide (O(2)(-*)) generation in isolated mitochondria, and impairment of the interaction between complex II and complex III in purified mitochondrial proteins. It was observed that diazoxide totally suppressed the post-ischemic myocardial hyperoxygenation. With succinate but not glutamate/malate as the substrate, diazoxide significantly increased ubisemiquinone-dependent O(2)(-*) generation, which was not blocked by 5-HD and glibenclamide. Using a model system, the super complex of succinate-cytochrome c reductase (SCR) hosting complex II and complex III, we also observed that diazoxide impaired complex II and its interaction with complex III with no effect on complex III. UV-visible spectral analysis revealed that diazoxide decreased succinate-mediated ferricytochrome b reduction in SCR. In conclusion, our results demonstrated that diazoxide suppressed the in vivo post-ischemic myocardial hyperoxygenation through opening the mitoK(ATP) channel and ubisemiquinone-dependent O(2)(-*) generation via inhibiting mitochondrial complex II-dependent respiration.
Collapse
|
20
|
Cardioprotection by metabolic shut-down and gradual wake-up. J Mol Cell Cardiol 2009; 46:804-10. [PMID: 19285082 DOI: 10.1016/j.yjmcc.2009.02.026] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
Mitochondria play a critical role in cardiac function, and are also increasingly recognized as end effectors for various cardioprotective signaling pathways. Mitochondria use oxygen as a substrate, so by default their respiration is inhibited during hypoxia/ischemia. However, at reperfusion a surge of oxygen and metabolic substrates into the cell is thought to lead to rapid reestablishment of respiration, a burst of reactive oxygen species (ROS) generation and mitochondrial Ca(2+) overload. Subsequently these events precipitate opening of the mitochondrial permeability transition (PT) pore, which leads to myocardial cell death and dysfunction. Given that mitochondrial respiration is already inhibited during hypoxia/ischemia, it is somewhat surprising that many respiratory inhibitors can improve recovery from ischemia-reperfusion (IR) injury. In addition ischemic preconditioning (IPC), in which short non-lethal cycles of IR can protect against subsequent prolonged IR injury, is known to lead to endogenous inhibition of several respiratory complexes and glycolysis. This has led to a hypothesis that the wash-out of inhibitors or reversal of endogenous inhibition at reperfusion may afford protection by facilitating a more gradual wake-up of mitochondrial function, thereby avoiding a burst of ROS and Ca(2+) overload. This paper will review the evidence in support of this hypothesis, with a focus on inhibition of each of the mitochondrial respiratory complexes.
Collapse
|
21
|
Deja MA, Malinowski M, Gołba KS, Kajor M, Lebda-Wyborny T, Hudziak D, Domaradzki W, Szurlej D, Bończyk A, Biernat J, Woś S. Diazoxide protects myocardial mitochondria, metabolism, and function during cardiac surgery: a double-blind randomized feasibility study of diazoxide-supplemented cardioplegia. J Thorac Cardiovasc Surg 2009; 137:997-1004, 1004e1-2. [PMID: 19327530 DOI: 10.1016/j.jtcvs.2008.08.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 08/06/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The study was designed to assess whether diazoxide-mediated cardioprotection might be used in human subjects during cardiac surgery. METHODS Forty patients undergoing coronary artery bypass grafting were randomized to receive intermittent warm blood antegrade cardioplegia supplemented with either diazoxide (100 micromol/L) or placebo (n = 20 in each group). Mitochondria were assessed before and after ischemia and reperfusion in myocardial biopsy specimens. Myocardial oxygen and glucose and lactic acid extraction ratios were measured before ischemia and in the first 20 minutes of reperfusion. Hemodynamic data were collected, and troponin I, creatine kinase-MB, and N-terminal prohormone brain natriuretic peptide levels were measured. All outcomes were analyzed by using mixed-effects modeling for repeated measures. RESULTS No deaths, strokes, or infarcts were observed. Patients received, on average, 36.2 +/- 1.2 mg of diazoxide and 37.3 +/- 1.9 mg of placebo (P = .6). Diazoxide added to cardioplegia prevented mitochondrial swelling (8899 +/- 474 vs 9273 +/- 688 pixels before and after the procedure, respectively; P = .6) compared with that seen in the placebo group (8474 +/- 163 vs 11,357 +/- 759 pixels, P = .004). No oxygen debt was observed in the diazoxide group. Glucose consumption and lactic acid production returned to preischemic values faster in the diazoxide group. The following hemodynamic parameters differed between the diazoxide and placebo groups, respectively, in the postoperative period: cardiac index, 3.0 +/- 0.09 versus 2.6 +/- 0.09 L . min(-1) . m(-2) (P = .002); left cardiac work index, 2.81 +/- 0.07 versus 2.31 +/- 0.07 kg/m(2) (P < .001); oxygen delivery index, 420 +/- 14 versus 377 +/- 13 mL . min(-1) . m(-2) (P = .03); and oxygen extraction ratio, 29.3% +/- 1.1% versus 32.6% +/- 1.1% (P = .02). Postoperative myocardial enzyme levels did not differ, but N-terminal prohormone brain natriuretic peptide levels were lower in the diazoxide group (120 +/- 27 vs 192 +/- 29 pg/mL, P = .04). CONCLUSIONS Supplementing blood cardioplegia with diazoxide is safe and improves myocardial protection during cardiac surgery, possibly through its influence on the mitochondria.
Collapse
Affiliation(s)
- Marek A Deja
- Second Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
van den Brink OWV, Delbridge LM, Rosenfeldt FL, Penny D, Esmore DS, Quick D, Kaye DM, Pepe S. Endogenous cardiac opioids: enkephalins in adaptation and protection of the heart. Heart Lung Circ 2008; 12:178-87. [PMID: 16352129 DOI: 10.1046/j.1444-2892.2003.00240.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Opiates have been used for thousands of years in the form of opium for relief of pain or fever and to induce sleep. However, it was only in the 1970s that the endogenous ligands for the opiate receptors were identified and termed opioid peptides. Opioid peptides activate G protein-coupled receptors in the central and autonomic nervous system, with marked effects on the regulation of pain perception, body temperature, respiration, heart rate and blood pressure. Cardiovascular regulatory effects of endogenous opioids were initially considered to originate from neural centres in the central nervous system, facilitating a regulatory role in neuro-transmission, as demonstrated by the presynaptic co-release from sympathetic neurones of norepinephrine with enkephalin or acetylcholine with enkephalin. However, opioid peptides of myocardial origin have also recently been shown to play a key role in local regulation of the heart. This brief review highlights the key features of the enkephalin opioids in the heart and the current understanding of their role in development, ageing, cardioprotection, hypertension, hypertrophy, and heart failure.
Collapse
|
23
|
Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev 2008; 129:304-12. [PMID: 18400259 DOI: 10.1016/j.mad.2008.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 02/09/2008] [Accepted: 02/15/2008] [Indexed: 01/15/2023]
Abstract
Aging is associated with progressive decline in energetic reserves compromising cardiac performance and tolerance to injury. Although deviations in mitochondrial functions have been documented in senescent heart, the molecular bases for the decline in energy metabolism are only partially understood. Here, high-throughput transcription profiles of genes coding for mitochondrial proteins in ventricles from adult (6-months) and aged (24-months) rats were compared using microarrays. Out of 614 genes encoding for mitochondrial proteins, 94 were differentially expressed with 95% downregulated in the aged. The majority of changes affected genes coding for proteins involved in oxidative phosphorylation (39), substrate metabolism (14) and tricarboxylic acid cycle (6). Compared to adult, gene expression changes in aged hearts translated into a reduced mitochondrial functional capacity, with decreased NADH-dehydrogenase and F(0)F(1) ATPase complex activities and capacity for oxygen-utilization and ATP synthesis. Expression of genes coding for transcription co-activator factors involved in the regulation of mitochondrial metabolism and biogenesis were downregulated in aged ventricles without reduction in mitochondrial density. Thus, aging induces a selective decline in activities of oxidative phosphorylation complexes I and V within a broader transcriptional downregulation of mitochondrial genes, providing a substrate for reduced energetic efficiency associated with senescence.
Collapse
|
24
|
Effective pharmacotherapy against oxidative injury: alternative utility of an ATP-sensitive potassium channel opener. J Cardiovasc Pharmacol 2008; 50:411-8. [PMID: 18049309 DOI: 10.1097/fjc.0b013e31812378df] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiomyocyte viability following ischemia-reperfusion critically depends on mitochondrial function. In this regard, potassium channel openers (KCOs) targeting mitochondria have emerged as powerful cardioprotective agents when applied at the onset of ischemia. However, it is controversial whether openers are still protective when applied at the onset of reoxygenation. Here, H9c2 cardiomyocytes and mitochondria isolated from the rat heart ventricle were subjected to ischemia-reoxygenation or oxidative stress in the absence or presence of 100 microM diazoxide, a potassium channel opener. Ischemia-reoxygenation or oxidative stress significantly reduced cell viability, induced structural damage in association with increased mitochondrial protein release, and impaired oxidative phosphorylation. However, treatment with diazoxide before anoxia or at the onset of reoxygenation, as well as during oxidative stress, prevented cell death and mitochondrial dysfunction and preserved cellular and mitochondrial structural integrity. These protective effects were blocked by 5-hydroxydecanoate. Thus, treatment with potassium channel openers even at the time of reoxygenation may provide a significant protection of the myocardium. The protective mechanism is at least in part endogenous to the mitochondria because protection was also observed in isolated mitochondria.
Collapse
|
25
|
Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. ACTA ACUST UNITED AC 2007; 204:2089-102. [PMID: 17682069 PMCID: PMC2118713 DOI: 10.1084/jem.20070198] [Citation(s) in RCA: 429] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nitrite (NO(2)(-)) is an intrinsic signaling molecule that is reduced to NO during ischemia and limits apoptosis and cytotoxicity at reperfusion in the mammalian heart, liver, and brain. Although the mechanism of nitrite-mediated cytoprotection is unknown, NO is a mediator of the ischemic preconditioning cell-survival program. Analogous to the temporally distinct acute and delayed ischemic preconditioning cytoprotective phenotypes, we report that both acute and delayed (24 h before ischemia) exposure to physiological concentrations of nitrite, given both systemically or orally, potently limits cardiac and hepatic reperfusion injury. This cytoprotection is associated with increases in mitochondrial oxidative phosphorylation. Remarkably, isolated mitochondria subjected to 30 min of anoxia followed by reoxygenation were directly protected by nitrite administered both in vitro during anoxia or in vivo 24 h before mitochondrial isolation. Mechanistically, nitrite dose-dependently modifies and inhibits complex I by posttranslational S-nitrosation; this dampens electron transfer and effectively reduces reperfusion reactive oxygen species generation and ameliorates oxidative inactivation of complexes II-IV and aconitase, thus preventing mitochondrial permeability transition pore opening and cytochrome c release. These data suggest that nitrite dynamically modulates mitochondrial resilience to reperfusion injury and may represent an effector of the cell-survival program of ischemic preconditioning and the Mediterranean diet.
Collapse
Affiliation(s)
- Sruti Shiva
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ljubkovic M, Mio Y, Marinovic J, Stadnicka A, Warltier DC, Bosnjak ZJ, Bienengraeber M. Isoflurane preconditioning uncouples mitochondria and protects against hypoxia-reoxygenation. Am J Physiol Cell Physiol 2007; 292:C1583-90. [PMID: 17215328 DOI: 10.1152/ajpcell.00221.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic cardiac injury can be substantially alleviated by exposing the heart to pharmacological agents such as volatile anesthetics before occurrence of ischemia-reperfusion. A hallmark of this preconditioning phenomenon is its memory, when cardioprotective effects persist even after removal of preconditioning stimulus. Since numerous studies pinpoint mitochondria as crucial players in protective pathways of preconditioning, the aim of this study was to investigate the effects of preconditioning agent isoflurane on the mitochondrial bioenergetic phenotype. Endogenous flavoprotein fluorescence, an indicator of mitochondrial redox state, was elevated to 195 +/- 16% of baseline upon isoflurane application in intact cardiomyocytes, indicating more oxidized state of mitochondria. Isoflurane treatment also elicited partial dissipation of mitochondrial transmembrane potential, which remained depolarized even after anesthetic withdrawal (tetramethylrhodamine fluorescence intensity declined to 83 +/- 3 and 81 +/- 7% of baseline during isoflurane exposure and washout, respectively). Mild uncoupling, with preserved ATP synthesis, was also detected in mitochondria that were isolated from animals that had been previously preconditioned by isoflurane in vivo, revealing its memory nature. These mitochondria, after exposure to hypoxia and reoxygenation, exhibited better preserved respiration and ATP synthesis compared with mitochondria from nonpreconditioned animals. Partial mitochondrial depolarization was paralleled by a diminished Ca(2+) uptake into isoflurane-treated mitochondria, as indicated by the reduced increment in rhod-2 fluorescence when mitochondria were challenged with increased Ca(2+) (180 +/- 24 vs. 258 +/- 14% for the control). In conclusion, isoflurane preconditioning elicits partial mitochondrial uncoupling and reduces mitochondrial Ca(2+) uptake. These effects are likely to reduce the extent of the mitochondrial damage after the hypoxic stress.
Collapse
Affiliation(s)
- Marko Ljubkovic
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Shiva S, Brookes PS, Darley-Usmar VM. Methods for measuring the regulation of respiration by nitric oxide. Methods Cell Biol 2007; 80:395-416. [PMID: 17445706 DOI: 10.1016/s0091-679x(06)80020-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sruti Shiva
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
28
|
Korotkov SM, Nesterov VP, Ryabchikov NN. Study of the mechanism of action of diazoxide on rat heart mitochondria under calcium loading. DOKL BIOCHEM BIOPHYS 2006; 408:133-7. [PMID: 16913412 DOI: 10.1134/s1607672906030070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Morisa Toreza 44, St. Petersburg 194223, Russia
| | | | | |
Collapse
|
29
|
Katakam PVG, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW. Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol 2006; 292:R920-6. [PMID: 17008456 DOI: 10.1152/ajpregu.00520.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin resistance (IR) precedes the onset of Type 2 diabetes, but its impact on preconditioning against myocardial ischemia-reperfusion injury is unexplored. We examined the effects of diazoxide and ischemic preconditioning (IPC; 5-min ischemia and 5-min reperfusion) on ischemia (30 min)-reperfusion (240 min) injury in young IR Zucker obese (ZO) and lean (ZL) rats. ZO hearts developed larger infarcts than ZL hearts (infarct size: 57.3 +/- 3% in ZO vs. 39.2 +/- 3.2% in ZL; P < 0.05) and also failed to respond to cardioprotection by IPC or diazoxide (47.2 +/- 4.3% and 52.5 +/- 5.8%, respectively; P = not significant). In contrast, IPC and diazoxide treatment reduced the infarct size in ZL hearts (12.7 +/- 2% and 16.3 +/- 6.7%, respectively; P < 0.05). The mitochondrial ATP-activated potassium channel (K(ATP)) antagonist 5-hydroxydecanoic acid inhibited IPC and diazoxide-induced preconditioning in ZL hearts, whereas it had no effect on ZO hearts. Diazoxide elicited reduced depolarization of isolated mitochondria from ZO hearts compared with ZL (73 +/- 9% in ZL vs. 39 +/- 9% in ZO; P < 0.05). Diazoxide also failed to enhance superoxide generation in isolated mitochondria from ZO compared with ZL hearts. Electron micrographs of ZO hearts revealed a decreased number of mitochondria accompanied by swelling, disorganized cristae, and vacuolation. Immunoblots of mitochondrial protein showed a modest increase in manganese superoxide dismutase in ZO hearts. Thus obesity accompanied by IR is associated with the inability to precondition against ischemic cardiac injury, which is mediated by enhanced mitochondrial oxidative stress and impaired activation of mitochondrial K(ATP).
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Hanes 1050, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Chai Y, Niu L, Sun XL, Ding JH, Hu G. Iptakalim protects PC12 cell against H2O2-induced oxidative injury via opening mitochondrial ATP-sensitive potassium channel. Biochem Biophys Res Commun 2006; 350:307-14. [PMID: 17010314 DOI: 10.1016/j.bbrc.2006.09.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/09/2006] [Indexed: 11/16/2022]
Abstract
The final common pathway in the demise of dopaminergic neurons in Parkinson's disease may involve oxidative stress and excitotoxicity. In this study, we examined the neuroprotective effects of a novel ATP-sensitive potassium channel (K(ATP)) opener, iptakalim (IPT), against H(2)O(2)-induced cytotoxicity in rat dopaminergic PC12 cells. Pretreatment with IPT could attenuate increased extracellular glutamate levels and inhibit calcium influxing induced by H(2)O(2). Moreover, IPT regulated the expressions of bcl-2 and bax which were responsible for inhibiting apoptosis in PC12 cells. These protective effects of IPT were abolished by selective mitoK(ATP) channel blocker 5-hydroxydecanoate. Therefore, IPT can protect PC12 cells against H(2)O(2)-induced oxidative injury via activating mitoK(ATP) channel.
Collapse
Affiliation(s)
- Yi Chai
- Laboratory of Neuropharmacology, Department of Anatomy, Histology and Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | | | | | | | | |
Collapse
|
31
|
Davies JE, Digerness SB, Killingsworth CR, Zaragoza C, Katholi CR, Justice RK, Goldberg SP, Holman WL. Multiple treatment approach to limit cardiac ischemia-reperfusion injury. Ann Thorac Surg 2006; 80:1408-16. [PMID: 16181879 DOI: 10.1016/j.athoracsur.2005.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 04/07/2005] [Accepted: 04/14/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study evaluates a multiple treatment approach (ie, pharmacologic preconditioning [diazoxide], sodium-proton exchange inhibition [cariporide], and controlled reperfusion) to improve the outcome from severe cardiac ischemia-reperfusion injury that occurs during a cardiac operation. METHODS Five groups of 10 pigs (group 1: control, group 2: diazoxide, group 3: cariporide, group 4: controlled reperfusion, and group 5: combination of diazoxide and cariporide-controlled reperfusion) underwent 75 minutes of left anterior descending occlusion, 1 hour of cardioplegic arrest, and 2 hours of reperfusion. Prior to occlusion, each group received an infusion of vehicle alone (ie, dimethylsulfoxide for the control and the controlled reperfusion groups) or vehicle with drug (ie, diazoxide or cariporide, or both for all other groups). Infarct size (primary outcome) was measured and was normalized to the region at risk. Regional function (secondary outcome) was measured using preload recruitable work area. RESULTS Infarct size as a function of area at risk was decreased by cariporide-controlled reperfusion, and combination treatment compared with the control group (14 +/- 6%, 15 +/- 8%, and 9 +/- 4% vs 24 +/- 9%; p < 0.02), and variation in infarct size was decreased by combination treatment compared with the controlled reperfusion group alone (p < 0.02). Recovery of systolic function during reperfusion significantly improved in the left anterior descending region in the cariporide and combination groups compared with the control, controlled reperfusion, or diazoxide groups (group-time effect, p < 0.05). CONCLUSIONS Combined use of controlled reperfusion, cariporide, and diazoxide decreases myocyte necrosis and loss of systolic function compared with an untreated control group. Combination treatment has the potential to improve the results of cardiac surgery, however further improvements are needed before clinical application.
Collapse
Affiliation(s)
- James E Davies
- Department of Surgery, University of Alabama, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Vetter SY, Elsässer A, Tutdibi O, Lang S, Schoels W, Pott A, Ackermann C, Reinhard C, Wieland F, Katus HA, Kübler W, Vogt AM. Brief antecedent anoxia preserves mitochondrial function after sustained undersupply: a subcellular correlate to ischemic preconditioning? Mol Cell Biochem 2006; 285:191-6. [PMID: 16477372 DOI: 10.1007/s11010-005-9071-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND There is increasing evidence that mitochondria - owning a high degree of autonomy within the cell - might represent the target organelles of the myocardial protection afforded by ischemic preconditioning. It was the aim of the study to investigate a possible subcellular correlate to ischemic preconditioning at the mitochondrial level. In addition, we tested whether this protection depends on mitochondrial ATP-dependent potassium channels (K (ATP)) and an might involve an attenuation of mitochondrial ATP hydrolysis during sustained anoxia. METHODS AND RESULTS Sustained anoxia (A, 14 min) and reoxygenation (R) completely inhibited state 3 and state 4 respiration of isolated ventricular mitochondria from Wistar rats. An antecedent brief anoxic incubation (4 min) followed by reoxygenation (2 min) prevented this loss of mitochondrial function. The protection afforded by anoxic preconditioning could be mimicked by the K (ATP) opener diazoxide (30 micromol/l) and was completely inhibited by the K (ATP) blocker 5-hydroxydecanoic acid (300 micromol/l). Structural mitochondrial integrity, as estimated from externalization of the mitochondrial enzymes creatine kinase and glutamateoxalacetate transaminase, remained unchanged between the groups, as did mitochondrial ATP loss during anoxia. CONCLUSION For the first time, we provide direct evidence for a subcellular preconditioning-like functional mitochondrial adaptation to sustained anoxia. This effect apparently depends on opening of K(ATP) but is independent of ATP preservation.
Collapse
Affiliation(s)
- Sven Y Vetter
- Medizinische Universitätsklinik (Ludolf-Krehl-Klinik), Abteilung Innere Medizin III (Schwerpunkt Kardiologie, Angiologie und Pulmologie), Im Neuenheimer Feld 410, D - 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kwon G, Marshall CA, Liu H, Pappan KL, Remedi MS, McDaniel ML. Glucose-stimulated DNA synthesis through mammalian target of rapamycin (mTOR) is regulated by KATP channels: effects on cell cycle progression in rodent islets. J Biol Chem 2005; 281:3261-7. [PMID: 16344552 DOI: 10.1074/jbc.m508821200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to define metabolic signaling pathways that mediate DNA synthesis and cell cycle progression in adult rodent islets to devise strategies to enhance survival, growth, and proliferation. Since previous studies indicated that glucose-stimulated activation of mammalian target of rapamycin (mTOR) leads to [3H]thymidine incorporation and that mTOR activation is mediated, in part, through the K(ATP) channel and changes in cytosolic Ca2+, we determined whether glyburide, an inhibitor of K(ATP) channels that stimulates Ca2+ influx, modulates [3H]thymidine incorporation. Glyburide (10-100 nm) at basal glucose stimulated [3H]thymidine incorporation to the same magnitude as elevated glucose and further enhanced the ability of elevated glucose to increase [3H]thymidine incorporation. Diazoxide (250 microm), an activator of KATP channels, paradoxically potentiated glucose-stimulated [3H]thymidine incorporation 2-4-fold above elevated glucose alone. Cell cycle analysis demonstrated that chronic exposure of islets to basal glucose resulted in a typical cell cycle progression pattern that is consistent with a low level of proliferation. In contrast, chronic exposure to elevated glucose or glyburide resulted in progression from G0/G1 to an accumulation in S phase and a reduction in G2/M phase. Rapamycin (100 nm) resulted in an approximately 62% reduction of S phase accumulation. The enhanced [3H]thymidine incorporation with chronic elevated glucose or glyburide therefore appears to be associated with S phase accumulation. Since diazoxide significantly enhanced [3H]thymidine incorporation without altering S phase accumulation under chronic elevated glucose, this increase in DNA synthesis also appears to be primarily related to an arrest in S phase and not cell proliferation.
Collapse
Affiliation(s)
- Guim Kwon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
34
|
Jahangir A, Terzic A. K(ATP) channel therapeutics at the bedside. J Mol Cell Cardiol 2005; 39:99-112. [PMID: 15953614 PMCID: PMC2743392 DOI: 10.1016/j.yjmcc.2005.04.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/17/2005] [Accepted: 04/26/2005] [Indexed: 11/22/2022]
Abstract
The family of potassium channel openers regroups drugs that share the property of activating adenosine triphosphate-sensitive potassium (K(ATP)) channels, metabolic sensors responsible for adjusting membrane potential-dependent functions to match cellular energetic demands. K(ATP) channels, widely represented in metabolically-active tissue, are heteromultimers composed of an inwardly rectifying potassium channel pore and a regulatory sulfonylurea receptor subunit, the site of action of potassium channel opening drugs that promote channel activity by antagonizing ATP-induced pore inhibition. The activity of K(ATP) channels is critical in the cardiovascular adaptive response to stress, maintenance of neuronal electrical stability, and hormonal homeostasis. Thereby, K(ATP) channel openers have a unique therapeutic spectrum, ranging from applications in myopreservation and vasodilatation in patients with heart or vascular disease to potential clinical use as bronchodilators, bladder relaxants, islet cell protector, antiepileptics and promoters of hair growth. While the current experience in practice with potassium channel openers remains limited, multitude of ongoing investigations aims at defining the benefit of this emerging family of therapeutics in diverse disease conditions associated with metabolic distress.
Collapse
Affiliation(s)
- A Jahangir
- Division of Cardiovascular Diseases, Departmentof Medicine, Mayo Clinic College of Medicine, Guggenheim 7, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
35
|
Korge P, Honda HM, Weiss JN. K+-dependent regulation of matrix volume improves mitochondrial function under conditions mimicking ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2005; 289:H66-77. [PMID: 15764674 DOI: 10.1152/ajpheart.01296.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To delineate the role of mitochondrial K+ fluxes in cardioprotection, we investigated the effect of extramitochondrial K+ on the ability of mitochondria to support membrane potential (DeltaPsi), regulate matrix volume, consume oxygen, and phosphorylate ADP under conditions mimicking key elements of ischemia-reperfusion. Isolated energized mitochondria responded to ADP addition with depolarization, increased O2 consumption, and matrix shrinkage. The time required for full recovery of DeltaPsi, signaling the completion of ADP phosphorylation, was used to evaluate the rate of ATP synthesis during repeated ADP pulses. In mitochondria with a decreased ability to support DeltaPsi, the rate of ADP phosphorylation was significantly improved by extramitochondrial K+ > Na+ > Li+, especially at higher buffer osmolarity, which promotes matrix shrinkage. K+-induced improvement in DeltaPsi recovery after ADP pulses was accompanied by more rapid and complete matrix volume recovery and enhanced O2 consumption. Manipulations expected to affect matrix swelling by regulating K+ fluxes or water distribution indicate that matrix volume regulation by external factors becomes increasingly important in mitochondria with decreased ability to support DeltaPsi in the face of a high ADP load. Under these conditions, opening of K+ influx pathways improved mitochondrial function and delayed failure. This may be an important factor in the mechanism of diaxozide-induced cardioprotection.
Collapse
Affiliation(s)
- Paavo Korge
- Cardiovascular Research Laboratory, 3645 MRL Bldg., 675 Charles Young Dr. S., David Geffen School of Medicine, Univ. of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
36
|
Marín-García J. Cellular and molecular events in ischemic preconditioning: potential therapeutic applications in cardioprotection. Future Cardiol 2005; 1:111-22. [DOI: 10.1517/14796678.1.1.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cardioprotection is a mechanism of guarding the heart from damage secondary to different insults including ischaemia, ischaemia/reperfusion, chemical, metabolic and physical stressors. Ischemic preconditioning, by single or multiple brief periods of ischaemia, protects the heart against a more prolonged ischemic insult (index ischaemia). Understanding the cellular, molecular and biochemical events occurring in cardioprotection will allow the development of new interventions to improve the outcome of patients with myocardial diseases. Most of the present experience with cardioprotection has been obtained from studies in young and middle-aged animals, and cells. In the future, cardioprotection research should be carried out mainly in the aging or senescent heart since this will be most relevant to humans. With aging, the heart has a decreased capacity to tolerate and respond to various forms of stress, and the likelihood of myocardial ischaemia and cardiac dysfunction increases.
Collapse
Affiliation(s)
- José Marín-García
- RWJ. Medical School, Department of Physiology & Biophysics, The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ 08904, USATel.: Fax:
| |
Collapse
|
37
|
Abstract
BACKGROUND There is increasing evidence documenting the capacity of myocardial cells exposed to a variety of insults to mount a cardioprotective response. Although this cardioprotection has been most well characterized with respect to ischemic preconditioning, other chemical and metabolic stressors have been shown to share features of the ischemic preconditioning model, including the involvement of mitochondria in the triggering, signaling, and mediation of the cardioprotective response. METHODS In this article, we review the evidence showing that mitochondria play a critical role in cardioprotection from multiple (often interrelated) standpoints: its primary function in producing the cellular bioenergetic supply, its control over events in apoptosis, its contribution to myocardial signal transducing processes, and its role in producing reactive oxidative species and in providing an appropriate antioxidant response to a variety of cellular insults. CONCLUSIONS Although our understanding of cytoprotection has increased substantially within the last few years, the mechanisms mediating mitochondrial resistance to insults leading to cardiac protection remain to be fully delineated, and represents a significant approach in the clinical treatment of heart disease.
Collapse
Affiliation(s)
- José Marín-García
- Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ 08904, USA
| | | |
Collapse
|
38
|
McLeod CJ, Jeyabalan AP, Minners JO, Clevenger R, Hoyt RF, Sack MN. Delayed ischemic preconditioning activates nuclear-encoded electron-transfer-chain gene expression in parallel with enhanced postanoxic mitochondrial respiratory recovery. Circulation 2004; 110:534-9. [PMID: 15277332 DOI: 10.1161/01.cir.0000136997.53612.6c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Delayed ischemic preconditioning promotes cardioprotection via genomic reprogramming. We hypothesize that molecular regulation of mitochondrial energetics is integral to this cardioprotective program. METHODS AND RESULTS Preconditioning was induced by use of 3 episodes of 3-minute coronary artery occlusion separated by 5 minutes of reperfusion. Twenty-four hours later, infarct size was reduced by 58% after preconditioning compared with sham-operated controls (P<0.001). Cardiac mitochondria were isolated from sham and preconditioned rat hearts. Mitochondrial respiration and ATP production were similar between the groups; however, preconditioned mitochondria exhibit modest hyperpolarization of the inner mitochondrial membrane potential (> or =22% versus control, P<0.001). After 35-minute anoxia and reoxygenation, preconditioned mitochondria demonstrated a 191+/-12% improvement in ADP-sensitive respiration (P=0.002) with preservation of electron-transfer-chain (ETC) activity versus controls. This augmented mitochondrial recovery was eradicated when preconditioning was abolished by the antioxidant 2-mercaptopropionyl glycine (2-MPG). These biochemical modulations appear to be regulated at the genomic level in that the expression of genes encoding rate-controlling complexes in the ETC was significantly upregulated in preconditioned myocardium, with a concordant induction of steady-state protein levels of cytochrome oxidase, cytochrome c, and adenine nucleotide translocase-1. 2-MPG abolished preconditioning induction of these transcripts. Moreover, transcripts of nuclear regulatory peptides known to orchestrate mitochondrial biogenesis, nuclear respiratory factor-1 and peroxisome-proliferator-activated receptor gamma coactivator 1alpha, were significantly induced in preconditioned myocardium. CONCLUSIONS Delayed preconditioned mitochondria display increased tolerance against anoxia-reoxygenation in association with modifications in mitochondrial bioenergetics, with concordant genomic induction of a mitochondrial energetic gene regulatory program. This program appears to be mediated by reactive oxygen species signaling.
Collapse
Affiliation(s)
- Christopher J McLeod
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, Md 20892-1650, USA
| | | | | | | | | | | |
Collapse
|
39
|
Rousou AJ, Ericsson M, Federman M, Levitsky S, McCully JD. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol Heart Circ Physiol 2004; 287:H1967-76. [PMID: 15242834 DOI: 10.1152/ajpheart.00338.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we have shown that the pharmacological opening of the mitochondrial ATP-sensitive K channels with diazoxide (DZX) enhances the cardioprotection afforded by magnesium-supplemented potassium (K/Mg) cardioplegia. To determine the mechanisms involved in the cardioprotection afforded by K/Mg + DZX cardioplegia, rabbit hearts (n=24) were subjected to isolated Langendorff perfusion. Control hearts were perfused for 75 min. Global ischemia (GI) hearts were subjected to 30 min of equilibrium, 30 min of GI, and 15 min of reperfusion. K/Mg and K/Mg + DZX cardioplegia hearts received either K/Mg or K/Mg + DZX for 5 min before GI and reperfusion. Tissue was harvested for mitochondrial isolation and transmission electron microscopy (TEM). Mitochondrial structure, area, matrix volume, free calcium, and oxygen consumption were determined. TEM demonstrated that GI mitochondria were damaged and that K/Mg and K/Mg + DZX preserved mitochondrial structure. TEM and light scattering demonstrated separately that mitochondrial matrix and cristae area and matrix volume were significantly increased after GI and reperfusion with GI > K/Mg + DZX > K/Mg hearts (P <0.05 vs. control). Mitochondrial free calcium was significantly increased in GI and K/Mg hearts. K/Mg + DZX significantly decreased mitochondrial free calcium accumulation (P <0.05 vs. GI and K/Mg). State 3 oxygen consumption and respiratory control index in malate (complex I substrate)- and succinate (complex II substrate)-energized mitochondria were significantly decreased (P <0.05 vs. control) in the GI and K/Mg + DZX groups. These data indicate that the enhanced cardioprotection afforded by K/Mg + DZX cardioplegia occurs through the preservation of mitochondrial structure and the significant decrease in mitochondrial free calcium accumulation and mitochondrial state 3 oxygen consumption.
Collapse
Affiliation(s)
- Anthony J Rousou
- Div. of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, 77 Ave. Louis Pasteur, Rm. 144, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
40
|
Steensrud T, Nordhaug D, Husnes KV, Aghajani E, Sørlie DG. Replacing potassium with nicorandil in cold St. Thomas' Hospital cardioplegia improves preservation of energetics and function in pig hearts. Ann Thorac Surg 2004; 77:1391-7. [PMID: 15063273 DOI: 10.1016/j.athoracsur.2003.09.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2003] [Indexed: 11/29/2022]
Abstract
BACKGROUND To determine whether the adenosine triphosphate-sensitive potassium channel opener nicorandil, instead of potassium in cold crystalloid cardioplegia, may enhance cardioprotection, crystalloid cardioplegia with nicorandil, magnesium, and procaine was compared with standard crystalloid cardioplegia in terms of left ventricular performance and efficiency. METHODS Sixteen pigs were randomly assigned to receive cold hyperkalemic crystalloid cardioplegia (n = 8) or nicorandil in cold saline (n = 8). Cold (4 degrees C) cardioplegic solutions were given antegradely and intermittently, with a cross-clamp time of 60 minutes. The preload recruitable stroke work relationship (PRSW), pressure-volume area (PVA), and myocardial oxygen consumption (MVO(2)) were calculated at baseline and at one and two hours following cross-clamp release, using combined pressure-volume conductance catheters, coronary flow probes, and O(2)-content differences. RESULTS The left ventricular contractility expressed in PRSW was reduced to 58% (standard deviation [SD]: 20) of baseline in the crystalloid group and to 89% (SD: 20) in the nicorandil group two hours after cross-clamp release (p = 0.044). The slope of the MVO(2)-PVA relationship increased in the crystalloid group from 1.59 (SD: 0.22) before cardioplegia to 2.55 (SD: 0.73) afterwards, significantly more than in the nicorandil group, where the slope changed from 1.69 (SD: 0.30) to 1.95 (SD: 0.47) (p = 0.027). CONCLUSIONS Nicorandil in a crystalloid cardioplegic solution was easily employed and contractility was significantly better than after standard hyperkalemic cardioplegia. The smaller shift of the slope in the MVO(2)-PVA relationship in the nicorandil group shows improved efficiency in oxygen to mechanical transfer compared with the crystalloid group.
Collapse
Affiliation(s)
- Tor Steensrud
- Department of Cardiothoracic and Vascular Surgery, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
41
|
McCully JD, Levitsky S. Mitochondrial ATP-sensitive potassium channels in surgical cardioprotection. Arch Biochem Biophys 2004; 420:237-45. [PMID: 14654062 DOI: 10.1016/j.abb.2003.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ATP-sensitive potassium channels allow for the coupling of membrane potential to cellular metabolic status. Two K(ATP) channel subtypes coexist in the myocardium with one subtype located in the sarcolemma membrane and the other in the inner membrane of the mitochondria. The ATP-sensitive potassium channels can be pharmacologically modulated by a family of structurally diverse agents of varied potency and selectivity, collectively known as potassium channel openers and blockers. Sufficient evidence exists to indicate that the ATP-sensitive potassium channels and in particular the mitochondrial ATP-sensitive potassium channels play an important role both as a trigger and an effector in surgical cardioprotection. In this review, the biochemistry and specificity of the ATP-sensitive potassium channels is examined in relation to surgical cardioprotection.
Collapse
Affiliation(s)
- James D McCully
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School and the Harvard Institutes of Medicine, Boston, MA, USA.
| | | |
Collapse
|
42
|
Kis B, Rajapakse NC, Snipes JA, Nagy K, Horiguchi T, Busija DW. Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons. J Neurochem 2004; 87:969-80. [PMID: 14622127 DOI: 10.1046/j.1471-4159.2003.02072.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the effect of diazoxide on neuronal survival in primary cultures of rat cortical neurons against oxygen-glucose deprivation (OGD). Diazoxide pre-treatment induced delayed pre-conditioning and almost entirely attenuated the OGD-induced neuronal death. Diazoxide inhibited succinate dehydrogenase and induced mitochondrial depolarization, free radical production and protein kinase C activation. The putative mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate abolished the protective effect of diazoxide while the non-selective KATP channel blocker glibenclamide did not. The non-selective KATP channel openers nicorandil and cromakalim did not improve viability. Superoxide dismutase mimetic, M40401, or protein kinase C inhibitor, chelerythrine, prevented the neuroprotective effect of diazoxide. Diazoxide did not increase reduced glutathione and manganese-superoxide dismutase levels but we found significantly higher reduced glutathione levels in diazoxide-pre-conditioned neurons after OGD. In pre-conditioned neurons free radical production was reduced upon glutamate stimulation. The succinate dehydrogenase inhibitor 3-nitropropionic acid also induced pre-conditioning and free radical production in neurons. Here, we provide the first evidence that diazoxide induces delayed pre-conditioning in neurons via acute generation of superoxide anion and activation of protein kinases and subsequent attenuation of oxidant stress following OGD. The succinate dehydrogenase-inhibiting effect of diazoxide is more likely to be involved in this neuroprotection than the opening of mitochondrial ATP-sensitive potassium channels.
Collapse
Affiliation(s)
- Bela Kis
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res 2004; 94:7-16. [PMID: 14715531 DOI: 10.1161/01.res.0000108082.76667.f4] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardioprotective mechanisms such as acute or early preconditioning activate several primary signaling pathways that seem to converge on mitochondrial targets, leading to altered cell metabolism and inhibition of apoptosis. Acute preconditioning leads to generation of agonists, which bind to G protein-coupled receptors, and initiates a signaling cascade that involves activation of phosphoinositide-3-kinase, endothelial NO synthase, protein kinase C, glycogen synthase kinase 3beta, mitogen-activated protein kinases, and other signaling pathways. Activation of these signaling pathways along with generation of reactive oxygen species leads to alterations in the activity of key mitochondrial proteins such as mitochondrial ATP-sensitive K(+) channels, the mitochondrial permeability transition pore, and bcl-2 family members. Alterations in these mitochondrial proteins results in altered metabolism and inhibition of cell death, thus resulting in cardioprotection.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
44
|
Deja MA, Golba KS, Kolowca M, Widenka K, Biernat J, Wos S. Diazoxide provides protection to human myocardium in vitro that is concentration dependent. Ann Thorac Surg 2004; 77:226-32. [PMID: 14726066 DOI: 10.1016/s0003-4975(03)01295-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Diazoxide has been shown to confer significant myocardial protection in many experiments. This study was designed to assess its influence on the structural injury and functional recovery of human myocardium subjected to hypoxia/reoxygenation in vitro. METHODS The isolated electrically driven human right atrial trabeculae, obtained during cardiac surgery, were studied. The tissue bath was oxygenated with 95% oxygen and 5% carbon dioxide, hypoxia being obtained by replacing oxygen with argon. The influence of diazoxide on atrial contractility was studied first. Next, the two trabeculae from one atrial appendage were studied simultaneously, adding diazoxide to the tissue bath 10 minutes before hypoxia in one, with another serving as a control. We tested 10(-4.5) mol/L and 10(-4) mol/L diazoxide in three sets of experiments testing 30, 60, and 90 minutes of hypoxia. We continued reoxygenation for 120 minutes (in 60-minute and 90-minute hypoxia experiments) and subsequently tested reaction to 10(-4) mol/L norepinephrine. Apart from continuous recording of the contraction force, we measured the troponin I release into the tissue bath after ischemia and reoxygenation. RESULTS Diazoxide exerted a negative inotropic effect in human atrial muscle (pD(2)=3.96 +/- 0.18). Both concentrations of diazoxide studied resulted in better functional recovery of atrial trabeculae subjected to 30 minutes of hypoxia. With longer hypoxia, only the higher diazoxide concentration provided significant protection as assessed by contractility. After 120 minutes of reoxygenation, only diazoxide-treated muscle was viable enough to respond to norepinephrine. Only 10(-4) mol/L diazoxide resulted in lower troponin I release during hypoxia and reoxygenation. CONCLUSIONS This study shows that diazoxide provides significant concentration-dependent protection against hypoxia/reoxygenation injury to human myocardium in vitro.
Collapse
Affiliation(s)
- Marek A Deja
- Second Department of Cardiac Surgery, Katowice, Poland.
| | | | | | | | | | | |
Collapse
|
45
|
Cropper JRD, Hicks M, Ryan JB, Macdonald PS. Enhanced cardioprotection of the rat heart during hypothermic storage with combined Na+-H+ exchange inhibition and ATP-dependent potassium channel activation. J Heart Lung Transplant 2003; 22:1245-53. [PMID: 14585386 DOI: 10.1016/s1053-2498(03)00025-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND We investigated the ability of mitochondrial adenosine triphosphate-dependent potassium-channel activation to augment the protection of Na(+)-H(+) exchanger inhibition in isolated working rat hearts after 6 hours of hypothermic storage in an extracellular-based cardioplegic solution. METHODS We treated hearts with the potassium-channel openers diazoxide (100 micromol/liter) or BMS-180448 (10 micromol/liter) or with the Na(+)-H(+) exchanger inhibitor cariporide (10 micromol/liter). Cariporide also was administered in combination with either diazoxide or BMS-180448 in 2 other treatment groups. All hearts were arrested and stored at 2 to 3 degrees C. After storage, we reperfused hearts for 10 minutes before performing work for a further 15 minutes, and then we measured and assessed cardiac function using a 2-way analysis of variance model. RESULTS Neither diazoxide nor BMS-180448 significantly improved recovery of cardiac output. Cariporide therapy significantly improved cardiac output compared with control. However, we obtained the greatest recovery of cardiac output when we combined cariporide with either diazoxide or BMS-180448. CONCLUSIONS Cariporide is more cardioprotective than the potassium-channel openers diazoxide and BMS-180448 after prolonged hypothermic storage. Co-administration of diazoxide or BMS-180448 with cariporide results in additive cardioprotection, with significantly improved cardiac function when compared with either treatment given alone. Such a combination could be used to improve the functional recovery of hearts stored for cardiac transplantation.
Collapse
|
46
|
Garlid KD, Dos Santos P, Xie ZJ, Costa ADT, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:1-21. [PMID: 14507424 DOI: 10.1016/s0005-2728(03)00109-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.
Collapse
Affiliation(s)
- Keith D Garlid
- Department of Biology, Portland State University, 1719 SW 10th Avenue, PO Box 751, Portland, OR 97207, USA.
| | | | | | | | | |
Collapse
|
47
|
Davies JE, Digerness SB, Goldberg SP, Killingsworth CR, Katholi CR, Brookes PS, Holman WL. Intra-myocyte ion homeostasis during ischemia-reperfusion injury: effects of pharmacologic preconditioning and controlled reperfusion. Ann Thorac Surg 2003; 76:1252-8; discussion 1258. [PMID: 14530020 DOI: 10.1016/s0003-4975(03)00889-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND This study determines whether controlled reperfusion or diazoxide improves intramyocyte Na(+) homeostasis using a porcine model of severe ischemia-reperfusion injury. METHODS Three groups (n = 10 pigs per group) had 75 minutes of left anterior descending artery occlusion during bypass. Group 1 had no treatment (control group), group 2 had controlled reperfusion (500 mL warm cardioplegia) (controlled reperfusion group), and group 3 had diazoxide (50 micromol/L before left anterior descending artery occlusion) (diazoxide group). Biopsies were taken from the left anterior descending artery region before ischemia and at 3, 5, and 10 minutes postreperfusion. Intra-myocyte Na(+) and water contents were determined using atomic absorption spectroscopy, and Na(+) concentrations were calculated. RESULTS Intra-myocyte Na(+) increased for the diazoxide group pigs at 3-minutes postreperfusion (21.9 +/- 2.9 vs 34.0 +/- 3.4 micromol/mL; p = 0.02), but decreased to 19.9 +/- 3.2 micromol/mL at 10 minutes postreperfusion (p = 1.0 vs baseline). At 10 minutes postreperfusion, intra-myocyte Na(+) in the controlled reperfusion group was lower than baseline (22.3 +/- 2.7 vs 17.2 +/- 3.1 micromol/mL; p < 0.001). Intra-myocyte Na(+) at 10 minutes postreperfusion for the diazoxide and controlled reperfusion groups was lower than for the control group (p < 0.05). CONCLUSIONS Diazoxide and controlled reperfusion improved intra-myocyte Na(+) homeostasis after severe ischemia-reperfusion injury.
Collapse
Affiliation(s)
- James E Davies
- Department of Surgery, Birmingham, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Teshima Y, Akao M, Li RA, Chong TH, Baumgartner WA, Johnston MV, Marbán E. Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress. Stroke 2003; 34:1796-802. [PMID: 12791941 DOI: 10.1161/01.str.0000077017.60947.ae] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels are present in the brain, and several reports have shown that mitoK(ATP) channel openers protect the brain against ischemic injury. However, the precise mechanisms of this protection are not well established. We hypothesized that mitoK(ATP) channel openers prevent apoptosis by preserving mitochondrial membrane potential. METHODS We investigated the effect of mitoK(ATP) channel openers on apoptosis induced by oxidative stress using cultured cerebellar granule neurons. RESULTS The mitoK(ATP) channel opener diazoxide (100 micromol/L) significantly suppressed the number of cells with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive nuclei and the increase in caspase-3 activity induced by 20 micromol/L H2O2. Diazoxide and another opener, pinacidil, prevented the loss of mitochondrial inner membrane potential (Delta(Psi)m) induced by H2O2. These effects were abolished by 5-hydroxydecanoate (500 micromol/L), a mitoK(ATP) channel blocker. Cyclosporin A and bongkrekic acid, inhibitors of the mitochondrial permeability transition pore, also prevented Delta(Psi)m loss, confirming the involvement of the mitochondrial permeability transition in the apoptotic cascade in neurons. Furthermore, diazoxide prevented the increase in extracellular glutamate concentration induced by H2O2, but this effect was not attributable to activation of surface K(ATP) channels. CONCLUSIONS MitoK(ATP) channel openers inhibited apoptosis by preserving mitochondrial inner membrane potential. These beneficial effects may suggest a possible new target for neuroprotection.
Collapse
Affiliation(s)
- Yasushi Teshima
- Institute of Molecular Cardiobiology, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kopustinskiene DM, Toleikis A, Saris NEL. Adenine nucleotide translocase mediates the K(ATP)-channel-openers-induced proton and potassium flux to the mitochondrial matrix. J Bioenerg Biomembr 2003; 35:141-8. [PMID: 12887012 DOI: 10.1023/a:1023746103401] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
KATP channel openers have been shown to protect ischemic-reperfused myocardium by mimicking ischemic preconditioning, although their mechanisms of action have not been fully clarified. In this study we investigated the influence of the adenine nucleotide translocase (ANT) inhibitors--carboxyatractyloside (CAT) and bongkrekic acid (BA)--on the diazoxide- and pinacidil-induced uncoupling of isolated rat heart mitochondria respiring on pyruvate and malate (6 + 6 mM). We found that both CAT (1.3 microM) and BA (20 microM) markedly reduced the uncoupling of mitochondrial oxidative phosphorylation induced by the K(ATP) channel openers. Thus, the uncoupling effect of diazoxide and pinacidil is evident only when ANT is not fixed by inhibitors in neither the C- nor the M-conformation. Moreover, the uncoupling effect of diazoxide and pinacidil was diminished in the presence of ADP or ATP, indicating a competition of K(ATP) channel openers with adenine nucleotides. CAT also abolished K+-dependent mitochondrial respiratory changes. Thus ANT could also be involved in the regulation of K(ATP)-channel-openers-induced K+ flux through the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Dalia M Kopustinskiene
- Institute for Biomedical Research, Kaunas University of Medicine, Eiveniu Street 4, LT-3007, Kaunas, Lithuania.
| | | | | |
Collapse
|
50
|
|