1
|
Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Singh S, Sharma D, Das BK. Next Generation Sequencing Based Forward Genetic Approaches for Identification and Mapping of Causal Mutations in Crop Plants: A Comprehensive Review. PLANTS 2020; 9:plants9101355. [PMID: 33066352 PMCID: PMC7602136 DOI: 10.3390/plants9101355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The recent advancements in forward genetics have expanded the applications of mutation techniques in advanced genetics and genomics, ahead of direct use in breeding programs. The advent of next-generation sequencing (NGS) has enabled easy identification and mapping of causal mutations within a short period and at relatively low cost. Identifying the genetic mutations and genes that underlie phenotypic changes is essential for understanding a wide variety of biological functions. To accelerate the mutation mapping for crop improvement, several high-throughput and novel NGS based forward genetic approaches have been developed and applied in various crops. These techniques are highly efficient in crop plants, as it is relatively easy to grow and screen thousands of individuals. These approaches have improved the resolution in quantitative trait loci (QTL) position/point mutations and assisted in determining the functional causative variations in genes. To be successful in the interpretation of NGS data, bioinformatics computational methods are critical elements in delivering accurate assembly, alignment, and variant detection. Numerous bioinformatics tools/pipelines have been developed for such analysis. This article intends to review the recent advances in NGS based forward genetic approaches to identify and map the causal mutations in the crop genomes. The article also highlights the available bioinformatics tools/pipelines for reducing the complexity of NGS data and delivering the concluding outcomes.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sudhir Kumar Gupta
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India;
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
- Correspondence: (D.S.); (B.K.D.)
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Correspondence: (D.S.); (B.K.D.)
| |
Collapse
|
2
|
Rabillé H, Torode TA, Tesson B, Le Bail A, Billoud B, Rolland E, Le Panse S, Jam M, Charrier B. Alginates along the filament of the brown alga Ectocarpus help cells cope with stress. Sci Rep 2019; 9:12956. [PMID: 31506545 PMCID: PMC6736953 DOI: 10.1038/s41598-019-49427-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022] Open
Abstract
Ectocarpus is a filamentous brown alga, which cell wall is composed mainly of alginates and fucans (80%), two non-crystalline polysaccharide classes. Alginates are linear chains of epimers of 1,4-linked uronic acids, β-D-mannuronic acid (M) and α-L-guluronic acid (G). Previous physico-chemical studies showed that G-rich alginate gels are stiffer than M-rich alginate gels when prepared in vitro with calcium. In order to assess the possible role of alginates in Ectocarpus, we first immunolocalised M-rich or G-rich alginates using specific monoclonal antibodies along the filament. As a second step, we calculated the tensile stress experienced by the cell wall along the filament, and varied it with hypertonic or hypotonic solutions. As a third step, we measured the stiffness of the cell along the filament, using cell deformation measurements and atomic force microscopy. Overlapping of the three sets of data allowed to show that alginates co-localise with the stiffest and most stressed areas of the filament, namely the dome of the apical cell and the shanks of the central round cells. In addition, no major distinction between M-rich and G-rich alginate spatial patterns could be observed. Altogether, these results support that both M-rich and G-rich alginates play similar roles in stiffening the cell wall where the tensile stress is high and exposes cells to bursting, and that these roles are independent from cell growth and differentiation.
Collapse
Affiliation(s)
- Hervé Rabillé
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Thomas A Torode
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, United Kingdom
| | - Benoit Tesson
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Aude Le Bail
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
- Department of Cell Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Bernard Billoud
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Elodie Rolland
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Sophie Le Panse
- Platform Merimage, FR 2424, CNRS, Station Biologique, Roscoff, France
| | - Murielle Jam
- Marine Glycobiology team, UMR8227, CNRS-UPMC, Station Biologique, Roscoff, France
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France.
| |
Collapse
|
3
|
Jia F, Ben Amar M, Billoud B, Charrier B. Morphoelasticity in the development of brown alga Ectocarpus siliculosus: from cell rounding to branching. J R Soc Interface 2017; 14:20160596. [PMID: 28228537 PMCID: PMC5332559 DOI: 10.1098/rsif.2016.0596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/27/2017] [Indexed: 11/29/2022] Open
Abstract
A biomechanical model is proposed for the growth of the brown alga Ectocarpus siliculosus Featuring ramified uniseriate filaments, this alga has two modes of growth: apical growth and intercalary growth with branching. Apical growth occurs upon the mitosis of a young cell at one extremity and leads to a new tip cell followed by a cylindrical cell, whereas branching mainly occurs when a cylindrical cell becomes rounded and swells, forming a spherical cell. Given the continuous interplay between cell growth and swelling, a poroelastic model combining osmotic pressure and volumetric growth is considered for the whole cell, cytoplasm and cell wall. The model recovers the morphogenetic transformations of mature cells: transformation of a cylindrical shape into spherical shape with a volumetric increase, and then lateral branching. Our simulations show that the poro-elastic model, including the Mooney-Rivlin approach for hyper-elastic materials, can correctly reproduce the observations. In particular, branching appears to be a plasticity effect due to the high level of tension created after the increase in volume of mature cells.
Collapse
Affiliation(s)
- Fei Jia
- School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, People's Republic of China
| | - Martine Ben Amar
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
- Institut Universitaire de Cancérologie, Faculté de médecine, Université Pierre et Marie Curie-Paris 6, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Bernard Billoud
- UMR8227 CNRS-UPMC, Station Biologique, Place George Teissier, 29680 Roscoff, France
| | - Bénédicte Charrier
- UMR8227 CNRS-UPMC, Station Biologique, Place George Teissier, 29680 Roscoff, France
| |
Collapse
|
4
|
Billoud B, Jouanno É, Nehr Z, Carton B, Rolland É, Chenivesse S, Charrier B. Localization of causal locus in the genome of the brown macroalga Ectocarpus: NGS-based mapping and positional cloning approaches. FRONTIERS IN PLANT SCIENCE 2015; 6:68. [PMID: 25745426 PMCID: PMC4333798 DOI: 10.3389/fpls.2015.00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/26/2015] [Indexed: 05/12/2023]
Abstract
Mutagenesis is the only process by which unpredicted biological gene function can be identified. Despite that several macroalgal developmental mutants have been generated, their causal mutation was never identified, because experimental conditions were not gathered at that time. Today, progresses in macroalgal genomics and judicious choices of suitable genetic models make mutated gene identification possible. This article presents a comparative study of two methods aiming at identifying a genetic locus in the brown alga Ectocarpus siliculosus: positional cloning and Next-Generation Sequencing (NGS)-based mapping. Once necessary preliminary experimental tools were gathered, we tested both analyses on an Ectocarpus morphogenetic mutant. We show how a narrower localization results from the combination of the two methods. Advantages and drawbacks of these two approaches as well as potential transfer to other macroalgae are discussed.
Collapse
Affiliation(s)
- Bernard Billoud
- Sorbonne Université, UPMC University Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de RoscoffCS 90074, F-29688, Roscoff cedex, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Charrier B, Le Bail A, de Reviers B. Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. TRENDS IN PLANT SCIENCE 2012; 17:468-77. [PMID: 22513108 DOI: 10.1016/j.tplants.2012.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 05/13/2023]
Abstract
Brown algae are multicellular photosynthetic marine organisms, ubiquitous on rocky intertidal shores at cold and temperate latitudes. Nevertheless, little is known about many aspects of their biology, particularly their development. Given their phylogenetic distance (1.6 billion years) from other plant organisms (land plants, and green and red algae), brown algae harbor a high, as-yet undiscovered diversity of biological mechanisms governing their development. They also show great morphological plasticity, responding to specific environmental constraints, such as sea currents, reduced light availability, grazer attacks, desiccation and UV exposure. Here, we show that brown algal morphogenesis is rather simple and flexible, and review recent genomic data on the cellular and molecular mechanisms known to date that can possibly account for this developmental strategy.
Collapse
Affiliation(s)
- Bénédicte Charrier
- Marine Biological Station, UMR7139 CNRS-UPMC 'Marine Plants and Biomolecules', Place Georges Teissier, 29682 Roscoff Cedex, France.
| | | | | |
Collapse
|
6
|
Goulitquer S, Potin P, Tonon T. Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. Mar Drugs 2012; 10:849-880. [PMID: 22690147 PMCID: PMC3366679 DOI: 10.3390/md10040849] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/13/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023] Open
Abstract
Marine systems are very diverse and recognized as being sources of a wide range of biomolecules. This review provides an overview of metabolite profiling based on mass spectrometry (MS) approaches in marine organisms and their environments, focusing on recent advances in the field. We also point out some of the technical challenges that need to be overcome in order to increase applications of metabolomics in marine systems, including extraction of chemical compounds from different matrices and data management. Metabolites being important links between genotype and phenotype, we describe added value provided by integration of data from metabolite profiling with other layers of omics, as well as their importance for the development of systems biology approaches in marine systems to study several biological processes, and to analyze interactions between organisms within communities. The growing importance of MS-based metabolomics in chemical ecology studies in marine ecosystems is also illustrated.
Collapse
Affiliation(s)
- Sophie Goulitquer
- Plate-forme MetaboMER, CNRS & UPMC, FR2424, Station Biologique, 29680 Roscoff, France
| | - Philippe Potin
- UMR 7139 Marine Plants and Biomolecules, UPMC Univ Paris 6, Station Biologique, 29680 Roscoff, France; (P.P.); (T.T.)
- UMR 7139 Marine Plants and Biomolecules, CNRS, Station Biologique, 29680 Roscoff, France
| | - Thierry Tonon
- UMR 7139 Marine Plants and Biomolecules, UPMC Univ Paris 6, Station Biologique, 29680 Roscoff, France; (P.P.); (T.T.)
- UMR 7139 Marine Plants and Biomolecules, CNRS, Station Biologique, 29680 Roscoff, France
| |
Collapse
|
7
|
Coelho SM, Scornet D, Rousvoal S, Peters NT, Dartevelle L, Peters AF, Cock JM. Ectocarpus: a model organism for the brown algae. Cold Spring Harb Protoc 2012; 2012:193-8. [PMID: 22301644 DOI: 10.1101/pdb.emo065821] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The brown algae are an interesting group of organisms from several points of view. They are the dominant organisms in many coastal ecosystems, where they often form large, underwater forests. They also have an unusual evolutionary history, being members of the stramenopiles, which are very distantly related to well-studied animal and green plant models. As a consequence of this history, brown algae have evolved many novel features, for example in terms of their cell biology and metabolic pathways. They are also one of only a small number of eukaryotic groups to have independently evolved complex multicellularity. Despite these interesting features, the brown algae have remained a relatively poorly studied group. This situation has started to change over the last few years, however, with the emergence of the filamentous brown alga Ectocarpus as a model system that is amenable to the genomic and genetic approaches that have proved to be so powerful in more classical model organisms such as Drosophila and Arabidopsis.
Collapse
Affiliation(s)
- Susana M Coelho
- UPMC Université Paris 06, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, BP74, 29682 Roscoff Cedex, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Nehr Z, Billoud B, Le Bail A, Charrier B. Space-time decoupling in the branching process in the mutant étoile of the filamentous brown alga Ectocarpus siliculosus. PLANT SIGNALING & BEHAVIOR 2011; 6:1889-92. [PMID: 22095146 PMCID: PMC3337172 DOI: 10.4161/psb.6.12.18054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ectocarpus siliculosus is being developed as a model organism for brown algal genetics and genomics. Brown algae are phylogenetically distant from the other multicellular phyla (green lineage, red algae, fungi and metazoan) and therefore might offer the opportunity to study novel and alternative developmental processes that lead to the establishment of multicellularity. E. siliculosus develops as uniseriate filaments, thereby displaying one of the simplest architectures among multicellular organisms. The young sporophyte grows as a primary filament and then branching occurs, preferentially at the center of the filament. We recently described the first morphogenetic mutant étoile (etl) in a brown alga, produced by UVB mutagenesis in E. siliculosus. We showed that a single recessive mutation was responsible for a defect in both cell differentiation and the very early branching pattern (first and second branch emergences). Here, we supplement this study by reporting the branching defects observed subsequently, i.e. for the later stages corresponding to the emergence of up to the first six secondary filaments, and we show that the branching process is composed of at least two distinct components: time and position.
Collapse
Affiliation(s)
- Zofia Nehr
- UMR 7139 CNRS-UPMC; Station Biologique de Roscoff; Roscoff, France
| | - Bernard Billoud
- UMR 7139 CNRS-UPMC; Station Biologique de Roscoff; Roscoff, France
| | - Aude Le Bail
- UMR 7139 CNRS-UPMC; Station Biologique de Roscoff; Roscoff, France
| | | |
Collapse
|
9
|
Le Bail A, Billoud B, Le Panse S, Chenivesse S, Charrier B. ETOILE regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus. THE PLANT CELL 2011; 23:1666-78. [PMID: 21478443 PMCID: PMC3101566 DOI: 10.1105/tpc.110.081919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/14/2011] [Accepted: 03/18/2011] [Indexed: 05/06/2023]
Abstract
Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell-cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell-cell communication during the establishment of the developmental pattern in this brown alga.
Collapse
Affiliation(s)
- Aude Le Bail
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
| | - Bernard Billoud
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
| | - Sophie Le Panse
- Plateforme d’Imagerie, Fédération de Recherche 2424, Centre National de la Recherche Scientifique, Station Biologique, Place Georges Teissier, 29682 Roscoff Cedex, France
| | - Sabine Chenivesse
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
| | - Bénédicte Charrier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 Végétaux Marins et Biomolécules, Station Biologique, F 29682 Roscoff, France
| |
Collapse
|
10
|
Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B. Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. PLANT PHYSIOLOGY 2010; 153:128-44. [PMID: 20200071 PMCID: PMC2862433 DOI: 10.1104/pp.109.149708] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/17/2010] [Indexed: 05/20/2023]
Abstract
Ectocarpus siliculosus is a small brown alga that has recently been developed as a genetic model. Its thallus is filamentous, initially organized as a main primary filament composed of elongated cells and round cells, from which branches differentiate. Modeling of its early development suggests the involvement of very local positional information mediated by cell-cell recognition. However, this model also indicates that an additional mechanism is required to ensure proper organization of the branching pattern. In this paper, we show that auxin indole-3-acetic acid (IAA) is detectable in mature E. siliculosus organisms and that it is present mainly at the apices of the filaments in the early stages of development. An in silico survey of auxin biosynthesis, conjugation, response, and transport genes showed that mainly IAA biosynthesis genes from land plants have homologs in the E. siliculosus genome. In addition, application of exogenous auxins and 2,3,5-triiodobenzoic acid had different effects depending on the developmental stage of the organism, and we propose a model in which auxin is involved in the negative control of progression in the developmental program. Furthermore, we identified an auxin-inducible gene called EsGRP1 from a small-scale microarray experiment and showed that its expression in a series of morphogenetic mutants was positively correlated with both their elongated-to-round cell ratio and their progression in the developmental program. Altogether, these data suggest that IAA is used by the brown alga Ectocarpus to relay cell-cell positional information and induces a signaling pathway different from that known in land plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bénédicte Charrier
- CNRS-Université Pierre et Marie Curie, UMR 7139 Marine Plants and Biomolecules (A.L.B., B.B., N.K., M.G., S.S., D.S., J.M.C., B.C.), and Platform of Cytology, CNRS FR2424 (S.L.P.), Station Biologique de Roscoff, 29682 Roscoff cedex, France; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University for Agricultural Sciences, S–901 83 Umea, Sweden (M.K., K.L.)
| |
Collapse
|