1
|
Khetan S, Bulyk ML. Overlapping binding sites underlie TF genomic occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583629. [PMID: 38496549 PMCID: PMC10942454 DOI: 10.1101/2024.03.05.583629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sequence-specific DNA binding by transcription factors (TFs) is a crucial step in gene regulation. However, current high-throughput in vitro approaches cannot reliably detect lower affinity TF-DNA interactions, which play key roles in gene regulation. Here, we developed PADIT-seq ( p rotein a ffinity to D NA by in vitro transcription and RNA seq uencing) to assay TF binding preferences to all 10-bp DNA sequences at far greater sensitivity than prior approaches. The expanded catalogs of low affinity DNA binding sites for the human TFs HOXD13 and EGR1 revealed that nucleotides flanking high affinity DNA binding sites create overlapping lower affinity sites that together modulate TF genomic occupancy in vivo . Formation of such extended recognition sequences stems from an inherent property of TF binding sites to interweave each other and expands the genomic sequence space for identifying noncoding variants that directly alter TF binding. One-Sentence Summary Overlapping DNA binding sites underlie TF genomic occupancy through their inherent propensity to interweave each other.
Collapse
|
2
|
Kapil S, Sobti RC, Kaur T. Prediction and analysis of cis-regulatory elements in Dorsal and Ventral patterning genes of Tribolium castaneum and its comparison with Drosophila melanogaster. Mol Cell Biochem 2024; 479:109-125. [PMID: 37004638 DOI: 10.1007/s11010-023-04712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/15/2023] [Indexed: 04/04/2023]
Abstract
Insect embryonic development and morphology are characterized by their anterior-posterior and dorsal-ventral (DV) patterning. In Drosophila embryos, DV patterning is mediated by a dorsal protein gradient which activates twist and snail proteins, the important regulators of DV patterning. To activate or repress gene expression, some regulatory proteins bind in clusters to their target gene at sites known as cis-regulatory elements or enhancers. To understand how variations in gene expression in different lineages might lead to different phenotypes, it is necessary to understand enhancers and their evolution. Drosophila melanogaster has been widely studied to understand the interactions between transcription factors and the transcription factor binding sites. Tribolium castaneum is an upcoming model animal which is catching the interest of biologists and the research on the enhancer mechanisms in the insect's axes patterning is still in infancy. Therefore, the current study was designed to compare the enhancers of DV patterning in the two insect species. The sequences of ten proteins involved in DV patterning of D. melanogaster were obtained from Flybase. The protein sequences of T. castaneum orthologous to those obtained from D. melanogaster were acquired from NCBI BLAST, and these were then converted to DNA sequences which were modified by adding 20 kb sequences both upstream and downstream to the gene. These modified sequences were used for further analysis. Bioinformatics tools (Cluster-Buster and MCAST) were used to search for clusters of binding sites (enhancers) in the modified DV genes. The results obtained showed that the transcription factors in Drosophila melanogaster and Tribolium castaneum are nearly identical; however, the number of binding sites varies between the two species, indicating transcription factor binding site evolution, as predicted by two different computational tools. It was observed that dorsal, twist, snail, zelda, and Supressor of Hairless are the transcription factors responsible for the regulation of DV patterning in the two insect species.
Collapse
Affiliation(s)
- Subham Kapil
- Department of Zoology, DAV University, Jalandhar, India
| | | | - Tejinder Kaur
- Department of Zoology, DAV University, Jalandhar, India.
| |
Collapse
|
3
|
Alamos S, Reimer A, Westrum C, Turner MA, Talledo P, Zhao J, Luu E, Garcia HG. Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient. Cell Syst 2023; 14:220-236.e3. [PMID: 36696901 PMCID: PMC10125799 DOI: 10.1016/j.cels.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
How enhancers interpret morphogen gradients to generate gene expression patterns is a central question in developmental biology. Recent studies have proposed that enhancers can dictate whether, when, and at what rate promoters engage in transcription, but the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal promoter-proximal synthetic enhancer in embryos of Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal DNA binding site. Using live imaging to quantify transcriptional activity, we found that a single binding site can regulate whether promoters engage in transcription in a concentration-dependent manner. By modulating the binding-site affinity, we determined that a gene's decision to transcribe and its transcriptional onset time can be explained by a simple model where the promoter traverses multiple kinetic barriers before transcription can ensue.
Collapse
Affiliation(s)
- Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Armando Reimer
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Clay Westrum
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Meghan A Turner
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Paul Talledo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jiaxi Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Emma Luu
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA; Department of Physics, University of California at Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Regionalization of the Early Nervous System. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Vuilleumier R, Miao M, Medina-Giro S, Ell CM, Flibotte S, Lian T, Kauwe G, Collins A, Ly S, Pyrowolakis G, Haghighi A, Allan D. Dichotomous cis-regulatory motifs mediate the maturation of the neuromuscular junction by retrograde BMP signaling. Nucleic Acids Res 2022; 50:9748-9764. [PMID: 36029115 PMCID: PMC9508838 DOI: 10.1093/nar/gkac730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Retrograde bone morphogenetic protein (BMP) signaling at the Drosophila neuromuscular junction (NMJ) has served as a paradigm to study TGF-β-dependent synaptic function and maturation. Yet, how retrograde BMP signaling transcriptionally regulates these functions remains unresolved. Here, we uncover a gene network, enriched for neurotransmission-related genes, that is controlled by retrograde BMP signaling in motor neurons through two Smad-binding cis-regulatory motifs, the BMP-activating (BMP-AE) and silencer (BMP-SE) elements. Unpredictably, both motifs mediate direct gene activation, with no involvement of the BMP derepression pathway regulators Schnurri and Brinker. Genome editing of candidate BMP-SE and BMP-AE within the locus of the active zone gene bruchpilot, and a novel Ly6 gene witty, demonstrated the role of these motifs in upregulating genes required for the maturation of pre- and post-synaptic NMJ compartments. Our findings uncover how Smad-dependent transcriptional mechanisms specific to motor neurons directly orchestrate a gene network required for synaptic maturation by retrograde BMP signaling.
Collapse
Affiliation(s)
- Robin Vuilleumier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Mo Miao
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sonia Medina-Giro
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, 79104, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Hilde Mangold Haus, Habsburgerstrasse 49, University of Freiburg, Freiburg, 79104, Germany
| | - Stephane Flibotte
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Annie Collins
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sophia Ly
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - George Pyrowolakis
- CIBSS - Centre for Integrative Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Hilde Mangold Haus, Habsburgerstrasse 49, University of Freiburg, Freiburg, 79104, Germany
| | | | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
6
|
Hegde S, Sreejan A, Gadgil CJ, Ratnaparkhi GS. SUMOylation of Dorsal attenuates Toll/NF-κB signaling. Genetics 2022; 221:iyac081. [PMID: 35567478 PMCID: PMC9252280 DOI: 10.1093/genetics/iyac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
In Drosophila, Toll/NF-κB signaling plays key roles in both animal development and in host defense. The activation, intensity, and kinetics of Toll signaling are regulated by posttranslational modifications such as phosphorylation, SUMOylation, or ubiquitination that target multiple proteins in the Toll/NF-κB cascade. Here, we have generated a CRISPR-Cas9 edited Dorsal (DL) variant that is SUMO conjugation resistant. Intriguingly, embryos laid by dlSCR mothers overcome dl haploinsufficiency and complete the developmental program. This ability appears to be a result of higher transcriptional activation by DLSCR. In contrast, SUMOylation dampens DL transcriptional activation, ultimately conferring robustness to the dorso-ventral program. In the larval immune response, dlSCR animals show an increase in crystal cell numbers, stronger activation of humoral defense genes, and high cactus levels. A mathematical model that evaluates the contribution of the small fraction of SUMOylated DL (1-5%) suggests that it acts to block transcriptional activation, which is driven primarily by DL that is not SUMO conjugated. Our findings define SUMO conjugation as an important regulator of the Toll signaling cascade, in both development and host defense. Our results broadly suggest that SUMO attenuates DL at the level of transcriptional activation. Furthermore, we hypothesize that SUMO conjugation of DL may be part of a Ubc9-dependent mechanism that restrains Toll/NF-κB signaling.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research, Pune 411008, India
| | - Ashley Sreejan
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Chetan J Gadgil
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
- CSIR—Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | | |
Collapse
|
7
|
Frampton SL, Sutcliffe C, Baldock C, Ashe HL. Modelling the structure of Short Gastrulation and generation of a toolkit for studying its function in Drosophila. Biol Open 2022; 11:275491. [PMID: 35603711 PMCID: PMC9194680 DOI: 10.1242/bio.059199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
A BMP gradient is essential for patterning the dorsal-ventral axis of invertebrate and vertebrate embryos. The extracellular BMP binding protein Short Gastrulation (Sog) in Drosophila plays a key role in BMP gradient formation. In this study, we combine genome editing, structural and developmental approaches to study Sog function in Drosophila. We generate a sog knockout fly stock, which allows simple reintegration of altered versions of the sog coding sequence. As proof-of-principle, we test the requirement for two cysteine residues that were previously identified as targets for palmitoylation, which has been proposed to enhance Sog secretion. However, we show that the sogC27,28S mutant is viable with only very mild phenotypes, indicating that these residues and their potential modification are not critical for Sog secretion in vivo. Additionally, we use experimental negative stain EM imaging and hydrodynamic data to validate the AlphaFold structure prediction for Sog. The model suggests a more compact shape than the vertebrate ortholog Chordin and conformational flexibility between the C-terminal von Willebrand C domains. We discuss how this altered compactness may contribute to mechanistic differences in Sog and Chordin function during BMP gradient formation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sophie L. Frampton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK,Authors for correspondence (, )
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK,Authors for correspondence (, )
| |
Collapse
|
8
|
Genome-Wide cis-Regulatory Element Based Discovery of Auxin-Responsive Genes in Higher Plant. Genes (Basel) 2021; 13:genes13010024. [PMID: 35052364 PMCID: PMC8775021 DOI: 10.3390/genes13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Auxin has a profound impact on plant physiology and participates in almost all aspects of plant development processes. Auxin exerts profound pleiotropic effects on plant growth and differentiation by regulating the auxin response genes’ expressions. The classical auxin reaction is usually mediated by auxin response factors (ARFs), which bind to the auxin response element (AuxRE) in the promoter region of the target gene. Experiments have generated only a limited number of plant genes with well-characterized functions. It is still unknown how many genes respond to exogenous auxin treatment. An economical and effective method was proposed for the genome-wide discovery of genes responsive to auxin in a model plant, Arabidopsis thaliana (A. thaliana). Our method relies on cis-regulatory-element-based targeted gene finding across different promoters in a genome. We first exploit and analyze auxin-specific cis-regulatory elements for the transcription of the target genes, and then identify putative auxin responsive genes whose promoters contain the elements in the collection of over 25,800 promoters in the A. thaliana genome. Evaluating our result by comparing with a published database and the literature, we found that this method has an accuracy rate of 65.2% (309/474) for predicting candidate genes responsive to auxin. Chromosome distribution and annotation of the putative auxin-responsive genes predicted here were also mined. The results can markedly decrease the number of identified but merely potential auxin target genes and also provide useful clues for improving the annotation of gene that lack functional information.
Collapse
|
9
|
Abstract
Key discoveries in Drosophila have shaped our understanding of cellular "enhancers." With a special focus on the fly, this chapter surveys properties of these adaptable cis-regulatory elements, whose actions are critical for the complex spatial/temporal transcriptional regulation of gene expression in metazoa. The powerful combination of genetics, molecular biology, and genomics available in Drosophila has provided an arena in which the developmental role of enhancers can be explored. Enhancers are characterized by diverse low- or high-throughput assays, which are challenging to interpret, as not all of these methods of identifying enhancers produce concordant results. As a model metazoan, the fly offers important advantages to comprehensive analysis of the central functions that enhancers play in gene expression, and their critical role in mediating the production of phenotypes from genotype and environmental inputs. A major challenge moving forward will be obtaining a quantitative understanding of how these cis-regulatory elements operate in development and disease.
Collapse
Affiliation(s)
- Stephen Small
- Department of Biology, Developmental Systems Training Program, New York University, 10003 and
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
10
|
Koromila T, Gao F, Iwasaki Y, He P, Pachter L, Gergen JP, Stathopoulos A. Odd-paired is a pioneer-like factor that coordinates with Zelda to control gene expression in embryos. eLife 2020; 9:e59610. [PMID: 32701060 PMCID: PMC7417190 DOI: 10.7554/elife.59610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/22/2020] [Indexed: 01/29/2023] Open
Abstract
Pioneer factors such as Zelda (Zld) help initiate zygotic transcription in Drosophila early embryos, but whether other factors support this dynamic process is unclear. Odd-paired (Opa), a zinc-finger transcription factor expressed at cellularization, controls the transition of genes from pair-rule to segmental patterns along the anterior-posterior axis. Finding that Opa also regulates expression through enhancer sog_Distal along the dorso-ventral axis, we hypothesized Opa's role is more general. Chromatin-immunoprecipitation (ChIP-seq) confirmed its in vivo binding to sog_Distal but also identified widespread binding throughout the genome, comparable to Zld. Furthermore, chromatin assays (ATAC-seq) demonstrate that Opa, like Zld, influences chromatin accessibility genome-wide at cellularization, suggesting both are pioneer factors with common as well as distinct targets. Lastly, embryos lacking opa exhibit widespread, late patterning defects spanning both axes. Collectively, these data suggest Opa is a general timing factor and likely late-acting pioneer factor that drives a secondary wave of zygotic gene expression.
Collapse
Affiliation(s)
- Theodora Koromila
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Fan Gao
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Yasuno Iwasaki
- Stony Brook University, Department of Biochemistry and Cell Biology and Center for Developmental GeneticsStony BrookUnited States
| | - Peng He
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Lior Pachter
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - J Peter Gergen
- Stony Brook University, Department of Biochemistry and Cell Biology and Center for Developmental GeneticsStony BrookUnited States
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|
11
|
Keller SH, Jena SG, Yamazaki Y, Lim B. Regulation of spatiotemporal limits of developmental gene expression via enhancer grammar. Proc Natl Acad Sci U S A 2020; 117:15096-15103. [PMID: 32541043 PMCID: PMC7334449 DOI: 10.1073/pnas.1917040117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The regulatory specificity of a gene is determined by the structure of its enhancers, which contain multiple transcription factor binding sites. A unique combination of transcription factor binding sites in an enhancer determines the boundary of target gene expression, and their disruption often leads to developmental defects. Despite extensive characterization of binding motifs in an enhancer, it is still unclear how each binding site contributes to overall transcriptional activity. Using live imaging, quantitative analysis, and mathematical modeling, we measured the contribution of individual binding sites in transcriptional regulation. We show that binding site arrangement within the Rho-GTPase component t48 enhancer mediates the expression boundary by mainly regulating the timing of transcriptional activation along the dorsoventral axis of Drosophila embryos. By tuning the binding affinity of the Dorsal (Dl) and Zelda (Zld) sites, we show that single site modulations are sufficient to induce significant changes in transcription. Yet, no one site seems to have a dominant role; rather, multiple sites synergistically drive increases in transcriptional activity. Interestingly, Dl and Zld demonstrate distinct roles in transcriptional regulation. Dl site modulations change spatial boundaries of t48, mostly by affecting the timing of activation and bursting frequency rather than transcriptional amplitude or bursting duration. However, modulating the binding site for the pioneer factor Zld affects both the timing of activation and amplitude, suggesting that Zld may potentiate higher Dl recruitment to target DNAs. We propose that such fine-tuning of dynamic gene control via enhancer structure may play an important role in ensuring normal development.
Collapse
Affiliation(s)
- Samuel H Keller
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Siddhartha G Jena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Yuji Yamazaki
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe 650-0047, Japan
| | - Bomyi Lim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
12
|
Tomoyasu Y, Halfon MS. How to study enhancers in non-traditional insect models. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb212241. [PMID: 32034049 DOI: 10.1242/jeb.212241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional enhancers are central to the function and evolution of genes and gene regulation. At the organismal level, enhancers play a crucial role in coordinating tissue- and context-dependent gene expression. At the population level, changes in enhancers are thought to be a major driving force that facilitates evolution of diverse traits. An amazing array of diverse traits seen in insect morphology, physiology and behavior has been the subject of research for centuries. Although enhancer studies in insects outside of Drosophila have been limited, recent advances in functional genomic approaches have begun to make such studies possible in an increasing selection of insect species. Here, instead of comprehensively reviewing currently available technologies for enhancer studies in established model organisms such as Drosophila, we focus on a subset of computational and experimental approaches that are likely applicable to non-Drosophila insects, and discuss the pros and cons of each approach. We discuss the importance of validating enhancer function and evaluate several possible validation methods, such as reporter assays and genome editing. Key points and potential pitfalls when establishing a reporter assay system in non-traditional insect models are also discussed. We close with a discussion of how to advance enhancer studies in insects, both by improving computational approaches and by expanding the genetic toolbox in various insects. Through these discussions, this Review provides a conceptual framework for studying the function and evolution of enhancers in non-traditional insect models.
Collapse
Affiliation(s)
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
13
|
Shrinivas K, Sabari BR, Coffey EL, Klein IA, Boija A, Zamudio AV, Schuijers J, Hannett NM, Sharp PA, Young RA, Chakraborty AK. Enhancer Features that Drive Formation of Transcriptional Condensates. Mol Cell 2020; 75:549-561.e7. [PMID: 31398323 DOI: 10.1016/j.molcel.2019.07.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/31/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.
Collapse
Affiliation(s)
- Krishna Shrinivas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin R Sabari
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Eliot L Coffey
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ann Boija
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Alicia V Zamudio
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jurian Schuijers
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Phillip A Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Mahmud AKMF, Yang D, Stenberg P, Ioshikhes I, Nandi S. Exploring a Drosophila Transcription Factor Interaction Network to Identify Cis-Regulatory Modules. J Comput Biol 2019; 27:1313-1328. [PMID: 31855461 DOI: 10.1089/cmb.2018.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple transcription factors (TFs) bind to specific sites in the genome and interact among themselves to form the cis-regulatory modules (CRMs). They are essential in modulating the expression of genes, and it is important to study this interplay to understand gene regulation. In the present study, we integrated experimentally identified TF binding sites collected from published studies with computationally predicted TF binding sites to identify Drosophila CRMs. Along with the detection of the previously known CRMs, this approach identified novel protein combinations. We determined high-occupancy target sites, where a large number of TFs bind. Investigating these sites revealed that Giant, Dichaete, and Knirp are highly enriched in these locations. A common TAG team motif was observed at these sites, which might play a role in recruiting other TFs. While comparing the binding sites at distal and proximal promoters, we found that certain regulatory TFs, such as Zelda, were highly enriched in enhancers. Our study has shown that, from the information available concerning the TF binding sites, the real CRMs could be predicted accurately and efficiently. Although we only may claim co-occurrence of these proteins in this study, it may actually point to their interaction (as known interaction proteins typically co-occur together). Such an integrative approach can, therefore, help us to provide a better understanding of the interplay among the factors, even though further experimental verification is required.
Collapse
Affiliation(s)
| | - Doo Yang
- Ottawa Institute of Computational Biology and Bioinformatics (OICBB) and Ottawa Institute of Systems Biology (OISB) and Department of Biochemistry, Microbiology and Immunology (BMI), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ilya Ioshikhes
- Ottawa Institute of Computational Biology and Bioinformatics (OICBB) and Ottawa Institute of Systems Biology (OISB) and Department of Biochemistry, Microbiology and Immunology (BMI), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Soumyadeep Nandi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati, India; Amity University Haryana, Gurugram, India
| |
Collapse
|
15
|
Dunipace L, Ákos Z, Stathopoulos A. Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization. PLoS Genet 2019; 15:e1008525. [PMID: 31830033 PMCID: PMC6932828 DOI: 10.1371/journal.pgen.1008525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/26/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022] Open
Abstract
Developmental genes are often regulated by multiple enhancers exhibiting similar spatiotemporal outputs, which are generally considered redundantly acting though few have been studied functionally. Using CRISPR-Cas9, we created deletions of two enhancers, brk5' and brk3', that drive similar but not identical expression of the gene brinker (brk) in early Drosophila embryos. Utilizing both in situ hybridization and quantitative mRNA analysis, we investigated the changes in the gene network state caused by the removal of one or both of the early acting enhancers. brk5' deletion generally phenocopied the gene mutant, including expansion of the BMP ligand decapentaplegic (dpp) as well as inducing variability in amnioserosa tissue cell number suggesting a loss of canalization. In contrast, brk3' deletion presented unique phenotypes including dorsal expansion of several ventrally expressed genes and a decrease in amnioserosa cell number. Similarly, deletions were made for two enhancers associated with the gene short-gastrulation (sog), sog.int and sog.dist, demonstrating that they also exhibit distinct patterning phenotypes and affect canalization. In summary, this study shows that similar gene expression driven by coacting enhancers can support distinct, and sometimes complementary, functions within gene regulatory networks and, moreover, that phenotypes associated with individual enhancer deletion mutants can provide insight into new gene functions.
Collapse
Affiliation(s)
- Leslie Dunipace
- California Institute of Technology, Pasadena, CA, United States of America
| | - Zsuzsa Ákos
- California Institute of Technology, Pasadena, CA, United States of America
| | | |
Collapse
|
16
|
Vuilleumier R, Lian T, Flibotte S, Khan ZN, Fuchs A, Pyrowolakis G, Allan DW. Retrograde BMP signaling activates neuronal gene expression through widespread deployment of a conserved BMP-responsive cis-regulatory activation element. Nucleic Acids Res 2019; 47:679-699. [PMID: 30476189 PMCID: PMC6344883 DOI: 10.1093/nar/gky1135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022] Open
Abstract
Retrograde Bone Morphogenetic Protein (BMP) signaling in neurons is essential for the differentiation and synaptic function of many neuronal subtypes. BMP signaling regulates these processes via Smad transcription factor activity, yet the scope and nature of Smad-dependent gene regulation in neurons are mostly unknown. Here, we applied a computational approach to predict Smad-binding cis-regulatory BMP-Activating Elements (BMP-AEs) in Drosophila, followed by transgenic in vivo reporter analysis to test their neuronal subtype enhancer activity in the larval central nervous system (CNS). We identified 34 BMP-AE-containing genomic fragments that are responsive to BMP signaling in neurons, and showed that the embedded BMP-AEs are required for this activity. RNA-seq analysis identified BMP-responsive genes in the CNS and revealed that BMP-AEs selectively enrich near BMP-activated genes. These data suggest that functional BMP-AEs control nearby BMP-activated genes, which we validated experimentally. Finally, we demonstrated that the BMP-AE motif mediates a conserved Smad-responsive function in the Drosophila and vertebrate CNS. Our results provide evidence that BMP signaling controls neuronal function by directly coordinating the expression of a battery of genes through widespread deployment of a conserved Smad-responsive cis-regulatory motif.
Collapse
Affiliation(s)
- Robin Vuilleumier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zaynah N Khan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alisa Fuchs
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - George Pyrowolakis
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Chayengia M, Veikkolainen V, Jevtic M, Pyrowolakis G. Sequence environment of BMP-dependent activating elements controls transcriptional responses to Dpp signaling in Drosophila. Development 2019; 146:dev.176107. [PMID: 31110028 DOI: 10.1242/dev.176107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022]
Abstract
Intercellular signaling pathways activate transcription factors, which, along with tissue-specific co-factors, regulate expression of target genes. Responses to TGFβ/BMP signals are mediated by Smad proteins, which form complexes and accumulate in the nucleus to directly bind and regulate enhancers of BMP targets upon signaling. In Drosophila, gene activation by BMP signaling often requires, in addition to direct input by Smads, the signal-dependent removal of the transcriptional repressor Brk. Previous studies on enhancers of BMP-activated genes have defined a BMP-responsive motif, the AE, which integrates activatory and repressive input by the Smad complex and Brk, respectively. Here, we address whether sequence variations within the core AE sequences might endow the motif with additional properties accounting for qualitative and quantitative differences in BMP responses, including tissue specificity of transcriptional activation and differential sensitivity to Smad and Brk inputs. By analyzing and cross-comparing three distinct BMP-responsive enhancers from the genes wit and D ad in two different epithelia, the wing imaginal disc and the follicular epithelium, we demonstrate that differences in the AEs contribute neither to the observed tissue-restriction of BMP responses nor to differences in the utilization of the Smad and Brk branches for transcriptional activation. Rather, our results suggest that the cis-environment of the BMP-response elements not only dictates tissue specificity but also differential sensitivity to the two BMP mediators.
Collapse
Affiliation(s)
- Mrinal Chayengia
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany.,Research Training Program GRK 1104, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany.,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Ville Veikkolainen
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany.,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Milica Jevtic
- Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - George Pyrowolakis
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany .,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany.,Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Mehrotra R, Loake G, Mehrotra S. Promoter choice: Selection vs. rejection. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Wells AC, Daniels KA, Angelou CC, Fagerberg E, Burnside AS, Markstein M, Alfandari D, Welsh RM, Pobezinskaya EL, Pobezinsky LA. Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells. eLife 2017; 6. [PMID: 28737488 PMCID: PMC5550279 DOI: 10.7554/elife.26398] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses. DOI:http://dx.doi.org/10.7554/eLife.26398.001
Collapse
Affiliation(s)
- Alexandria C Wells
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Keith A Daniels
- Department of Pathology, University of Massachusetts Medical School, Worcester, United States
| | - Constance C Angelou
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Eric Fagerberg
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Amy S Burnside
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Michele Markstein
- Department of Biology, University of Massachusetts, Amherst, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, United States
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| |
Collapse
|
20
|
Li L, Wunderlich Z. An Enhancer's Length and Composition Are Shaped by Its Regulatory Task. Front Genet 2017; 8:63. [PMID: 28588608 PMCID: PMC5440464 DOI: 10.3389/fgene.2017.00063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/08/2017] [Indexed: 12/02/2022] Open
Abstract
Enhancers drive the gene expression patterns required for virtually every process in metazoans. We propose that enhancer length and transcription factor (TF) binding site composition—the number and identity of TF binding sites—reflect the complexity of the enhancer's regulatory task. In development, we define regulatory task complexity as the number of fates specified in a set of cells at once. We hypothesize that enhancers with more complex regulatory tasks will be longer, with more, but less specific, TF binding sites. Larger numbers of binding sites can be arranged in more ways, allowing enhancers to drive many distinct expression patterns, and therefore cell fates, using a finite number of TF inputs. We compare ~100 enhancers patterning the more complex anterior-posterior (AP) axis and the simpler dorsal-ventral (DV) axis in Drosophila and find that the AP enhancers are longer with more, but less specific binding sites than the (DV) enhancers. Using a set of ~3,500 enhancers, we find enhancer length and TF binding site number again increase with increasing regulatory task complexity. Therefore, to be broadly applicable, computational tools to study enhancers must account for differences in regulatory task.
Collapse
Affiliation(s)
- Lily Li
- Department of Developmental and Cell Biology, University of California, IrvineIrvine, CA, United States
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, IrvineIrvine, CA, United States
| |
Collapse
|
21
|
Shin DH, Hong JW. Transcriptional activity of the short gastrulation primary enhancer in the ventral midline requires its early activity in the presumptive neurogenic ectoderm. BMB Rep 2017; 49:572-577. [PMID: 27616358 PMCID: PMC5227300 DOI: 10.5483/bmbrep.2016.49.10.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/22/2022] Open
Abstract
The short gastrulation (sog) shadow enhancer directs early and late sog expression in the neurogenic ectoderm and the ventral midline of the developing Drosophila embryo, respectively. Here, evidence is presented that the sog primary enhancer also has both activities, with the late enhancer activity dependent on the early activity. Computational analyses showed that the sog primary enhancer contains five Dorsal (Dl)-, four Zelda (Zld)-, three Bicoid (Bcd)-, and no Single-minded (Sim)-binding sites. In contrast to many ventral midline enhancers, the primary enhancer can direct lacZ expression in the ventral midline as well as in the neurogenic ectoderm without a canonical Simbinding site. Intriguingly, the impaired transcriptional synergy between Dl and either Zld or Bcd led to aberrant and abolished lacZ expression in the neurogenic ectoderm and in the ventral midline, respectively. These findings suggest that the two enhancer activities of the sog primary enhancer are functionally consolidated and geographically inseparable. [BMB Reports 2016; 49(10): 572-577]
Collapse
Affiliation(s)
- Dong-Hyeon Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Joung-Woo Hong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
22
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Koenecke N, Johnston J, Gaertner B, Natarajan M, Zeitlinger J. Genome-wide identification of Drosophila dorso-ventral enhancers by differential histone acetylation analysis. Genome Biol 2016; 17:196. [PMID: 27678375 PMCID: PMC5037609 DOI: 10.1186/s13059-016-1057-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Drosophila dorso-ventral (DV) patterning is one of the best-understood regulatory networks to date, and illustrates the fundamental role of enhancers in controlling patterning, cell fate specification, and morphogenesis during development. Histone acetylation such as H3K27ac is an excellent marker for active enhancers, but it is challenging to obtain precise locations for enhancers as the highest levels of this modification flank the enhancer regions. How to best identify tissue-specific enhancers in a developmental system de novo with a minimal set of data is still unclear. RESULTS Using DV patterning as a test system, we develop a simple and effective method to identify tissue-specific enhancers de novo. We sample a broad set of candidate enhancer regions using data on CREB-binding protein co-factor binding or ATAC-seq chromatin accessibility, and then identify those regions with significant differences in histone acetylation between tissues. This method identifies hundreds of novel DV enhancers and outperforms ChIP-seq data of relevant transcription factors when benchmarked with mRNA expression data and transgenic reporter assays. These DV enhancers allow the de novo discovery of the relevant transcription factor motifs involved in DV patterning and contain additional motifs that are evolutionarily conserved and for which the corresponding transcription factors are expressed in a DV-biased fashion. Finally, we identify novel target genes of the regulatory network, implicating morphogenesis genes as early targets of DV patterning. CONCLUSIONS Taken together, our approach has expanded our knowledge of the DV patterning network even further and is a general method to identify enhancers in any developmental system, including mammalian development.
Collapse
Affiliation(s)
- Nina Koenecke
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jeff Johnston
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Bjoern Gaertner
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Present address: Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Malini Natarajan
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Shin DH, Hong JW. Midline enhancer activity of the short gastrulation shadow enhancer is characterized by three unusual features for cis-regulatory DNA. BMB Rep 2016; 48:589-94. [PMID: 26277983 PMCID: PMC4911187 DOI: 10.5483/bmbrep.2015.48.10.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 01/10/2023] Open
Abstract
The shadow enhancer of the short gastrulation
(sog) gene directs its sequential expression in the
neurogenic ectoderm and the ventral midline of the developing
Drosophila embryo. Here, we characterize three unusual
features of the shadow enhancer midline activity. First, the minimal regions for
the two different enhancer activities exhibit high overlap within the shadow
enhancer, meaning that one developmental enhancer possesses dual enhancer
activities. Second, the midline enhancer activity relies on five Single-minded
(Sim)-binding sites, two of which have not been found in any Sim target
enhancers. Finally, two linked Dorsal (Dl)- and Zelda (Zld)-binding sites,
critical for the neurogenic ectoderm enhancer activity, are also required for
the midline enhancer activity. These results suggest that early activation by Dl
and Zld may facilitate late activation via the noncanonical sites occupied by
Sim. We discuss a model for Zld as a pioneer factor and speculate its role in
midline enhancer activity. [BMB Reports 2015; 48(10): 589-594]
Collapse
Affiliation(s)
- Dong-Hyeon Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Joung-Woo Hong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
25
|
Abstract
Enhancer elements function as the logic gates of the genetic regulatory circuitry. One of their most important functions is the integration of extracellular signals with intracellular cell fate information to generate cell type-specific transcriptional responses. Mutations occurring in cancer often misregulate enhancers that normally control the signal-dependent expression of growth-related genes. This misregulation can result from trans-acting mechanisms, such as activation of the transcription factors or epigenetic regulators that control enhancer activity, or can be caused in cis by direct mutations that alter the activity of the enhancer or its target gene specificity. These processes can generate tumour type-specific super-enhancers and establish a 'locked' gene regulatory state that drives the uncontrolled proliferation of cancer cells. Here, we review the role of enhancers in cancer, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Inderpreet Sur
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, and Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, and Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Genome-Scale Biology Program, University of Helsinki, Biomedicum, PO Box 63, Helsinki 00014, Finland
| |
Collapse
|
26
|
Esposito E, Lim B, Guessous G, Falahati H, Levine M. Mitosis-associated repression in development. Genes Dev 2016; 30:1503-8. [PMID: 27401553 PMCID: PMC4949323 DOI: 10.1101/gad.281188.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
Abstract
Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail.
Collapse
Affiliation(s)
- Emilia Esposito
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA; Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, University of California at Berkeley, Berkeley, California 94720, USA
| | - Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ghita Guessous
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Hanieh Falahati
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA; Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
27
|
Dror I, Rohs R, Mandel-Gutfreund Y. How motif environment influences transcription factor search dynamics: Finding a needle in a haystack. Bioessays 2016; 38:605-12. [PMID: 27192961 PMCID: PMC5023137 DOI: 10.1002/bies.201600005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) have to find their binding sites, which are distributed throughout the genome. Facilitated diffusion is currently the most widely accepted model for this search process. Based on this model the TF alternates between one-dimensional sliding along the DNA, and three-dimensional bulk diffusion. In this view, the non-specific associations between the proteins and the DNA play a major role in the search dynamics. However, little is known about how the DNA properties around the motif contribute to the search. Accumulating evidence showing that TF binding sites are embedded within a unique environment, specific to each TF, leads to the hypothesis that the search process is facilitated by favorable DNA features that help to improve the search efficiency. Here, we review the field and present the hypothesis that TF-DNA recognition is dictated not only by the motif, but is also influenced by the environment in which the motif resides.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel.,Departments of Biological Sciences, Chemistry, Physics, and Computer Science, Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Remo Rohs
- Departments of Biological Sciences, Chemistry, Physics, and Computer Science, Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Yael Mandel-Gutfreund
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| |
Collapse
|
28
|
Levario TJ, Lim B, Shvartsman SY, Lu H. Microfluidics for High-Throughput Quantitative Studies of Early Development. Annu Rev Biomed Eng 2016; 18:285-309. [PMID: 26928208 DOI: 10.1146/annurev-bioeng-100515-013926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developmental biology has traditionally relied on qualitative analyses; recently, however, as in other fields of biology, researchers have become increasingly interested in acquiring quantitative knowledge about embryogenesis. Advances in fluorescence microscopy are enabling high-content imaging in live specimens. At the same time, microfluidics and automation technologies are increasing experimental throughput for studies of multicellular models of development. Furthermore, computer vision methods for processing and analyzing bioimage data are now leading the way toward quantitative biology. Here, we review advances in the areas of fluorescence microscopy, microfluidics, and data analysis that are instrumental to performing high-content, high-throughput studies in biology and specifically in development. We discuss a case study of how these techniques have allowed quantitative analysis and modeling of pattern formation in the Drosophila embryo.
Collapse
Affiliation(s)
- Thomas J Levario
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| | - Bomyi Lim
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
29
|
Crocker J, Noon EPB, Stern DL. The Soft Touch: Low-Affinity Transcription Factor Binding Sites in Development and Evolution. Curr Top Dev Biol 2016; 117:455-69. [PMID: 26969995 DOI: 10.1016/bs.ctdb.2015.11.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transcription factor proteins regulate gene expression by binding to specific DNA regions. Most studies of transcription factor binding sites have focused on the highest affinity sites for each factor. There is abundant evidence, however, that binding sites with a range of affinities, including very low affinities, are critical to gene regulation. Here, we present the theoretical and experimental evidence for the importance of low-affinity sites in gene regulation and development. We also discuss the implications of the widespread use of low-affinity sites in eukaryotic genomes for robustness, precision, specificity, and evolution of gene regulation.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Ella Preger-Ben Noon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.
| |
Collapse
|
30
|
Gurdziel K, Lorberbaum DS, Udager AM, Song JY, Richards N, Parker DS, Johnson LA, Allen BL, Barolo S, Gumucio DL. Identification and Validation of Novel Hedgehog-Responsive Enhancers Predicted by Computational Analysis of Ci/Gli Binding Site Density. PLoS One 2015; 10:e0145225. [PMID: 26710299 PMCID: PMC4692483 DOI: 10.1371/journal.pone.0145225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci.
Collapse
Affiliation(s)
- Katherine Gurdziel
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Computational Medicine and Bioinformatics, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - David S. Lorberbaum
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Cellular and Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Aaron M. Udager
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jane Y. Song
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Cellular and Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Neil Richards
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - David S. Parker
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Lisa A. Johnson
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| | - Scott Barolo
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| |
Collapse
|
31
|
José-Edwards DS, Oda-Ishii I, Kugler JE, Passamaneck YJ, Katikala L, Nibu Y, Di Gregorio A. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLoS Genet 2015; 11:e1005730. [PMID: 26684323 PMCID: PMC4684326 DOI: 10.1371/journal.pgen.1005730] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs.
Collapse
Affiliation(s)
- Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lavanya Katikala
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yutaka Nibu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Zehavi Y, Sloutskin A, Kuznetsov O, Juven-Gershon T. The core promoter composition establishes a new dimension in developmental gene networks. Nucleus 2015; 5:298-303. [PMID: 25482118 DOI: 10.4161/nucl.29838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II, which initiates transcription at the core promoter. The dorsal-ventral gene regulatory network (GRN) includes multiple genes that are activated by different nuclear concentrations of the Dorsal transcription factor along the dorsal-ventral axis. Downstream core promoter element (DPE)-containing genes are conserved and highly prevalent among Dorsal target genes. Moreover, the DPE motif is functional in multiple Dorsal target genes, as mutation of the DPE results in the loss of transcriptional activity. Furthermore, analysis of hybrid enhancer-promoter constructs reveals that the core promoter composition plays a pivotal role in the transcriptional output. Importantly, we provide in vivo evidence that expression driven by the homeotic Antennapedia P2 promoter during Drosophila embryogenesis is dependent on the DPE. Taken together, we propose that transcriptional regulation results from the interplay between enhancers and core promoter composition, thus establishing a novel dimension in developmental GRNs.
Collapse
Affiliation(s)
- Yonathan Zehavi
- a The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| | | | | | | |
Collapse
|
33
|
Shin DH, Hong JW. The shadow enhancer of short gastrulation also directs its expression in the ventral midline of the Drosophila embryo. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Kazemian M, Suryamohan K, Chen JY, Zhang Y, Samee MAH, Halfon MS, Sinha S. Evidence for deep regulatory similarities in early developmental programs across highly diverged insects. Genome Biol Evol 2015; 6:2301-20. [PMID: 25173756 PMCID: PMC4217690 DOI: 10.1093/gbe/evu184] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution.
Collapse
Affiliation(s)
- Majid Kazemian
- Department of Computer Science, University of Illinois at Urbana-Champaign Laboratory of Molecular Immunology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Jia-Yu Chen
- Department of Computer Science, University of Illinois at Urbana-Champaign
| | - Yinan Zhang
- Department of Computer Science, University of Illinois at Urbana-Champaign
| | | | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York Department of Biological Sciences, University at Buffalo-State University of New York Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign Institute of Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
35
|
Suryamohan K, Halfon MS. Identifying transcriptional cis-regulatory modules in animal genomes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:59-84. [PMID: 25704908 PMCID: PMC4339228 DOI: 10.1002/wdev.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Abstract
UNLABELLED Gene expression is regulated through the activity of transcription factors (TFs) and chromatin-modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods have led to an explosion of both computational and empirical methods for CRM discovery in model and nonmodel organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against TFs or histone post-translational modifications, identification of nucleosome-depleted 'open' chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted TF-binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
- Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
36
|
Winstanley J, Sawala A, Baldock C, Ashe HL. Synthetic enzyme-substrate tethering obviates the Tolloid-ECM interaction during Drosophila BMP gradient formation. eLife 2015; 4. [PMID: 25642644 PMCID: PMC4337604 DOI: 10.7554/elife.05508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
Members of the Tolloid family of metalloproteinases liberate BMPs from inhibitory complexes to regulate BMP gradient formation during embryonic dorsal-ventral axis patterning. Here, we determine mechanistically how Tolloid activity is regulated by its non-catalytic CUB domains in the Drosophila embryo. We show that Tolloid, via its N-terminal CUB domains, interacts with Collagen IV, which enhances Tolloid activity towards its substrate Sog, and facilitates Tsg-dependent stimulation of cleavage. In contrast, the two most C-terminal Tld CUB domains mediate Sog interaction to facilitate its processing as, based on our structural data, Tolloid curvature positions bound Sog in proximity to the protease domain. Having ascribed functions to the Tolloid non-catalytic domains, we recapitulate embryonic BMP gradient formation in their absence, by artificially tethering the Tld protease domain to Sog. Our studies highlight how the bipartite function of Tolloid CUB domains, in substrate and ECM interactions, fine-tune protease activity to a particular developmental context. DOI:http://dx.doi.org/10.7554/eLife.05508.001 The body of an animal is a highly organised structure of tissues and organs that contain cells with specialised roles. To achieve this level of organisation, it is important that the cells in the embryo know their location and receive the correct instructions on how to develop, when to divide or move. Many animals are roughly symmetrical about an imaginary line that runs from their head to their tail; a developing embryo can provide its cells with information about their position along this head-to-tail axis and the axis that runs from its front to its back. Setting up the front-to-back axis in the embryo involves a family of proteins called the bone morphogenetic proteins (or BMPs). These proteins can bind to other proteins that act as signals to provide instructions to cells. However, many of the BMPs are unable to perform this job because they are trapped by inhibitory molecules that bind to them instead. Enzymes belonging to the Tolloid family can break down these inhibitors to release the BMPs. Together, the inhibitors and Tolloid enzymes create a gradient of BMP activity across the embryo. The side of the embryo with the highest levels of active BMPs sets the position of the back of the body, while the opposite side—which has the lowest levels of active BMPs—becomes the front. However, it is not clear how Tolloid is controlled to create the BMP gradient. Different parts of the Tolloid enzyme have different roles; one portion of the enzyme breaks down the inhibitory molecules, and there are also several so-called ‘non-catalytic domains’. Winstanley et al. used a combination of approaches to study how Tolloid is controlled in fruit fly embryos. The experiments show that two non-catalytic domains at one end of Tolloid help the enzyme to bind to the inhibitory molecules. At the other end of the Tolloid enzyme, another non-catalytic domain can bind to a structural protein called Collagen IV. This enhances the ability of the enzyme to break down the inhibitory molecules and release the BMPs. These findings reveal how Tolloid's non-catalytic domains can fine-tune the activity of this enzyme to create the gradient of BMP activity that is needed to set the front-to-back direction in animal embryos. Future studies will focus on identifying other proteins that bind to the non-catalytic domains of Tolloid in order to further control its activity during development. DOI:http://dx.doi.org/10.7554/eLife.05508.002
Collapse
Affiliation(s)
- Jennifer Winstanley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annick Sawala
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hilary L Ashe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Foo SM, Sun Y, Lim B, Ziukaite R, O'Brien K, Nien CY, Kirov N, Shvartsman SY, Rushlow CA. Zelda potentiates morphogen activity by increasing chromatin accessibility. Curr Biol 2014; 24:1341-1346. [PMID: 24909324 DOI: 10.1016/j.cub.2014.04.032] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/18/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022]
Abstract
Zygotic genome activation (ZGA) is a major genome programming event whereby the cells of the embryo begin to adopt specified fates. Experiments in Drosophila and zebrafish have revealed that ZGA depends on transcription factors that provide large-scale control of gene expression by direct and specific binding to gene regulatory sequences. Zelda (Zld) plays such a role in the Drosophila embryo, where it has been shown to control the action of patterning signals; however, the mechanisms underlying this effect remain largely unclear. A recent model proposed that Zld binding sites act as quantitative regulators of the spatiotemporal expression of genes activated by Dorsal (Dl), the morphogen that patterns the dorsoventral axis. Here we tested this model experimentally, using enhancers of brinker (brk) and short gastrulation (sog), both of which are directly activated by Dl, but at different concentration thresholds. In agreement with the model, we show that there is a clear positive correlation between the number of Zld binding sites and the spatial domain of enhancer activity. Likewise, the timing of expression could be advanced or delayed. We present evidence that Zld facilitates binding of Dl to regulatory DNA, and that this is associated with increased chromatin accessibility. Importantly, the change in chromatin accessibility is strongly correlated with the change in Zld binding, but not Dl. We propose that the ability of genome activators to facilitate readout of transcriptional input is key to widespread transcriptional induction during ZGA.
Collapse
Affiliation(s)
- Sun Melody Foo
- Department of Biology, New York University, New York, NY 10003, USA
| | - Yujia Sun
- Department of Biology, New York University, New York, NY 10003, USA
| | - Bomyi Lim
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ruta Ziukaite
- Department of Biology, New York University, New York, NY 10003, USA
| | - Kevin O'Brien
- Department of Biology, New York University, New York, NY 10003, USA
| | - Chung-Yi Nien
- Department of Biology, New York University, New York, NY 10003, USA
| | - Nikolai Kirov
- Department of Biology, New York University, New York, NY 10003, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
38
|
Stein DS, Stevens LM. Maternal control of the Drosophila dorsal-ventral body axis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:301-30. [PMID: 25124754 DOI: 10.1002/wdev.138] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The pathway that generates the dorsal-ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- David S Stein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
39
|
Cha M, Zhou Q. Detecting clustering and ordering binding patterns among transcription factors via point process models. Bioinformatics 2014; 30:2263-71. [PMID: 24790155 DOI: 10.1093/bioinformatics/btu303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Recent development in ChIP-Seq technology has generated binding data for many transcription factors (TFs) in various cell types and cellular conditions. This opens great opportunities for studying combinatorial binding patterns among a set of TFs active in a particular cellular condition, which is a key component for understanding the interaction between TFs in gene regulation. RESULTS As a first step to the identification of combinatorial binding patterns, we develop statistical methods to detect clustering and ordering patterns among binding sites (BSs) of a pair of TFs. Testing procedures based on Ripley's K-function and its generalizations are developed to identify binding patterns from large collections of BSs in ChIP-Seq data. We have applied our methods to the ChIP-Seq data of 91 pairs of TFs in mouse embryonic stem cells. Our methods have detected clustering binding patterns between most TF pairs, which is consistent with the findings in the literature, and have identified significant ordering preferences, relative to the direction of target gene transcription, among the BSs of seven TFs. More interestingly, our results demonstrate that the identified clustering and ordering binding patterns between TFs are associated with the expression of the target genes. These findings provide new insights into co-regulation between TFs. AVAILABILITY AND IMPLEMENTATION See 'www.stat.ucla.edu/∼zhou/TFKFunctions/' for source code.
Collapse
Affiliation(s)
- Maria Cha
- Department of Statistics, University of California, Los Angeles, CA 90095, USA
| | - Qing Zhou
- Department of Statistics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Zehavi Y, Kuznetsov O, Ovadia-Shochat A, Juven-Gershon T. Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes. J Biol Chem 2014; 289:11993-12004. [PMID: 24634215 DOI: 10.1074/jbc.m114.550251] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes.
Collapse
Affiliation(s)
- Yonathan Zehavi
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Olga Kuznetsov
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Avital Ovadia-Shochat
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Tamar Juven-Gershon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
41
|
McKay DJ, Lieb JD. A common set of DNA regulatory elements shapes Drosophila appendages. Dev Cell 2014; 27:306-18. [PMID: 24229644 DOI: 10.1016/j.devcel.2013.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/19/2013] [Accepted: 10/13/2013] [Indexed: 12/20/2022]
Abstract
Animals have body parts made of similar cell types located at different axial positions, such as limbs. The identity and distinct morphology of each structure is often specified by the activity of different "master regulator" transcription factors. Although similarities in gene expression have been observed between body parts made of similar cell types, how regulatory information in the genome is differentially utilized to create morphologically diverse structures in development is not known. Here, we use genome-wide open chromatin profiling to show that among the Drosophila appendages, the same DNA regulatory modules are accessible throughout the genome at a given stage of development, except at the loci encoding the master regulators themselves. In addition, open chromatin profiles change over developmental time, and these changes are coordinated between different appendages. We propose that master regulators create morphologically distinct structures by differentially influencing the function of the same set of DNA regulatory modules.
Collapse
Affiliation(s)
- Daniel J McKay
- Department of Biology, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| | | |
Collapse
|
42
|
Christiaen L. Cis-regulatory timers for developmental gene expression. PLoS Biol 2013; 11:e1001698. [PMID: 24204213 PMCID: PMC3812112 DOI: 10.1371/journal.pbio.1001698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
How does a fertilized egg decode its own genome to eventually develop into a mature animal? Each developing cell must activate a battery of genes in a timely manner and according to the function it will ultimately perform, but how? During development of the notochord—a structure akin to the vertebrate spine—in a simple marine invertebrate, an essential protein called Brachyury binds to specific sites in its target genes. A study just published in PLOS Biology reports that if the target gene contains multiple Brachyury-binding sites it will be activated early in development but if it contains only one site it will be activated later. Genes that contain no binding site can still be activated by Brachyury, but only indirectly by an earlier Brachyury-dependent gene product, so later than the directly activated genes. Thus, this study shows how several genes can interpret the presence of a single factor differently to become active at distinct times in development.
Collapse
Affiliation(s)
- Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, College of Arts and Sciences, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Menoret D, Santolini M, Fernandes I, Spokony R, Zanet J, Gonzalez I, Latapie Y, Ferrer P, Rouault H, White KP, Besse P, Hakim V, Aerts S, Payre F, Plaza S. Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization. Genome Biol 2013; 14:R86. [PMID: 23972280 PMCID: PMC4053989 DOI: 10.1186/gb-2013-14-8-r86] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022] Open
Abstract
Background Developmental programs are implemented by regulatory interactions between Transcription Factors (TFs) and their target genes, which remain poorly understood. While recent studies have focused on regulatory cascades of TFs that govern early development, little is known about how the ultimate effectors of cell differentiation are selected and controlled. We addressed this question during late Drosophila embryogenesis, when the finely tuned expression of the TF Ovo/Shavenbaby (Svb) triggers the morphological differentiation of epidermal trichomes. Results We defined a sizeable set of genes downstream of Svb and used in vivo assays to delineate 14 enhancers driving their specific expression in trichome cells. Coupling computational modeling to functional dissection, we investigated the regulatory logic of these enhancers. Extending the repertoire of epidermal effectors using genome-wide approaches showed that the regulatory models learned from this first sample are representative of the whole set of trichome enhancers. These enhancers harbor remarkable features with respect to their functional architectures, including a weak or non-existent clustering of Svb binding sites. The in vivo function of each site relies on its intimate context, notably the flanking nucleotides. Two additional cis-regulatory motifs, present in a broad diversity of composition and positioning among trichome enhancers, critically contribute to enhancer activity. Conclusions Our results show that Svb directly regulates a large set of terminal effectors of the remodeling of epidermal cells. Further, these data reveal that trichome formation is underpinned by unexpectedly diverse modes of regulation, providing fresh insights into the functional architecture of enhancers governing a terminal differentiation program.
Collapse
|
44
|
Garcia M, Nahmad M, Reeves GT, Stathopoulos A. Size-dependent regulation of dorsal-ventral patterning in the early Drosophila embryo. Dev Biol 2013; 381:286-99. [PMID: 23800450 DOI: 10.1016/j.ydbio.2013.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 01/18/2023]
Abstract
How natural variation in embryo size affects patterning of the Drosophila embryo dorsal-ventral (DV) axis is not known. Here we examined quantitatively the relationship between nuclear distribution of the Dorsal transcription factor, boundary positions for several target genes, and DV axis length. Data were obtained from embryos of a wild-type background as well as from mutant lines inbred to size select embryos of smaller or larger sizes. Our data show that the width of the nuclear Dorsal gradient correlates with DV axis length. In turn, for some genes expressed along the DV axis, the boundary positions correlate closely with nuclear Dorsal levels and with DV axis length; while the expression pattern of others is relatively constant and independent of the width of the Dorsal gradient. In particular, the patterns of snail (sna) and ventral nervous system defective (vnd) correlate with nuclear Dorsal levels and exhibit scaling to DV length; while the pattern of intermediate neuroblasts defective (ind) remains relatively constant with respect to changes in Dorsal and DV length. However, in mutants that exhibit an abnormal expansion of the Dorsal gradient which fails to scale to DV length, only sna follows the Dorsal distribution and exhibits overexpansion; in contrast, vnd and ind do not overexpand suggesting some additional mechanism acts to refine the dorsal boundaries of these two genes. Thus, our results argue against the idea that the Dorsal gradient works as a global system of relative coordinates along the DV axis and suggest that individual targets respond to changes in embryo size in a gene-specific manner.
Collapse
Affiliation(s)
- Mayra Garcia
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | |
Collapse
|
45
|
Abstract
UNLABELLED Many algorithms analyze enhancers for overrepresentation of known and novel motifs, with the goal of identifying binding sites for direct regulators of gene expression. Twine is a Java GUI with multiple graphical representations ('Views') of enhancer alignments that displays motifs, as IUPAC consensus sequences or position frequency matrices, in the context of phylogenetic conservation to facilitate cis-regulatory element discovery. Thresholds of phylogenetic conservation and motif stringency can be altered dynamically to facilitate detailed analysis of enhancer architecture. Views can be exported to vector graphics programs to generate high-quality figures for publication. Twine can be extended via Java plugins to manipulate alignments and analyze sequences. AVAILABILITY Twine is freely available as a compiled Java .jar package or Java source code at http://labs.bio.unc.edu/crews/twine/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Joseph C Pearson
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
46
|
Doumpas N, Ruiz-Romero M, Blanco E, Edgar B, Corominas M, Teleman AA. Brk regulates wing disc growth in part via repression of Myc expression. EMBO Rep 2013; 14:261-8. [PMID: 23337628 DOI: 10.1038/embor.2013.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 01/14/2023] Open
Abstract
The molecular mechanisms regulating tissue size represent an unsolved puzzle in developmental biology. One signalling pathway controlling growth of the Drosophila wing is Dpp. Dpp promotes growth by repression of the transcription factor Brk. The transcriptional targets of Brk that control cell growth and proliferation, however, are not yet fully elucidated. We report here a genome-wide ChIP-Seq of endogenous Brk from wing imaginal discs. We identify the growth regulator Myc as a target of Brk and show that repression of Myc and of the miRNA bantam explains a significant fraction of the growth inhibition caused by Brk. This work sheds light on the effector mechanisms by which Dpp signalling controls tissue growth.
Collapse
Affiliation(s)
- Nikolaos Doumpas
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Rushlow CA, Shvartsman SY. Temporal dynamics, spatial range, and transcriptional interpretation of the Dorsal morphogen gradient. Curr Opin Genet Dev 2012; 22:542-6. [PMID: 22981910 DOI: 10.1016/j.gde.2012.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
Dorsoventral pattern of Drosophila embryo is specified by the nuclear localization gradient of the transcription factor Dorsal. Genetic and genomic studies of this morphogen gradient provided important insights into spatial control of gene expression in development. Recent live imaging experiments revealed hitherto unappreciated dynamics of the Dorsal gradient and posed new questions about the mechanisms of its transcriptional interpretation. Some of these questions can be answered by models in which the morphogenetic capacity of the Dorsal gradient is potentiated by spatially uniform factors, such as Zelda, a transcription factor that plays a key role in the activation of zygotic transcription. Combinatorial effects of uniform and graded factors play an important role in the transcriptional and signaling cascades initiated by Dorsal and may explain differential positioning of gene expression borders by other morphogen gradients.
Collapse
Affiliation(s)
- Christine A Rushlow
- New York University, Center for Developmental Genetics, Department of Biology, United States
| | | |
Collapse
|
48
|
Lagha M, Bothma JP, Levine M. Mechanisms of transcriptional precision in animal development. Trends Genet 2012; 28:409-16. [PMID: 22513408 PMCID: PMC4257495 DOI: 10.1016/j.tig.2012.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
We review recently identified mechanisms of transcriptional control that ensure reliable and reproducible patterns of gene expression in natural populations of developing embryos, despite inherent fluctuations in gene regulatory processes, variations in genetic backgrounds and exposure to diverse environmental conditions. These mechanisms are not responsible for switching genes on and off. Instead, they control the fine-tuning of gene expression and ensure regulatory precision. Several such mechanisms are discussed, including redundant binding sites within transcriptional enhancers, shadow enhancers, and 'poised' enhancers and promoters, as well as the role of 'redundant' gene interactions within regulatory networks. We propose that such regulatory mechanisms provide population fitness and 'fine-tune' the spatial and temporal control of gene expression.
Collapse
Affiliation(s)
- Mounia Lagha
- Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
49
|
Abstract
The vast majority of research on nuclear factor κB (NF-κB) signaling in the past 25 years has focused on its roles in normal and disease-related processes in vertebrates, especially mice and humans. Recent genome and transcriptome sequencing efforts have shown that homologs of NF-κB transcription factors, inhibitor of NF-κB (IκB) proteins, and IκB kinases are present in a variety of invertebrates, including several in phyla simpler than Arthropoda, the phylum containing insects such Drosophila. Moreover, many invertebrates also contain genes encoding homologs of upstream signaling proteins in the Toll-like receptor signaling pathway, which is well-known for its downstream activation of NF-κB for innate immunity. This review describes what we now know or can infer and speculate about the evolution of the core elements of NF-κB signaling as well as the biological processes controlled by NF-κB in invertebrates. Further research on NF-κB in invertebrates is likely to uncover information about the evolutionary origins of this key human signaling pathway and may have relevance to our management of the responses of ecologically and economically important organisms to environmental and adaptive pressures.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
50
|
Abstract
Enhancers mediate localized patterns of gene expression during development. A common feature of "traditional" enhancers is the presence of clustered binding motifs for sequence-specific transcription factors (TFs). In this issue of Genes & Development, Kvon and colleagues (pp. 908-913) present new evidence that HOT (highly occupied transcription) DNAs direct specific patterns of gene expression, despite being depleted for TF-binding motifs.
Collapse
Affiliation(s)
- Emma Farley
- Division of Genetics, Genomics, and Development, Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|