1
|
Suri P, Badalov A, Ruggiu M. Alternative Splicing as a Modulator of the Interferon-Gamma Pathway. Cancers (Basel) 2025; 17:594. [PMID: 40002189 DOI: 10.3390/cancers17040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a critical cytokine that plays a pivotal role in immune system regulation. It is a key mediator of both cellular defense mechanisms and antitumor immunity. As the sole member of the type II interferon family, IFN-γ modulates immune responses by activating macrophages, enhancing natural killer cell function, and regulating gene expression across multiple cellular processes. Alternative splicing is a post-transcriptional gene expression regulatory mechanism that generates multiple mature messenger RNAs from a single gene, dramatically increasing proteome diversity without the need of a proportional genome expansion. This process occurs in 90-95% of human genes, with alternative splicing events allowing for the production of diverse protein isoforms that can have distinct-or even opposing-functional properties. Alternative splicing plays a crucial role in cancer immunology, potentially generating tumor neoepitopes and modulating immune responses. However, how alternative splicing affects IFN-γ's activity is still poorly understood. This review explores how alternative splicing regulates the expression and function of both upstream regulators and downstream effectors of IFN-γ, revealing complex mechanisms of gene expression and immune response modulation. Key transcription factors and signaling molecules of the IFN-γ pathway are alternatively spliced, and alternative splicing can dramatically alter IFN-γ signaling, immune cell function, and response to environmental cues. Specific splice variants can enhance or inhibit IFN-γ-mediated immune responses, potentially influencing cancer immunotherapy, autoimmune conditions, and infectious disease outcomes. The emerging understanding of these splicing events offers promising therapeutic strategies for manipulating immune responses through targeted molecular interventions.
Collapse
Affiliation(s)
- Parul Suri
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway Queens, New York, NY 11439, USA
| | - Ariana Badalov
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John's University, 8000 Utopia Parkway Queens, New York, NY 11439, USA
| | - Matteo Ruggiu
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John's University, 8000 Utopia Parkway Queens, New York, NY 11439, USA
| |
Collapse
|
2
|
Zhong Z, Ye Y, Xia L, Na N. Identification of RNA-binding protein genes associated with renal rejection and graft survival. Ren Fail 2024; 46:2360173. [PMID: 38874084 PMCID: PMC11182075 DOI: 10.1080/0886022x.2024.2360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Rejection is one of the major factors affecting the long-term prognosis of kidney transplantation, and timely recognition and aggressive treatment of rejection is essential to prevent disease progression. RBPs are proteins that bind to RNA to form ribonucleoprotein complexes, thereby affecting RNA stability, processing, splicing, localization, transport, and translation, which play a key role in post-transcriptional gene regulation. However, their role in renal transplant rejection and long-term graft survival is unclear. The aim of this study was to comprehensively analyze the expression of RPBs in renal rejection and use it to construct a robust prediction strategy for long-term graft survival. The microarray expression profiles used in this study were obtained from GEO database. In this study, a total of eight hub RBPs were identified, all of which were upregulated in renal rejection samples. Based on these RBPs, the renal rejection samples could be categorized into two different clusters (cluster A and cluster B). Inflammatory activation in cluster B and functional enrichment analysis showed a strong association with rejection-related pathways. The diagnostic prediction model had a high diagnostic accuracy for T cell mediated rejection (TCMR) in renal grafts (area under the curve = 0.86). The prognostic prediction model effectively predicts the prognosis and survival of renal grafts (p < .001) and applies to both rejection and non-rejection situations. Finally, we validated the expression of hub genes, and patient prognosis in clinical samples, respectively, and the results were consistent with the above analysis.
Collapse
Affiliation(s)
- Zhaozhong Zhong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongrong Ye
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liubing Xia
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Jones JA, Zhou J, Dong J, Huitron-Resendiz S, Boussaty E, Chavez E, Wei N, Dumitru CD, Morodomi Y, Kanaji T, Ryan AF, Friedman R, Zhou T, Kanaji S, Wortham M, Schenk S, Roberts AJ, Yang XL. Murine nuclear tyrosyl-tRNA synthetase deficiency leads to fat storage deficiency and hearing loss. J Biol Chem 2024; 300:107756. [PMID: 39260699 PMCID: PMC11470617 DOI: 10.1016/j.jbc.2024.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.
Collapse
Affiliation(s)
- Julia A Jones
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jianjie Dong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Ely Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Eduardo Chavez
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Calin Dan Dumitru
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Allen F Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Rick Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew Wortham
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
4
|
Wakasugi K, Yokosawa T. The high-affinity tryptophan uptake transport system in human cells. Biochem Soc Trans 2024; 52:1149-1158. [PMID: 38813870 PMCID: PMC11346423 DOI: 10.1042/bst20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
5
|
Zou X, Ye S, Tan Y. Potential disease biomarkers for diabetic retinopathy identified through Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 14:1339374. [PMID: 38274229 PMCID: PMC10808752 DOI: 10.3389/fendo.2023.1339374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Background Diabetic retinopathy (DR), a leading cause of vision loss, has limited options for effective prevention and treatment. This study aims to utilize genomics and proteomics data to identify potential drug targets for DR. Methods We utilized plasma protein quantitative trait loci data from the Atherosclerosis Risk in Communities Study and the Icelandic Decoding Genetics Study for discovery and replication, respectively. Genetic associations with DR, including its subtypes, were derived from the FinnGen study. Mendelian Randomization (MR) analysis estimated associations between protein levels and DR risk, complemented by colocalization analysis to examine shared causal variants. Results Our MR analysis identified significant associations of specific plasma proteins with DR and proliferative DR (PDR). Elevated genetically predicted levels of WARS (OR = 1.16; 95% CI = 0.095-0.208, FDR = 1.31×10-4) and SIRPG (OR = 1.15; 95% CI = 0.071-0.201, FDR = 1.46×10-2) were associated with higher DR risk, while increased levels of ALDOC (OR = 1.56; 95% CI = 0.246-0.637, FDR = 5.48×10-3) and SIRPG (OR = 1.15; 95% CI = 0.068-0.208, FDR = 4.73×10-2) were associated with higher PDR risk. These findings were corroborated by strong colocalization evidence. Conclusions Our study highlights WARS, SIRPG, and ALDOC as significant proteins associated with DR and PDR, providing a basis for further exploration in drug development. Additional studies are needed to validate these proteins as disease biomarkers across diverse populations.
Collapse
Affiliation(s)
- Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China
| | - Suna Ye
- Senzhen Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China
- Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Kuan J, Hansen A, Wang H. Case Report: A new case of YARS1-associated autosomal recessive disorder with compound heterozygous and concurrent 47, XXY. Front Pediatr 2023; 11:1282253. [PMID: 38125821 PMCID: PMC10731953 DOI: 10.3389/fped.2023.1282253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Aminoacyl-tRNA synthetases play a pivotal role in catalyzing the precise coupling of amino acids with their corresponding tRNAs. Among them, Tyrosyl tRNA synthetase, encoded by the YARS1 gene, facilitates the aminoacylation of tyrosine to its designated tRNA. Heterozygous variants in the YARS1 gene have been linked to autosomal dominant Charcot-Marie-Tooth type C, while recent findings have unveiled biallelic YARS1 variants leading to an autosomal recessive multisystemic disorder in several cases. In this report, we present a novel case characterized by dysmorphic facies, and multisystemic symptoms, prominently encompassing neurological issues and a microarray conducted shortly after birth revealed 47, XXY. Utilizing whole exome sequencing, we uncovered a paternally inherited likely pathogenic variant (c.1099C > T, p.Arg367Trp), previously reported, coinciding with the father's history of hearing loss and neurological symptoms. Additionally, a maternally inherited variant of uncertain significance (c.782T > G, p.Leu261Arg), previously unreported, was identified within the YARS1 gene. The observed phenotypes and the presence of compound heterozygous results align with the diagnosis of an autosomal recessive disorder associated with YARS1. Through our cases, the boundaries of this emerging clinical entity are broadened. This instance underscores the significance of comprehensive genetic testing in patients exhibiting intricate phenotypes.
Collapse
Affiliation(s)
- Janene Kuan
- Department of Pediatrics, University of California, San Francisco, CA, United States
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Ashleigh Hansen
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Neurosciences Department, Cedars-Sinai, Los Angeles, CA, United States
| | - Hua Wang
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
7
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
8
|
Yokosawa T, Wakasugi K. Tryptophan-Starved Human Cells Overexpressing Tryptophanyl-tRNA Synthetase Enhance High-Affinity Tryptophan Uptake via Enzymatic Production of Tryptophanyl-AMP. Int J Mol Sci 2023; 24:15453. [PMID: 37895133 PMCID: PMC10607379 DOI: 10.3390/ijms242015453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Our previous study demonstrated that L-tryptophan (Trp)-depleted cells display a marked enhancement in Trp uptake facilitated by extracellular tryptophanyl-tRNA synthetase (TrpRS). Here, we show that Trp uptake into TrpRS-overexpressing cells is also markedly elevated upon Trp starvation. These findings indicate that a Trp-deficient condition is critical for Trp uptake, not only into cells to which TrpRS protein has been added but also into TrpRS-overexpressing cells. We also show that overexpression of TrpRS mutants, which cannot synthesize tryptophanyl-AMP, does not promote Trp uptake, and that inhibition of tryptophanyl-AMP synthesis suppresses this uptake. Overall, these data suggest that tryptophanyl-AMP production by TrpRS is critical for high-affinity Trp uptake.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Xie SC, Griffin MDW, Winzeler EA, Ribas de Pouplana L, Tilley L. Targeting Aminoacyl tRNA Synthetases for Antimalarial Drug Development. Annu Rev Microbiol 2023; 77:111-129. [PMID: 37018842 DOI: 10.1146/annurev-micro-032421-121210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain;
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Leann Tilley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| |
Collapse
|
10
|
Gioelli N, Neilson LJ, Wei N, Villari G, Chen W, Kuhle B, Ehling M, Maione F, Willox S, Brundu S, Avanzato D, Koulouras G, Mazzone M, Giraudo E, Yang XL, Valdembri D, Zanivan S, Serini G. Neuropilin 1 and its inhibitory ligand mini-tryptophanyl-tRNA synthetase inversely regulate VE-cadherin turnover and vascular permeability. Nat Commun 2022; 13:4188. [PMID: 35858913 PMCID: PMC9300702 DOI: 10.1038/s41467-022-31904-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
The formation of a functional blood vessel network relies on the ability of endothelial cells (ECs) to dynamically rearrange their adhesive contacts in response to blood flow and guidance cues, such as vascular endothelial growth factor-A (VEGF-A) and class 3 semaphorins (SEMA3s). Neuropilin 1 (NRP1) is essential for blood vessel development, independently of its ligands VEGF-A and SEMA3, through poorly understood mechanisms. Grounding on unbiased proteomic analysis, we report here that NRP1 acts as an endocytic chaperone primarily for adhesion receptors on the surface of unstimulated ECs. NRP1 localizes at adherens junctions (AJs) where, interacting with VE-cadherin, promotes its basal internalization-dependent turnover and favors vascular permeability initiated by histamine in both cultured ECs and mice. We identify a splice variant of tryptophanyl-tRNA synthetase (mini-WARS) as an unconventionally secreted extracellular inhibitory ligand of NRP1 that, by stabilizing it at the AJs, slows down both VE-cadherin turnover and histamine-elicited endothelial leakage. Thus, our work shows a role for NRP1 as a major regulator of AJs plasticity and reveals how mini-WARS acts as a physiological NRP1 inhibitory ligand in the control of VE-cadherin endocytic turnover and vascular permeability.
Collapse
Affiliation(s)
- Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | | | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Wenqian Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Manuel Ehling
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
| | - Federica Maione
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Sander Willox
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
| | - Serena Brundu
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
- Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | | | - Massimiliano Mazzone
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
- Department of Science and Drug Technology, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
- Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy.
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy.
| |
Collapse
|
11
|
Galindo-Feria AS, Notarnicola A, Lundberg IE, Horuluoglu B. Aminoacyl-tRNA Synthetases: On Anti-Synthetase Syndrome and Beyond. Front Immunol 2022; 13:866087. [PMID: 35634293 PMCID: PMC9136399 DOI: 10.3389/fimmu.2022.866087] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
Anti-synthetase syndrome (ASSD) is an autoimmune disease characterized by the presence of autoantibodies targeting one of several aminoacyl t-RNA synthetases (aaRSs) along with clinical features including interstitial lung disease, myositis, Raynaud’s phenomenon, arthritis, mechanic’s hands, and fever. The family of aaRSs consists of highly conserved cytoplasmic and mitochondrial enzymes, one for each amino acid, which are essential for the RNA translation machinery and protein synthesis. Along with their main functions, aaRSs are involved in the development of immune responses, regulation of transcription, and gene-specific silencing of translation. During the last decade, these proteins have been associated with cancer, neurological disorders, infectious responses, and autoimmune diseases including ASSD. To date, several aaRSs have been described to be possible autoantigens in different diseases. The most commonly described are histidyl (HisRS), threonyl (ThrRS), alanyl (AlaRS), glycyl (GlyRS), isoleucyl (IleRS), asparaginyl (AsnRS), phenylalanyl (PheRS), tyrosyl (TyrRS), lysyl (LysRS), glutaminyl (GlnRS), tryptophanyl (TrpRS), and seryl (SerRS) tRNA synthetases. Autoantibodies against the first eight autoantigens listed above have been associated with ASSD while the rest have been associated with other diseases. This review will address what is known about the function of the aaRSs with a focus on their autoantigenic properties. We will also describe the anti-aaRSs autoantibodies and their association to specific clinical manifestations, and discuss their potential contribution to the pathogenesis of ASSD.
Collapse
Affiliation(s)
- Angeles S. Galindo-Feria
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Antonella Notarnicola
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Begum Horuluoglu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Begum Horuluoglu,
| |
Collapse
|
12
|
Functional and pathologic association of aminoacyl-tRNA synthetases with cancer. Exp Mol Med 2022; 54:553-566. [PMID: 35501376 PMCID: PMC9166799 DOI: 10.1038/s12276-022-00765-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
Although key tumorigenic and tumor-suppressive factors have been unveiled over the last several decades, cancer remains the most life-threatening disease. Multiomic analyses of patient samples and an in-depth understanding of tumorigenic processes have rapidly revealed unexpected pathologic associations of new cellular factors previously overlooked in cancer biology. In this regard, the newly discovered activities of human aminoacyl-tRNA synthases (ARSs) deserve attention not only for their pathological significance in tumorigenesis but also regarding diagnostic and therapeutic implications. ARSs are not only essential enzymes covalently linking substrate amino acids to cognate tRNAs for protein synthesis but also function as regulators of cellular processes by sensing different cellular conditions. With their catalytic role in protein synthesis and their regulatory role in homeostasis, functional alterations or dysregulation of ARSs might be pathologically associated with tumorigenesis. This review focuses on the potential implications of ARS genes and proteins in different aspects of cancer based on various bioinformatic analyses and experimental data. We also review their diverse activities involving extracellular secretion, protein–protein interactions, and amino acid sensing, which are related to cancers. The newly discovered cancer-related activities of ARSs are expected to provide new opportunities for detecting, preventing and curing cancers. Enzymes called aminoacyl-tRNA synthetases (ARSs), which play a central role in all life, are becoming implicated in several aspects of cancer in ways that may lead to new approaches for prevention, detection and treatment. ARS enzymes catalyse the ligation of amino acids to transfer RNA molecules to allow amino acids to combine in the correct sequences to form proteins. Jung Min Han, Sunghoon Kim and colleagues at Yonsei University, Incheon, South Korea, review researches implicating ARS enzymes and the genes that code for them in a variety of cancers. The behavior of ARS enzymes and their genes are found to be altered in several types of cancer cells in ways that may either initiate or support the onset and development of the disease, through which they could be suggested as targets for novel anti-cancer drugs.
Collapse
|
13
|
A novel anti-inflammatory role links the CARS2 locus to protection from coronary artery disease. Atherosclerosis 2022; 348:8-15. [DOI: 10.1016/j.atherosclerosis.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
|
14
|
The Proteome of Antibody-Mediated Rejection: From Glomerulitis to Transplant Glomerulopathy. Biomedicines 2022; 10:biomedicines10030569. [PMID: 35327371 PMCID: PMC8945687 DOI: 10.3390/biomedicines10030569] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023] Open
Abstract
Antibody-mediated rejection (ABMR) is the leading cause of allograft failure in kidney transplantation. Its histological hallmark is represented by lesions of glomerulitis i.e., inflammatory cells within glomeruli. Current therapies for ABMR fail to prevent chronic allograft damage i.e., transplant glomerulopathy, leading to allograft loss. We used laser microdissection of glomeruli from formalin-fixed allograft biopsies combined with mass spectrometry-based proteomics to describe the proteome modification of 11 active and 10 chronic active ABMR cases compared to 8 stable graft controls. Of 1335 detected proteins, 77 were deregulated in glomerulitis compared to stable grafts, particularly involved in cellular stress mediated by interferons type I and II, leukocyte activation and microcirculation remodeling. Three proteins extracted from this protein profile, TYMP, WARS1 and GBP1, showed a consistent overexpression by immunohistochemistry in glomerular endothelial cells that may represent relevant markers of endothelial stress during active ABMR. In transplant glomerulopathy, 137 proteins were deregulated, which favor a complement-mediated mechanism, wound healing processes through coagulation activation and ultimately a remodeling of the glomerular extracellular matrix, as observed by light microscopy. This study brings novel information on glomerular proteomics of ABMR in kidney transplantation, and highlights potential targets of diagnostic and therapeutic interest.
Collapse
|
15
|
Baymiller M, Nordick B, Forsyth CM, Martinis SA. Tissue-specific alternative splicing separates the catalytic and cell signaling functions of human leucyl-tRNA synthetase. J Biol Chem 2022; 298:101757. [PMID: 35202654 PMCID: PMC8941210 DOI: 10.1016/j.jbc.2022.101757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/29/2022] Open
Abstract
The aminoacyl-tRNA synthetases are an ancient and ubiquitous component of all life. Many eukaryotic synthetases balance their essential function, preparing aminoacyl-tRNA for use in mRNA translation, with diverse roles in cell signaling. Herein, we use long-read sequencing to discover a leukocyte-specific exon skipping event in human leucyl-tRNA synthetase (LARS). We show that this highly expressed splice variant, LSV3, is regulated by serine-arginine-rich splicing factor 1 (SRSF1) in a cell-type-specific manner. LSV3 has a 71 amino acid deletion in the catalytic domain and lacks any tRNA leucylation activity in vitro. However, we demonstrate that this LARS splice variant retains its role as a leucine sensor and signal transducer for the proliferation-promoting mTOR kinase. This is despite the exon deletion in LSV3 including a portion of the previously mapped Vps34-binding domain used for one of two distinct pathways from LARS to mTOR. In conclusion, alternative splicing of LARS has separated the ancient catalytic activity of this housekeeping enzyme from its more recent evolutionary role in cell signaling, providing an opportunity for functional specificity in human immune cells.
Collapse
Affiliation(s)
- Max Baymiller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Benjamin Nordick
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Connor M Forsyth
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Susan A Martinis
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
16
|
Biros E, Malabu UH, Vangaveti VN, Birosova E, Moran CS. The IFN-γ-mini/TrpRS signaling axis: an insight into the pathophysiology of osteoporosis and therapeutic potential. Cytokine Growth Factor Rev 2022; 64:7-11. [DOI: 10.1016/j.cytogfr.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
17
|
tRNA modifications and their potential roles in pancreatic cancer. Arch Biochem Biophys 2021; 714:109083. [PMID: 34785212 DOI: 10.1016/j.abb.2021.109083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022]
Abstract
Since the breakthrough discovery of N6-methyladenosine (m6A), the field of RNA epitranscriptomics has attracted increasing interest in the biological sciences. Transfer RNAs (tRNAs) are extensively modified, and various modifications play a crucial role in the formation and stability of tRNA, which is universally required for accurate and efficient functioning of tRNA. Abnormal tRNA modification can lead to tRNA degradation or specific cleavage of tRNA into fragmented derivatives, thus affecting the translation process and frequently accompanying a variety of human diseases. Increasing evidence suggests that tRNA modification pathways are also misregulated in human cancers. In this review, we summarize tRNA modifications and their biological functions, describe the type and frequency of tRNA modification alterations in cancer, and highlight variations in tRNA-modifying enzymes and the multiple functions that they regulate in different types of cancers. Furthermore, the current implications and the potential role of tRNA modifications in the progression of pancreatic cancer are discussed. Collectively, this review describes recent advances in tRNA modification in cancers and its potential significance in pancreatic cancer. Further study of the mechanism of tRNA modifications in pancreatic cancer may provide possibilities for therapies targeting enzymes responsible for regulating tRNA modifications in pancreatic cancer.
Collapse
|
18
|
Estève C, Roman C, DeLeusse C, Baravalle M, Bertaux K, Blanc F, Bourgeois P, Bresson V, Cano A, Coste ME, Delteil C, Lacoste C, Loosveld M, De Paula AM, Monnier AS, Secq V, Levy N, Badens C, Fabre A. Novel partial loss-of-function variants in the tyrosyl-tRNA synthetase 1 (YARS1) gene involved in multisystem disease. Eur J Med Genet 2021; 64:104294. [PMID: 34352414 DOI: 10.1016/j.ejmg.2021.104294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
Cytoplasmic aminoacyl-tRNA synthetases (ARSs) are emerging as a cause of numerous rare inherited diseases. Recently, biallelic variants in tyrosyl-tRNA synthetase 1 (YARS1) have been described in ten patients of three families with multi-systemic disease (failure to thrive, developmental delay, liver dysfunction, and lung cysts). Here, we report an additional subject with overlapping clinical findings, heterozygous for two novel variants in tyrosyl-tRNA synthetase 1 (NM_003680.3(YARS1):c.176T>C; p.(Ile59Thr) and NM_003680.3(YARS1):c.237C>G; p.(Tyr79*) identified by whole exome sequencing. The p.Ile59Thr variant is located in the highly conserved aminoacylation domain of the protein. Compared to subjects previously described, this patient presents a much more severe condition. Our findings support implication of two novel YARS1 variants in these disorders. Furthermore, we provide evidence for a reduced protein abundance in cells of the patient, in favor of a partial loss-of-function mechanism.
Collapse
Affiliation(s)
| | - Céline Roman
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Cécile DeLeusse
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Melissa Baravalle
- Service de Pneumologie Pédiatrique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Karine Bertaux
- CRB TAC (CRB AP-HM TAC), [BIORESOURCES], Marseille, France
| | - Frédéric Blanc
- Service D'Anesthésie Réanimation Pédiatrique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Patrice Bourgeois
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Violaine Bresson
- Service D'Urgences Pédiatriques, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Aline Cano
- Service de Pédiatrie Spécialisée & Médecine Infantile, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Marie-Edith Coste
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Clémence Delteil
- Service de Médecine Légale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Caroline Lacoste
- Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Marie Loosveld
- Laboratoire D'Hématologie Biologique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - André Maues De Paula
- Laboratoire D'Anatomie Pathologique, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Anne-Sophie Monnier
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Véronique Secq
- U1068-CRCM, Aix Marseille Univ, APHM, Hôpital Nord, Service D'anatomo-pathologie, Marseille, France
| | - Nicolas Levy
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Alexandre Fabre
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France.
| |
Collapse
|
19
|
Ramirez J, Prieto G, Olazabal-Herrero A, Borràs E, Fernandez-Vigo E, Alduntzin U, Osinalde N, Beaskoetxea J, Lectez B, Aloria K, Rodriguez JA, Paradela A, Sabidó E, Muñoz J, Corrales F, Arizmendi JM, Mayor U. A Proteomic Approach for Systematic Mapping of Substrates of Human Deubiquitinating Enzymes. Int J Mol Sci 2021; 22:ijms22094851. [PMID: 34063716 PMCID: PMC8124392 DOI: 10.3390/ijms22094851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
The human genome contains nearly 100 deubiquitinating enzymes (DUBs) responsible for removing ubiquitin moieties from a large variety of substrates. Which DUBs are responsible for targeting which substrates remain mostly unknown. Here we implement the bioUb approach to identify DUB substrates in a systematic manner, combining gene silencing and proteomics analyses. Silencing of individual DUB enzymes is used to reduce their ubiquitin deconjugating activity, leading to an increase of the ubiquitination of their substrates, which can then be isolated and identified. We report here quantitative proteomic data of the putative substrates of 5 human DUBs. Furthermore, we have built a novel interactive database of DUB substrates to provide easy access to our data and collect DUB proteome data from other groups as a reference resource in the DUB substrates research field.
Collapse
Affiliation(s)
- Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.R.); (U.A.); (J.B.); (B.L.); (J.M.A.)
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain;
| | - Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (A.O.-H.); (J.A.R.)
| | - Eva Borràs
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; (E.B.); (E.S.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Elvira Fernandez-Vigo
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (E.F.-V.); (J.M.)
| | - Unai Alduntzin
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.R.); (U.A.); (J.B.); (B.L.); (J.M.A.)
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain;
| | - Javier Beaskoetxea
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.R.); (U.A.); (J.B.); (B.L.); (J.M.A.)
| | - Benoit Lectez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.R.); (U.A.); (J.B.); (B.L.); (J.M.A.)
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (A.O.-H.); (J.A.R.)
| | - Alberto Paradela
- Functional Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed-ISCIII, 28029 Madrid, Spain; (A.P.); (F.C.)
| | - Eduard Sabidó
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; (E.B.); (E.S.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (E.F.-V.); (J.M.)
| | - Fernando Corrales
- Functional Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed-ISCIII, 28029 Madrid, Spain; (A.P.); (F.C.)
| | - Jesus M. Arizmendi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.R.); (U.A.); (J.B.); (B.L.); (J.M.A.)
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.R.); (U.A.); (J.B.); (B.L.); (J.M.A.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Correspondence: ; Tel.: +34-94-601-5908
| |
Collapse
|
20
|
Ahn YH, Oh SC, Zhou S, Kim TD. Tryptophanyl-tRNA Synthetase as a Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22094523. [PMID: 33926067 PMCID: PMC8123658 DOI: 10.3390/ijms22094523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is an essential enzyme that catalyzes the ligation of tryptophan (Trp) to its cognate tRNAtrp during translation via aminoacylation. Interestingly, WRS also plays physiopathological roles in diseases including sepsis, cancer, and autoimmune and brain diseases and has potential as a pharmacological target and therapeutic. However, WRS is still generally regarded simply as an enzyme that produces Trp in polypeptides; therefore, studies of the pharmacological effects, therapeutic targets, and mechanisms of action of WRS are still at an emerging stage. This review summarizes the involvement of WRS in human diseases. We hope that this will encourage further investigation into WRS as a potential target for drug development in various pathological states including infection, tumorigenesis, and autoimmune and brain diseases.
Collapse
Affiliation(s)
- Young Ha Ahn
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China;
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China;
- Correspondence: (S.Z.); (T.-D.K.)
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (S.Z.); (T.-D.K.)
| |
Collapse
|
21
|
Zhou Y, Zhong C, Yang Q, Zhang G, Yang H, Li Q, Wang M. Novel SARS2 variants identified in a Chinese girl with HUPRA syndrome. Mol Genet Genomic Med 2021; 9:e1650. [PMID: 33751860 PMCID: PMC8123761 DOI: 10.1002/mgg3.1650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
Background Hyperuricemia, pulmonary hypertension, renal failure, and alkaline intoxication syndrome (HUPRA syndrome) is a rare autosomal recessive mitochondrial disease. SARS2 gene encoding seryl‐tRNA synthetase is the only pathogenic gene of HUPRA syndrome. All the previously reported cases with HUPRA syndrome were detected for homozygous mutation. Methods We identified compound heterozygous mutations causing HUPRA syndrome using whole‐exome sequencing, and verifed pathogenicity with ACMG standards. All the previously published cases with SARS2 mutations were reviewed. Results SARS2 gene compound heterozygotes variants were detected in this Chinese patient (c.667G>A/c.1205G>A). Bioinformatics studies and protein models predict that a new variant (c.667G>A) is likely to be pathogenic. A total of six patients, five of whom were previously reported with HUPRA syndrome, were analyzed. All of the six had typical clinical manifestations of HUPRA syndrome, except the Chinese girl who had no pulmonary hypertension or alkaline intoxication. The shrunken kidney was more prominent in our proband. The average survival time for previously reported patients was 17 months, and the Chinese girl was 70 months. Three mutation variants were found, including five homozygous mutants, three of which were Palestinian (c.1169A > G), two of which were from a Spanish family (c.1205G> A), and one was a new variant (c.667G>A/c.1205G>A). Conclusion We found a new pathogenic form (compound heterozygous mutation) causing HUPRA syndrome, and identified a novel pathogenic site (c.667G>A) of the SARS2 gene, expanding the spectrum of SARS2 pathogenic variants. The mild phenotype in complex heterozygous mutations is described.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Zhong
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Haiping Yang
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Qiu Li
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Mo Wang
- Department of Nephrology, Children's Hospital, Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| |
Collapse
|
22
|
Mini-TrpRS is essential for IFNγ-induced monocyte-derived giant cell formation. Cytokine 2021; 142:155486. [PMID: 33721618 DOI: 10.1016/j.cyto.2021.155486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
Truncated tryptophanyl-tRNA synthetase (mini-TrpRS), like any other aminoacyl-tRNA synthetases, canonically functions as a protein synthesis enzyme. Here we provide evidence for an additional signaling role of mini-TrpRS in the formation of monocyte-derived multinuclear giant cells (MGCs). Interferon-gamma (IFNγ) readily induced monocyte aggregation leading to MGC formation with paralleled marked upregulation of mini-TrpRS. Small interfering (si)RNA, targeting mini-TrpRS in the presence of IFNγ prevented monocyte aggregation. Moreover, blockade of mini-TrpRS, either by siRNA, or the cognate amino acid and decoy substrate D-Tryptophan to prevent mini-TrpRS signaling, resulted in a marked reduction in expression of the purinergic receptor P2X 7 (P2RX7) in monocytes activated by IFNγ. Our findings identify mini-TrpRS as a critical signaling molecule in a mechanism by which IFNγ initiates monocyte-derived giant cell formation.
Collapse
|
23
|
Role of inflammatory cytokines in genesis and treatment of atherosclerosis. Looking at foam cells through a different lens. Trends Cardiovasc Med 2021; 32:143-145. [PMID: 33675959 DOI: 10.1016/j.tcm.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022]
|
24
|
Zhao L, Yang X, Feng C, Wang Y, Wang Q, Pei J, Wu J, Li S, Zhang H, Cao X. Triple-negative breast cancer cells respond to T cells severely at the alternative splicing layer. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Yokosawa T, Sato A, Wakasugi K. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells. Genes (Basel) 2020; 11:genes11121423. [PMID: 33261077 PMCID: PMC7760169 DOI: 10.3390/genes11121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The novel high-affinity tryptophan (Trp)-selective transport system is present at elevated levels in human interferon-γ (IFN-γ)-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. High-affinity Trp uptake into cells results in extracellular Trp depletion and immune suppression. We have previously shown that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are increased by IFN-γ, have a crucial function in high-affinity Trp uptake into human cells. Here, we aimed to elucidate the relationship between TrpRS and IDO1 in high-affinity Trp uptake. We demonstrated that overexpression of IDO1 in HeLa cells drastically enhances high-affinity Trp uptake upon addition of purified TrpRS protein to uptake assay buffer. We also clarified that high-affinity Trp uptake by Trp-starved cells is significantly enhanced by the addition of TrpRS protein to the assay buffer. Moreover, we showed that high-affinity Trp uptake is also markedly elevated by the addition of TrpRS protein to the assay buffer of cells overexpressing another Trp-metabolizing enzyme, tryptophan 2,3-dioxygenase (TDO2). Taken together, we conclude that Trp deficiency is crucial for high-affinity Trp uptake mediated by extracellular TrpRS.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Aomi Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| | - Keisuke Wakasugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Correspondence: ; Tel.: +81-3-5454-4392
| |
Collapse
|
26
|
Won E, Morodomi Y, Kanaji S, Shapiro R, Vo M, Orje JN, Thornburg CD, Yang X, Ruggeri ZM, Schimmel P, Kanaji T. Extracellular tyrosyl-tRNA synthetase cleaved by plasma proteinases and stored in platelet α-granules: Potential role in monocyte activation. Res Pract Thromb Haemost 2020; 4:1167-1177. [PMID: 33134783 PMCID: PMC7590329 DOI: 10.1002/rth2.12429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tyrosyl-tRNA synthetase (YRS) belongs to the family of enzymes that catalyzes the tRNA aminoacylation reaction for protein synthesis, and it has been recently shown to exert noncanonical functions. Although database results indicate extremely low levels of YRS mRNA in platelets, YRS protein is abundantly present. The source of YRS in platelets, as well as the physiological role of platelet-stored YRS, remains largely unknown. OBJECTIVES To clarify how YRS accumulates in platelets and determine the potential role of platelet-stored YRS. METHODS Recombinant YRS proteins with epitope tags were prepared and tested in vitro for proteolytic cleavage in human plasma. Fluorescent-labeled YRS was examined for uptake by platelets, as demonstrated by western blotting and confocal microscopy analysis. Using RAW-Dual reporter cells, Toll-like receptor and type I interferon activation pathways were analyzed after treatment with YRS. RESULTS Full-length YRS was cleaved by both elastase and matrix metalloproteinases in the plasma. The cleaved, N-terminal YRS fragment corresponds to the endogenous YRS detected in platelet lysate by western blotting. Both full-length and cleaved forms of YRS were taken up by platelets in vitro and stored in the α-granules. The N-terminal YRS fragment generated by proteolytic cleavage had monocyte activation comparable to that of the constitutive-active mutant YRS (YRSY341A) previously reported. CONCLUSION Platelets take up both full-length YRS and the active form of cleaved YRS fragment from the plasma. The cleaved, N-terminal YRS fragment stored in α-granules may have potential to activate monocytes.
Collapse
Affiliation(s)
- Eric Won
- Department of Molecular MedicineMERU‐Roon Research Center on Vascular BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- Division of Hematology/OncologyDepartment of PediatricsUC San Diego School of MedicineLa JollaCaliforniaUSA
- Hemophilia and Thrombosis Treatment CenterRady Children's HospitalSan DiegoCaliforniaUSA
| | - Yosuke Morodomi
- Department of Molecular MedicineMERU‐Roon Research Center on Vascular BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Sachiko Kanaji
- Department of Molecular MedicineMERU‐Roon Research Center on Vascular BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of Molecular MedicineThe Scripps Laboratories for tRNA Synthetase ResearchThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ryan Shapiro
- Department of Molecular MedicineThe Scripps Laboratories for tRNA Synthetase ResearchThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - My‐Nuong Vo
- Department of Molecular MedicineThe Scripps Laboratories for tRNA Synthetase ResearchThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Jennifer N. Orje
- Department of Molecular MedicineMERU‐Roon Research Center on Vascular BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Courtney D. Thornburg
- Division of Hematology/OncologyDepartment of PediatricsUC San Diego School of MedicineLa JollaCaliforniaUSA
- Hemophilia and Thrombosis Treatment CenterRady Children's HospitalSan DiegoCaliforniaUSA
| | - Xiang‐Lei Yang
- Department of Molecular MedicineThe Scripps Laboratories for tRNA Synthetase ResearchThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Zaverio M. Ruggeri
- Department of Molecular MedicineMERU‐Roon Research Center on Vascular BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Paul Schimmel
- Department of Molecular MedicineThe Scripps Laboratories for tRNA Synthetase ResearchThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of Molecular MedicineThe Scripps Research InstituteJupiterFloridaUSA
| | - Taisuke Kanaji
- Department of Molecular MedicineMERU‐Roon Research Center on Vascular BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
27
|
Wang J, Yang XL. Novel functions of cytoplasmic aminoacyl-tRNA synthetases shaping the hallmarks of cancer. Enzymes 2020; 48:397-423. [PMID: 33837711 DOI: 10.1016/bs.enz.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
With the intense protein synthesis demands of cancer, the classical enzymatic role of aminoacyl-tRNA synthetases (aaRSs) is required to sustain tumor growth. However, many if not all aaRSs also possess regulatory functions outside of the domain of catalytic tRNA aminoacylation, which can further contribute to or even antagonize cancers in non-translational ways. These regulatory functions of aaRS are likely to be manipulated in cancer to ensure uncontrolled growth and survival. This review will largely focus on the unique capacities of individual and sometimes collaborating synthetases to influence the hallmarks of cancer, which represent the principles and characteristics of tumorigenesis. An interesting feature of cytoplasmic aaRSs in higher eukaryotes is the formation of a large multi-synthetase complex (MSC) with nine aaRSs held together by three non-enzymatic scaffolding proteins (AIMPs). The MSC-associated aaRSs, when released from the complex in response to certain stimulations, often participate in pathways that promote tumorigenesis. In contrast, the freestanding aaRSs are associated with activities in both directions-some promoting while others inhibiting cancer. The AIMPs have emerged as potent tumor suppressors through their own distinct mechanisms. We propose that the tumor-suppressive roles of AIMPs may also be a consequence of keeping the cancer-promoting aaRSs within the MSC. The rich connections between cancer and the synthetases have inspired the development of innovative cancer treatments that target or take advantage of these novel functions of aaRSs.
Collapse
Affiliation(s)
- Justin Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
28
|
Zeng F, Su J, Peng C, Liao M, Zhao S, Guo Y, Chen X, Deng G. Prognostic Implications of Metabolism Related Gene Signature in Cutaneous Melanoma. Front Oncol 2020; 10:1710. [PMID: 33014847 PMCID: PMC7509113 DOI: 10.3389/fonc.2020.01710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is closely related to melanoma. However, the prognostic role of metabolism-related genes (MRGs) remains to be elucidated. We aimed to establish a nomogram by combining MRGs signature and clinicopathological factors to predict melanoma prognosis. Eighteen prognostic MRGs between melanoma and normal samples were identified using The Cancer Genome Atlas (TCGA) and GSE15605. WARS (HR = 0.881, 95% CI = 0.788–0.984, P = 0.025) and MGST1 (HR = 1.124, 95% CI = 1.007–1.255, P = 0.037) were ultimately identified as independent prognostic MRGs with LASSO regression and multivariate Cox regression. The MRGs signature was established according to these two genes and externally validated in the Gene Expression Omnibus (GEO) dataset. Kaplan-Meier survival analysis indicated that patients in the high-risk group had significantly poorer overall survival (OS) than those in the low-risk group. Furthermore, the MRGs signature was identified as an independent prognostic factor for melanoma survival. An MRGs nomogram based on the MRGs signature and clinicopathological factors was developed in TCGA cohort and validated in the GEO dataset. Calibration plots showed good consistency between the prediction of nomogram and actual observation. The receiver operating characteristic curve and decision curve analysis indicated that MRGs nomogram had better OS prediction and clinical net benefit than the stage system. To our knowledge, we are the first to develop a prognostic nomogram based on MRGs signature with better predictive power than the current staging system, which could assist individualized prognosis prediction and improve treatment.
Collapse
Affiliation(s)
- Furong Zeng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Liao
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Zhao
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Guo
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Li W, Edwards A, Cox MS, Raabis SM, Skarlupka JH, Steinberger AJ, Murphy B, Larsen A, Suen G. Changes in the host transcriptome and microbial metatranscriptome of the ileum of dairy calves subjected to artificial dosing of exogenous rumen contents. Physiol Genomics 2020; 52:333-346. [PMID: 32567508 DOI: 10.1152/physiolgenomics.00005.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Development of a properly functioning gastrointestinal tract (GIT) at an early age is critical for the wellbeing and lifetime productivity of dairy cattle. The role of early microbial colonization on GIT development in neonatal cattle and the associated molecular changes remain largely unknown, particularly for the small intestine. In this study, we performed artificial dosing of exogenous rumen fluid during the early life of the calf, starting at birth through the weaning transition at 8 wk. Six calves were included in this study. At 8 wk of age, tissue from the ileum was collected and subjected to host transcriptome and microbial metatranscriptome analysis using RNA sequencing. A total of 333 genes showed significant differential expression (DE) (fold-change ≥2; adjusted P < 0.1, mean read-count ≥10) between the treated and control calves. Gene ontology analysis indicated that these DE genes are predominantly associated with processes related to the host immune response (P < 0.0001). Association analysis between the host gene expression and the microbial genus abundance identified 57 genes as having significant correlation with the ileum microbial genera (P < 0.0001). Of these, three genes showed significant association with six microbial genera: lysozyme 2 (LYZ2), fatty acid binding protein 5 (FABP5), and fucosyltransferase (FUT1). Specifically, the profound increase in expression of LYZ2 in treated calves suggests the initiation of antibacterial activity and innate response from the host. Despite the limitation of a relatively small sample size, this study sheds light on the potential impact of early introduction of microbes on the small intestine of calves.
Collapse
Affiliation(s)
- Wenli Li
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, US Department of Agriculture Agricultural Research Service, Madison, Wisconsin
| | - Andrea Edwards
- Department of Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Madison S Cox
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sarah M Raabis
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joseph H Skarlupka
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Brianna Murphy
- Department of Nutritional Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anna Larsen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
30
|
Park SR, Kim SR, Im JB, Lim S, Hong IS. Tryptophanyl-tRNA Synthetase, a Novel Damage-Induced Cytokine, Significantly Increases the Therapeutic Effects of Endometrial Stem Cells. Mol Ther 2020; 28:2458-2472. [PMID: 32592690 DOI: 10.1016/j.ymthe.2020.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
The major challenges of most adult stem cell-based therapies are their weak therapeutic effects caused by the loss of multilineage differentiation capacity and homing potential. Recently, many researchers have attempted to identify novel stimulating factors that can fundamentally increase the differentiation capacity and homing potential of various types of adult stem cells. Tryptophanyl-tRNA synthetase (WRS) is a highly conserved and ubiquitously expressed enzyme that catalyzes the first step of protein synthesis. In addition to this canonical function, we found for the first time that WRS is actively released from the site of injury in response to various damage signals both in vitro and in vivo and then acts as a potent nonenzymatic cytokine that promotes the self-renewal, migratory, and differentiation capacities of endometrial stem cells to facilitate the repair of damaged tissues. Furthermore, we also found that WRS, through its functional receptor cadherin-6 (CDH-6), activates major prosurvival signaling pathways, such as Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. Our current study provides novel and unique insights into approaches that can significantly enhance the therapeutic effects of human endometrial stem cells in various clinical applications.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Jae-Been Im
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Soyi Lim
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| |
Collapse
|
31
|
Wakasugi K, Yokosawa T. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. Enzymes 2020; 48:207-242. [PMID: 33837705 DOI: 10.1016/bs.enz.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Montoni F, Andreotti DZ, Eichler RADS, Santos WDS, Kisaki CY, Arcos SSS, Lima IF, Soares MAM, Nishiyama-Jr MY, Nava-Rodrigues D, Ferro ES, Carvalho VM, Iwai LK. The impact of rattlesnake venom on mice cerebellum proteomics points to synaptic inhibition and tissue damage. J Proteomics 2020; 221:103779. [DOI: 10.1016/j.jprot.2020.103779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
|
33
|
Kang JS. Dietary restriction of amino acids for Cancer therapy. Nutr Metab (Lond) 2020; 17:20. [PMID: 32190097 PMCID: PMC7071719 DOI: 10.1186/s12986-020-00439-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Biosyntheses of proteins, nucleotides and fatty acids, are essential for the malignant proliferation and survival of cancer cells. Cumulating research findings show that amino acid restrictions are potential strategies for cancer interventions. Meanwhile, dietary strategies are popular among cancer patients. However, there is still lacking solid rationale to clarify what is the best strategy, why and how it is. Here, integrated analyses and comprehensive summaries for the abundances, signalling and functions of amino acids in proteomes, metabolism, immunity and food compositions, suggest that, intermittent dietary lysine restriction with normal maize as an intermittent staple food for days or weeks, might have the value and potential for cancer prevention or therapy. Moreover, dietary supplements were also discussed for cancer cachexia including dietary immunomodulatory.
Collapse
Affiliation(s)
- Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
34
|
Yeom E, Kwon DW, Lee J, Kim SH, Lee JH, Min KJ, Lee KS, Yu K. Asparaginyl-tRNA Synthetase, a Novel Component of Hippo Signaling, Binds to Salvador and Enhances Yorkie-Mediated Tumorigenesis. Front Cell Dev Biol 2020; 8:32. [PMID: 32117966 PMCID: PMC7014954 DOI: 10.3389/fcell.2020.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs), which are essential for protein translation, were recently shown to have non-translational functions in various pathological conditions including cancer. However, the molecular mechanism underlying the role of ARSs in cancer remains unknown. Here, we demonstrate that asparaginyl-tRNA synthetase (NRS) regulates Yorkie-mediated tumorigenesis by binding to the Hippo pathway component Salvador. NRS-RNAi and the NRS inhibitor tirandamycin B (TirB) suppressed Yorkie-mediated tumor phenotypes in Drosophila. Genetic analysis showed that NRS interacted with Salvador, and NRS activated Hippo target genes by regulating Yorkie phosphorylation. Biochemical analyses showed that NRS blocked Salvador-Hippo binding by interacting directly with Salvador, and TirB treatment inhibited NRS-Salvador binding. YAP target genes were upregulated in a mammalian cancer cell line with high expression of NRS, whereas TirB treatment suppressed cancer cell proliferation. These results indicate that NRS regulates tumor growth by interacting with Salvador in the Hippo signaling pathway.
Collapse
Affiliation(s)
- Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, South Korea
| | - Dae-Woo Kwon
- Metabolism and Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Jaemin Lee
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seok-Ho Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea.,Convergence Research Center of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
35
|
Human diseases linked to cytoplasmic aminoacyl-tRNA synthetases. BIOLOGY OF AMINOACYL-TRNA SYNTHETASES 2020; 48:277-319. [DOI: 10.1016/bs.enz.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Kuo ME, Antonellis A. Ubiquitously Expressed Proteins and Restricted Phenotypes: Exploring Cell-Specific Sensitivities to Impaired tRNA Charging. Trends Genet 2019; 36:105-117. [PMID: 31839378 DOI: 10.1016/j.tig.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Aminoacyl-tRNA synthetases (ARS) are ubiquitously expressed, essential enzymes that charge tRNA with cognate amino acids. Variants in genes encoding ARS enzymes lead to myriad human inherited diseases. First, missense alleles cause dominant peripheral neuropathy. Second, missense, nonsense, and frameshift alleles cause recessive multisystem disorders that differentially affect tissues depending on which ARS is mutated. A preponderance of evidence has shown that both phenotypic classes are associated with loss-of-function alleles, suggesting that tRNA charging plays a central role in disease pathogenesis. However, it is currently unclear how perturbation in the function of these ubiquitously expressed enzymes leads to tissue-specific or tissue-predominant phenotypes. Here, we review our current understanding of ARS-associated disease phenotypes and discuss potential explanations for the observed tissue specificity.
Collapse
Affiliation(s)
- Molly E Kuo
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Kang I, Lee BC, Lee JY, Kim JJ, Lee SE, Shin N, Choi SW, Kang KS. Interferon-γ-mediated secretion of tryptophanyl-tRNA synthetases has a role in protection of human umbilical cord blood-derived mesenchymal stem cells against experimental colitis. BMB Rep 2019. [PMID: 30293546 PMCID: PMC6549917 DOI: 10.5483/bmbrep.2019.52.5.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells that present immunosuppressive effects in experimental and clinical trials targeting various rare diseases including inflammatory bowel disease (IBD). In addition, recent studies have reported tryptophanyl-tRNA synthetase (WRS) possesses uncanonical roles such as angiostatic and anti-inflammatory effects. However, little is known about the function of WRS in MSC-based therapy. In this study, we investigated if a novel factor, WRS, secreted from MSCs has a role in amelioration of IBD symptoms and determined a specific mechanism underlying MSC therapy. Experimental colitis was induced by administration of 3% DSS solution to 8-week-old mice and human umbilical cord blood-derived MSCs (hUCB-MSCs) were injected intraperitoneally. Secretion of WRS from hUCB-MSCs and direct effect of WRS on isolated CD4+ T cells was determined via in vitro experiments and hUCB-MSCs showed significant therapeutic rescue against experimental colitis. Importantly, WRS level in serum of colitis induced mice decreased and recovered by administration of MSCs. Through in vitro examination, WRS expression of hUCB-MSCs increased when cells were treated with interferon-γ (IFN-γ). WRS was evaluated and revealed to have a role in inhibiting activated T cells by inducing apoptosis. In summary, IFN-γ-mediated secretion of WRS from MSCs has a role in suppressive effect on excessive inflammation and disease progression of IBD and brings new highlights in the immunomodulatory potency of hUCB-MSCs.
Collapse
Affiliation(s)
- Insung Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Byung-Chul Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seung-Eun Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; Institute for Stem Cell Regenerative Medicine, Kangstem Biotech CO., Seoul National University, Seoul 08826, Korea
| |
Collapse
|
38
|
Yang PP, Yu XH, Zhou J. Tryptophanyl-tRNA synthetase (WARS) expression in uveal melanoma - possible contributor during uveal melanoma progression. Biosci Biotechnol Biochem 2019; 84:471-480. [PMID: 31694485 DOI: 10.1080/09168451.2019.1686967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aimed to explore the influence of Tryptophanyl-tRNA synthetase (WARS) expression on the proliferation and migration of uveal melanoma (UM) cells, and the potential mechanisms. Bioinformatics analysis based on Gene Expression Omnibus (GEO) database showed that WARS expression in metastatic cancer was significantly higher than that in no-metastatic group. Kaplan-Meier analysis based on The Cancer Genome Atlas (TCGA) database showed that high WARS expression was associated with lower survival. Biological function experiments showed that overexpression of WARS in OCM-1A cells can promote cell proliferation, migration, and invasion, whereas knockdown of WARS in C918 cells showed the opposite effect. Finally, we observed that the up-regulation of WARS induced the activation of phosphatidylinositol 3-kinase/AKT (PI3K/AKT) signaling, whilst depletion of WARS resulted in opponent outcomes. Taken together, our results illustrated that WARS was overexpressed in UM cells and contributed to the viability and motility of UM cells via modulating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Pan-Pan Yang
- Department of Oncology, Jining First People's Hospital, Jining, P.R. China
| | - Xiao-Hui Yu
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, P.R. China
| | - Jiao Zhou
- Department of blood transfusion, Suizhou central hospital, Hubei university of medicine, Hubei, China
| |
Collapse
|
39
|
Abstract
Tryptophan (TRP), an essential amino acid in mammals, is involved in several physiological processes including neuronal function, immunity, and gut homeostasis. In humans, TRP is metabolized via the kynurenine and serotonin pathways, leading to the generation of biologically active compounds, such as serotonin, melatonin and niacin. In addition to endogenous TRP metabolism, resident gut microbiota also contributes to the production of specific TRP metabolites and indirectly influences host physiology. The variety of physiologic functions regulated by TRP reflects the complex pattern of diseases associated with altered homeostasis. Indeed, an imbalance in the synthesis of TRP metabolites has been associated with pathophysiologic mechanisms occurring in neurologic and psychiatric disorders, in chronic immune activation and in the immune escape of cancer. In this chapter, the role of TRP metabolism in health and disease is presented. Disorders involving the central nervous system, malignancy, inflammatory bowel and cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Martina Brughera
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Padua, Italy.
| |
Collapse
|
40
|
Shi Y, Yu J, Zhang Y, Zhao B, Li Y, Ye Y, Yu Q, Yu M, Mo W, Gu J. RhTyrRS (Y341A), a novel human tyrosyl-tRNA synthetase mutant, stimulates thrombopoiesis through activation of the VEGF-R II/NF-κB pathway. Biochem Pharmacol 2019; 169:113634. [PMID: 31513785 DOI: 10.1016/j.bcp.2019.113634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/03/2019] [Indexed: 11/28/2022]
Abstract
BACGROUND AND PURPOSE Tumor chemotherapy and radiotherapy induces hematopoietic cell damage, resulting in thrombocytopenia. Conventional platelet transfusion strategies or drug therapies are used to treat thrombocytopenia. However, these therapies may result in a several side effects, including heightened susceptibility to infectious diseases and the formation of anti-TPO-antibodies. Therefore, a more secure strategy should be explored to overcome and compensate for the shortcomings of conventional strategies. EXPERIMENTAL APPROACH Effects of rhTyrRS(Y341A) on the expression of VCAM-1 on the surface of HUVECs were determined by analysing mRNA expression, promoter activity, protein expression. The molecular mechanisms of the effects of rhTyrRS(Y341A) on the expression of VCAM-1 on the surface of HUVECs were investigated by determining the activation of VEGF-R II/NF-κB pathway. KEY RESULTS Our results provide evidence that rhTyrRS (Y341A) activates NF-κB to upregulate VCAM-1 in a VEGF-R II/NF-κB pathway-dependent, resulting in megakaryocyte adhering to PVECs to induce platelet production. CONCLUSIONS This study suggested that rhTyrRS (Y341A), a novel human tyrosyl-tRNA synthetase mutation, increased the platelet count under normal conditions. Further more, we confirmed that an NF-κB-mediated mechanism is involved in rhTyrRS (Y341A)-induced thrombopoiesis, which involves its interaction with VEGF-R II.
Collapse
Affiliation(s)
- Yun Shi
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
| | - Jinchao Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanling Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yaran Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuhao Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Mo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jianxin Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Tahmasebi S, Khoutorsky A, Mathews MB, Sonenberg N. Translation deregulation in human disease. Nat Rev Mol Cell Biol 2019; 19:791-807. [PMID: 30038383 DOI: 10.1038/s41580-018-0034-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in sequencing and high-throughput techniques have provided an unprecedented opportunity to interrogate human diseases on a genome-wide scale. The list of disease-causing mutations is expanding rapidly, and mutations affecting mRNA translation are no exception. Translation (protein synthesis) is one of the most complex processes in the cell. The orchestrated action of ribosomes, tRNAs and numerous translation factors decodes the information contained in mRNA into a polypeptide chain. The intricate nature of this process renders it susceptible to deregulation at multiple levels. In this Review, we summarize current evidence of translation deregulation in human diseases other than cancer. We discuss translation-related diseases on the basis of the molecular aberration that underpins their pathogenesis (including tRNA dysfunction, ribosomopathies, deregulation of the integrated stress response and deregulation of the mTOR pathway) and describe how deregulation of translation generates the phenotypic variability observed in these disorders.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Arkady Khoutorsky
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Levi O, Garin S, Arava Y. RNA mimicry in post-transcriptional regulation by aminoacyl tRNA synthetases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1564. [PMID: 31414576 DOI: 10.1002/wrna.1564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Aminoacyl tRNA synthetases (aaRS) are well studied for their roles in tRNA charging with cognate amino acid. Nevertheless, numerous lines of evidence indicate that these proteins have roles other than tRNA charging. These include coordination of cellular signaling cascades, induction of cytokines outside the cell and transcription regulation. Herein, we focus on their roles in post-transcriptional regulation of mRNA expression. We describe functions that are related to antitermination of transcription, RNA splicing and mRNA translation. Cases were recognition of mRNA by the aaRS involves recognition of tRNA-like structures are described. Such recognition may be achieved by repurposing tRNA-binding domains or through domains added to the aaRS later in evolution. Furthermore, we describe cases in which binding by aaRS is implicated in autogenous regulation of expression. Overall, we propose RNA-mimicry as a common mode of interaction between aaRS and mRNA which allows efficient expression regulation. This article is categorized under: RNA Processing > tRNA Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation.
Collapse
Affiliation(s)
- Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shahar Garin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoav Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
43
|
Wang M, Xu P, Zhu Z. Regulation of signal transduction in Coilia nasus during migration. Genomics 2019; 112:55-64. [PMID: 31404627 DOI: 10.1016/j.ygeno.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Coilia nasus (C. nasus) is an important anadromous fish species that resides in the Yangtze River in China. However, wild C. nasus have suffered serious damage as a result of overfishing and environmental pollution. We performed comparative liver and brain transcriptome analyses of C. nasus from the Jingjiang (JJ) and Dangtu (DT) sections of the Yangtze River. The results indicate that, during migration, most signal pathways in C. nasus livers were downregulated, indicating that the liver has a function in energy conservation. The brain assumes more of a regulatory role, and the signal transduction pathways and relevant genes were upregulated. This study provides genetic information for screening the key regulatory genes of gonad development of C. nasus, which can be applied in the artificial breeding of C. nasus, providing high-quality fish fry for proliferation and release and may also contribute to efforts towards the restoration of wild C. nasus.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu Province, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu Province, China; Aquatic Animal Genome Center of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214128, Jiangsu Province, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu Province, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu Province, China; Aquatic Animal Genome Center of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214128, Jiangsu Province, China.
| | - Zhixiang Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu Province, China
| |
Collapse
|
44
|
Jobin PG, Solis N, Machado Y, Bell PA, Kwon NH, Kim S, Overall CM, Butler GS. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. J Biol Chem 2019; 294:12866-12879. [PMID: 31324718 DOI: 10.1074/jbc.ra119.009584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is a cytosolic aminoacyl-tRNA synthetase essential for protein synthesis. WRS is also one of a growing number of intracellular proteins that are attributed distinct noncanonical "moonlighting" functions in the extracellular milieu. Moonlighting aminoacyl-tRNA synthetases regulate processes such as inflammation, but how these multifunctional enzymes are themselves regulated remains unclear. Here, we demonstrate that WRS is secreted from human macrophages, fibroblasts, and endothelial cells in response to the proinflammatory cytokine interferon γ (IFNγ). WRS signaled primarily through Toll-like receptor 2 (TLR2) in macrophages, leading to phosphorylation of the p65 subunit of NF-κB with associated loss of NF-κB inhibitor α (IκB-α) protein. This signaling initiated secretion of tumor necrosis factor α (TNFα) and CXCL8 (IL8) from macrophages. We also demonstrated that WRS is a potent monocyte chemoattractant. Of note, WRS increased matrix metalloproteinase (MMP) activity in the conditioned medium of macrophages in a TNFα-dependent manner. Using purified recombinant proteins and LC-MS/MS to identify proteolytic cleavage sites, we demonstrated that multiple MMPs, but primarily macrophage MMP7 and neutrophil MMP8, cleave secreted WRS at several sites. Loss of the WHEP domain following cleavage at Met48 generated a WRS proteoform that also results from alternative splicing, designated Δ1-47 WRS. The MMP-cleaved WRS lacked TLR signaling and proinflammatory activities. Thus, our results suggest that moonlighting WRS promotes IFNγ proinflammatory activities, and these responses can be dampened by MMPs.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter A Bell
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nam Hoon Kwon
- College of Pharmacy, Seoul National University, 151-742 Seoul, Republic of Korea; Medicinal Bioconvergance Research Center, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Sunghoon Kim
- College of Pharmacy, Seoul National University, 151-742 Seoul, Republic of Korea; Medicinal Bioconvergance Research Center, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Georgina S Butler
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
45
|
Lazar IM, Karcini A, Ahuja S, Estrada-Palma C. Proteogenomic Analysis of Protein Sequence Alterations in Breast Cancer Cells. Sci Rep 2019; 9:10381. [PMID: 31316139 PMCID: PMC6637242 DOI: 10.1038/s41598-019-46897-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 07/04/2019] [Indexed: 12/04/2022] Open
Abstract
Cancer evolves as a result of an accumulation of mutations and chromosomal aberrations. Developments in sequencing technologies have enabled the discovery and cataloguing of millions of such mutations. The identification of protein-level alterations, typically by using reversed-phase protein arrays or mass spectrometry, has lagged, however, behind gene and transcript-level observations. In this study, we report the use of mass spectrometry for detecting the presence of mutations-missense, indels and frame shifts-in MCF7 and SKBR3 breast cancer, and non-tumorigenic MCF10A cells. The mutations were identified by expanding the database search process of raw mass spectrometry files by including an in-house built database of mutated peptides (XMAn-v1) that complemented a minimally redundant, canonical database of Homo sapiens proteins. The work resulted in the identification of nearly 300 mutated peptide sequences, of which ~50 were characterized by quality tandem mass spectra. We describe the criteria that were used to select the mutated peptide sequences, evaluate the parameters that characterized these peptides, and assess the artifacts that could have led to false peptide identifications. Further, we discuss the functional domains and biological processes that may be impacted by the observed peptide alterations, and how protein-level detection can support the efforts of identifying cancer driving mutations and genes. Mass spectrometry data are available via ProteomeXchange with identifier PXD014458.
Collapse
Affiliation(s)
- Iulia M Lazar
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA. .,Carilion School of Medicine and Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| | - Arba Karcini
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Shreya Ahuja
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Carly Estrada-Palma
- Department of Biochemistry, Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
46
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, Lepiarczyk E, Jozwik M, Majewski MK. Placenta Transcriptome Profiling in Intrauterine Growth Restriction (IUGR). Int J Mol Sci 2019; 20:E1510. [PMID: 30917529 PMCID: PMC6471577 DOI: 10.3390/ijms20061510] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a serious pathological complication associated with compromised fetal development during pregnancy. The aim of the study was to broaden knowledge about the transcriptomic complexity of the human placenta by identifying genes potentially involved in IUGR pathophysiology. RNA-Seq data were used to profile protein-coding genes, detect alternative splicing events (AS), single nucleotide variant (SNV) calling, and RNA editing sites prediction in IUGR-affected placental transcriptome. The applied methodology enabled detection of 37,501 transcriptionally active regions and the selection of 28 differentially-expressed genes (DEGs), among them 10 were upregulated and 18 downregulated in IUGR-affected placentas. Functional enrichment annotation indicated that most of the DEGs were implicated in the processes of inflammation and immune disorders related to IUGR and preeclampsia. Additionally, we revealed that some genes (S100A13, GPR126, CTRP1, and TFPI) involved in the alternation of splicing events were mainly implicated in angiogenic-related processes. Significant SNVs were overlapped with 6533 transcripts and assigned to 2386 coding sequence (CDS), 1528 introns, 345 5' untranslated region (UTR), 1260 3'UTR, 918 non-coding RNA (ncRNA), and 10 intergenic regions. Within CDS regions, 543 missense substitutions with functional effects were recognized. Two known mutations (rs4575, synonymous; rs3817, on the downstream region) were detected within the range of AS and DEG candidates: PA28β and PINLYP, respectively. Novel genes that are dysregulated in IUGR were detected in the current research. Investigating genes underlying the IUGR is crucial for identification of mechanisms regulating placental development during a complicated pregnancy.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Ewa Lepiarczyk
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
47
|
Frazão JB, Colombo M, Simillion C, Bilican A, Keller I, Wüthrich D, Zhu Z, Okoniewski MJ, Bruggmann R, Condino-Neto A, Newburger PE. Gene expression in chronic granulomatous disease and interferon-γ receptor-deficient cells treated in vitro with interferon-γ. J Cell Biochem 2019; 120:4321-4332. [PMID: 30260027 PMCID: PMC6336507 DOI: 10.1002/jcb.27718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Interferon-γ (IFN-γ) plays an important role in innate and adaptive immunity against intracellular infections and is used clinically for the prevention and control of infections in chronic granulomatous disease (CGD) and inborn defects in the IFN-γ/interleukin (IL)-12 axis. Using transcriptome profiling (RNA-seq), we sought to identify differentially expressed genes, transcripts and exons in Epstein-Barr virus-transformed B lymphocytes (B-EBV) cells from CGD patients, IFN-γ receptor deficiency patients, and normal controls, treated in vitro with IFN-γ for 48 hours. Our results show that IFN-γ increased the expression of a diverse array of genes related to different cellular programs. In cells from normal controls and CGD patients, IFN-γ-induced expression of genes relevant to oxidative killing, nitric oxide synthase pathway, proteasome-mediated degradation, antigen presentation, chemoattraction, and cell adhesion. IFN-γ also upregulated genes involved in diverse stages of messenger RNA (mRNA) processing including pre-mRNA splicing, as well as others implicated in the folding, transport, and assembly of proteins. In particular, differential exon expression of WARS (encoding tryptophanyl-transfer RNA synthetase, which has an essential function in protein synthesis) induced by IFN-γ in normal and CGD cells suggests that this gene may have an important contribution to the benefits of IFN-γ treatment for CGD. Upregulation of mRNA and protein processing related genes in CGD and IFNRD cells could mediate some of the effects of IFN-γ treatment. These data support the concept that IFN-γ treatment may contribute to increased immune responses against pathogens through regulation of genes important for mRNA and protein processing.
Collapse
Affiliation(s)
- Josias B. Frazão
- Department of Immunology, Institutes of Biomedical Sciences, and Tropical Medicine, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Martino Colombo
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Cedric Simillion
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
- Department of Clinical Research, University of Bern, Bern, CH-3008, Switzerland
| | - Adem Bilican
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
- Department of Clinical Research, University of Bern, Bern, CH-3008, Switzerland
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Zhiqing Zhu
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michal J. Okoniewski
- Scientific IT Services, Swiss Federal Institute of Technology, Zurich, CH-8057, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Antonio Condino-Neto
- Department of Immunology, Institutes of Biomedical Sciences, and Tropical Medicine, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Peter E. Newburger
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
48
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
49
|
Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem 2019; 294:5365-5385. [PMID: 30670594 DOI: 10.1074/jbc.rev118.002956] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are universal enzymes that catalyze the attachment of amino acids to the 3' ends of their cognate tRNAs. The resulting aminoacylated tRNAs are escorted to the ribosome where they enter protein synthesis. By specifically matching amino acids to defined anticodon sequences in tRNAs, ARSs are essential to the physical interpretation of the genetic code. In addition to their canonical role in protein synthesis, ARSs are also involved in RNA splicing, transcriptional regulation, translation, and other aspects of cellular homeostasis. Likewise, aminoacylated tRNAs serve as amino acid donors for biosynthetic processes distinct from protein synthesis, including lipid modification and antibiotic biosynthesis. Thanks to the wealth of details on ARS structures and functions and the growing appreciation of their additional roles regulating cellular homeostasis, opportunities for the development of clinically useful ARS inhibitors are emerging to manage microbial and parasite infections. Exploitation of these opportunities has been stimulated by the discovery of new inhibitor frameworks, the use of semi-synthetic approaches combining chemistry and genome engineering, and more powerful techniques for identifying leads from the screening of large chemical libraries. Here, we review the inhibition of ARSs by small molecules, including the various families of natural products, as well as inhibitors developed by either rational design or high-throughput screening as antibiotics and anti-parasitic therapeutics.
Collapse
Affiliation(s)
- Christopher S Francklyn
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Patrick Mullen
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
50
|
Wei N, Zhang Q, Yang XL. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5321-5339. [PMID: 30643024 DOI: 10.1074/jbc.rev118.002955] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that catalyze the first reaction in protein biosynthesis, namely the charging of transfer RNAs (tRNAs) with their cognate amino acids. aaRSs have been increasingly implicated in dominantly and recessively inherited human diseases. The most common aaRS-associated monogenic disorder is the incurable neurodegenerative disease Charcot-Marie-Tooth neuropathy (CMT), caused by dominant mono-allelic mutations in aaRSs. With six currently known members (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, and MetRS), aaRSs represent the largest protein family implicated in CMT etiology. After the initial discovery linking aaRSs to CMT, the field has progressed from understanding whether impaired tRNA charging is a critical component of this disease to elucidating the specific pathways affected by CMT-causing mutations in aaRSs. Although many aaRS CMT mutants result in loss of tRNA aminoacylation function, animal genetics studies demonstrated that dominant mutations in GlyRS cause CMT through toxic gain-of-function effects, which also may apply to other aaRS-linked CMT subtypes. The CMT-causing mechanism is likely to be multifactorial and involves multiple cellular compartments, including the nucleus and the extracellular space, where the normal WT enzymes also appear. Thus, the association of aaRSs with neuropathy is relevant to discoveries indicating that aaRSs also have nonenzymatic regulatory functions that coordinate protein synthesis with other biological processes. Through genetic, functional, and structural analyses, commonalities among different mutations and different aaRS-linked CMT subtypes have begun to emerge, providing insights into the nonenzymatic functions of aaRSs and the pathogenesis of aaRS-linked CMT to guide therapeutic development to treat this disease.
Collapse
Affiliation(s)
- Na Wei
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Qian Zhang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Xiang-Lei Yang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|