1
|
Voráčová M, Zore M, Yli-Kauhaluoma J, Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg Med Chem 2023; 96:117512. [PMID: 37939493 DOI: 10.1016/j.bmc.2023.117512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as β-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.
Collapse
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Int J Mol Sci 2022; 23:ijms23126743. [PMID: 35743184 PMCID: PMC9223806 DOI: 10.3390/ijms23126743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells. Other well-known members of the family include Bacillus anthracis Edema Factor (EF) and Bordetella pertussis CyaA. Once bound to their eukaryotic protein cofactor, they can catalyze supra-physiological levels of various cyclic nucleotide monophosphates in infected cells. Originally identified in Pseudomonas aeruginosa, ExoY-related NC toxins appear now to be more widely distributed among various γ- and β-proteobacteria. ExoY-like toxins represent atypical, poorly characterized members within the NC toxin family. While the NC catalytic domains of EF and CyaA toxins use both calmodulin as cofactor, their counterparts in ExoY-like members from pathogens of the genus Pseudomonas or Vibrio use actin as a potent cofactor, in either its monomeric or polymerized form. This is an original subversion of actin for cytoskeleton-targeting toxins. Here, we review recent advances on the different members of the NC toxin family to highlight their common and distinct functional characteristics at the molecular, cytotoxic and enzymatic levels, and important aspects that need further characterizations.
Collapse
Affiliation(s)
- Magda Teixeira-Nunes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS-UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Vincent Deruelle
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Undine Mechold
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
- Correspondence:
| |
Collapse
|
3
|
Česnek M, Šafránek M, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Hayes MP, Watts VJ, Janeba Z. Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2022; 17:e202100568. [PMID: 34636150 PMCID: PMC8741643 DOI: 10.1002/cmdc.202100568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 01/07/2023]
Abstract
A series of acyclic nucleoside phosphonates (ANPs) was designed as inhibitors of bacterial adenylate cyclases (ACs), where adenine was replaced with 2-amino-4-arylthiazoles. The target compounds were prepared using the halogen dance reaction. Final AC inhibitors were evaluated in cell-based assays (prodrugs) and cell-free assays (phosphono diphosphates). Novel ANPs were potent inhibitors of adenylate cyclase toxin (ACT) from Bordetella pertussis and edema factor (EF) from Bacillus anthracis, with substantial selectivity over mammalian enzymes AC1, AC2, and AC5. Six of the new ANPs were more potent or equipotent ACT inhibitors (IC50 =9-18 nM), and one of them was more potent EF inhibitor (IC50 =12 nM), compared to adefovir diphosphate (PMEApp) with IC50 =18 nM for ACT and IC50 =36 nM for EF. Thus, these compounds represent the most potent ACT/EF inhibitors based on ANPs reported to date. The potency of the phosphonodiamidates to inhibit ACT activity in J774A.1 macrophage cells was somewhat weaker, where the most potent derivative had IC50 =490 nM compared to IC50 =150 nM of the analogous adefovir phosphonodiamidate. The results suggest that more efficient type of phosphonate prodrugs would be desirable to increase concentrations of the ANP-based active species in the cells in order to proceed with the development of ANPs as potential antitoxin therapeutics.
Collapse
Affiliation(s)
- Michal Česnek
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Michal Šafránek
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Michael P. Hayes
- Department of Medicinal Chemistry and Molecular
Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West
Lafayette, IN – 47907 (USA)
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular
Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West
Lafayette, IN – 47907 (USA)
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| |
Collapse
|
4
|
Břehová P, Chaloupecká E, Česnek M, Skácel J, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. Acyclic nucleoside phosphonates with 2-aminothiazole base as inhibitors of bacterial and mammalian adenylate cyclases. Eur J Med Chem 2021; 222:113581. [PMID: 34102377 PMCID: PMC8373703 DOI: 10.1016/j.ejmech.2021.113581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022]
Abstract
A series of novel acyclic nucleoside phosphonates (ANPs) was synthesized as potential adenylate cyclase inhibitors, where the adenine nucleobase of adefovir (PMEA) was replaced with a 5-substituted 2-aminothiazole moiety. The design was based on the structure of MB05032, a potent and selective inhibitor of fructose 1,6-bisphosphatase and a good mimic of adenosine monophosphate (AMP). From the series of eighteen novel ANPs, which were prepared as phosphoroamidate prodrugs, fourteen compounds were potent (single digit micromolar or submicromolar) inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT), mostly without observed cytotoxicity in J774A.1 macrophage cells. Selected phosphono diphosphates (nucleoside triphosphate analogues) were potent inhibitors of ACT (IC50 as low as 37 nM) and B. anthracis edema factor (IC50 as low as 235 nM) in enzymatic assays. Furthermore, several ANPs were found to be selective mammalian AC1 inhibitors in HEK293 cell-based assays (although with some associated cytotoxicity) and one compound exhibited selective inhibition of mammalian AC2 (only 12% of remaining adenylate cyclase activity) but no observed cytotoxicity. The mammalian AC1 inhibitors may represent potential leads in development of agents for treatment of human inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Petra Břehová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Ema Chaloupecká
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Michal Česnek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Jan Skácel
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Monica P Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic.
| |
Collapse
|
5
|
Couse Z, Cui X, Li Y, Moayeri M, Leppla S, Eichacker PQ. A Review of the Efficacy of FDA-Approved B. anthracis Anti-Toxin Agents When Combined with Antibiotic or Hemodynamic Support in Infection- or Toxin-Challenged Preclinical Models. Toxins (Basel) 2021; 13:53. [PMID: 33450877 PMCID: PMC7828353 DOI: 10.3390/toxins13010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/29/2022] Open
Abstract
Anti-toxin agents for severe B. anthracis infection will only be effective if they add to the benefit of the two mainstays of septic shock management, antibiotic therapy and titrated hemodynamic support. Both of these standard therapies could negate benefits related to anti-toxin treatment. At present, three anthrax anti-toxin antibody preparations have received US Food and Drug Administration (FDA) approval: Raxibacumab, Anthrax Immune Globulin Intravenous (AIGIV) and ETI-204. Each agent is directed at the protective antigen component of lethal and edema toxin. All three agents were compared to placebo in antibiotic-treated animal models of live B. anthracis infection, and Raxibacumab and AIGIV were compared to placebo when combined with standard hemodynamic support in a 96 h canine model of anthrax toxin-associated shock. However, only AIG has actually been administered to a group of infected patients, and this experience was not controlled and offers little insight into the efficacy of the agents. To provide a broader view of the potential effectiveness of these agents, this review examines the controlled preclinical experience either in antibiotic-treated B. anthracis models or in titrated hemodynamic-supported toxin-challenged canines. The strength and weaknesses of these preclinical experiences are discussed.
Collapse
Affiliation(s)
- Zoe Couse
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (Z.C.); (X.C.); (Y.L.)
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (Z.C.); (X.C.); (Y.L.)
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (Z.C.); (X.C.); (Y.L.)
| | - Mahtab Moayeri
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (S.L.)
| | - Stephen Leppla
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (S.L.)
| | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (Z.C.); (X.C.); (Y.L.)
| |
Collapse
|
6
|
Cui X, Wang J, Li Y, Couse ZG, Risoleo TF, Moayeri M, Leppla SH, Malide D, Yu ZX, Eichacker PQ. Bacillus anthracis edema toxin inhibits hypoxic pulmonary vasoconstriction via edema factor and cAMP-mediated mechanisms in isolated perfused rat lungs. Am J Physiol Heart Circ Physiol 2021; 320:H36-H51. [PMID: 33064559 PMCID: PMC7847081 DOI: 10.1152/ajpheart.00362.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
Bacillus anthracis edema toxin (ET) inhibited lethal toxin-stimulated pulmonary artery pressure (Ppa) and increased lung cAMP levels in our previous study. We therefore examined whether ET inhibits hypoxic pulmonary vasoconstriction (HPV). Following baseline hypoxic measures in isolated perfused lungs from healthy rats, compared with diluent, ET perfusion reduced maximal Ppa increases (mean ± SE percentage of maximal Ppa increase with baseline hypoxia) during 6-min hypoxic periods (FIO2 = 0%) at 120 min (16 ± 6% vs. 51 ± 6%, P = 0.004) and 180 min (11.4% vs. 55 ± 6%, P = 0.01). Protective antigen-mAb (PA-mAb) and adefovir inhibit host cell edema factor uptake and cAMP production, respectively. In lungs perfused with ET following baseline measures, compared with placebo, PA-mAb treatment increased Ppa during hypoxia at 120 and 180 min (56 ± 6% vs. 10 ± 4% and 72 ± 12% vs. 12 ± 3%, respectively, P ≤ 0.01) as did adefovir (84 ± 10% vs. 16.8% and 123 ± 21% vs. 26 ± 11%, respectively, P ≤ 0.01). Compared with diluent, lung perfusion with ET for 180 min reduced the slope of the relationships between Ppa and increasing concentrations of endothelin-1 (ET-1) (21.12 ± 2.96 vs. 3.00 ± 0.76 × 108 cmH2O/M, P < 0.0001) and U46619, a thromboxane A2 analogue (7.15 ± 1.01 vs. 3.74 ± 0.31 × 107 cmH2O/M, P = 0.05) added to perfusate. In lungs isolated from rats after 15 h of in vivo infusions with either diluent, ET alone, or ET with PA-mAb, compared with diluent, the maximal Ppa during hypoxia and the slope of the relationship between change in Ppa and ET-1 concentration added to the perfusate were reduced in lungs from animals challenged with ET alone (P ≤ 0.004) but not with ET and PA-mAb together (P ≥ 0.73). Inhibition of HPV by ET could aggravate hypoxia during anthrax pulmonary infection.NEW & NOTEWORTHY The most important findings here are edema toxin's potent adenyl cyclase activity can interfere with hypoxic pulmonary vasoconstriction, an action that could worsen hypoxemia during invasive anthrax infection with lung involvement. These findings, coupled with other studies showing that lethal toxin can disrupt pulmonary vascular integrity, indicate that both toxins can contribute to pulmonary pathophysiology during infection. In combination, these investigations provide a further basis for the use of antitoxin therapies in patients with worsening invasive anthrax disease.
Collapse
Affiliation(s)
- Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Zoe G Couse
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas F Risoleo
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Daniela Malide
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Pitard I, Monet D, Goossens PL, Blondel A, Malliavin TE. Analyzing In Silico the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin. Front Mol Biosci 2020; 7:586544. [PMID: 33344505 PMCID: PMC7746812 DOI: 10.3389/fmolb.2020.586544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have been recorded on the complex between the edema factor (EF) of Bacilllus anthracis and calmodulin (CaM), starting from a structure with the orthosteric inhibitor adefovir bound in the EF catalytic site. The starting structure has been destabilized by alternately suppressing different co-factors, such as adefovir ligand or ions, revealing several long-distance correlations between the conformation of CaM, the geometry of the CaM/EF interface, the enzymatic site and the overall organization of the complex. An allosteric communication between CaM/EF interface and the EF catalytic site, highlighted by these correlations, was confirmed by several bioinformatics approaches from the literature. A network of hydrogen bonds and stacking interactions extending from the helix V of of CaM, and the residues of the switches A, B and C, and connecting to catalytic site residues, is a plausible candidate for the mediation of allosteric communication. The greatest variability in volume between the different MD conditions was also found for cavities present at the EF/CaM interface and in the EF catalytic site. The similarity between the predictions from literature and the volume variability might introduce the volume variability as new descriptor of allostery.
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France.,Ecole Doctorale Université Paris Sorbonne, Paris, France
| | - Damien Monet
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France.,Ecole Doctorale Université Paris Sorbonne, Paris, France
| | | | - Arnaud Blondel
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France
| |
Collapse
|
8
|
Pitard I, Malliavin TE. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Toxins (Basel) 2019; 11:toxins11060369. [PMID: 31238550 PMCID: PMC6628625 DOI: 10.3390/toxins11060369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the functions and mechanisms of biological systems is an outstanding challenge. One way to overcome it is to combine together several approaches such as molecular modeling and experimental structural biology techniques. Indeed, the interplay between structural and dynamical properties of the system is crucial to unravel the function of molecular machinery’s. In this review, we focus on how molecular simulations along with structural information can aid in interpreting biological data. Here, we examine two different cases: (i) the endosomal translocation toxins (diphtheria, tetanus, botulinum toxins) and (ii) the activation of adenylyl cyclase inside the cytoplasm (edema factor, CyA, ExoY).
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, 75005 Paris, France.
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
| |
Collapse
|
9
|
Hasan S, Rahman WU, Sebo P, Osicka R. Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling. Toxins (Basel) 2019; 11:toxins11060362. [PMID: 31226835 PMCID: PMC6628411 DOI: 10.3390/toxins11060362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Myeloid phagocytes have evolved to rapidly recognize invading pathogens and clear them through opsonophagocytic killing. The adenylate cyclase toxin (CyaA) of Bordetella pertussis and the edema toxin (ET) of Bacillus anthracis are both calmodulin-activated toxins with adenylyl cyclase activity that invade host cells and massively increase the cellular concentrations of a key second messenger molecule, 3',5'-cyclic adenosine monophosphate (cAMP). However, the two toxins differ in the kinetics and mode of cell entry and generate different cAMP concentration gradients within the cell. While CyaA rapidly penetrates cells directly across their plasma membrane, the cellular entry of ET depends on receptor-mediated endocytosis and translocation of the enzymatic subunit across the endosomal membrane. We show that CyaA-generated membrane-proximal cAMP gradient strongly inhibits the activation and phosphorylation of Syk, Vav, and Pyk2, thus inhibiting opsonophagocytosis. By contrast, at similar overall cellular cAMP levels, the ET-generated perinuclear cAMP gradient poorly inhibits the activation and phosphorylation of these signaling proteins. Hence, differences in spatiotemporal distribution of cAMP produced by the two adenylyl cyclase toxins differentially affect the opsonophagocytic signaling in myeloid phagocytes.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| | - Waheed Ur Rahman
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
10
|
Farcasanu M, Wang AG, Uchański T, Bailey LJ, Yue J, Chen Z, Wu X, Kossiakoff A, Tang WJ. Rapid Discovery and Characterization of Synthetic Neutralizing Antibodies against Anthrax Edema Toxin. Biochemistry 2019; 58:2996-3004. [PMID: 31243996 DOI: 10.1021/acs.biochem.9b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Anthrax, a lethal, weaponizable disease caused by Bacillus anthracis, acts through exotoxins that are primary mediators of systemic toxicity and also targets for neutralization by passive immunotherapy. The ease of engineering B. anthracis strains resistant to established therapy and the historic use of the microbe in bioterrorism present a compelling test case for platforms that permit the rapid and modular development of neutralizing agents. In vitro antigen-binding fragment (Fab) selection offers the advantages of speed, sequence level molecular control, and engineering flexibility compared to traditional monoclonal antibody pipelines. By screening an unbiased, chemically synthetic phage Fab library and characterizing hits in cell-based assays, we identified two high-affinity neutralizing Fabs, A4 and B7, against anthrax edema factor (EF), a key mediator of anthrax pathogenesis. Engineered homodimers of these Fabs exhibited potency comparable to that of the best reported neutralizing monoclonal antibody against EF at preventing EF-induced cyclic AMP production. Using internalization assays in COS cells, B7 was found to block steps prior to EF internalization. This work demonstrates the efficacy of synthetic alternatives to traditional antibody therapeutics against anthrax while also demonstrating a broadly generalizable, rapid, and modular screening pipeline for neutralizing antibody generation.
Collapse
Affiliation(s)
- Mara Farcasanu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrew G Wang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Tomasz Uchański
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jiping Yue
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Zhaochun Chen
- National Institute of Allergy and Infection , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Xiaoyang Wu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Anthony Kossiakoff
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wei-Jen Tang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
11
|
Česnek M, Skácel J, Jansa P, Dračínský M, Šmídková M, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. Nucleobase Modified Adefovir (PMEA) Analogues as Potent and Selective Inhibitors of Adenylate Cyclases from Bordetella pertussis and Bacillus anthracis. ChemMedChem 2018; 13:1779-1796. [PMID: 29968968 PMCID: PMC6415679 DOI: 10.1002/cmdc.201800332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/26/2018] [Indexed: 02/06/2023]
Abstract
A series of 13 acyclic nucleoside phosphonates (ANPs) as bisamidate prodrugs was prepared. Five compounds were found to be non-cytotoxic and selective inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT) in J774A.1 macrophage cell-based assays. The 8-aza-7-deazapurine derivative of adefovir (PMEA) was found to be the most potent ACT inhibitor in the series (IC50 =16 nm) with substantial selectivity over mammalian adenylate cyclases (mACs). AC inhibitory properties of the most potent analogues were confirmed by direct evaluation of the corresponding phosphonodiphosphates in cell-free assays and were found to be potent inhibitors of both ACT and edema factor (EF) from Bacillus anthracis (IC50 values ranging from 0.5 to 21 nm). Moreover, 7-halo-7-deazapurine analogues of PMEA were discovered to be potent and selective mammalian AC1 inhibitors (no inhibition of AC2 and AC5) with IC50 values ranging from 4.1 to 5.6 μm in HEK293 cell-based assays.
Collapse
Affiliation(s)
- Michal Česnek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Jan Skácel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Petr Jansa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Monica P Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
12
|
Frydrych J, Skácel J, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Gnanasekaran R, Lepšík M, Soto-Velasquez M, Watts VJ, Janeba Z. Synthesis of α-Branched Acyclic Nucleoside Phosphonates as Potential Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2018; 13:199-206. [PMID: 29235265 DOI: 10.1002/cmdc.201700715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/11/2017] [Indexed: 12/24/2022]
Abstract
Inhibition of Bordetella pertussis adenylate cyclase toxin (ACT) and Bacillus anthracis edema factor (EF), key virulence factors with adenylate cyclase activity, represents a potential method for treating or preventing toxemia related to whooping cough and anthrax, respectively. Novel α-branched acyclic nucleoside phosphonates (ANPs) having a hemiaminal ether moiety were synthesized as potential inhibitors of bacterial adenylate cyclases. ANPs prepared as bisamidates were not cytotoxic, but did not exhibit any profound activity (IC50 >10 μm) toward ACT in J774A.1 macrophages. The apparent lack of activity of the bisamidates is speculated to be due to the inefficient formation of the biologically active species (ANPpp) in the cells. Conversely, two 5-haloanthraniloyl-substituted ANPs in the form of diphosphates were shown to be potent ACT and EF inhibitors with IC50 values ranging from 55 to 362 nm.
Collapse
Affiliation(s)
- Jan Frydrych
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jan Skácel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Ramachandran Gnanasekaran
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.,Current address: Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Monica Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
13
|
Bacillus anthracis Edema Toxin Increases Fractional Free Water and Sodium Reabsorption in an Isolated Perfused Rat Kidney Model. Infect Immun 2017; 85:IAI.00264-17. [PMID: 28438974 DOI: 10.1128/iai.00264-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis edema toxin (ET) consists of protective antigen (PA), necessary for host cell toxin uptake, and edema factor (EF), the toxic moiety which increases host cell cyclic AMP (cAMP). Since vasopressin stimulates renal water and sodium reabsorption via increased tubular cell cAMP levels, we hypothesized the ET would also do so. To test this hypothesis, we employed an isolated perfused rat kidney model. Kidneys were isolated and perfused with modified Krebs-Henseleit buffer. Perfusate and urine samples were obtained at baseline and every 10 min over 150 min following the addition of challenges with or without treatments to the perfusate. In kidneys perfused under constant flow or constant pressure, compared to PA challenge (n = 14 or 15 kidneys, respectively), ET (13 or 15 kidneys, respectively) progressively increased urine cAMP levels, water and sodium reabsorption, and urine osmolality and decreased urine output (P ≤ 0.04, except for sodium reabsorption under constant pressure [P = 0.17]). In ET-challenged kidneys, compared to placebo treatment, adefovir, an EF inhibitor, decreased urine cAMP levels, water and sodium reabsorption, and urine osmolality and increased urine output, while raxibacumab, a PA-directed monoclonal antibody (MAb), decreased urine cAMP levels, free water reabsorption, and urine osmolality and increased urine output (P ≤ 0.03 except for urine output with raxibacumab [P = 0.17]). Upon immunohistochemistry, aquaporin 2 was concentrated along the apical membrane of tubular cells with ET but not PA, and urine aquaporin 2 levels were higher with ET (5.52 ± 1.06 ng/ml versus 1.51 ± 0.44 ng/ml [means ± standard errors of the means {SEM}; P = 0.0001). Edema toxin has renal effects that could contribute to extravascular fluid collection characterizing anthrax infection clinically.
Collapse
|
14
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
15
|
Břehová P, Šmídková M, Skácel J, Dračínský M, Mertlíková-Kaiserová H, Velasquez MPS, Watts VJ, Janeba Z. Design and Synthesis of Fluorescent Acyclic Nucleoside Phosphonates as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2016; 11:2534-2546. [PMID: 27775243 PMCID: PMC5198786 DOI: 10.1002/cmdc.201600439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/05/2016] [Indexed: 12/20/2022]
Abstract
Bordetella pertussis adenylate cyclase toxin (ACT) and Bacillus anthracis edema factor (EF) are key virulence factors with adenylate cyclase (AC) activity that substantially contribute to the pathogenesis of whooping cough and anthrax, respectively. There is an urgent need to develop potent and selective inhibitors of bacterial ACs with prospects for the development of potential antibacterial therapeutics and to study their molecular interactions with the target enzymes. Novel fluorescent 5-chloroanthraniloyl-substituted acyclic nucleoside phosphonates (Cl-ANT-ANPs) were designed and synthesized in the form of their diphosphates (Cl-ANT-ANPpp) as competitive ACT and EF inhibitors with sub-micromolar potency (IC50 values: 11-622 nm). Fluorescence experiments indicated that Cl-ANT-ANPpp analogues bind to the ACT active site, and docking studies suggested that the Cl-ANT group interacts with Phe306 and Leu60. Interestingly, the increase in direct fluorescence with Cl-ANT-ANPpp having an ester linker was strictly calmodulin (CaM)-dependent, whereas Cl-ANT-ANPpp analogues with an amide linker, upon binding to ACT, increased the fluorescence even in the absence of CaM. Such a dependence of binding on structural modification could be exploited in the future design of potent inhibitors of bacterial ACs. Furthermore, one Cl-ANT-ANP in the form of a bisamidate prodrug was able to inhibit B. pertussis ACT activity in macrophage cells with IC50 =12 μm.
Collapse
Affiliation(s)
- Petra Břehová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Markéta Šmídková
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jan Skácel
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Martin Dračínský
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Monica P Soto Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Zlatko Janeba
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
16
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
17
|
Česnek M, Jansa P, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Brust TF, Pávek P, Trejtnar F, Watts VJ, Janeba Z. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis. ChemMedChem 2015; 10:1351-64. [PMID: 26136378 DOI: 10.1002/cmdc.201500183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 11/07/2022]
Abstract
Novel small-molecule agents to treat Bordetella pertussis infections are highly desirable, as pertussis (whooping cough) remains a serious health threat worldwide. In this study, a series of 2-substituted derivatives of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA, adefovir), in their isopropyl ester bis(L-phenylalanine) prodrug form, were designed and synthesized as potent inhibitors of adenylate cyclase toxin (ACT) isolated from B. pertussis. The series consists of PMEA analogues bearing either a linear or branched aliphatic chain or a heteroatom at the C2 position of the purine moiety. Compounds with a small C2 substituent showed high potency against ACT without cytotoxic effects as well as good selectivity over human adenylate cyclase isoforms AC1, AC2, and AC5. The most potent ACT inhibitor was found to be the bisamidate prodrug of the 2-fluoro PMEA derivative (IC50 =0.145 μM). Although the bisamidate prodrugs reported herein exhibit overall lower activity than the bis(pivaloyloxymethyl) prodrug (adefovir dipivoxil), their toxicity and plasma stability profiles are superior. Furthermore, the bisamidate prodrug was shown to be more stable in plasma than in macrophage homogenate, indicating that the free phosphonate can be effectively distributed to target tissues, such as the lungs. Thus, ACT inhibitors based on acyclic nucleoside phosphonates may represent a new strategy to treat whooping cough.
Collapse
Affiliation(s)
- Michal Česnek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i. Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Petr Jansa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i. Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i. Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i. Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i. Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907 (USA)
| | - Petr Pávek
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové (Czech Republic).,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 775 15 Olomouc (Czech Republic)
| | - František Trejtnar
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové (Czech Republic)
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907 (USA)
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i. Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic).
| |
Collapse
|
18
|
Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor. PLoS One 2015; 10:e0124017. [PMID: 25946093 PMCID: PMC4422518 DOI: 10.1371/journal.pone.0124017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP into the second messenger cAMP. Membranous AC1 (AC1) is involved in processes of memory and learning and in muscle pain. The AC toxin edema factor (EF) of Bacillus anthracis is involved in the development of anthrax. Both ACs are stimulated by the eukaryotic Ca2+-sensor calmodulin (CaM). The CaM-AC interaction could constitute a potential target to enhance or impair the AC activity of AC1 and EF to intervene in above (patho)physiological mechanisms. Thus, we analyzed the impact of 39 compounds including typical CaM-inhibitors, an anticonvulsant, an anticholinergic, antidepressants, antipsychotics and Ca2+-antagonists on CaM-stimulated catalytic activity of AC1 and EF. Compounds were tested at 10 μM, i.e., a concentration that can be reached therapeutically for certain antidepressants and antipsychotics. Calmidazolium chloride decreased CaM-stimulated AC1 activity moderately by about 30%. In contrast, CaM-stimulated EF activity was abrogated by calmidazolium chloride and additionally decreased by chlorpromazine, felodipine, penfluridol and trifluoperazine by about 20–40%. The activity of both ACs was decreased by calmidazolium chloride in the presence and absence of CaM. Thus, CaM-stimulated AC1 activity is more insensitive to inhibition by small molecules than CaM-stimulated EF activity. Inhibition of AC1 and EF by calmidazolium chloride is largely mediated via a CaM-independent allosteric mechanism.
Collapse
|
19
|
Ohanjanian L, Remy KE, Li Y, Cui X, Eichacker PQ. An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis. Expert Opin Investig Drugs 2015; 24:851-65. [PMID: 25920540 DOI: 10.1517/13543784.2015.1041587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sepsis with Bacillus anthracis infection has a very high mortality rate despite appropriate antibiotic and supportive therapies. Over the past 15 years, recent outbreaks in the US and in Europe, coupled with anthrax's bioterrorism weapon potential, have stimulated efforts to develop adjunctive therapies to improve clinical outcomes. Since lethal toxin and edema toxin (LT and ET) make central contributions to the pathogenesis of B. anthracis, these have been major targets in this effort. AREAS COVERED Here, the authors review different investigative biopharmaceuticals that have been recently identified for their therapeutic potential as inhibitors of LT or ET. Among these inhibitors are two antibody preparations that have been included in the Strategic National Stockpile (SNS) and several more that have reached Phase I testing. Presently, however, many of these candidate agents have only been studied in vitro and very few tested in bacteria-challenged models. EXPERT OPINION Although a large number of drugs have been identified as potential therapeutic inhibitors of LT and ET, in most cases their testing has been limited. The use of the two SNS antibody therapies during a large-scale exposure to B. anthracis will be difficult. Further testing and development of agents with oral bioavailability and relatively long shelf lives should be a focus for future research.
Collapse
Affiliation(s)
- Lernik Ohanjanian
- National Institutes of Health, Clinical Center, Critical Care Medicine Department , Building 10, Room 2C145, Bethesda, MD 20892 , USA +1 301 402 2914 ; +1 301 402 1213 ;
| | | | | | | | | |
Collapse
|
20
|
van Hemert FJ, Berkhout B, Zaaijer HL. Differential binding of tenofovir and adefovir to reverse transcriptase of hepatitis B virus. PLoS One 2014; 9:e106324. [PMID: 25180507 PMCID: PMC4152281 DOI: 10.1371/journal.pone.0106324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 12/23/2022] Open
Abstract
Introduction Resistance of the reverse transcriptase (RT) of hepatitis B virus (HBV) to the tenofovir nucleotide drug has not been observed since its introduction for treatment of hepatitis B virus (HBV) infection in 2008. In contrast, frequent viral breakthrough and resistance has been documented for adefovir. Our computational study addresses an inventory of the structural differences between these two nucleotide analogues and their binding sites and affinities to wildtype (wt) and mutant RT enzyme structures based on in silico modeling, in comparison with the natural nucleotide substrates. Results Tenofovir and adefovir only differ by an extra CH3-moiety in tenofovir, introducing a center of chirality at the carbon atom linking the purine group with the phosphates. (R)-Tenofovir (and not (S)-tenofovir) binds significantly better to HBV-RT than adefovir. “Single hit” mutations in HBV-RT associated with adefovir resistance may affect the affinity for tenofovir, but to a level that is insufficient for tenofovir resistance. The RT-Surface protein gene overlap in the HBV genome provides an additional genetic constraint that limits the mutational freedom required to generate drug-resistance. Different pockets near the nucleotide binding motif (YMDD) in HBV-RT can bind nucleotides and nucleotide analogues with different affinities and specificities. Conclusion The difference in binding affinity of tenofovir (more than two orders of magnitude in terms of local concentration), a 30x higher dosage of the (R)-tenofovir enantiomer as compared to conformational isomeric or rotameric adefovir, and the constrained mutational space due to gene overlap in HBV may explain the absence of resistance mutations after 6 years of tenofovir monotherapy. In addition, the computational methodology applied here may guide the development of antiviral drugs with better resistance profiles.
Collapse
Affiliation(s)
- Formijn J. van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (FvH); (HLZ)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans L. Zaaijer
- Laboratory of Clinical Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (FvH); (HLZ)
| |
Collapse
|
21
|
Liu S, Moayeri M, Leppla SH. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol 2014; 22:317-25. [PMID: 24684968 DOI: 10.1016/j.tim.2014.02.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use capillary morphogenesis protein 2 (CMG2) as the major toxin receptor and play essential roles in pathogenesis during the entire course of the disease. This review focuses on the activities of anthrax toxins and their roles in initial and late stages of anthrax infection.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Mechanistic Evidence to Support the Anti-hepatitis B Viral Activity of Multifunctional Scaffold & Conformationally Restricted Magnolol. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2014. [DOI: 10.1007/s40009-013-0195-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
24
|
Bouzianas DG. Potential biological targets ofBacillus anthracisin anti-infective approaches against the threat of bioterrorism. Expert Rev Anti Infect Ther 2014; 5:665-84. [PMID: 17678429 DOI: 10.1586/14787210.5.4.665] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The terrorist attacks of 2001 involving anthrax underscore the imperative that safe and effective medical countermeasures should be readily available. Vaccination appears to be the most effective form of mass protection against a biological attack, but the current vaccines have drawbacks that justify the enormous amount of effort currently being put into developing more effective vaccines and other treatment modalities. After providing a comprehensive overview of the organism Bacillus anthracis as a biological weapon and its pathogenicity, this review briefly summarizes the current knowledge vital to the management of anthrax disease. This knowledge has been acquired since 2001 as a result of the progress on anthrax research and focuses on the possible development of improved human anti-infective strategies targeting B. anthracis spore components, as well as strategies based on host-pathogen interactions.
Collapse
Affiliation(s)
- Dimitrios G Bouzianas
- Department of Medical Laboratories, Faculty of Health and Care Professions, University-level Technological Educational Institute of Thessaloniki, Greece.
| |
Collapse
|
25
|
Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis. Antimicrob Agents Chemother 2013; 58:664-71. [PMID: 24145524 DOI: 10.1128/aac.01685-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.
Collapse
|
26
|
Remy KE, Qiu P, Li Y, Cui X, Eichacker PQ. B. anthracis associated cardiovascular dysfunction and shock: the potential contribution of both non-toxin and toxin components. BMC Med 2013; 11:217. [PMID: 24107194 PMCID: PMC3851549 DOI: 10.1186/1741-7015-11-217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 09/13/2013] [Indexed: 01/31/2023] Open
Abstract
The development of cardiovascular dysfunction and shock in patients with invasive Bacillus anthracis infection has a particularly poor prognosis. Growing evidence indicates that several bacterial components likely play important pathogenic roles in this injury. As with other pathogenic Gram-positive bacteria, the B. anthracis cell wall and its peptidoglycan constituent produce a robust inflammatory response with its attendant tissue injury, disseminated intravascular coagulation and shock. However, B. anthracis also produces lethal and edema toxins that both contribute to shock. Growing evidence suggests that lethal toxin, a metalloprotease, can interfere with endothelial barrier function as well as produce myocardial dysfunction. Edema toxin has potent adenyl cyclase activity and may alter endothelial function, as well as produce direct arterial and venous relaxation. Furthermore, both toxins can weaken host defense and promote infection. Finally, B. anthracis produces non-toxin metalloproteases which new studies show can contribute to tissue injury, coagulopathy and shock. In the future, an understanding of the individual pathogenic effects of these different components and their interactions will be important for improving the management of B. anthracis infection and shock.
Collapse
Affiliation(s)
- Kenneth E Remy
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
27
|
Opsenica IM, Tot M, Gomba L, Nuss JE, Sciotti RJ, Bavari S, Burnett JC, Šolaja BA. 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity. J Med Chem 2013; 56:5860-71. [PMID: 23815186 PMCID: PMC3880596 DOI: 10.1021/jm4006077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structurally simplified analogues of dual antimalarial and botulinum neurotoxin serotype A light chain (BoNT/A LC) inhibitor bis-aminoquinoline (1) were prepared. New compounds were designed to improve ligand efficiency while maintaining or exceeding the inhibitory potency of 1. Three of the new compounds are more active than 1 against both indications. Metabolically, the new inhibitors are relatively stable and nontoxic. 12, 14, and 15 are more potent BoNT/A LC inhibitors than 1. Additionally, 15 has excellent in vitro antimalarial efficacy, with IC90 values ranging from 4.45 to 12.11 nM against five Plasmodium falciparum (P.f.) strains: W2, D6, C235, C2A, and C2B. The results indicate that the same level of inhibitory efficacy provided by 1 can be retained/exceeded with less structural complexity. 12, 14, and 15 provide new platforms for the development of more potent dual BoNT/A LC and P.f. inhibitors adhering to generally accepted chemical properties associated with the druggability of synthetic molecules.
Collapse
Affiliation(s)
- Igor M. Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Mikloš Tot
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Laura Gomba
- United States Army Medical Research Institute of Infectious Diseases, Department of Bacteriology, 1425 Porter Street, Frederick, MD 21702, USA
| | - Jonathan E. Nuss
- United States Army Medical Research Institute of Infectious Diseases, Department of Bacteriology, 1425 Porter Street, Frederick, MD 21702, USA
| | - Richard J. Sciotti
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Sina Bavari
- Target Discovery and Experimental Microbiology, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - James C. Burnett
- Computational Drug Development Group, SAIC-Frederick, Inc., FNLCR at Frederick, P.O. Box B, Frederick, Maryland, United States
| | - Bogdan A. Šolaja
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| |
Collapse
|
28
|
Seifert R, Dove S. Inhibitors of Bacillus anthracis edema factor. Pharmacol Ther 2013; 140:200-12. [PMID: 23850654 DOI: 10.1016/j.pharmthera.2013.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023]
Abstract
Edema factor (EF) is a calmodulin (CaM)-activated adenylyl cyclase (AC) toxin from Bacillus anthracis that contributes to anthrax pathogenesis. Anthrax is an important medical problem, but treatment of B. anthracis infections is still unsatisfying. Thus, selective EF inhibitors could be valuable drugs in the treatment of anthrax infection, most importantly shock. The catalytic site of EF, the EF/CaM interaction site and allosteric sites constitute potential drug targets. To this end, most efforts have been directed towards targeting the catalytic site. A major challenge in the field is to obtain compounds with high selectivity for AC toxins relative to mammalian membranous ACs (mACs). 3'-(N-methyl)anthraniloyl-2'-deoxyadenosine-5'-triphosphate is the most potent EF inhibitor known so far (Ki, 10nM), but selectivity relative to mACs needs to be improved (currently ~5-50-fold, depending on the specific mAC isoform considered). AC toxin inhibitors can be identified in virtual screening studies based on available EF crystal structures and examined in cellular test systems or at the level of purified toxin using classic radioisotopic or non-radioactive fluorescence assays. Binding of certain MANT-nucleotides to AC toxins elicits large direct fluorescence- or fluorescence resonance energy transfer signals upon interaction with CaM, and these signals can be used to identify toxin inhibitors in competition binding studies. Collectively, potent EF inhibitors are available, but before they can be used clinically, selectivity against mACs must be improved. However, several methodological approaches, complementing each other, are now available to direct the development of potent, selective, orally applicable and clinically useful EF inhibitors.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | |
Collapse
|
29
|
Li Y, Cui X, Solomon SB, Remy K, Fitz Y, Eichacker PQ. B. anthracis edema toxin increases cAMP levels and inhibits phenylephrine-stimulated contraction in a rat aortic ring model. Am J Physiol Heart Circ Physiol 2013; 305:H238-50. [PMID: 23585140 DOI: 10.1152/ajpheart.00185.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
B. anthracis edema toxin (ET) and lethal toxin (LT) are each composed of protective antigen (PA), necessary for toxin uptake by host cells, and their respective toxic moieties, edema factor (EF) and lethal factor (LF). Although both toxins likely contribute to shock during infection, their mechanisms are unclear. To test whether ET and LT produce arterial relaxation, their effects on phenylephrine (PE)-stimulated contraction in a Sprague-Dawley rat aortic ring model were measured. Rings were prepared and connected to pressure transducers. Their viability was confirmed, and peak contraction with 60 mM KCl was determined. Compared with PA pretreatment (control, 60 min), ET pretreatment at concentrations similar to those noted in vivo decreased the mean (±SE) maximum contractile force (MCF; percent peak contraction) in rings generated during stimulation with increasing PE concentrations (96.2 ± 7.0 vs. 57.3 ± 9.1) and increased the estimated PE concentration producing half the MCF (EC50; 10(-7) M, 1.1 ± 0.3 vs. 3.7 ± 0.8, P ≤ 0.002). ET inhibition with PA-directed monoclonal antibodies, selective EF inhibition with adefovir, or removal of the ring endothelium inhibited the effects of ET on MCF and EC50 (P ≤ 0.02). Consistent with its adenyl cyclase activity, ET increased tissue cAMP in endothelium-intact but not endothelium-denuded rings (P < 0.0001 and 0.25, respectively). LT pretreatment, even in high concentrations, did not significantly decrease MCF or increase EC50 (all P > 0.05). In rings precontracted with PE compared with posttreatment with PA (90 min), ET posttreatment produced progressive reductions in contractile force and increases in relaxation in endothelium-intact rings (P < 0.0001) but not endothelium-denuded rings (P = 0.51). Thus, ET may contribute to shock by producing arterial relaxation.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Laine É, Martínez L, Ladant D, Malliavin T, Blondel A. Molecular motions as a drug target: mechanistic simulations of anthrax toxin edema factor function led to the discovery of novel allosteric inhibitors. Toxins (Basel) 2012; 4:580-604. [PMID: 23012649 PMCID: PMC3446745 DOI: 10.3390/toxins4080580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/04/2012] [Accepted: 07/18/2012] [Indexed: 01/14/2023] Open
Abstract
Edema Factor (EF) is a component of Bacillus anthracis toxin essential for virulence. Its adenylyl cyclase activity is induced by complexation with the ubiquitous eukaryotic cellular protein, calmodulin (CaM). EF and its complexes with CaM, nucleotides and/or ions, have been extensively characterized by X-ray crystallography. Those structural data allowed molecular simulations analysis of various aspects of EF action mechanism, including the delineation of EF and CaM domains through their association energetics, the impact of calcium binding on CaM, and the role of catalytic site ions. Furthermore, a transition path connecting the free inactive form to the CaM-complexed active form of EF was built to model the activation mechanism in an attempt to define an inhibition strategy. The cavities at the surface of EF were determined for each path intermediate to identify potential sites where the binding of a ligand could block activation. A non-catalytic cavity (allosteric) was found to shrink rapidly at early stages of the path and was chosen to perform virtual screening. Amongst 18 compounds selected in silico and tested in an enzymatic assay, 6 thiophen ureidoacid derivatives formed a new family of EF allosteric inhibitors with IC50 as low as 2 micromolars.
Collapse
Affiliation(s)
- Élodie Laine
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, 61, avenue du Président Wilson, 94235 Cachan cedex, France;
| | - Leandro Martínez
- The Molecular Biotechnology Group, Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil;
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires and CNRS UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, 28, rue du Dr. Roux, 75724 Paris Cedex 15, France;
| | - Thérèse Malliavin
- Unité de Bioinformatique Structurale and CNRS UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France;
| | - Arnaud Blondel
- Unité de Bioinformatique Structurale and CNRS UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France;
| |
Collapse
|
31
|
Artenstein AW, Opal SM. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012; 54:1148-61. [PMID: 22438345 DOI: 10.1093/cid/cis017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthrax continues to generate concern as an agent of bioterrorism and as a natural cause of sporadic disease outbreaks. Despite the use of appropriate antimicrobial agents and advanced supportive care, the mortality associated with the systemic disease remains high. This is primarily due to the pathogenic exotoxins produced by Bacillus anthracis as well as other virulence factors of the organism. For this reason, new therapeutic strategies that target events in the pathogenesis of anthrax and may potentially augment antimicrobials are being investigated. These include anti-toxin approaches, such as passive immune-based therapies; non-antimicrobial drugs with activity against anthrax toxin components; and agents that inhibit binding, processing, or assembly of toxins. Adjunct therapies that target spore germination or downstream events in anthrax intoxication are also under investigation. In combination, these modalities may enhance the management of systemic anthrax.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket, and The Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
| | | |
Collapse
|
32
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
33
|
Towards selective inhibitors of adenylyl cyclase toxin from Bordetella pertussis. Trends Microbiol 2012; 20:343-51. [PMID: 22578665 DOI: 10.1016/j.tim.2012.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/19/2022]
Abstract
Whooping cough is a very important medical problem that requires novel approaches for treatment. The disease is caused by Bordetella pertussis, with the calmodulin (CaM)-activated adenylyl cyclase (AC) toxin (also known as CyaA) being a major virulence factor. Hence, CyaA inhibitors could constitute novel therapeutics, but it has been difficult to develop potent drugs with high selectivity over mammalian membranous ACs (mACs). Recent studies have shown that bis-anthraniloyl-substituted nucleoside 5'-triphosphates are potent and selective CyaA inhibitors. In addition, the interaction of CyaA with CaM is very different from the interaction of membranous mAC1 with CaM. Accordingly, compounds that interfere with the CyaA-CaM interaction may constitute a novel class of drugs against whooping cough.
Collapse
|
34
|
Beierlein JM, Anderson AC. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis. Curr Med Chem 2012; 18:5083-94. [PMID: 22050756 DOI: 10.2174/092986711797636036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 01/28/2023]
Abstract
Bacillus anthracis, the causative agent responsible for anthrax infections, poses a significant biodefense threat. There is a high mortality rate associated with untreated anthrax infections; specifically, inhalation anthrax is a particularly virulent form of infection with mortality rates close to 100%, even with aggressive treatment. Currently, a vaccine is not available to the general public and few antibiotics have been approved by the FDA for the treatment of inhalation anthrax. With the threat of natural or engineered bacterial resistance to antibiotics and the limited population for whom the current drugs are approved, there is a clear need for more effective treatments against this deadly infection. A comprehensive review of current research in drug discovery is presented in this article, including efforts to improve the purity and stability of vaccines, design inhibitors targeting the anthrax toxins, and identify inhibitors of novel enzyme targets. High resolution structural information for the anthrax toxins and several essential metabolic enzymes has played a significant role in aiding the structure-based design of potent and selective antibiotics.
Collapse
Affiliation(s)
- J M Beierlein
- Dept. Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Storrs, CT 06269, USA
| | | |
Collapse
|
35
|
Makiya M, Dolan M, Agulto L, Purcell R, Chen Z. Structural basis of anthrax edema factor neutralization by a neutralizing antibody. Biochem Biophys Res Commun 2012; 417:324-9. [PMID: 22155239 PMCID: PMC3293246 DOI: 10.1016/j.bbrc.2011.11.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/19/2011] [Indexed: 11/16/2022]
Abstract
Fine epitope mapping of EF13D, a highly potent neutralizing monoclonal antibody specific for the anthrax edema factor (EF), was accomplished through random mutagenesis and yeast surface display. A yeast-displayed library of single point mutants of an EF domain III (DIII), comprising amino acids 624-800, was constructed by random mutagenesis and screened for reduced binding to EF13D. With this method, residues Leu 667, Ser 668, Arg 671, and Arg 672 were identified as key residues important for EF13D binding. They form a contiguous patch on a solvent-exposed surface at one end of the four-helix bundle of DIII. Computational protein-protein docking experiments between anEF13D model and a crystal structure of EF indicate that the EF13D heavy chain complementarity-determining region 3 (HCDR3) is deeply buried within a hydrophobic cleft between two helices of DIII and interacts directly with residues Leu 667, Ser 668, Arg 671 and Arg 672, providing an explanation for the high binding affinity. In addition, they show that the HCDR3 binding site overlaps with the binding site of the N-terminal lobe of calmodulin (CaM), an EF enzymatic activator, consistent with a previous finding showing direct competition with CaM that results in neutralization of EF. Identifying the neutralization epitope of EF13D on EF improves our understanding of the neutralization mechanism and has implications for vaccine development.
Collapse
Affiliation(s)
- Michelle Makiya
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| | - Michael Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| | - Liane Agulto
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| | - Robert Purcell
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhaochun Chen
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
36
|
Seifert R, Lushington GH, Mou TC, Gille A, Sprang SR. Inhibitors of membranous adenylyl cyclases. Trends Pharmacol Sci 2011; 33:64-78. [PMID: 22100304 DOI: 10.1016/j.tips.2011.10.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 12/11/2022]
Abstract
Membranous adenylyl cyclases (mACs) constitute a family of nine isoforms with different expression patterns. Studies with mAC gene knockout mice provide evidence for the notion that AC isoforms play distinct (patho)physiological roles. Consequently, there is substantial interest in the development of isoform-selective mAC inhibitors. Here, we review the current literature on mAC inhibitors. Structurally diverse inhibitors targeting the catalytic site and allosteric sites (e.g. the diterpene site) have been identified. The catalytic site of mACs accommodates both purine and pyrimidine nucleotides, with a hydrophobic pocket constituting a major affinity-conferring domain for substituents at the 2'- and 3'-O-ribosyl position of nucleotides. BODIPY-forskolin stimulates ACs 1 and 5 but inhibits AC2. However, so far, no inhibitor has been examined at all mAC isoforms, and data obtained with mAC inhibitors in intact cells have not always been interpreted cautiously enough. Future strategies for the development of the mAC inhibitor field are discussed critically.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
37
|
Dumetz F, Jouvion G, Khun H, Glomski IJ, Corre JP, Rougeaux C, Tang WJ, Mock M, Huerre M, Goossens PL. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2523-35. [PMID: 21641378 DOI: 10.1016/j.ajpath.2011.02.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/25/2011] [Accepted: 02/01/2011] [Indexed: 12/27/2022]
Abstract
Powerful noninvasive imaging technologies enable real-time tracking of pathogen-host interactions in vivo, giving access to previously elusive events. We visualized the interactions between wild-type Bacillus anthracis and its host during a spore infection through bioluminescence imaging coupled with histology. We show that edema toxin plays a central role in virulence in guinea pigs and during inhalational infection in mice. Edema toxin (ET), but not lethal toxin (LT), markedly modified the patterns of bacterial dissemination leading, to apparent direct dissemination to the spleen and provoking apoptosis of lymphoid cells. Each toxin alone provoked particular histological lesions in the spleen. When ET and LT are produced together during infection, a specific temporal pattern of lesion developed, with early lesions typical of LT, followed at a later stage by lesions typical of ET. Our study provides new insights into the complex spatial and temporal effects of B. anthracis toxins in the infected host, suggesting a greater role than previously suspected for ET in anthrax and suggesting that therapeutic targeting of ET contributes to protection.
Collapse
Affiliation(s)
- Fabien Dumetz
- Pathogenesis of Bacterial Toxi-Infections Laboratory, Pasteur Institute (Institut Pasteur), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hicks CW, Cui X, Sweeney DA, Li Y, Barochia A, Eichacker PQ. The potential contributions of lethal and edema toxins to the pathogenesis of anthrax associated shock. Toxins (Basel) 2011; 3:1185-202. [PMID: 22069762 PMCID: PMC3202877 DOI: 10.3390/toxins3091185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 12/22/2022] Open
Abstract
Outbreaks of Bacillus anthracis in the US and Europe over the past 10 years have emphasized the health threat this lethal bacteria poses even for developed parts of the world. In contrast to cutaneous anthrax, inhalational disease in the US during the 2001 outbreaks and the newly identified injectional drug use form of disease in the UK and Germany have been associated with relatively high mortality rates. One notable aspect of these cases has been the difficulty in supporting patients once shock has developed. Anthrax bacilli produce several different components which likely contribute to this shock. Growing evidence indicates that both major anthrax toxins may produce substantial cardiovascular dysfunction. Lethal toxin (LT) can alter peripheral vascular function; it also has direct myocardial depressant effects. Edema toxin (ET) may have even more pronounced peripheral vascular effects than LT, including the ability to interfere with the actions of conventional vasopressors. Additionally, ET also appears capable of interfering with renal sodium and water retention. Importantly, the two toxins exert their actions via quite different mechanisms and therefore have the potential to worsen shock and outcome in an additive fashion. Finally, both toxins have the ability to inhibit host defense and microbial clearance, possibly contributing to the very high bacterial loads noted in patients dying with anthrax. This last point is clinically relevant since emerging data has begun to implicate other bacterial components such as anthrax cell wall in the shock and organ injury observed with infection. Taken together, accumulating evidence regarding the potential contribution of LT and ET to anthrax-associated shock supports efforts to develop adjunctive therapies that target both toxins in patients with progressive shock.
Collapse
Affiliation(s)
- Caitlin W. Hicks
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA;
- Howard Hughes Medical Institute-National Institutes of Health Research Scholar, National Institutes of Health, Bethesda, MD 20814, USA
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (X.C.); (Y.L.); (A.B.)
| | - Daniel A. Sweeney
- Medical Intensivist Program, Washington Hospital, Fremont, CA 94538, USA;
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (X.C.); (Y.L.); (A.B.)
| | - Amisha Barochia
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (X.C.); (Y.L.); (A.B.)
| | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (X.C.); (Y.L.); (A.B.)
- Author to whom correspondence should be addressed; ; Tel.: +1-301-496-9320; Fax: +1-301-402-1213
| |
Collapse
|
39
|
Jansa P, Kolman V, Kostinová A, Dračínský M, Mertlíková-Kaiserová H, Janeba Z. Efficient synthesis and biological properties of the 2′-trifluoromethyl analogues of acyclic nucleosides and acyclic nucleoside phosphonates. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Efficient and optimized procedure for the preparation of several acyclic nucleosides and acyclic nucleoside phosphonates substituted at the C-2′ position of the aliphatic part by the trifluoromethyl group is described. Trifluoromethyloxirane was found to be an excellent reagent for the introduction of the 1,1,1-trifluoropropan-2-ol moiety. Surprisingly, the next reaction of these 1,1,1-trifluoropropan-2-ols with the reagent for the introduction of the methylphosphonic residue afforded the desired phosphonates in very high yields and finally a novel simple and scalable procedure for the isolation of free phosphonic acids, after the reaction of dialkyl phosphonates with bromotrimethylsilane, was developed. Prepared compounds were evaluated for their biological properties, but none of the prepared phosphonic acids or acyclic nucleosides exhibits any antiviral, antiproliferative or anti-toxin activities.
Collapse
|
40
|
Erdorf M, Mou TC, Seifert R. Impact of divalent metal ions on regulation of adenylyl cyclase isoforms by forskolin analogs. Biochem Pharmacol 2011; 82:1673-81. [PMID: 21843517 DOI: 10.1016/j.bcp.2011.07.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 01/20/2023]
Abstract
Mammalian membranous adenylyl cyclases (mACs) play an important role in transmembrane signalling events in almost every cell and represent an interesting drug target. Forskolin (FS) is an invaluable research tool, activating AC isoforms 1-8. However, there is a paucity of AC isoform-selective FS analogs. Therefore, we examined the effects of FS and six FS derivatives on recombinant ACs 1, 2 and 5, representing members of different mAC families. Correlations of the pharmacological properties of the different AC isoforms revealed pronounced differences between ACs 1, 2 and 5. Additionally, potencies and efficacies of FS derivatives changed for any given AC isoform, depending on the metal ion, Mg(2+) or Mn(2+). The most striking effects of Mg(2+) and Mn(2+) on the diterpene profile were observed for AC2 where the large inhibitory effect of BODIPY-FS in the presence of Mg(2+) was considerably reduced in the presence of Mn(2+). Sequence alignment and docking experiments confirmed an exceptional position of AC2 compared to ACs 1 and 5 with respect to the structural environment of the catalytic core and cation-dependent diterpene effects. In conclusion, mAC isoforms 1, 2 and 5 exhibit a distinct pharmacological diterpene profile, depending on the divalent cation present. mAC crystal structures and modelling/docking studies provided an explanation for the pharmacological differences between the AC isoforms. Our study constitutes an important step towards the development of isoform-specific diterpenes exhibiting stimulatory or inhibitory effects.
Collapse
Affiliation(s)
- Miriam Erdorf
- Department of Pharmacology and Toxicology, University of Regensburg, Germany
| | | | | |
Collapse
|
41
|
Opsenica I, Burnett JC, Gussio R, Opsenica D, Todorović N, Lanteri CA, Sciotti RJ, Gettayacamin M, Basilico N, Taramelli D, Nuss JE, Wanner L, Panchal RG, Šolaja BA, Bavari S. A chemotype that inhibits three unrelated pathogenic targets: the botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus. J Med Chem 2011; 54:1157-69. [PMID: 21265542 PMCID: PMC3056319 DOI: 10.1021/jm100938u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A 1,7-bis(alkylamino)diazachrysene-based small molecule was previously identified as an inhibitor of the botulinum neurotoxin serotype A light chain metalloprotease. Subsequently, a variety of derivatives of this chemotype were synthesized to develop structure-activity relationships, and all are inhibitors of the BoNT/A LC. Three-dimensional analyses indicated that half of the originally discovered 1,7-DAAC structure superimposed well with 4-amino-7-chloroquinoline-based antimalarial agents. This observation led to the discovery that several of the 1,7-DAAC derivatives are potent in vitro inhibitors of Plasmodium falciparum and, in general, are more efficacious against CQ-resistant strains than against CQ-susceptible strains. In addition, by inhibiting β-hematin formation, the most efficacious 1,7-DAAC-based antimalarials employ a mechanism of action analogous to that of 4,7-ACQ-based antimalarials and are well tolerated by normal cells. One candidate was also effective when administered orally in a rodent-based malaria model. Finally, the 1,7-DAAC-based derivatives were examined for Ebola filovirus inhibition in an assay employing Vero76 cells, and three provided promising antiviral activities and acceptably low toxicities.
Collapse
Affiliation(s)
- Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - James C. Burnett
- Target Structure-Based Drug Discovery Group, SAIC-Frederick, Inc., National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - Rick Gussio
- Developmental Therapeutics Program, National Cancer Institute at Frederick, P.O. Box B, F.V.C. 310, Frederick, MD 21702, USA
| | - Dejan Opsenica
- Institute of Chemistry, Technology, and Metallurgy, Belgrade, Serbia
| | - Nina Todorović
- Institute of Chemistry, Technology, and Metallurgy, Belgrade, Serbia
| | - Charlotte A. Lanteri
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Richard J. Sciotti
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Montip Gettayacamin
- United States Army Medical Component, Armed Forces Research Institute of Medical Science, Department of Veterinary Medicine, Bangkok, Thailand
| | - Nicoletta Basilico
- Dipartimento di Sanità Pubblica- Microbiologia-Virologia, Università di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Donatella Taramelli
- Dipartimento di Sanità Pubblica- Microbiologia-Virologia, Università di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Jonathan E. Nuss
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702; USA
| | - Laura Wanner
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702; USA
| | - Rekha G. Panchal
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702; USA
| | - Bogdan A. Šolaja
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702; USA
| |
Collapse
|
42
|
Hicks CW, Li Y, Okugawa S, Solomon SB, Moayeri M, Leppla SH, Mohanty A, Subramanian GM, Mignone TS, Fitz Y, Cui X, Eichacker PQ. Anthrax edema toxin has cAMP-mediated stimulatory effects and high-dose lethal toxin has depressant effects in an isolated perfused rat heart model. Am J Physiol Heart Circ Physiol 2011; 300:H1108-18. [PMID: 21217068 PMCID: PMC3064307 DOI: 10.1152/ajpheart.01128.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/04/2011] [Indexed: 12/23/2022]
Abstract
While anthrax edema toxin produces pronounced tachycardia and lethal toxin depresses left ventricular (LV) ejection fraction in in vivo models, whether these changes reflect direct cardiac effects as opposed to indirect ones related to preload or afterload alterations is unclear. In the present study, the effects of edema toxin and lethal toxin were investigated in a constant pressure isolated perfused rat heart model. Compared with control hearts, edema toxin at doses comparable to or less than a dose that produced an 80% lethality rate (LD(80)) in vivo in rats (200, 100, and 50 ng/ml) produced rapid increases in heart rate (HR), coronary flow (CF), LV developed pressure (LVDP), dP/dt(max), and rate-pressure product (RPP) that were most pronounced and persisted with the lowest dose (P ≤ 0.003). Edema toxin (50 ng/ml) increased effluent and myocardial cAMP levels (P ≤ 0.002). Compared with dobutamine, edema toxin produced similar myocardial changes, but these occurred more slowly and persisted longer. Increases in HR, CF, and cAMP with edema toxin were inhibited by a monoclonal antibody blocking toxin uptake and by adefovir, which inhibits the toxin's intracellular adenyl cyclase activity (P ≤ 0.05). Lethal toxin at an LD(80) dose (50 ng/ml) had no significant effect on heart function but a much higher dose (500 ng/ml) reduced all parameters (P ≤ 0.05). In conclusion, edema toxin produced cAMP-mediated myocardial chronotropic, inotropic, and vasodilatory effects. Vasodilation systemically with edema toxin could contribute to shock during anthrax while masking potential inotropic effects. Although lethal toxin produced myocardial depression, this only occurred at high doses, and its relevance to in vivo findings is unclear.
Collapse
Affiliation(s)
- Caitlin W Hicks
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Díaz-Moscoso A, Méndez-Ardoy A, Ortega-Caballero F, Benito JM, Ortiz Mellet C, Defaye J, Robinson TM, Yohannes A, Karginov VA, García Fernández JM. Symmetry Complementarity-Guided Design of Anthrax Toxin Inhibitors Based on β-Cyclodextrin: Synthesis and Relative Activities of Face-Selective Functionalized Polycationic Clusters. ChemMedChem 2010; 6:181-92. [DOI: 10.1002/cmdc.201000419] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Ireton K. Anthrax toxins--roadblocks for exocytic trafficking. Dev Cell 2010; 19:643-4. [PMID: 21074712 DOI: 10.1016/j.devcel.2010.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anthrax toxins cause vascular dysfunction, in part by perturbing the endothelial cell barrier. Reporting in Nature, Guichard et al. shed new light on the mechanism by which this occurs and show that anthrax toxins interfere with exocytic delivery of cadherins to endothelial cell junctions by antagonizing the exocyst complex.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
45
|
Göttle M, Dove S, Kees F, Schlossmann J, Geduhn J, König B, Shen Y, Tang WJ, Kaever V, Seifert R. Cytidylyl and uridylyl cyclase activity of bacillus anthracis edema factor and Bordetella pertussis CyaA. Biochemistry 2010; 49:5494-503. [PMID: 20521845 DOI: 10.1021/bi100684g] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers for numerous mammalian cell functions. The natural occurrence and synthesis of a third cyclic nucleotide (cNMP), cyclic cytidine 3',5'-monophosphate (cCMP), is a matter of controversy, and almost nothing is known about cyclic uridine 3',5'-monophosphate (cUMP). Bacillus anthracis and Bordetella pertussis secrete the adenylyl cyclase (AC) toxins edema factor (EF) and CyaA, respectively, weakening immune responses and facilitating bacterial proliferation. A cell-permeable cCMP analogue inhibits human neutrophil superoxide production. Here, we report that EF and CyaA also possess cytidylyl cyclase (CC) and uridylyl cyclase (UC) activity. CC and UC activity was determined by a radiometric assay, using [alpha-(32)P]CTP and [alpha-(32)P]UTP as substrates, respectively, and by a high-performance liquid chromatography method. The identity of cNMPs was confirmed by mass spectrometry. On the basis of available crystal structures, we developed a model illustrating conversion of CTP to cCMP by bacterial toxins. In conclusion, we have shown both EF and CyaA have a rather broad substrate specificity and exhibit cytidylyl and uridylyl cyclase activity. Both cCMP and cUMP may contribute to toxin actions.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
47
|
Gnade BT, Moen ST, Chopra AK, Peterson JW, Yeager LA. Emergence of anthrax edema toxin as a master manipulator of macrophage and B cell functions. Toxins (Basel) 2010; 2:1881-97. [PMID: 22069663 PMCID: PMC3153274 DOI: 10.3390/toxins2071881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022] Open
Abstract
Anthrax edema toxin (ET), a powerful adenylyl cyclase, is an important virulence factor of Bacillus anthracis. Until recently, only a modest amount of research was performed to understand the role this toxin plays in the organism's immune evasion strategy. A new wave of studies have begun to elucidate the effects this toxin has on a variety of host cells. While efforts have been made to illuminate the effect ET has on cells of the adaptive immune system, such as T cells, the greatest focus has been on cells of the innate immune system, particularly the macrophage. Here we discuss the immunoevasive activities that ET exerts on macrophages, as well as new research on the effects of this toxin on B cells.
Collapse
Affiliation(s)
- Bryan T. Gnade
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| | - Scott T. Moen
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| | - Ashok K. Chopra
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
- Center for Biodefense and Emerging Infectious Diseases and Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.K.C.); (J.W.P.)
| | - Johnny W. Peterson
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
- Center for Biodefense and Emerging Infectious Diseases and Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.K.C.); (J.W.P.)
| | - Linsey A. Yeager
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| |
Collapse
|
48
|
Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor. Proc Natl Acad Sci U S A 2010; 107:11277-82. [PMID: 20534570 DOI: 10.1073/pnas.0914611107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Allostery plays a key role in the regulation of the activity and function of many biomolecules. And although many ligands act through allostery, no systematic use is made of it in drug design strategies. Here we describe a procedure for identifying the regions of a protein that can be used to control its activity through allostery. This procedure is based on the construction of a plausible conformational path, which describes protein transition between known active and inactive conformations. The path is calculated by using a framework approach that steers and markedly improves the conjugate peak refinement method. The evolution of conformations along this path was used to identify a putative allosteric site that could regulate activation of Bacillus anthracis adenylyl cyclase toxin (EF) by calmodulin. Conformations of the allosteric site at different steps along the path from the inactive (free) to the active (bound to calmodulin) forms of EF were used to perform virtual screenings and propose candidate EF inhibitors. Several candidates then proved to inhibit calmodulin-induced activation in an in vitro assay. The most potent compound fully inhibited EF at a concentration of 10 microM. The compounds also inhibited the related adenylyl cyclase toxin from Bordetella pertussis (CyaA). The specific homology between the putative allosteric sites in both toxins supports that these pockets are the actual binding sites of the selected inhibitors.
Collapse
|
49
|
Antiviral treatment of chronic hepatitis B virus (HBV) infections. Viruses 2010; 2:1279-1305. [PMID: 21994680 PMCID: PMC3185710 DOI: 10.3390/v2061279] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/18/2010] [Accepted: 05/25/2010] [Indexed: 12/21/2022] Open
Abstract
While 25 compounds have been formally licensed for the treatment of HIV infection (AIDS), only seven licensed products are currently available for the treatment of chronic hepatitis B virus (HBV) infection: interferon-α, pegylated interferon-α, lamivudine, adefovir (dipivoxil), entecavir, telbivudine and tenofovir (disoproxil fumarate). In contrast to the treatment of HIV infections where the individual drugs are routinely used in combination, for the treatment of chronic HBV infection the individual drugs are generally used in monotherapy. In principle, combination drug therapy should allow reducing the likelihood of drug-resistant development.
Collapse
|
50
|
Fasanella A, Galante D, Garofolo G, Jones MH. Anthrax undervalued zoonosis. Vet Microbiol 2009; 140:318-31. [PMID: 19747785 DOI: 10.1016/j.vetmic.2009.08.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 08/03/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022]
Abstract
Anthrax is a non-contagious disease, known since ancient times. However, it became a matter of global public interest after the bioterrorist attacks in the U.S.A. during the autumn of 2001. The concern of politicians and civil authorities everywhere towards this emergency necessitated a significant research effort and the prevention of new bioterrorist acts. Anthrax is primarily a disease that affects livestock and wildlife; its distribution is worldwide; and it can represent a danger to humans but especially more so when it occurs in areas considered to be free and in atypical seasons and climatic conditions. The atypicality of the phenomenon may lead health workers to misdiagnose and, consequently, an inappropriately manage of affected carcasses with a consequent and inevitable increase in the risk of human infection. This article emphasises the importance of paying increasing attention to this zoonosis. The biggest risk is its underestimation.
Collapse
Affiliation(s)
- Antonio Fasanella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy.
| | | | | | | |
Collapse
|