1
|
Bundgaard A, Borowiec BG, Lau GY. Are reactive oxygen species always bad? Lessons from hypoxic ectotherms. J Exp Biol 2024; 227:jeb246549. [PMID: 38533673 DOI: 10.1242/jeb.246549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Oxygen (O2) is required for aerobic energy metabolism but can produce reactive oxygen species (ROS), which are a wide variety of oxidant molecules with a range of biological functions from causing cell damage (oxidative distress) to cell signalling (oxidative eustress). The balance between the rate and amount of ROS generated and the capacity for scavenging systems to remove them is affected by several biological and environmental factors, including oxygen availability. Ectotherms, and in particular hypoxia-tolerant ectotherms, are hypothesized to avoid oxidative damage caused by hypoxia, although it is unclear whether this translates to an increase in ecological fitness. In this Review, we highlight the differences between oxidative distress and eustress, the current mechanistic understanding of the two and how they may affect ectothermic physiology. We discuss the evidence of occurrence of oxidative damage with hypoxia in ectotherms, and that ectotherms may avoid oxidative damage through (1) high levels of antioxidant and scavenging systems and/or (2) low(ering) levels of ROS generation. We argue that the disagreements in the literature as to how hypoxia affects antioxidant enzyme activity and the variable metabolism of ectotherms makes the latter strategy more amenable to ectotherm physiology. Finally, we argue that observed changes in ROS production and oxidative status with hypoxia may be a signalling mechanism and an adaptive strategy for ectotherms encountering hypoxia.
Collapse
Affiliation(s)
- Amanda Bundgaard
- University of Cologne, CECAD, Joseph-Stelzmann-Straße 26, DE-50931 Köln, Germany
- Aarhus University, Department of Biology, CF Moellers Alle 3, DK-8000 Aarhus C, Denmark
| | - Brittney G Borowiec
- Wilfrid Laurier University, Department of Biology, 75 University Ave. W., Waterloo, ON, Canada, N2L 3C5
| | - Gigi Y Lau
- University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
2
|
Li J, LoBue A, Heuser SK, Cortese-Krott MM. Determination of Nitric Oxide and Its Metabolites in Biological Tissues Using Ozone-Based Chemiluminescence Detection: A State-of-the-Art Review. Antioxidants (Basel) 2024; 13:179. [PMID: 38397777 PMCID: PMC10886078 DOI: 10.3390/antiox13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Ozone-based chemiluminescence detection (CLD) has been widely applied for determining nitric oxide (•NO) and its derived species in many different fields, such as environmental monitoring and biomedical research. In humans and animals, CLD has been applied to determine exhaled •NO and •NO metabolites in plasma and tissues. The main advantages of CLD are high sensitivity and selectivity for quantitative analysis in a wide dynamic range. Combining CLD with analytical separation techniques like chromatography allows for the analytes to be quantified with less disturbance from matrix components or impurities. Sampling techniques like microdialysis and flow injection analysis may be coupled to CLD with the possibility of real-time monitoring of •NO. However, details and precautions in experimental practice need to be addressed and clarified to avoid wrong estimations. Therefore, using CLD as a detection tool requires a deep understanding of the sample preparation procedure and chemical reactions used for liberating •NO from its derived species. In this review, we discuss the advantages and pitfalls of CLD for determining •NO species, list the different applications and combinations with other analytical techniques, and provide general practical notes for sample preparation. These guidelines are designed to assist researchers in comprehending CLD data and in selecting the most appropriate method for measuring •NO species.
Collapse
Affiliation(s)
- Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
3
|
Rai R, Ahmad Z, Jain SK, Jat D, Mishra SK. Naringenin suppresses aluminum-induced experimental hepato-nephrotoxicity in mice through modulation of oxidative stress and inflammation. Toxicol Res 2024; 40:97-110. [PMID: 38223678 PMCID: PMC10786781 DOI: 10.1007/s43188-023-00209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 01/16/2024] Open
Abstract
Aluminum is a widely used metal substance in daily life activities that has been shown to cause severe hepato-nephrotoxicity with long-term exposure. Natural dietary flavonoids are being utilized as a newer pharmaceutical approach against various acute and chronic diseases. Naringenin (NAR) has shown efficient therapeutic properties, including effects against metal toxicities. However, the protective efficacy of NAR on aluminum chloride (AlCl3)-induced hepato-renal toxicity needs investigation as aluminum has shown serious environmental toxicity and bioaccumulation behavior. In this study, mice were treated with AlCl3 (10 mg/kg b.w./day) to assess toxicities, and a group of mice were co-treated with NAR (10 mg/kg b.w./day) to assess the protective effects of NAR against hepato-nephrotoxicity. The levels of blood serum enzymes, oxidative stress biomarkers, inflammatory cytokines, and the apoptosis marker caspase-3 were measured using histological examinations. NAR treatment in AlCl3-treated mice resulted in maintained levels of liver and kidney function enzymes and lipid profiles. NAR treatment attenuated oxidative stress by regulating the levels of nitric oxide, advance oxidation of protein products, protein carbonylation, and lipid peroxidation. NAR also replenished reduced antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and reduced the levels of glutathione and oxidized glutathione. NAR regulated the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and elevated the levels of anti-inflammatory cytokines (IL-4, IL-10, and IFN-γ). The histological study further confirmed the protective effects of NAR against AlCl3-induced hepato-renal alterations. NAR decreased the expression of caspase-3 as a mechanism of protective effects against apoptotic damage in the liver and kidney of AlCl3-treated mice. In summary, this study demonstrated the antioxidant and anti-inflammatory properties of NAR, leading to the suppression of AlCl3-triggered hepato-renal apoptosis and histological alterations. The results suggest that aluminum toxicity needs to be monitored in daily life usage, and supplementation of the natural dietary flavonoid naringenin may help maintain liver and kidney health.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003 M.P India
| | - Zaved Ahmad
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003 M.P India
| | - Subodh Kumar Jain
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003 M.P India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003 M.P India
| | | |
Collapse
|
4
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol-catalyzed formation of NO-ferroheme regulates intravascular NO signaling. Nat Chem Biol 2023; 19:1256-1266. [PMID: 37710075 PMCID: PMC10897909 DOI: 10.1038/s41589-023-01413-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Nitric oxide (NO) is an endogenously produced signaling molecule that regulates blood flow and platelet activation. However, intracellular and intravascular diffusion of NO are limited by scavenging reactions with several hemoproteins, raising questions as to how free NO can signal in hemoprotein-rich environments. We explore the hypothesis that NO can be stabilized as a labile ferrous heme-nitrosyl complex (Fe2+-NO, NO-ferroheme). We observe a reaction between NO, labile ferric heme (Fe3+) and reduced thiols to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation occurs when heme is solubilized in lipophilic environments such as red blood cell membranes or bound to serum albumin. The resulting NO-ferroheme resists oxidative inactivation, is soluble in cell membranes and is transported intravascularly by albumin to promote potent vasodilation. We therefore provide an alternative route for NO delivery from erythrocytes and blood via transfer of NO-ferroheme and activation of apo-soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzi Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brendan S Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Jason J Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA.
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Cortese-Krott MM. The Reactive Species Interactome in Red Blood Cells: Oxidants, Antioxidants, and Molecular Targets. Antioxidants (Basel) 2023; 12:1736. [PMID: 37760039 PMCID: PMC10525652 DOI: 10.3390/antiox12091736] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Beyond their established role as oxygen carriers, red blood cells have recently been found to contribute to systemic NO and sulfide metabolism and act as potent circulating antioxidant cells. Emerging evidence indicates that reactive species derived from the metabolism of O2, NO, and H2S can interact with each other, potentially influencing common biological targets. These interactions have been encompassed in the concept of the reactive species interactome. This review explores the potential application of the concept of reactive species interactome to understand the redox physiology of RBCs. It specifically examines how reactive species are generated and detoxified, their interactions with each other, and their targets. Hemoglobin is a key player in the reactive species interactome within RBCs, given its abundance and fundamental role in O2/CO2 exchange, NO transport/metabolism, and sulfur species binding/production. Future research should focus on understanding how modulation of the reactive species interactome may regulate RBC biology, physiology, and their systemic effects.
Collapse
Affiliation(s)
- Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology and Angiology, Medical Faculty, Heinrich-Heine-University, Universitätstrasse 1, 40225 Düsseldorf, Germany;
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- CARID, Cardiovascular Research Institute, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Chiang CW, Jhang KW, Chen JL, Hsu LC, Huang WH, Chen HC, Lin TJ, Sun CY, Li YN. Promotion of S-nitrosation of cysteine by a {Co(NO) 2} 10 complex. Chem Commun (Camb) 2023; 59:9774-9777. [PMID: 37486167 DOI: 10.1039/d3cc02784h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
S-Nitrosothiols (SNOs) serve as endogenous carriers and donors of NO within living cells, releasing nitrosonium ions (NO+), NO, or other nitroso derivatives. In this study, we present a bioinspired {Co(NO)2}10 complex 1 that achieved S-nitrosation towards Cys residues. The incorporation of a ferrocenyl group in 1 allowed for fine-tuning of the nitrosation reaction, taking advantage of the redox ability of Cys residues. Complex 1 was synthesized and characterized, demonstrating its NO translation reactivity. Furthermore, complex 1 successfully converted Cys into S-nitrosocysteine (Cys-SNO), as confirmed by UV-Vis, IR, and XAS spectroscopy. This study presents a promising approach for S-nitrosation of Cys residues for further exploration in the modification of Cys-containing peptides.
Collapse
Affiliation(s)
- Chien-Wei Chiang
- Department of Chemistry, Soochow University, No. 70, Linhsi Road, Shihlin District, Taipei 111002, Taiwan.
| | - Kai-Wun Jhang
- Department of Chemistry, Soochow University, No. 70, Linhsi Road, Shihlin District, Taipei 111002, Taiwan.
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan
| | - Hung-Chi Chen
- Department of Chemistry, Soochow University, No. 70, Linhsi Road, Shihlin District, Taipei 111002, Taiwan.
| | - Ting-Jun Lin
- Department of Chemistry, Soochow University, No. 70, Linhsi Road, Shihlin District, Taipei 111002, Taiwan.
| | - Ci-Yang Sun
- Department of Chemistry, Soochow University, No. 70, Linhsi Road, Shihlin District, Taipei 111002, Taiwan.
| | - Yu-Ning Li
- Department of Chemistry, Soochow University, No. 70, Linhsi Road, Shihlin District, Taipei 111002, Taiwan.
| |
Collapse
|
7
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Bryan NS. Nitric oxide deficiency is a primary driver of hypertension. Biochem Pharmacol 2022; 206:115325. [DOI: 10.1016/j.bcp.2022.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022]
|
9
|
Quantitative aspects of nitric oxide production in the heart. Mol Biol Rep 2022; 49:11113-11122. [DOI: 10.1007/s11033-022-07889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
|
10
|
Nogueira RC, Minnion M, Clark AD, Dyson A, Tanus-Santos JE, Feelisch M. On the origin of nitrosylated hemoglobin in COVID-19: Endothelial NO capture or redox conversion of nitrite?: Experimental results and a cautionary note on challenges in translational research. Redox Biol 2022; 54:102362. [PMID: 35709537 PMCID: PMC9181201 DOI: 10.1016/j.redox.2022.102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/02/2023] Open
Abstract
In blood, the majority of endothelial nitric oxide (NO) is scavenged by oxyhemoglobin, forming nitrate while a small part reacts with dissolved oxygen to nitrite; another fraction may bind to deoxyhemoglobin to generate nitrosylhemoglobin (HbNO) and/or react with a free cysteine to form a nitrosothiol. Circulating nitrite concentrations in healthy individuals are 200-700 nM, and can be even lower in patients with endothelial dysfunction. Those levels are similar to HbNO concentrations ([HbNO]) recently reported, whereby EPR-derived erythrocytic [HbNO] was lower in COVID-19 patients compared to uninfected subjects with similar cardiovascular risk load. We caution the values reported may not reflect true (patho)physiological concentrations but rather originate from complex chemical interactions of endogenous nitrite with hemoglobin and ascorbate/N-acetylcysteine. Using an orthogonal detection method, we find baseline [HbNO] to be in the single-digit nanomolar range; moreover, we find that these antioxidants, added to blood collection tubes to prevent degradation, artificially generate HbNO. Since circulating nitrite also varies with lifestyle, dietary habit and oral bacterial flora, [HbNO] may not reflect endothelial activity alone. Thus, its use as early marker of NO-dependent endothelial dysfunction to stratify COVID-19 patient risk may be premature. Moreover, oxidative stress not only impairs NO formation/bioavailability, but also shifts the chemical landscape into which NO is released, affecting its downstream metabolism. This compromises the endothelium's role as gatekeeper of tissue nutrient supply and modulator of blood cell function, challenging the body's ability to maintain redox balance. Further studies are warranted to clarify whether the nature of vascular dysfunction in COVID-19 is solely of endothelial nature or also includes altered erythrocyte function.
Collapse
Affiliation(s)
- Renato C Nogueira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Anna D Clark
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, UK
| | - Alex Dyson
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - José E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, UK.
| |
Collapse
|
11
|
Chakraborty S, Mukherjee P, Sengupta R. Ribonucleotide reductase: Implications of thiol S-nitrosylation and tyrosine nitration for different subunits. Nitric Oxide 2022; 127:26-43. [PMID: 35850377 DOI: 10.1016/j.niox.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Ribonucleotide reductase (RNR) is a multi-subunit enzyme responsible for catalyzing the rate-limiting step in the production of deoxyribonucleotides essential for DNA synthesis and repair. The active RNR complex is composed of multimeric R1 and R2 subunits. The RNR catalysis involves the formation of tyrosyl radicals in R2 subunits and thiyl radicals in R1 subunits. Despite the quaternary structure and cofactor diversity, all the three classes of RNR have a conserved cysteine residue at the active site which is converted into a thiyl radical that initiates the substrate turnover, suggesting that the catalytic mechanism is somewhat similar for all three classes of the RNR enzyme. Increased RNR activity has been associated with malignant transformation, cancer cell growth, and tumorigenesis. Efforts concerning the understanding of RNR inhibition in designing potent RNR inhibitors/drugs as well as developing novel approaches for antibacterial, antiviral treatments, and cancer therapeutics with improved radiosensitization have been made in clinical research. This review highlights the precise and potent roles of NO in RNR inhibition by targeting both the subunits. Under nitrosative stress, the thiols of the R1 subunits have been found to be modified by S-nitrosylation and the tyrosyl radicals of the R2 subunits have been modified by nitration. In view of the recent advances and progresses in the field of nitrosative modifications and its fundamental role in signaling with implications in health and diseases, the present article focuses on the regulations of RNR activity by S-nitrosylation of thiols (R1 subunits) and nitration of tyrosyl residues (R2 subunits) which will further help in designing new drugs and therapies.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Prerona Mukherjee
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
12
|
Heuser SK, LoBue A, Li J, Zhuge Z, Leo F, Suvorava T, Olsson A, Schneckmann R, Guimaraes Braga DD, Srivrastava T, Montero L, Schmitz OJ, Schmitt JP, Grandoch M, Weitzberg E, Lundberg JO, Pernow J, Kelm M, Carlström M, Cortese-Krott MM. Downregulation of eNOS and preserved endothelial function in endothelial-specific arginase 1-deficient mice. Nitric Oxide 2022; 125-126:69-77. [PMID: 35752264 DOI: 10.1016/j.niox.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022]
Abstract
Arginase 1 (Arg1) is a ubiquitous enzyme belonging to the urea cycle that catalyzes the conversion of l-arginine into l-ornithine and urea. In endothelial cells (ECs), Arg1 was proposed to limit the availability of l-arginine for the endothelial nitric oxide synthase (eNOS) and thereby reduce nitric oxide (NO) production, thus promoting endothelial dysfunction and vascular disease. The role of EC Arg1 under homeostatic conditions is in vivo less understood. The aim of this study was to investigate the role of EC Arg1 on the regulation of eNOS, vascular tone, and endothelial function under normal homeostatic conditions in vivo and ex vivo. By using a tamoxifen-inducible EC-specific gene-targeting approach, we generated EC Arg1 KO mice. Efficiency and specificity of the gene targeting strategy was demonstrated by DNA recombination and loss of Arg1 expression measured after tamoxifen treatment in EC only. In EC Arg1 KO mice we found a significant decrease in Arg1 expression in heart and lung ECs and in the aorta, however, vascular enzymatic activity was preserved likely due to the presence of high levels of Arg1 in smooth muscle cells. Moreover, we found a downregulation of eNOS expression in the aorta, and a fully preserved systemic l-arginine and NO bioavailability, as demonstrated by the levels of l-arginine, l-ornithine, and l-citrulline as well as nitrite, nitrate, and nitroso-species. Lung and liver tissues from EC Arg1 KO mice showed respectively increase or decrease in nitrosyl-heme species, indicating that the lack of endothelial Arg1 affects NO bioavailability in these organs. In addition, EC Arg1 KO mice showed fully preserved acetylcholine-mediated vascular relaxation in both conductance and resistant vessels but increased phenylephrine-induced vasoconstriction. Systolic, diastolic, and mean arterial pressure and cardiac performance in EC Arg1 KO mice were not different from the wild-type littermate controls. In conclusion, under normal homeostatic conditions, lack of EC Arg1 expression is associated with a down-regulation of eNOS expression but a preserved NO bioavailability and vascular endothelial function. These results suggest that a cross-talk exists between Arg1 and eNOS to control NO production in ECs, which depends on both L-Arg availability and EC Arg1-dependent eNOS expression.
Collapse
Affiliation(s)
- Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Leo
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Annika Olsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rebekka Schneckmann
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | | | - Tanu Srivrastava
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Lidia Montero
- Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Germany
| | - Joachim P Schmitt
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Maria Grandoch
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Cardiology, Karolinska Institute, Stockholm, Sweden
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology Pneumology and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Liu T, Schroeder H, Power GG, Blood AB. A physiologically relevant role for NO stored in vascular smooth muscle cells: A novel theory of vascular NO signaling. Redox Biol 2022; 53:102327. [PMID: 35605454 PMCID: PMC9126848 DOI: 10.1016/j.redox.2022.102327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/16/2023] Open
Abstract
S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as ‘nitrodilators’, defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.
Collapse
|
14
|
A new look at the role of nitric oxide in preeclampsia: protein S-nitrosylation. Pregnancy Hypertens 2022; 29:14-20. [DOI: 10.1016/j.preghy.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
|
15
|
Nitrite Concentration in the Striated Muscles Is Reversely Related to Myoglobin and Mitochondrial Proteins Content in Rats. Int J Mol Sci 2022; 23:ijms23052686. [PMID: 35269826 PMCID: PMC8910716 DOI: 10.3390/ijms23052686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles are an important reservoir of nitric oxide (NO•) stored in the form of nitrite [NO2−] and nitrate [NO3−] (NOx). Nitrite, which can be reduced to NO• under hypoxic and acidotic conditions, is considered a physiologically relevant, direct source of bioactive NO•. The aim of the present study was to determine the basal levels of NOx in striated muscles (including rat heart and locomotory muscles) with varied contents of tissue nitrite reductases, such as myoglobin and mitochondrial electron transport chain proteins (ETC-proteins). Muscle NOx was determined using a high-performance liquid chromatography-based method. Muscle proteins were evaluated using western-immunoblotting. We found that oxidative muscles with a higher content of ETC-proteins and myoglobin (such as the heart and slow-twitch locomotory muscles) have lower [NO2−] compared to fast-twitch muscles with a lower content of those proteins. The muscle type had no observed effect on the [NO3−]. Our results demonstrated that fast-twitch muscles possess greater potential to generate NO• via nitrite reduction than slow-twitch muscles and the heart. This property might be of special importance for fast skeletal muscles during strenuous exercise and/or hypoxia since it might support muscle blood flow via additional NO• provision (acidic/hypoxic vasodilation) and delay muscle fatigue.
Collapse
|
16
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Antioxidant tempol modulates the increases in tissue nitric oxide metabolites concentrations after oral nitrite administration. Chem Biol Interact 2021; 349:109658. [PMID: 34543659 DOI: 10.1016/j.cbi.2021.109658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) metabolites have physiological and pharmacological importance and increasing their tissue concentrations may result in beneficial effects. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) has antioxidant properties that may improve NO bioavailability. Moreover, tempol increases oral nitrite-derived gastric formation of S-nitrosothiols (RSNO). We hypothesized that pretreatment with tempol may further increase tissue concentrations of NO-related species after oral nitrite administration and therefore we carried out a time-dependent analysis of how tempol affects the concentrations of NO metabolites in different tissues after oral nitrite administration to rats. NO metabolites (nitrate, nitrite and RSNO) were assessed by ozone-based reductive chemiluminescence assays in plasma, stomach, aorta, heart and liver samples obtained from anesthetized rats at baseline conditions and 15 min, 30 min, 2 h or 24 h after oral nitrite (15 mg/kg) was administered to rats pretreated with tempol (18 mg/kg) or vehicle 15 min prior to nitrite administration. Aortic protein nitrosation was assessed by resin-assited capture (SNO-RAC) method. We found that pretreatment with tempol transiently enhanced nitrite-induced increases in nitrite, RSNO and nitrate concentrations in the stomach and in the plasma (all P < 0.05), particularly for 15-30 min, without affecting aortic protein nitrosation. Pretreatment with tempol enhanced nitrite-induced increases in nitrite (but not RSNO or nitrate) concentrations in the heart (P < 0.05). In contrast, tempol attenuated nitrite-induced increases in nitrite, RSNO or nitrate concentrations in the liver. These findings show that pretreatment with tempol affects oral nitrite-induced changes in tissue concentrations of NO metabolites depending on tissue type and does not increase nitrite-induced vascular nitrosation. These results may indicate that oral nitrite therapy aiming at achieving increased nitrosation of cardiovascular targets requires appropriate doses of nitrite and is not optimized by tempol.
Collapse
|
18
|
Batista RIM, Nogueira RC, Ferreira GC, Oliveira-Paula GH, Damacena-Angelis C, Pinheiro LC, Tanus-Santos JE. Antiseptic mouthwash inhibits antihypertensive and vascular protective effects of L-arginine. Eur J Pharmacol 2021; 907:174314. [PMID: 34245745 DOI: 10.1016/j.ejphar.2021.174314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
L-arginine supplementation increases nitric oxide (NO) formation and bioavailability in hypertension. We tested the possibility that many effects of L-arginine are mediated by increased formation of NO and enhanced nitrite, nitrate and nitrosylated species concentrations, thus stimulating the enterosalivary cycle of nitrate. Those effects could be prevented by antiseptic mouthwash. We examined how the derangement of the enterosalivary cycle of nitrate affects the improvement of endothelial dysfunction (assessed with isolated aortic ring preparation), the antihypertensive (assessed by tail-cuff blood pressure measurement) and the antioxidant effects (assessed with the fluorescent dye DHE) of L-arginine in two-kidney, one-clip hypertension model in rats by using chlorhexidine to decrease the number of oral bacteria and to decrease nitrate reductase activity assessed from the tongue (by ozone-based chemiluminiscence assay). Nitrite, nitrate and nitrosylated species concentrations were assessed (ozone-based chemiluminiscence). Chlorhexidine mouthwash reduced the number of oral bacteria and tended to decrease the nitrate reductase activity from the tongue. Antiseptic mouthwash blunted the improvement of the endothelial dysfunction and the antihypertensive effects of L-arginine, impaired L-arginine-induced increases in plasma nitrite and nitrosylated species concentrations, and blunted L-arginine-induced increases in aortic nitrate concentrations and vascular antioxidant effects. Our results show for the first time that the vascular and antihypertensive effects of L-arginine are prevented by antiseptic mouthwash. These findings show an important new mechanism that should be taken into consideration to explain how the use of antibacterial mouth rinse may affect arterial blood pressure and the risk of developing cardiovascular and other diseases.
Collapse
Affiliation(s)
- Rose I M Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Renato C Nogueira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo H Oliveira-Paula
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Célio Damacena-Angelis
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
19
|
Leo F, Suvorava T, Heuser SK, Li J, LoBue A, Barbarino F, Piragine E, Schneckmann R, Hutzler B, Good ME, Fernandez BO, Vornholz L, Rogers S, Doctor A, Grandoch M, Stegbauer J, Weitzberg E, Feelisch M, Lundberg JO, Isakson BE, Kelm M, Cortese-Krott MM. Red Blood Cell and Endothelial eNOS Independently Regulate Circulating Nitric Oxide Metabolites and Blood Pressure. Circulation 2021; 144:870-889. [PMID: 34229449 PMCID: PMC8529898 DOI: 10.1161/circulationaha.120.049606] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) through endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of RBC eNOS compared with EC eNOS for vascular hemodynamics and nitric oxide metabolism. METHODS We generated tissue-specific loss- and gain-of-function models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created 2 founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knockout (KO), and gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock-in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or in ECs (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and nitric oxide metabolism were compared ex vivo and in vivo. RESULTS The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation, and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or flow-mediated dilation but were hypertensive. Treatment with the nitric oxide synthase inhibitor Nγ-nitro-l-arginine methyl ester further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. Although both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs than in EC eNOS KOs. Reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOSinv/inv mice, whereas the levels of bound NO were restored only in RBC eNOS KI mice. CONCLUSIONS These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.
Collapse
Affiliation(s)
- Francesca Leo
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Barbarino
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacy, University of Pisa, Italy (F.P.)
| | - Eugenia Piragine
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rebekka Schneckmann
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beate Hutzler
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miranda E. Good
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.G.)
| | - Bernadette O. Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (B.O.F.)
| | - Lukas Vornholz
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephen Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
| | - Maria Grandoch
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology (J.S.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Martin Feelisch
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Nephrology (J.S.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf (M.K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacy, University of Pisa, Italy (F.P.)
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.G.)
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (B.O.F.)
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
| | - Malte Kelm
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf (M.K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| |
Collapse
|
20
|
Lee DY, Lee SY, Jo C, Yoon Y, Jeong JY, Hur SJ. Effect on health from consumption of meat and meat products. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:955-976. [PMID: 34796340 PMCID: PMC8564306 DOI: 10.5187/jast.2021.e101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate the effects of dietary sodium nitrite and meat on human health. Sodium nitrite in processed meat is known to be one of the main precursors of carcinogens, such as N-nitroso compounds. However, we previously found that processed meat is not the primary source of sodium nitrite; nitrate or the conversion of nitrate in vegetables are contribute to generate more than 70% Sodium nitrite or nitrate containing compounds in body. Although the heavy consumption of meat is likely to cause various diseases, meat intake is not the only cause of colorectal cancer. Our review indicates that sodium nitrite derived from foods and endogenous nitric oxide may exhibit positive effects on human health, such as preventing cardiovascular disease or improving reproductive function. Therefore, further epidemiological studies considering various factors, such as cigarette consumption, alcohol consumption, stress index, salt intake, and genetic factors, are required to reliably elucidate the effects of dietary sodium nitrite and meat on the incidence of diseases, such as colorectal cancer.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology,
Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Yohan Yoon
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310, Korea
| | - Jong Youn Jeong
- School of Food Biotechnology and
Nutrition, Kyungsung University, Busan 48434, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
21
|
Mahdi A, Cortese-Krott MM, Kelm M, Li N, Pernow J. Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radic Biol Med 2021; 168:95-109. [PMID: 33789125 DOI: 10.1016/j.freeradbiomed.2021.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
The fundamental physiology of circulating red blood cells (RBCs) and platelets involving regulation of oxygen transport and hemostasis, respectively, are well-described in the literature. Their abundance in the circulation and their interaction with the vascular wall and each other have attracted the attention of other putative physiological and pathophysiological effects of these cells. RBCs and platelets are both important regulators of redox balance harboring powerful pro-oxidant and anti-oxidant (enzymatic and non-enzymatic) capacities. They are also involved in the regulation of vascular tone mainly via export of nitric oxide bioactivity and adenosine triphosphate. Of further importance are emerging observations that these cells undergo functional alterations when exposed to risk factors for cardiovascular disease and during developed cardiometabolic diseases. Under these conditions, the RBCs and platelets contribute to increased oxidative stress by their formation of reactive species including superoxide anion radical, hydrogen peroxide and peroxynitrite. These alterations trigger key changes in the vascular wall characterized by enhanced oxidative stress, reduced nitric oxide bioavailability and endothelial dysfunction. Additional pathophysiological effects are triggered in the heart resulting in increased susceptibility to ischemia-reperfusion injury with impairment in cardiac function. Pharmacological interventions aiming at restoring circulating cell function has been shown to exert marked beneficial effects on cardiovascular function. In this review, we summarize the current knowledge of RBC and platelet biology with special focus on redox biology, their roles in the development of cardiovascular disease and potential therapeutic strategies targeting RBC and platelet dysfunction. Finally, the complex and scarcely understood interaction between RBCs and platelets is discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam M Cortese-Krott
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Nailin Li
- Department of Medicine, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
22
|
Sadeghi MA, Hemmati S, Mohammadi S, Yousefi-Manesh H, Vafaei A, Zare M, Dehpour AR. Chronically altered NMDAR signaling in epilepsy mediates comorbid depression. Acta Neuropathol Commun 2021; 9:53. [PMID: 33762011 PMCID: PMC7992813 DOI: 10.1186/s40478-021-01153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Depression is the most common psychiatric comorbidity of epilepsy. However, the molecular pathways underlying this association remain unclear. The NMDA receptor (NMDAR) may play a role in this association, as its downstream signaling has been shown to undergo long-term changes following excitotoxic neuronal damage. To study this pathway, we used an animal model of fluoxetine-resistant epilepsy-associated depression (EAD). We determined the molecular changes associated with the development of depressive symptoms and examined their response to various combinations of fluoxetine and a selective neuronal nitric oxide synthase inhibitor, 7-nitroindazole (NI). Depressive symptoms were determined using the forced swim test. Furthermore, expression and phosphorylation levels of markers in the ERK/CREB/ELK1/BDNF/cFOS pathway were measured to determine the molecular changes associated with these symptoms. Finally, oxidative stress markers were measured to more clearly determine the individual contributions of each treatment. While chronic fluoxetine (Flxc) and NI were ineffective alone, their combination had a statistically significant synergistic effect in reducing depressive symptoms. The development of depressive symptoms in epileptic rats was associated with the downregulation of ERK2 expression and ELK1 and CREB phosphorylation. These changes were exactly reversed upon Flxc + NI treatment, which led to increased BDNF and cFOS expression as well. Interestingly, ERK1 did not seem to play a role in these experiments. NI seemed to have augmented Flxc’s antidepressant activity by reducing oxidative stress. Our findings suggest NMDAR signaling alterations are a major contributor to EAD development and a potential target for treating conditions associated with underlying excitotoxic neuronal damage.
Collapse
|
23
|
Griffiths K, Lee JJ, Frenneaux MP, Feelisch M, Madhani M. Nitrite and myocardial ischaemia reperfusion injury. Where are we now? Pharmacol Ther 2021; 223:107819. [PMID: 33600852 DOI: 10.1016/j.pharmthera.2021.107819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite major advances in technology and treatment, with coronary heart disease (CHD) being a key contributor. Following an acute myocardial infarction (AMI), it is imperative that blood flow is rapidly restored to the ischaemic myocardium. However, this restoration is associated with an increased risk of additional complications and further cardiomyocyte death, termed myocardial ischaemia reperfusion injury (IRI). Endogenously produced nitric oxide (NO) plays an important role in protecting the myocardium from IRI. It is well established that NO mediates many of its downstream functions through the 'canonical' NO-sGC-cGMP pathway, which is vital for cardiovascular homeostasis; however, this pathway can become impaired in the face of inadequate delivery of necessary substrates, in particular L-arginine, oxygen and reducing equivalents. Recently, it has been shown that during conditions of ischaemia an alternative pathway for NO generation exists, which has become known as the 'nitrate-nitrite-NO pathway'. This pathway has been reported to improve endothelial dysfunction, protect against myocardial IRI and attenuate infarct size in various experimental models. Furthermore, emerging evidence suggests that nitrite itself provides multi-faceted protection, in an NO-independent fashion, against a myriad of pathophysiologies attributed to IRI. In this review, we explore the existing pre-clinical and clinical evidence for the role of nitrate and nitrite in cardioprotection and discuss the lessons learnt from the clinical trials for nitrite as a perconditioning agent. We also discuss the potential future for nitrite as a pre-conditioning intervention in man.
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jordan J Lee
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael P Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
24
|
Pieretti JC, Junho CVC, Carneiro-Ramos MS, Seabra AB. H 2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res 2020; 161:105121. [PMID: 32798649 PMCID: PMC7426260 DOI: 10.1016/j.phrs.2020.105121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a syndrome affecting most patients hospitalized due to kidney disease; it accounts for 15 % of patients hospitalized in intensive care units worldwide. AKI is mainly caused by ischemia and reperfusion (IR) injury, which temporarily obstructs the blood flow, increases inflammation processes and induces oxidative stress. AKI treatments available nowadays present notable disadvantages, mostly for patients with other comorbidities. Thus, it is important to investigate different approaches to help minimizing side effects such as the ones observed in patients subjected to the aforementioned treatments. Therefore, the aim of the current review is to highlight the potential of two endogenous gasotransmitters - hydrogen sulfide (H2S) and nitric oxide (NO) - and their crosstalk in AKI treatment. Both H2S and NO are endogenous signalling molecules involved in several physiological and pathophysiological processes, such as the ones taking place in the renal system. Overall, these molecules act by decreasing inflammation, controlling reactive oxygen species (ROS) concentrations, activating/inactivating pro-inflammatory cytokines, as well as promoting vasodilation and decreasing apoptosis, hypertrophy and autophagy. Since these gasotransmitters are found in gaseous state at environmental conditions, they can be directly applied by inhalation, or in combination with H2S and NO donors, which are compounds capable of releasing these molecules at biological conditions, thus enabling higher stability and slow release of NO and H2S. Moreover, the combination between these donor compounds and nanomaterials has the potential to enable targeted treatments, reduce side effects and increase the potential of H2S and NO. Finally, it is essential highlighting challenges to, and perspectives in, pharmacological applications of H2S and NO to treat AKI, mainly in combination with nanoparticulated delivery platforms.
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
25
|
Vanin AF. How is Nitric Oxide (NO) Converted into Nitrosonium Cations (NO +) in Living Organisms? (Based on the Results of Optical and EPR Analyses of Dinitrosyl Iron Complexes with Thiol-Containing Ligands). APPLIED MAGNETIC RESONANCE 2020; 51:851-876. [PMID: 33100585 PMCID: PMC7572240 DOI: 10.1007/s00723-020-01270-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The present work provides theoretical and experimental foundations for the ability of dinitrosyl iron complexes (DNICs) with thiol-containing ligands to be not only the donors of neutral NO molecules, but also the donors of nitrosonium cations (NO+) in living organisms ensuring S-nitrosation of various proteins and low-molecular-weight compounds. It is proposed that the emergence of those cations in DNICs is related to disproportionation reaction of NO molecules, initiated by their binding with Fe2+ ions (two NO molecules per one ion). At the same time, possible hydrolysis of iron-bound nitrosonium cations is prevented by the electron density transition to nitrosonium cations from sulfur atoms of thiol-containing ligands, which are included in the coordination sphere of iron. It allows supposing that iron in iron-nitrosyl complexes of DNICs has a d 7 electronic configuration. This supposition is underpinned by experimental data revealing that a half of nitrosyl ligands are converted into S-nitrosothiols (RSNOs) when those complexes decompose, with the other half of those ligands released in the form of neutral NO molecules.
Collapse
Affiliation(s)
- Anatoly F. Vanin
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
26
|
Tenopoulou M, Doulias PT. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism. F1000Res 2020; 9. [PMID: 33042519 PMCID: PMC7531049 DOI: 10.12688/f1000research.19998.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide is an endogenously formed gas that acts as a signaling molecule in the human body. The signaling functions of nitric oxide are accomplished through two primer mechanisms: cGMP-mediated phosphorylation and the formation of S-nitrosocysteine on proteins. This review presents and discusses previous and more recent findings documenting that nitric oxide signaling regulates metabolic activity. These discussions primarily focus on endothelial nitric oxide synthase (eNOS) as the source of nitric oxide.
Collapse
Affiliation(s)
- Margarita Tenopoulou
- Children's Hospital of Philadelphia Research Institute, 3517 Civic Center Boulevard, Philadelphia, Pennsylvania, 19104-4318, USA.,Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Research Institute, 3517 Civic Center Boulevard, Philadelphia, Pennsylvania, 19104-4318, USA.,Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
27
|
Vanin AF. The Free-Radical Nature of Nitric Oxide Molecules as a Determinant of their Conversion to Nitrosonium Cations in Living Systems. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Asl JF, Goudarzi M, Shoghi H. The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol Rep 2020; 72:857-866. [PMID: 32128712 DOI: 10.1007/s43440-020-00063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Rosmarinus officinalis L. is an aromatic perennial herb from which rosmarinic acid (RA) can be extracted. This research was conducted to assess the effectiveness of RA against radio frequency (RF) radiation-induced oxidative stress due to 915 MHz (mobile phone) and 2450 MHz (Wi-Fi) frequencies in rats. METHODS The animals were separated into six groups, including group 1 receiving normal saline (NS), group 2 (NS/Wi-Fi) and group 4 (NS/mobile), which received NS plus 60 min/day of exposure to the electromagnetic radiation (EMR) for 1 month, group 3 (RA/Wi-Fi) and group 5 (RA/mobile) received RA (20 mg/kg/day, po) plus 60 min/day of EMR, and group 6 (RA) received only RA. RESULTS There was a significant elevation of protein carbonylation (PC), nitric oxide (NO) and malondialdehyde (MDA) and significant reduction in glutathione (GSH), glutathione peroxidase (GPx), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT) in the RF radiation-exposed rats' brain compared to the control group. RA reduced the levels of NO, PC and MDA and it also elevated the TAC, GPx, SOD, CAT and GSH levels in the rats' brains in the RA/Wi-Fi and RA/mobile groups compared to the NS/Wi-Fi and NS/mobile groups, respectively. CONCLUSION It can be concluded that RA can be considered a useful candidate for protecting brain tissues against RF radiation-induced oxidative stress at 915 and 2450 MHz frequencies through ameliorative effects on the antioxidant enzyme activities and oxidative stress indices.
Collapse
Affiliation(s)
- Jafar Fatahi Asl
- Department of Radiologic Technology, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Shoghi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
29
|
Sanches-Lopes JM, Ferreira GC, Pinheiro LC, Kemp R, Tanus-Santos JE. Consistent gastric pH-dependent effects of suppressors of gastric acid secretion on the antihypertensive responses to oral nitrite. Biochem Pharmacol 2020; 177:113940. [DOI: 10.1016/j.bcp.2020.113940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/24/2020] [Indexed: 01/24/2023]
|
30
|
Wischmann P, Kuhn V, Suvorava T, Muessig JM, Fischer JW, Isakson BE, Haberkorn SM, Flögel U, Schrader J, Jung C, Cortese-Krott MM, Heusch G, Kelm M. Anaemia is associated with severe RBC dysfunction and a reduced circulating NO pool: vascular and cardiac eNOS are crucial for the adaptation to anaemia. Basic Res Cardiol 2020; 115:43. [PMID: 32533377 PMCID: PMC7293199 DOI: 10.1007/s00395-020-0799-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Anaemia is frequently present in patients with acute myocardial infarction (AMI) and contributes to an adverse prognosis. We hypothesised that, besides reduced oxygen carrying capacity, anaemia is associated with (1) red blood cell (RBC) dysfunction and a reduced circulating nitric oxide (NO) pool, (2) compensatory enhancement of vascular and cardiac endothelial nitric oxide synthase (eNOS) activity, and (3) contribution of both, RBC dysfunction and reduced circulatory NO pool to left ventricular (LV) dysfunction and fatal outcome in AMI. In mouse models of subacute and chronic anaemia from repeated mild blood loss the circulating NO pool, RBC, cardiac and vascular function were analysed at baseline and in reperfused AMI. In anaemia, RBC function resulted in profound changes in membrane properties, enhanced turnover, haemolysis, dysregulation of intra-erythrocytotic redox state, and RBC-eNOS. RBC from anaemic mice and from anaemic patients with acute coronary syndrome impaired the recovery of contractile function of isolated mouse hearts following ischaemia/reperfusion. In anaemia, the circulating NO pool was reduced. The cardiac and vascular adaptation to anaemia was characterised by increased arterial eNOS expression and activity and an eNOS-dependent increase of end-diastolic left ventricular volume. Endothelial dysfunction induced through genetic or pharmacologic reduction of eNOS-activity abrogated the anaemia-induced cardio-circulatory compensation. Superimposed AMI was associated with decreased survival. In summary, moderate blood loss anaemia is associated with severe RBC dysfunction and reduced circulating NO pool. Vascular and cardiac eNOS are crucial for the cardio-circulatory adaptation to anaemia. RBC dysfunction together with eNOS dysfunction may contribute to adverse outcomes in AMI.
Collapse
Affiliation(s)
- Patricia Wischmann
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Viktoria Kuhn
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Johanna M Muessig
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jens W Fischer
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Department of Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sebastian M Haberkorn
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Ulrich Flögel
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany. .,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany. .,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
31
|
Pinheiro LC, Ferreira GC, Damacena de Angelis C, Toledo JC, Tanus-Santos JE. A comprehensive time course study of tissue nitric oxide metabolites concentrations after oral nitrite administration. Free Radic Biol Med 2020; 152:43-51. [PMID: 32151744 DOI: 10.1016/j.freeradbiomed.2020.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
Nitrite and nitrate are considered nitric oxide (NO) storage pools. The assessment of their tissue concentrations may improve our understanding of how they attenuate pathophysiological mechanisms promoting disease. We hypothesized that significant differences exist when the tissue concentrations of nitrite, nitrate, and nitrosylated species (RXNO) are compared among different tissues, particularly when nitrite is administered orally because nitrite generates various NO-related species in the stomach. We studied the different time-dependent changes in plasma and tissue concentrations of nitrite, nitrate, and RXNO after oral nitrite 15 mg/kg was administered rats, which were euthanized 15, 30, 60, 120, 240, 480 or 1440 min after nitrite administration. A control group received water. Arterial blood samples were collected and the rats were perfused with a PBS solution containing NEM/DTPA to prevent the destruction of RXNO. After perfusion, heart, aorta, mesenteric artery, brain, stomach, liver and femoral muscle were harvested and immediately stored at -70°C until analyzed for their nitrite, nitrate and RXNO contents using an ozone-based reductive chemiluminescence assay. While nitrite administration did not increase aortic nitrite or nitrate concentrations for at least 60 min, both aorta and mesenteric vessels stored nitrite from 8 to 24 h after its administration and their tissue concentrations increased from 10 to 40-fold those found in plasma. In contrast, the other studied tissues showed only transient increases in the concentrations of these NO metabolites, including RXNO. The differences among tissues may reflect differences in mechanisms regulating cellular influx of nitrite. These findings have important pharmacological and clinical implications.
Collapse
Affiliation(s)
- Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Célio Damacena de Angelis
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 13083-887, Campinas, Sao Paulo, Brazil
| | - Jose Carlos Toledo
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, 14040-901, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
32
|
Khan M, Kumar P, Qiao F, Islam SMT, Singh AK, Won JS, Feng W, Singh I. Targeting GSNOR for functional recovery in a middle-aged mouse model of stroke. Brain Res 2020; 1741:146879. [PMID: 32418890 DOI: 10.1016/j.brainres.2020.146879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/01/2023]
Abstract
The nitric oxide (NO) metabolome and the NO metabolite-based neurovascular protective pathways are dysregulated after stroke. The major NO metabolite S-nitrosoglutahione (GSNO) is essential for S-nitrosylation-based signaling events and the inhibition of S-nitrosoglutahione (GSNO)-metabolizing enzyme GSNO reductase (GSNOR) provides protective effects following cardiac ischemia. However, the role of GSNOR and GSNOR inhibition-mediated increased GSNO/S-nitrosylation is not understood in neurovascular diseases such as stroke. Because age is the major risk factor of stroke and recovery in aged stroke patients is low and slow, we investigated the efficacy of GSNOR inhibition using a GSNOR selective inhibitor N6022 in a clinically relevant middle-aged cerebral ischemia and reperfusion (IR) mouse model of stroke. N6022 (5 mg/kg; iv) treatment of IR mice at 2 h after reperfusion followed by the treatment of the same dose daily for 3 days reduced the infarct volume and decreased the neurological score. Daily treatment of IR animals with N6022 for 2 weeks significantly improved neurological score, brain infarctions/atrophy, survival rate, motor (measured by cylinder test) and cognitive (evaluated by novel object recognition test) functions which paralleled the decreased activity of GSNOR, reduced levels of peroxynitrite and decreased neurological score. These results are the first evidence of a new pathway for the treatment of stroke via the inhibition of GSNOR. Based on the efficacy of N6022 in the stroke animal model and its use in human therapeutic studies without toxicity, we submit that GSNOR is a druggable target, and N6022 is a promising drug candidate for human stroke therapy.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| | - Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Wayne Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
33
|
Lemmey HAL, Garland CJ, Dora KA. Intrinsic regulation of microvascular tone by myoendothelial feedback circuits. CURRENT TOPICS IN MEMBRANES 2020; 85:327-355. [PMID: 32402644 DOI: 10.1016/bs.ctm.2020.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endothelium is an important regulator of arterial vascular tone, acting to release nitric oxide (NO) and open Ca2+-activated K+ (KCa) channels to relax vascular smooth muscle cells (VSMCs). While agonists acting at endothelial cell (EC) receptors are widely used to assess the ability of the endothelium to reduce vascular tone, the intrinsic EC-dependent mechanisms are less well characterized. In small resistance arteries and arterioles, the presence of heterocellular gap junctions termed myoendothelial gap junctions (MEGJs) allows the passage of not only current, but small molecules including Ca2+ and inositol trisphosphate (IP3). When stimulated to contract, the increase in VSM Ca2+ and IP3 can therefore potentially pass through MEGJs to activate adjacent ECs. This activation releases NO and opens KCa channels, which act to limit contraction. This myoendothelial feedback (MEF) is amplified by EC Ca2+ influx and release pathways, and is dynamically modulated by processes regulating gap junction conductance. There is a remarkable localization of key signaling and regulatory proteins within the EC projection toward VSM, and the intrinsic EC-dependent signaling pathways occurring with this highly specialized microdomain are reviewed.
Collapse
Affiliation(s)
- Hamish A L Lemmey
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - Kim A Dora
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
34
|
Maitre P, Scuderi D, Corinti D, Chiavarino B, Crestoni ME, Fornarini S. Applications of Infrared Multiple Photon Dissociation (IRMPD) to the Detection of Posttranslational Modifications. Chem Rev 2019; 120:3261-3295. [PMID: 31809038 DOI: 10.1021/acs.chemrev.9b00395] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy allows for the derivation of the vibrational fingerprint of molecular ions under tandem mass spectrometry (MS/MS) conditions. It provides insight into the nature and localization of posttranslational modifications (PTMs) affecting single amino acids and peptides. IRMPD spectroscopy, which takes advantage of the high sensitivity and resolution of MS/MS, relies on a wavelength specific fragmentation process occurring on resonance with an IR active vibrational mode of the sampled species and is well suited to reveal the presence of a PTM and its impact in the molecular environment. IRMPD spectroscopy is clearly not a proteomics tool. It is rather a valuable source of information for fixed wavelength IRMPD exploited in dissociation protocols of peptides and proteins. Indeed, from the large variety of model PTM containing amino acids and peptides which have been characterized by IRMPD spectroscopy, specific signatures of PTMs such as phosphorylation or sulfonation can be derived. High throughput workflows relying on the selective fragmentation of modified peptides within a complex mixture have thus been proposed. Sequential fragmentations can be observed upon IR activation, which do not only give rise to rich fragmentation patterns but also overcome low mass cutoff limitations in ion trap mass analyzers. Laser-based vibrational spectroscopy of mass-selected ions holding various PTMs is an increasingly expanding field both in the variety of chemical issues coped with and in the technological advancements and implementations.
Collapse
Affiliation(s)
- Philippe Maitre
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Debora Scuderi
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
35
|
Khan M, Dhammu TS, Qiao F, Kumar P, Singh AK, Singh I. S-Nitrosoglutathione Mimics the Beneficial Activity of Endothelial Nitric Oxide Synthase-Derived Nitric Oxide in a Mouse Model of Stroke. J Stroke Cerebrovasc Dis 2019; 28:104470. [PMID: 31680031 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nitric oxide (NO)-producing activity of endothelial nitric oxide synthase (eNOS) plays a significant role in maintaining endothelial function and protecting against the stroke injury. However, the activity of the eNOS enzyme and the metabolism of major NO metabolite S-nitrosoglutathione (GSNO) are dysregulated after stroke, causing endothelial dysfunction. We investigated whether an administration of exogenous of GSNO or enhancing the level of endogenous GSNO protects against neurovascular injury in wild-type (WT) and eNOS-null (endothelial dysfunction) mouse models of cerebral ischemia-reperfusion (IR). METHODS Transient cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO) for 60 minutes in male adult WT and eNOS null mice. GSNO (0.1 mg/kg body weight, intravenously) or N6022 (GSNO reductase inhibitor, 5.0 mg/kg body weight, intravenously) was administered 30 minutes before MCAO in preinjury and at the reperfusion in postinjury studies. Brain infarctions, edema, and neurobehavioral functions were evaluated at 24 hours after the reperfusion. RESULTS eNOS-null mice had a higher degree (P< .05) of injury than WT. Pre- or postinjury treatment with either GSNO or N6022 significantly reduced infarct volume, improved neurological and sensorimotor function in both WT and eNOS-null mice. CONCLUSION Reduced brain infarctions and edema, and improved neurobehavioral functions by pre- or postinjury GSNO treatment of eNOS knock out mice indicate that GSNO can attenuate IR injury, likely by mimicking the eNOS-derived NO-dependent anti-ischemic and anti-inflammatory functions. Neurovascular protection by GSNO/N6022 in both pre- and postischemic injury groups support GSNO as a promising drug candidate for the prevention and treatment of stroke injury.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Fei Qiao
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H Johnson VA Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
36
|
Abstract
Nitrite, an anion produced from the oxidative breakdown of nitric oxide (NO), has traditionally been viewed as an inert molecule. However, this dogma has been challenged with the findings that nitrite can be readily reduced to NO under pathological conditions, hence representing a physiologically relevant storage reservoir of NO either in the blood or tissues. Nitrite administration has been demonstrated to improve myocardial function in subjects with heart failure and to lower the blood pressure in hypertensive subjects. Thus, extensive amount of work has since been carried out to investigate the therapeutic potential of nitrite in treating cardiovascular diseases, especially hypertension. Studies done on several animal models of hypertension have demonstrated the efficacy of nitrite in preventing and ameliorating the pathological changes associated with the disease. This brief review of the current findings aims to re-evaluate the use of nitrite for the treatment of hypertension and in particular to highlight its role in improving endothelial function.
Collapse
Affiliation(s)
- Wei Chih Ling
- Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor; and
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Vanin AF. What is the Mechanism of Nitric Oxide Conversion into Nitrosonium Ions Ensuring S-Nitrosating Processes in Living Organisms. Cell Biochem Biophys 2019; 77:279-292. [PMID: 31586291 DOI: 10.1007/s12013-019-00886-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Here, I present the data testifying that the conversion of free radical NO molecules to nitrosonium ions (NO+), which are necessary for the realization of one of NO biological effects (S-nitrosation), may occur in living organisms after binding NO molecules to loosely bound iron (Fe2+ ions) with the subsequent mutual one-electron oxidation-reduction of NO molecules (their disproportionation). Inclusion of thiol-containing substances as iron ligands into this process prevents hydrolysis of NO+ ions bound to iron thus providing the formation of stable dinitrosyl iron complexes (DNIC) with thiol ligands. Such complexes act in living organisms as donors of NO and NO+, providing stabilization and transfer of these agents via the autocrine and paracrine pathways. Without loosely bound iron (labile iron pool) and thiols participating in the DNIC formation, NO functioning as one of universal regulators of diverse metabolic processes would be impossible.
Collapse
Affiliation(s)
- Anatoly F Vanin
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Kosygin Str.4, Moscow, 119991, Russia.
| |
Collapse
|
38
|
Kamm A, Przychodzen P, Kuban-Jankowska A, Jacewicz D, Dabrowska AM, Nussberger S, Wozniak M, Gorska-Ponikowska M. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 2019; 93:102-114. [PMID: 31541733 DOI: 10.1016/j.niox.2019.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
Elevated levels of reactive nitrogen species, alteration in redox balance and deregulated redox signaling are common hallmarks of cancer progression and chemoresistance. However, depending on the cellular context, distinct reactive nitrogen species are also hypothesized to mediate cytotoxic activity and are thus used in anticancer therapies. We present here the dual face of nitric oxide and its derivatives in cancer biology. Main derivatives of nitric oxide, such as nitrogen dioxide and peroxynitrite cause cell death by inducing protein and lipid peroxidation and/or DNA damage. Moreover, they control the activity of important protein players within the pro- and anti-apoptotic signaling pathways. Thus, the control of intracellular reactive nitrogen species may become a sophisticated tool in anticancer strategies.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Paulina Przychodzen
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Michal Wozniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland; Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| |
Collapse
|
39
|
Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci 2019; 6:146-174. [PMID: 32341974 PMCID: PMC7179362 DOI: 10.3934/neuroscience.2019.3.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Ever since the late-eighties when endothelium-derived relaxing factor was found to be the gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger was actually a gas and therefore didn't obey the established rules of neurotransmission made it even more intriguing. In just 30 years there is now too much information for useful comprehensive reviews even if limited to animals alone. Therefore this review attempts to survey the actions of nitric oxide on development and neuronal function in selected major invertebrate models only so allowing some detailed discussion but still covering most of the primary references. Invertebrate model systems have some very useful advantages over more expensive and demanding animal models such as large, easily identifiable neurons and simple circuits in tissues that are typically far easier to keep viable. A table summarizing this information along with the major relevant references has been included for convenience.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Associate professor of pharmacy, Wingate University School of Pharmacy, Wingate, NC28174, USA
| |
Collapse
|
40
|
Broad spectrum metabolomics for detection of abnormal metabolic pathways in a mouse model for retinitis pigmentosa. Exp Eye Res 2019; 184:135-145. [PMID: 30885711 DOI: 10.1016/j.exer.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/07/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
Retinitis pigmentosa (RP) is a degenerative disease of the retina that affects approximately 1 million people worldwide. There are multiple genetic causes of this disease, for which, at present, there are no effective therapeutic strategies. In the present report, we utilized broad spectrum metabolomics to identify perturbations in the metabolism of the rd10 mouse, a genetic model for RP that contains a mutation in Pde6β. These data provide novel insights into mechanisms that are potentially critical for retinal degeneration. C57BL/6J and rd10 mice were raised in cyclic light followed by either light or dark adaptation at postnatal day (P) 18, an early stage in the degeneration process. Mice raised entirely in the dark until P18 were also evaluated. After euthanasia, retinas were removed and extracted for analysis by ultra-performance liquid chromatography-time of flight-mass spectrometry (UPLC-QTOF-MS). Compared to wild type mice, rd10 mice raised in cyclic light or in complete darkness demonstrate significant alterations in retinal pyrimidine and purine nucleotide metabolism, potentially disrupting deoxynucleotide pools necessary for mitochondrial DNA replication. Other metabolites that demonstrate significant increases are the Coenzyme A intermediate, 4'-phosphopantothenate, and acylcarnitines. The changes in these metabolites, identified for the first time in a model of RP, are highly likely to disrupt normal energy metabolism. High levels of nitrosoproline were also detected in rd10 retinas relative to those from wild type mice. These results suggest that nitrosative stress may be involved in retinal degeneration in this mouse model.
Collapse
|
41
|
Cumpstey AF, Minnion M, Fernandez BO, Mikus-Lelinska M, Mitchell K, Martin DS, Grocott MPW, Feelisch M. Pushing arterial-venous plasma biomarkers to new heights: A model for personalised redox metabolomics? Redox Biol 2019; 21:101113. [PMID: 30738322 PMCID: PMC6369731 DOI: 10.1016/j.redox.2019.101113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 01/24/2023] Open
Abstract
The chemical and functional interactions between Reactive Oxygen (ROS), Nitrogen (RNS) and Sulfur (RSS) species allow organisms to detect and respond to metabolic and environmental stressors, such as exercise and altitude exposure. Whether redox markers and constituents of this ‘Reactive Species Interactome’ (RSI) differ in concentration between arterial and venous blood is unknown. We hypothesised that such measurements may provide useful insight into metabolic/redox regulation at the whole-body level and would be consistent between individuals exposed to identical challenges. An exploratory study was performed during the Xtreme Alps expedition in 2010 in which four healthy individuals (2 male, 2 female) underwent paired arterial and central venous blood sampling before, during and after performance of a constant-work-rate cardiopulmonary exercise test, at sea level and again at 4559 m. Unexpectedly, plasma total free thiol and free cysteine concentrations remained substantially elevated at altitude throughout exercise with minimal arteriovenous gradients. Free sulfide concentrations changed only modestly upon combined altitude/exercise stress, whereas bound sulfide levels were lower at altitude than sea-level. No consistent signal indicative of the expected increased oxidative stress and nitrate→nitrite→NO reduction was observed with 4-hydroxynonenal, isoprostanes, nitrate, nitrite, nitroso species and cylic guanosine monophosphate. However, the observed arteriovenous concentration differences revealed a dynamic pattern of response that was unique to each participant. This novel redox metabolomic approach of obtaining quantifiable ‘metabolic signatures’ to a defined physiological challenge could potentially offer new avenues for personalised medicine. Exercise and high altitude (hypobaric hypoxia) significantly perturb redox balance. The role of thiols and reactive sulfur species in altitude acclimatization remains largely unknown. First measure of arteriovenous gradients of redox markers at altitude. Different individuals exposed to identical stresses display distinct redox response profiles. Redox metabolomics may offer new ways of personalizing medicine.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Critical Care Research Group, Southampton NIHR Biomedical Research Centre, Tremona Road, Southampton SO16 6YD, UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Magdalena Minnion
- Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; Warwick Medical School, Division of Metabolic and Vascular Health, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Monika Mikus-Lelinska
- Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Kay Mitchell
- Critical Care Research Group, Southampton NIHR Biomedical Research Centre, Tremona Road, Southampton SO16 6YD, UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Daniel S Martin
- UCL Centre for Altitude, Space and Extreme Environment (CASE) Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport Exercise & Health, 170 Tottenham Court Road, London W1T 7HA, UK; Intensive Care Unit, Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - Michael P W Grocott
- Critical Care Research Group, Southampton NIHR Biomedical Research Centre, Tremona Road, Southampton SO16 6YD, UK; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton SO16 6YD, UK; Department of Anesthesiology, Duke University Medical School, NC, USA
| | - Martin Feelisch
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton SO16 6YD, UK; Clinical & Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; Warwick Medical School, Division of Metabolic and Vascular Health, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | | |
Collapse
|
42
|
Yu H, Chaimbault P, Clarot I, Chen Z, Leroy P. Labeling nitrogen species with the stable isotope 15N for their measurement by separative methods coupled with mass spectrometry: A review. Talanta 2019; 191:491-503. [DOI: 10.1016/j.talanta.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 02/09/2023]
|
43
|
Lee JW, Lee DH, Park JK, Han JS. Sodium nitrite-derived nitric oxide protects rat testes against ischemia/reperfusion injury. Asian J Androl 2019; 21:92-97. [PMID: 30319134 PMCID: PMC6337950 DOI: 10.4103/aja.aja_76_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/16/2018] [Indexed: 11/04/2022] Open
Abstract
Testicular torsion, a common urologic emergency, is primarily caused by ischemia/reperfusion (I/R) injury of the testis. Nitric oxide (NO)-derived from nitrite (NO 2- ) has been reported to have prominent therapeutic effects on I/R injury in the heart, liver, and brain; however, its effects on testicular I/R injury have not been evaluated. This study, therefore, investigated whether NO from NO 2- is beneficial in a rat model of testicular I/R injury which eventually results in impaired spermatogenesis. Male Sprague-Dawley rats were assigned to the following seven groups: group A, sham-operated control group; Group B, I/R with no treatment; Groups C, D, and E, I/R followed by treatment with three different doses of NO 2- ; Group F, I/R followed by administration of NO 2- and NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt [C-PTIO]); and Group G, I/R followed by administration of nitrate (NO 3- ). NO 2- , NO 3- , and C-PTIO were intravenously administered. Histological examination of the testes and the western blot analysis of caspase-3 were performed. Levels of antioxidant enzymes and lipid peroxidation were measured. Germ cell apoptosis, oxidative stress, antioxidant enzymatic function, and lipid peroxidation in Group B were significantly higher than those in Group A. Group B exhibited an abnormal testicular morphology and impaired spermatogenesis. In contrast, testicular damages were attenuated in the NO 2- treatment groups, which were caused by reduction in superoxide and peroxynitrite levels and an inhibition of caspase-3-dependent apoptosis. The results of this study suggest NO 2- to be a promising therapeutic agent with anti-oxidant and anti-apoptotic properties in testicular I/R injury.
Collapse
Affiliation(s)
- Jae Won Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Chungcheongbuk-do 28160, Korea
| | - Dong-Hun Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Jae Keun Park
- Viral Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin Soo Han
- The Institute for the 3Rs & Department of Laboratory Animal Medicine, College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
44
|
Liu PH, Tsai FT, Chen BH, Hsu IJ, Hsieh HH, Liaw WF. Insight into chalcogenolate-bound {Fe(NO)2}9 dinitrosyl iron complexes (DNICs): covalent character versus ionic character. Dalton Trans 2019; 48:6040-6050. [DOI: 10.1039/c8dt04670k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis, characterization and transformation of the thermally unstable {Fe(NO)2}9 dinitrosyl iron complex (DNIC) [(OMe)2Fe(NO)2]− (2) were investigated.
Collapse
Affiliation(s)
- Pai-Heng Liu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Fu-Te Tsai
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Bo-Hao Chen
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu 30076
- Taiwan
| | - I-Jui Hsu
- Research and Development Center for Smart Textile Technology
- Department of Molecular Science and Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Hung-Hsi Hsieh
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|
45
|
Hsiao HY, Chung CW, Santos JH, Villaflores OB, Lu TT. Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Trans 2019; 48:9431-9453. [DOI: 10.1039/c9dt00777f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ubiquitous physiology of nitric oxide enables the bioinorganic engineering of [Fe(NO)2]-containing and NO-delivery scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering
- Chang Gung Memorial Hospital
- Taoyuan
- Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | | | - Oliver B. Villaflores
- Department of Biochemistry
- Faculty of Pharmacy
- University of Santo Tomas
- Manila
- Philippines
| | - Tsai-Te Lu
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| |
Collapse
|
46
|
Nagasaka Y, Fernandez BO, Steinbicker AU, Spagnolli E, Malhotra R, Bloch DB, Bloch KD, Zapol WM, Feelisch M. Pharmacological preconditioning with inhaled nitric oxide (NO): Organ-specific differences in the lifetime of blood and tissue NO metabolites. Nitric Oxide 2018; 80:52-60. [PMID: 30114529 PMCID: PMC6198794 DOI: 10.1016/j.niox.2018.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Endogenous nitric oxide (NO) may contribute to ischemic and anesthetic preconditioning while exogenous NO protects against ischemia-reperfusion (I/R) injury in the heart and other organs. Why those beneficial effects observed in animal models do not always translate into clinical effectiveness remains unclear. To mitigate reperfusion damage a source of NO is required. NO inhalation is known to increase tissue NO metabolites, but little information exists about the lifetime of these species. We therefore sought to investigate the fate of major NO metabolite classes following NO inhalation in mice in vivo. METHODS C57BL/6J mice were exposed to 80 ppm NO for 1 h. NO metabolites were measured in blood (plasma and erythrocytes) and tissues (heart, liver, lung, kidney and brain) immediately after NO exposure and up to 48 h thereafter. Concentrations of S-nitrosothiols, N-nitrosamines and NO-heme products as well as nitrite and nitrate were quantified by gas-phase chemiluminescence and ion chromatography. In separate experiments, mice breathed 80 ppm NO for 1 h prior to cardiac I/R injury (induced by coronary arterial ligation for 1 h, followed by recovery). After sacrifice, the size of the myocardial infarction (MI) and the area at risk (AAR) were measured. RESULTS After NO inhalation, elevated nitroso/nitrosyl levels returned to baseline over the next 24 h, with distinct multi-phasic decay profiles in each compartment. S/N-nitroso compounds and NO-hemoglobin in blood decreased exponentially, but remained above baseline for up to 30min, whereas nitrate was elevated for up to 3hrs after discontinuing NO breathing. Hepatic S/N-nitroso species concentrations remained steady for 30min before dropping exponentially. Nitrate only rose in blood, liver and kidney; nitrite tended to be lower in all organs immediately after NO inhalation but fluctuated considerably in concentration thereafter. NO inhalation before myocardial ischemia decreased the ratio of MI/AAR by 30% vs controls (p = 0.002); only cardiac S-nitrosothiols and NO-hemes were elevated at time of reperfusion onset. CONCLUSIONS Metabolites in blood do not reflect NO metabolite status of any organ. Although NO is rapidly inactivated by hemoglobin-mediated oxidation in the circulation, long-lived tissue metabolites may account for the myocardial preconditioning effects of inhaled NO. NO inhalation may afford similar protection in other organs.
Collapse
Affiliation(s)
- Yasuko Nagasaka
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernadette O Fernandez
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK; Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Andrea U Steinbicker
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - Ester Spagnolli
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajeev Malhotra
- Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, UK
| | - Donald B Bloch
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth D Bloch
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, UK
| | - Warren M Zapol
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Martin Feelisch
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK; Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
47
|
Maia LB, Moura JJG. Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: Nitrite reduction by molybdoenzymes. Redox Biol 2018; 19:274-289. [PMID: 30196191 PMCID: PMC6129670 DOI: 10.1016/j.redox.2018.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide radical (NO) is a signaling molecule involved in several physiological and pathological processes and a new nitrate-nitrite-NO pathway has emerged as a physiological alternative to the "classic" pathway of NO formation from L-arginine. Since the late 1990s, it has become clear that nitrite can be reduced back to NO under hypoxic/anoxic conditions and exert a significant cytoprotective action in vivo under challenging conditions. To reduce nitrite to NO, mammalian cells can use different metalloproteins that are present in cells to perform other functions, including several heme proteins and molybdoenzymes, comprising what we denominated as the "non-dedicated nitrite reductases". Herein, we will review the current knowledge on two of those "non-dedicated nitrite reductases", the molybdoenzymes xanthine oxidoreductase and aldehyde oxidase, discussing the in vitro and in vivo studies to provide the current picture of the role of these enzymes on the NO metabolism in humans.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
48
|
Buchan GJ, Bonacci G, Fazzari M, Salvatore SR, Gelhaus Wendell S. Nitro-fatty acid formation and metabolism. Nitric Oxide 2018; 79:38-44. [PMID: 30006146 DOI: 10.1016/j.niox.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Nitro-fatty acids (NO2-FA) are pleiotropic modulators of redox signaling pathways. Their effects on inflammatory signaling have been studied in great detail in cell, animal and clinical models primarily using exogenously administered nitro-oleic acid. While we know a considerable amount regarding NO2-FA signaling, endogenous formation and metabolism is relatively unexplored. This review will cover what is currently known regarding the proposed mechanisms of NO2-FA formation, dietary modulation of endogenous NO2-FA levels, pathways of NO2-FA metabolism and the detection of NO2-FA and corresponding metabolites.
Collapse
Affiliation(s)
- Gregory J Buchan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gustavo Bonacci
- CIBICI - CONICET, Departamento de Bioquímica Clínica Facultad de Ciencias Químicas, (U.N.C.), Haya de la Torre y Medina Allende Ciudad Universitaria, Córdoba C.P. N°: X5000HUA, Argentina
| | - Marco Fazzari
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Fondazione Ri.MED, Via Bandiera 11, 90133 Palermo, Italy
| | - Sonia R Salvatore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stacy Gelhaus Wendell
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
49
|
Bender D, Schwarz G. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Lett 2018; 592:2126-2139. [DOI: 10.1002/1873-3468.13089] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Daniel Bender
- Department of Chemistry; Institute for Biochemistry; University of Cologne; Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Germany
| | - Guenter Schwarz
- Department of Chemistry; Institute for Biochemistry; University of Cologne; Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD); University of Cologne; Germany
| |
Collapse
|
50
|
Nrf2 Deficiency Unmasks the Significance of Nitric Oxide Synthase Activity for Cardioprotection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8309698. [PMID: 29854098 PMCID: PMC5952436 DOI: 10.1155/2018/8309698] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch that controls the expression of antioxidant and cytoprotective enzymes, including enzymes catalyzing glutathione de novo synthesis. In this study, we aimed to analyze whether Nrf2 deficiency influences antioxidative capacity, redox state, NO metabolites, and outcome of myocardial ischemia reperfusion (I/R) injury. In Nrf2 knockout (Nrf2 KO) mice, we found elevated eNOS expression and preserved NO metabolite concentrations in the aorta and heart as compared to wild types (WT). Unexpectedly, Nrf2 KO mice have a smaller infarct size following myocardial ischemia/reperfusion injury than WT mice and show fully preserved left ventricular systolic function. Inhibition of NO synthesis at onset of ischemia and during early reperfusion increased myocardial damage and systolic dysfunction in Nrf2 KO mice, but not in WT mice. Consistent with this, infarct size and diastolic function were unaffected in eNOS knockout (eNOS KO) mice after ischemia/reperfusion. Taken together, these data suggest that eNOS upregulation under conditions of decreased antioxidant capacity might play an important role in cardioprotection against I/R. Due to the redundancy in cytoprotective mechanisms, this fundamental antioxidant property of eNOS is not evident upon acute NOS inhibition in WT mice or in eNOS KO mice until Nrf2-related signaling is abrogated.
Collapse
|