1
|
Liu F, Zhou T, Zhang S, Li Y, Chen Y, Miao Z, Wang X, Yang G, Li Q, Zhang L, Liu Y. Cathepsin B: The dawn of tumor therapy. Eur J Med Chem 2024; 269:116329. [PMID: 38508117 DOI: 10.1016/j.ejmech.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.
Collapse
Affiliation(s)
- Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Experimental & Training Teaching Centers, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
2
|
Yaseen MM, Abuharfeil NM, Darmani H. The Role of p53 in HIV Infection. Curr HIV/AIDS Rep 2023; 20:419-427. [PMID: 38010468 DOI: 10.1007/s11904-023-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of the tumor suppressor protein p53 in the context of HIV infection. We explore how p53, a pivotal regulator of cellular processes, interacts with various facets of the HIV life cycle. Understanding these interactions could provide valuable insights into potential therapeutic interventions and the broader implications of p53 in viral infections. RECENT FINDINGS Recent research has unveiled a complex interplay between p53 and HIV. Several reports have highlighted the involvement of p53 in restricting the replication of HIV within both immune and nonimmune cells. Various mechanisms have been suggested to unveil how p53 enforces this restriction on HIV replication. However, HIV has developed strategies to manipulate p53, benefiting its replication and evading host defenses. In summary, p53 plays a multifaceted role in HIV infection, impacting viral replication and disease progression. Recent findings underscore the importance of understanding the intricate interactions between p53 and HIV for the development of innovative therapeutic approaches. Manipulating p53 pathways may offer potential avenues to suppress viral replication and ameliorate immune dysfunction, ultimately contributing to the management of HIV/AIDS. Further research is warranted to fully exploit the therapeutic potential of p53 in the context of HIV infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
3
|
Potts MA, Mizutani S, Garnham AL, Li Wai Suen CSN, Kueh AJ, Tai L, Pal M, Strasser A, Herold MJ. Deletion of the transcriptional regulator TFAP4 accelerates c-MYC-driven lymphomagenesis. Cell Death Differ 2023:10.1038/s41418-023-01145-w. [PMID: 36894688 DOI: 10.1038/s41418-023-01145-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Many lymphoid malignancies arise from deregulated c-MYC expression in cooperation with additional genetic lesions. While many of these cooperative genetic lesions have been discovered and their functions characterised, DNA sequence data of primary patient samples suggest that many more do exist. However, the nature of their contributions to c-MYC driven lymphomagenesis have not yet been investigated. We identified TFAP4 as a potent suppressor of c-MYC driven lymphoma development in a previous genome-wide CRISPR knockout screen in primary cells in vivo [1]. CRISPR deletion of TFAP4 in Eµ-MYC transgenic haematopoietic stem and progenitor cells (HSPCs) and transplantation of these manipulated HSPCs into lethally irradiated animals significantly accelerated c-MYC-driven lymphoma development. Interestingly, TFAP4 deficient Eµ-MYC lymphomas all arose at the pre-B cell stage of B cell development. This observation prompted us to characterise the transcriptional profile of pre-B cells from pre-leukaemic mice transplanted with Eµ-MYC/Cas9 HSPCs that had been transduced with sgRNAs targeting TFAP4. This analysis revealed that TFAP4 deletion reduced expression of several master regulators of B cell differentiation, such as Spi1, SpiB and Pax5, which are direct target genes of both TFAP4 and MYC. We therefore conclude that loss of TFAP4 leads to a block in differentiation during early B cell development, thereby accelerating c-MYC-driven lymphoma development.
Collapse
Affiliation(s)
- Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Shinsuke Mizutani
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Connie S N Li Wai Suen
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia
| | - Martin Pal
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Kaller M, Shi W, Hermeking H. c-MYC-Induced AP4 Attenuates DREAM-Mediated Repression by p53. Cancers (Basel) 2023; 15:cancers15041162. [PMID: 36831504 PMCID: PMC9954515 DOI: 10.3390/cancers15041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The deregulated expression of the c-MYC oncogene activates p53, which is presumably mediated by ARF/INK4, as well as replication-stress-induced DNA damage. Here, we aimed to determine whether the c-MYC-inducible AP4 transcription factor plays a role in this context using a genetic approach. METHODS We used a CRISPR/Cas9 approach to generate AP4- and/or p53-deficient derivatives of MCF-7 breast cancer cells harboring an ectopic, inducible c-MYC allele. Cell proliferation, senescence, DNA damage, and comprehensive RNA expression profiles were determined after activation of c-MYC. In addition, we analyzed the expression data from primary breast cancer samples. RESULTS Loss of AP4 resulted in elevated levels of both spontaneous and c-MYC-induced DNA damage, senescence, and diminished cell proliferation. Deletion of p53 in AP4-deficient cells reverted senescence and proliferation defects without affecting DNA damage levels. RNA-Seq analyses showed that loss of AP4 enhanced repression of DREAM and E2F target genes after p53 activation by c-MYC. Depletion of p21 or the DREAM complex component LIN37 abrogated this effect. These p53-dependent effects were conserved on the level of clinical and gene expression associations found in primary breast cancer tumors. CONCLUSIONS Our results establish AP4 as a pivotal factor at the crossroads of c-MYC, E2F, and p53 target gene regulation.
Collapse
Affiliation(s)
- Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
| | - Wenjing Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, D-80336 Munich, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-89-2180-73685; Fax: +49-89-2180-73697
| |
Collapse
|
5
|
Kimura S, Takeshita N, Oyanagi T, Seki D, Jiang W, Hidaka K, Fukumoto S, Takahashi I, Takano-Yamamoto T. HIF-2α Inhibits Ameloblast Differentiation via Hey2 in Tooth Development. J Dent Res 2022; 101:1637-1644. [PMID: 35912776 DOI: 10.1177/00220345221111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enamel is the highly mineralized outer layer of teeth; the cells responsible for enamel formation are ameloblasts. Local hypoxia and hypoxia inducible factor (HIF) in embryonic tissues are important to promote normal organogenesis. However, hypoxic state in tooth germs and the roles of HIF in ameloblast differentiation have not been understood. The aim of this study is to clarify the role of HIF in ameloblast differentiation during tooth germ development. We found that tooth germs were under hypoxia and HIF-1α and HIF-2α were expressed in tooth germs in embryonic mice. Then, we used HIF inhibitors to evaluate the function of HIF during tooth germ development. The HIF-2α inhibitor significantly decreased the size of tooth germs in organ culture, while the HIF-1α inhibitor did not apparently affect the size of tooth germs. The HIF-2α inhibitor enhanced the expression of amelogenin, a marker of ameloblast differentiation, in the tooth germs in organ culture and rat dental epithelial SF2 cells. Moreover, we found that the HIF-2α inhibitor-stimulating amelogenin expression was regulated by hes-related family basic helix-loop-helix transcription factor with YRPW motif 2(Hey2) in SF2 cells. These findings suggest that the HIF-2α-Hey2 axis plays an important role in ameloblast differentiation during tooth germ development.
Collapse
Affiliation(s)
- S Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - N Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - T Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - D Seki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - W Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - K Hidaka
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - S Fukumoto
- Division of Pediatric Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Section of Oral Medicine for Children, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - I Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - T Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Medina-Jover F, Riera-Mestre A, Viñals F. Rethinking growth factors: the case of BMP9 during vessel maturation. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R1-R14. [PMID: 35350597 PMCID: PMC8942324 DOI: 10.1530/vb-21-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Angiogenesis is an essential process for correct development and physiology. This mechanism is tightly regulated by many signals that activate several pathways, which are constantly interacting with each other. There is mounting evidence that BMP9/ALK1 pathway is essential for a correct vessel maturation. Alterations in this pathway lead to the development of hereditary haemorrhagic telangiectasias. However, little was known about the BMP9 signalling cascade until the last years. Recent reports have shown that while BMP9 arrests cell cycle, it promotes the activation of anabolic pathways to enhance endothelial maturation. In light of this evidence, a new criterion for the classification of cytokines is proposed here, based on the physiological objective of the activation of anabolic routes. Whether this activation by a growth factor is needed to sustain mitosis or to promote a specific function such as matrix formation is a critical characteristic that needs to be considered to classify growth factors. Hence, the state-of-the-art of BMP9/ALK1 signalling is reviewed here, as well as its implications in normal and pathogenic angiogenesis.
Collapse
Affiliation(s)
- Ferran Medina-Jover
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Riera-Mestre
- Hereditary Hemorrhagic Telangiectasia Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Fávaro WJ, Socca EAR, Böckelmann PK, Reis IB, Garcia PV, Durán N. Impact of intravesical instillation of a novel biological response modifier (P-MAPA) on progress of non-muscle invasive bladder cancer treatment in a rat model. Med Oncol 2022; 39:24. [PMID: 34982270 DOI: 10.1007/s12032-021-01612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
This work describes the effects of immunotherapy with Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride in the treatment of non-muscle invasive bladder cancer in an animal model. NMIBC was induced by treating female Fischer 344 rats with N-methyl-N-nitrosourea. After treatment with MNU, the rats were distributed into four experimental groups: Control (without MNU) group, MNU (cancer) group, MNU-BCG (Bacillus Calmette-Guerin) group, and MNU-P-MAPA group. P-MAPA intravesical treatment was more effective in histopathological recovery from cancer state in relation to BCG treatment. Western blot assays showed an increase in the protein levels of c-Myc, COUP-TFII, and wild-type p53 in P-MAPA-treated rats in relation to BCG-treated rats. In addition, rats treated with P-MAPA intravesical immunotherapy showed the highest BAX protein levels and the lowest proliferation/apoptotic ratio in relation to BCG-treated rats, pointing out a preponderance of apoptosis. P-MAPA intravesical treatment increased the wild-type p53 levels and enhanced c-Myc/COUP-TFII-induced apoptosis mediated by p53. These alterations were fundamental for histopathological recovery from cancer and for suppress abnormal cell proliferation. This action of P-MAPA on apoptotic pathways may represent a new strategy for treating NMIBC.
Collapse
Affiliation(s)
- Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Avenida Bertrand Russell, s/n., Campinas, SP, 13083-865, Brazil.
| | - Eduardo A R Socca
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Avenida Bertrand Russell, s/n., Campinas, SP, 13083-865, Brazil
| | - Petra K Böckelmann
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Avenida Bertrand Russell, s/n., Campinas, SP, 13083-865, Brazil
| | - Ianny B Reis
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Avenida Bertrand Russell, s/n., Campinas, SP, 13083-865, Brazil
| | - Patrick V Garcia
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Avenida Bertrand Russell, s/n., Campinas, SP, 13083-865, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Avenida Bertrand Russell, s/n., Campinas, SP, 13083-865, Brazil.
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
8
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Transcription Factor AP4 Mediates Cell Fate Decisions: To Divide, Age, or Die. Cancers (Basel) 2021; 13:cancers13040676. [PMID: 33567514 PMCID: PMC7914591 DOI: 10.3390/cancers13040676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Here, we review the literature on Activating Enhancer-Binding Protein 4 (AP4)/transcription factor AP4 (TFAP4) function and regulation and its role in cancer. Elevated expression of AP4 was detected in tumors of various organs and is associated with poor patient survival. AP4 is encoded by a Myc target gene and mediates cell fate decisions by regulating multiple processes, such as cell proliferation, epithelial-mesenchymal transition, stemness, apoptosis, and cellular senescence. Thereby, AP4 may be critical for tumor initiation and progression. In this review article, we summarize published evidence showing how AP4 functions as a transcriptional activator and repressor of a plethora of direct target genes in various physiological and pathological conditions. We also highlight the complex interactions of AP4 with c-Myc, N-Myc, p53, lncRNAs, and miRNAs in feed-back loops, which control AP4 levels and mediate AP4 functions. In the future, a better understanding of AP4 may contribute to improved prognosis and therapy of cancer. Abstract Activating Enhancer-Binding Protein 4 (AP4)/transcription factor AP4 (TFAP4) is a basic-helix-loop-helix-leucine-zipper transcription factor that was first identified as a protein bound to SV40 promoters more than 30 years ago. Almost 15 years later, AP4 was characterized as a target of the c-Myc transcription factor, which is the product of a prototypic oncogene that is activated in the majority of tumors. Interestingly, AP4 seems to represent a central hub downstream of c-Myc and N-Myc that mediates some of their functions, such as proliferation and epithelial-mesenchymal transition (EMT). Elevated AP4 expression is associated with progression of cancer and poor patient prognosis in multiple tumor types. Deletion of AP4 in mice points to roles of AP4 in the control of stemness, tumor initiation and adaptive immunity. Interestingly, ex vivo AP4 inactivation results in increased DNA damage, senescence, and apoptosis, which may be caused by defective cell cycle progression. Here, we will summarize the roles of AP4 as a transcriptional repressor and activator of target genes and the contribution of protein and non-coding RNAs encoded by these genes, in regulating the above mentioned processes. In addition, proteins interacting with or regulating AP4 and the cellular signaling pathways altered after AP4 dysregulation in tumor cells will be discussed.
Collapse
|
10
|
DeCarlo A, Malardier-Jugroot C, Szewczuk MR. Folic Acid-Functionalized Nanomedicine: Folic Acid Conjugated Copolymer and Folate Receptor Interactions Disrupt Receptor Functionality Resulting in Dual Therapeutic Anti-Cancer Potential in Breast and Prostate Cancer. Bioconjug Chem 2021; 32:512-522. [PMID: 33556240 DOI: 10.1021/acs.bioconjchem.0c00625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously reported on a functionalized folic acid (FA) conjugated poly(styrene-alt-maleic anhydride) (SMA) via biological linker 2,4-diaminobutyric acid (DABA) (FA-DABA-SMA) copolymer. This biocompatible nanocopolymer self-assembles in a pH-dependent manner, providing stimuli responsiveness, active targeting, and extended release of hydrophobic chemotherapeutic agents and effectively penetrates the inner core of 3-dimensional cancer spheroid models. The empty FA-DABA-SMA decreased tumor spheroid volume, revealing a previously unknown mechanism of action. Here, we investigated the potential mechanism of the small (20 kDa) and large (350 kDa) FA-DABA-SMA empty copolymers affecting the folic acid receptor alpha (FRα) signaling properties in breast and prostate cancer cell lines. Microscopic imaging, immunocytochemistry, flow cytometry, Caspase 3/7 apoptosis assays, Incucyte live cell tracking, the scratch wound assay, the water-soluble tetrazolium salt-1 (WST-1) cell viability assay, morphologic changes, and Western blot for the expression levels of FRα on the cell surface were used on MDA MB-231 and MCF-7 breast and DU-145 prostate cancer cell lines. The findings indicate that FA-DABA-SMA increases FRα expression levels in breast MDA MB-231 cancer cells and then disrupts FR signaling by reducing HES1 and NOTCH1 protein expression levels. Also, FA-DABA-SMA induces apoptosis and further causes a change in the MDA MB-231 cells' morphology and significantly reduces their ability to migrate in a scratch wound assay. Collectively, these findings provide a novel insight into the functionalized FA-DABA-SMA copolymer. The 350 and 20 kDa copolymers actively target FRα to initialize internationalization. However, only the large size and sheet-shaped 350 kDa copolymers disrupt FRα signaling. The significance of these novel findings reveals that the copolymer's intracellular activity is critically dependent on the size and structural shape. This report offers novel therapeutic insight into a dual mechanism of the FA-DABA-SMA copolymer for its therapeutic potential to treat cancer.
Collapse
Affiliation(s)
- Alexandria DeCarlo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Cecile Malardier-Jugroot
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
11
|
Kurimoto R, Chiba T, Ito Y, Matsushima T, Yano Y, Miyata K, Yashiro Y, Suzuki T, Tomita K, Asahara H. The tRNA pseudouridine synthase TruB1 regulates the maturation of let-7 miRNA. EMBO J 2020; 39:e104708. [PMID: 32926445 PMCID: PMC7560213 DOI: 10.15252/embj.2020104708] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Let-7 is an evolutionary conserved microRNA that mediates post-transcriptional gene silencing to regulate a wide range of biological processes, including development, differentiation, and tumor suppression. Let-7 biogenesis is tightly regulated by several RNA-binding proteins, including Lin28A/B, which represses let-7 maturation. To identify new regulators of let-7, we devised a cell-based functional screen of RNA-binding proteins using a let-7 sensor luciferase reporter and identified the tRNA pseudouridine synthase, TruB1. TruB1 enhanced maturation specifically of let-7 family members. Rather than inducing pseudouridylation of the miRNAs, high-throughput sequencing crosslinking immunoprecipitation (HITS-CLIP) and biochemical analyses revealed direct binding between endogenous TruB1 and the stem-loop structure of pri-let-7, which also binds Lin28A/B. TruB1 selectively enhanced the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation. Finally, TruB1 suppressed cell proliferation, which was mediated in part by let-7. Altogether, we reveal an unexpected function for TruB1 in promoting let-7 maturation.
Collapse
Affiliation(s)
- Ryota Kurimoto
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Tomoki Chiba
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Yoshiaki Ito
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Research CoreResearch Facility ClusterInstitute of ResearchTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Takahide Matsushima
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Yuki Yano
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kohei Miyata
- Department Obstetrics and GynecologyFaculty of MedicineFukuoka UniversityFukuokaJapan
| | - Yuka Yashiro
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Tsutomu Suzuki
- Department of Chemistry and BiotechnologyGraduate School of EngineeringUniversity of TokyoTokyoJapan
| | - Kozo Tomita
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Hiroshi Asahara
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Molecular and Experimental MedicineThe Scripps Research InstituteSan DiegoCAUSA
| |
Collapse
|
12
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
13
|
Ahmed AA, Robinson T, Palande M, Escara-Wilke J, Dai J, Keller ET. Targeted Notch1 inhibition with a Notch1 antibody, OMP-A2G1, decreases tumor growth in two murine models of prostate cancer in association with differing patterns of DNA damage response gene expression. J Cell Biochem 2019; 120:16946-16955. [PMID: 31099068 DOI: 10.1002/jcb.28954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Notch plays a protumorigenic role in many cancers including prostate cancer (PCa). Global notch inhibition of multiple Notch family members using γ-secretase inhibitors has shown efficacy in suppressing PCa growth in murine models. However, global Notch inhibition is associated with marked toxicity due to the widespread function of many different Notch family members in normal cell physiology. Accordingly, in the current study, we explored if specific inhibition of Notch1 would effectively inhibit PCa growth in a murine model. The androgen-dependent VCaP and androgen-independent DU145 cell lines were injected subcutaneously into mice. The mice were treated with either control antibody 1B7.11, anti-Notch1 antibody (OMP-A2G1), docetaxel or the combination of OMP-A2G1 and docetaxel. Tumor growth was measured using calipers. At the end of the study, tumors were assessed for proliferative response, apoptotic response, Notch target gene expression, and DNA damage response (DDR) expression. OMP-A2G1 alone inhibited tumor growth of both PCa cell lines to a greater extent than docetaxel alone. There was no additive or synergistic effect of OMP-A2G1 and docetaxel. The primary toxicity was weight loss that was controlled with dietary supplementation. Proliferation and apoptosis were affected differentially in the two cell lines. OMP-A2G1 increased expression of the DDR gene GADD45α in VCaP cells but downregulated GADD45α in Du145 cells. Taken together, these data show that Notch1 inhibition decreases PCa xenograft growth but does so through different mechanisms in the androgen-dependent VCaP cell line vs the androgen-independent DU145 cell line. These results provide a rationale for further exploration of targeted Notch inhibition for therapy of PCa.
Collapse
Affiliation(s)
- Aqila A Ahmed
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Tyler Robinson
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Monica Palande
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | | | - Jinlu Dai
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Porcheri C, Meisel CT, Mitsiadis T. Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E1520. [PMID: 30917608 PMCID: PMC6471940 DOI: 10.3390/ijms20061520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) defines a group of solid tumors originating from the mucosa of the upper aerodigestive tract, pharynx, larynx, mouth, and nasal cavity. It has a metastatic evolution and poor prognosis and is the sixth most common cancer in the world, with 600,000 new cases reported every year. HNSCC heterogeneity and complexity is reflected in a multistep progression, involving crosstalk between several molecular pathways. The Notch pathway is associated with major events supporting cancerogenic evolution: cell proliferation, self-renewal, angiogenesis, and preservation of a pro-oncogenic microenvironment. Additionally, Notch is pivotal in tumor development and plays a dual role acting as both oncogene and tumor suppressor. In this review, we summarize the role of the Notch pathway in HNSCC, with a special focus on its compelling role in major events of tumor initiation and growth.
Collapse
Affiliation(s)
- Cristina Porcheri
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Christian Thomas Meisel
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Thimios Mitsiadis
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| |
Collapse
|
15
|
Brachtlova T, van Beusechem VW. Unleashing the Full Potential of Oncolytic Adenoviruses against Cancer by Applying RNA Interference: The Force Awakens. Cells 2018; 7:cells7120228. [PMID: 30477117 PMCID: PMC6315459 DOI: 10.3390/cells7120228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Oncolytic virus therapy of cancer is an actively pursued field of research. Viruses that were once considered as pathogens threatening the wellbeing of humans and animals alike are with every passing decade more prominently regarded as vehicles for genetic and oncolytic therapies. Oncolytic viruses kill cancer cells, sparing healthy tissues, and provoke an anticancer immune response. Among these viruses, recombinant adenoviruses are particularly attractive agents for oncolytic immunotherapy of cancer. Different approaches are currently examined to maximize their therapeutic effect. Here, knowledge of virus–host interactions may lead the way. In this regard, viral and host microRNAs are of particular interest. In addition, cellular factors inhibiting viral replication or dampening immune responses are being discovered. Therefore, applying RNA interference is an attractive approach to strengthen the anticancer efficacy of oncolytic viruses gaining attention in recent years. RNA interference can be used to fortify the virus’ cancer cell-killing and immune-stimulating properties and to suppress cellular pathways to cripple the tumor. In this review, we discuss different ways of how RNA interference may be utilized to increase the efficacy of oncolytic adenoviruses, to reveal their full potential.
Collapse
Affiliation(s)
- Tereza Brachtlova
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| | - Victor W van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Ménard M, Costechareyre C, Ichim G, Blachier J, Neves D, Jarrosson-Wuilleme L, Depping R, Koster J, Saintigny P, Mehlen P, Tauszig-Delamasure S. Hey1- and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth. PLoS Biol 2018; 16:e2002912. [PMID: 29750782 PMCID: PMC5965893 DOI: 10.1371/journal.pbio.2002912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/23/2018] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
The neurotrophin-3 (NT-3) receptor tropomyosin receptor kinase C (TrkC/NTRK3) has been described as a dependence receptor and, as such, triggers apoptosis in the absence of its ligand NT-3. This proapoptotic activity has been proposed to confer a tumor suppressor activity to this classic tyrosine kinase receptor (RTK). By investigating interacting partners that might facilitate TrkC-induced cell death, we have identified the basic helix-loop-helix (bHLH) transcription factor Hey1 and importin-α3 (karyopherin alpha 4 [KPNA4]) as direct interactors of TrkC intracellular domain, and we show that Hey1 is required for TrkC-induced apoptosis. We propose here that the cleaved proapoptotic portion of TrkC intracellular domain (called TrkC killer-fragment [TrkC-KF]) is translocated to the nucleus by importins and interacts there with Hey1. We also demonstrate that Hey1 and TrkC-KF transcriptionally silence mouse double minute 2 homolog (MDM2), thus contributing to p53 stabilization. p53 transcriptionally regulates the expression of TrkC-KF cytoplasmic and mitochondrial interactors cofactor of breast cancer 1 (COBRA1) and B cell lymphoma 2–associated X (BAX), which will subsequently trigger the intrinsic pathway of apoptosis. Of interest, TrkC was proposed to constrain tumor progression in neuroblastoma (NB), and we demonstrate in an avian model that TrkC tumor suppressor activity requires Hey1 and p53. Tropomyosin receptor kinase C (TrkC) is a transmembrane receptor at the cell surface and has been described to work paradoxically both as an oncogene and as a tumor suppressor. We partly solved this paradox in a previous study, demonstrating that TrkC is a double-facet receptor: Upon interaction with its ligand neurotrophin-3 (NT-3), TrkC has a tyrosine kinase activity and induces survival and proliferation of the cell; conversely, in the absence of the ligand, TrkC is cleaved and releases a "killer-fragment" that triggers apoptosis. In this study, we analyze the fate of this fragment and show that TrkC killer-fragment is translocated to the nucleus, where it stabilizes the apoptosis inducer p53. We further find that p53 activates the transcription of cytoplasmic molecular partners, which interact with TrkC killer-fragment and induce apoptosis. We also demonstrate that alteration of this mechanism favors tumor growth in neuroblastoma (NB), an avian tumor progression model for a pediatric cancer.
Collapse
Affiliation(s)
- Marie Ménard
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Clélia Costechareyre
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Gabriel Ichim
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Jonathan Blachier
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Neves
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Loraine Jarrosson-Wuilleme
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Reinhard Depping
- Universität zu Lübeck, Institut für Physiologie, Zentrum für Medizinische Struktur und Zellbiologie, Lübeck, Germany
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Pierre Saintigny
- Department of translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
- Department of translational Research and Innovation, Centre Léon Bérard, Lyon, France
- * E-mail: (PM); (ST)
| | - Servane Tauszig-Delamasure
- Apoptosis, Cancer and Development Laboratory—Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
- * E-mail: (PM); (ST)
| |
Collapse
|
17
|
Gaetani P, Hulleman E, Levi D, Quarto M, Scorsetti M, Helin K, Simonelli M, Colombo P, Baena RRY. Expression of the Transcription Factor HEY1 in Glioblastoma: A Preliminary Clinical Study. TUMORI JOURNAL 2018; 96:97-102. [DOI: 10.1177/030089161009600116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aims and background The hairy/enhancer of split (E(spl))-related family of transcription factors (HES and HEY) are established targets of the notch signaling pathway, which has been implicated in different developmental processes, tumor formation and the self-renewal of neural stem cells. We determined the expression of HEY1 in human malignant gliomas to investigate whether its expression might be related to prognosis. Methods The expression of HEY1 was studied by in situ hybridization on 62 cases of glioblastoma. Patients were treated with surgery followed by chemotherapy and radiotherapy. We considered as end points of the study the overall survival time and progression-free interval. Correlations between HEY1 expression and tumor grade/patient overall survival and free interval before recurrence were analyzed using univariate analysis. Results Based on the in situ hybridization results, HEY1 expression rate was reported as negative staining in 13 cases (20.6%), as weak staining in 11 cases (17.3%), as moderate staining in 21 cases (33.3%), and as strong staining in 17 cases. We considered in the analysis the cumulative expression of HEY1 at in situ hybridization (Hey Index) as negative in 13 cases and positive in 49 cases (77.78%). The overall survival (P = 0.002) and the free-interval (P = 0.012) were significantly longer in patients who were negative for HEY1 expression. Conclusions Our data suggest that expression of HEY1 might be used as a marker to distinguish glioblastoma patients with a relatively good prognosis from those at high-risk, and that, in the future, HEY1 might represent a therapeutic target.
Collapse
Affiliation(s)
- Paolo Gaetani
- Department of Neurosurgery, IRCCS Istituto Clinico Humanitas, Rozzano (MI), Italy
| | | | - Daniel Levi
- Department of Neurosurgery, IRCCS Istituto Clinico Humanitas, Rozzano (MI), Italy
| | | | - Marta Scorsetti
- Department of Radiotherapy, IRCCS Istituto Clinico Humanitas, Rozzano (MI), Italy
| | - Kristian Helin
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Simonelli
- Department of Oncology, IRCCS Istituto Clinico Humanitas, Rozzano (MI), Italy
| | | | | |
Collapse
|
18
|
Abstract
Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing.
Collapse
Affiliation(s)
- Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells. Mol Cell Biochem 2017; 443:193-204. [PMID: 29188535 DOI: 10.1007/s11010-017-3224-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/23/2017] [Indexed: 01/10/2023]
Abstract
c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.
Collapse
|
20
|
Wang W, Fu L, Li S, Xu Z, Li X. Histone deacetylase 11 suppresses p53 expression in pituitary tumor cells. Cell Biol Int 2017; 41:1290-1295. [PMID: 28782861 DOI: 10.1002/cbin.10834] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/03/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Weimin Wang
- School of Medicine; Shandong University; Jinan 250012 China
- Department of Neurosurgery and Surgery Room; Qingdao Municipal Hospital; Qingdao 266071 China
| | - Li Fu
- Department of Neurosurgery and Surgery Room; Qingdao Municipal Hospital; Qingdao 266071 China
| | - Shengli Li
- Department of Neurosurgery and Surgery Room; Qingdao Municipal Hospital; Qingdao 266071 China
| | - Zhiming Xu
- Department of Neurosurgery and Surgery Room; Qingdao Municipal Hospital; Qingdao 266071 China
| | - Xingang Li
- School of Medicine; Shandong University; Jinan 250012 China
- Department of Neurosurgery; Qilu Hospital of Shandong University; Jinan 250012 China
| |
Collapse
|
21
|
Siebring-van Olst E, Blijlevens M, de Menezes RX, van der Meulen-Muileman IH, Smit EF, van Beusechem VW. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment. Mol Oncol 2017; 11:534-551. [PMID: 28296343 PMCID: PMC5527466 DOI: 10.1002/1878-0261.12052] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 11/11/2022] Open
Abstract
Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16, and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22, and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets.
Collapse
Affiliation(s)
| | - Maxime Blijlevens
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Renee X de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands.,Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Ciribilli Y, Singh P, Spanel R, Inga A, Borlak J. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas. Oncotarget 2016; 6:31569-92. [PMID: 26427040 PMCID: PMC4741625 DOI: 10.18632/oncotarget.5035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/21/2015] [Indexed: 11/25/2022] Open
Abstract
The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays.Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies.
Collapse
Affiliation(s)
- Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Mattarello, Italy
| | - Prashant Singh
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.,Institute of Pathology, 41747 Viersen, Germany
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Mattarello, Italy
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
23
|
HEY1 functions are regulated by its phosphorylation at Ser-68. Biosci Rep 2016; 36:BSR20160123. [PMID: 27129302 PMCID: PMC5293587 DOI: 10.1042/bsr20160123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/25/2023] Open
Abstract
HEY1-dependent activation of the p53 tumour suppressor pathway can be inhibited through direct phosphorylation of HEY1 at Ser-68 located in the bHLH domain. STK38 and STK38L serine/threonine kinases can phosphorylate HEY1 Ser-68 and could modulate its biological function. HEY1 (hairy/enhancer-of-split related with YRPW motif 1) is a member of the basic helix–loop–helix-orange (bHLH-O) family of transcription repressors that mediate Notch signalling. HEY1 acts as a positive regulator of the tumour suppressor p53 via still unknown mechanisms. A MALDI-TOF/TOF MS analysis has uncovered a novel HEY1 regulatory phosphorylation event at Ser-68. Strikingly, this single phosphorylation event controls HEY1 stability and function: simulation of HEY1 Ser-68 phosphorylation increases HEY1 protein stability but inhibits its ability to enhance p53 transcriptional activity. Unlike wild-type HEY1, expression of the phosphomimetic mutant HEY1-S68D failed to induce p53-dependent cell cycle arrest and it did not sensitize U2OS cells to p53-activating chemotherapeutic drugs. We have identified two related kinases, STK38 (serine/threonine kinase 38) and STK38L (serine/threonine kinase 38 like), which interact with and phosphorylate HEY1 at Ser-68. HEY1 is phosphorylated at Ser-68 during mitosis and it accumulates in the centrosomes of mitotic cells, suggesting a possible integration of HEY1-dependent signalling in centrosome function. Moreover, HEY1 interacts with a subset of p53-activating ribosomal proteins. Ribosomal stress causes HEY1 relocalization from the nucleoplasm to perinucleolar structures termed nucleolar caps. HEY1 interacts physically with at least one of the ribosomal proteins, RPL11, and both proteins cooperate in the inhibition of MDM2-mediated p53 degradation resulting in a synergistic positive effect on p53 transcriptional activity. HEY1 itself also interacts directly with MDM2 and it is subjected to MDM2-mediated degradation. Simulation of HEY1 Ser-68 phosphorylation prevents its interaction with p53, RPL11 and MDM2 and abolishes HEY1 migration to nucleolar caps upon ribosomal stress. Our findings uncover a novel mechanism for cross-talk between Notch signalling and nucleolar stress.
Collapse
|
24
|
Abdullah A, Sane S, Freeling JL, Wang H, Zhang D, Rezvani K. Nucleocytoplasmic Translocation of UBXN2A Is Required for Apoptosis during DNA Damage Stresses in Colon Cancer Cells. J Cancer 2015; 6:1066-78. [PMID: 26516353 PMCID: PMC4615341 DOI: 10.7150/jca.12134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/02/2015] [Indexed: 12/12/2022] Open
Abstract
The subcellular localization, expression level, and activity of anti-cancer proteins alter in response to intrinsic and extrinsic cellular stresses to reverse tumor progression. The purpose of this study is to determine whether UBXN2A, an activator of the p53 tumor suppressor protein, has different subcellular compartmentalization in response to the stress of DNA damage. We measured trafficking of the UBXN2A protein in response to two different DNA damage stresses, UVB irradiation and the genotoxic agent Etoposide, in colon cancer cell lines. Using a cytosol-nuclear fractionation technique followed by western blot and immunofluorescence staining, we monitored and quantitated UBXN2A and p53 proteins as well as p53's downstream apoptotic pathway. We showed that the anti-cancer protein UBXN2A acts in the early phase of cell response to two different DNA damage stresses, being induced to translocate into the cytoplasm in a dose- and time-dependent manner. UVB-induced cytoplasmic UBXN2A binds to mortalin-2 (mot-2), a known oncoprotein in colon tumors. UVB-dependent upregulation of UBXN2A in the cytoplasm decreases p53 binding to mot-2 and activates apoptotic events in colon cancer cells. In contrast, the shRNA-mediated depletion of UBXN2A leads to significant reduction in apoptosis in colon cancer cells exposed to UVB and Etoposide. Leptomycin B (LMB), which was able to block UBXN2A nuclear export following Etoposide treatment, sustained p53-mot-2 interaction and had partially antagonistic effects with Etoposide on cell apoptosis. The present study shows that nucleocytoplasmic translocation of UBXN2A in response to stresses is necessary for its anti-cancer function in the cytoplasm. In addition, LMB-dependent suppression of UBXN2A's translocation to the cytoplasm upon stress allows the presence of an active mot-2 oncoprotein in the cytoplasm, resulting in p53 sequestration as well as activation of other mot-2-dependent growth promoting pathways.
Collapse
Affiliation(s)
- Ammara Abdullah
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Sanam Sane
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Jessica L Freeling
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Hongmin Wang
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Dong Zhang
- 2. Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd., P.O. Box 8000, Old Westbury, NY 11568-8000, USA
| | - Khosrow Rezvani
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| |
Collapse
|
25
|
Kamarehei M, Yazdanparast R. Modulation of notch signaling pathway to prevent H2O2/menadione-induced SK-N-MC cells death by EUK134. Cell Mol Neurobiol 2014; 34:1037-45. [PMID: 25005833 DOI: 10.1007/s10571-014-0079-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
The brain in Alzheimer's disease is under increased oxidative stress, and this may have a role in the pathogenesis and neural death in this disorder. It has been verified that numerous signaling pathways involved in neurodegenerative disorders are activated in response to reactive oxygen species (ROS). EUK134, a synthetic salen-manganese antioxidant complex, has been found to possess many interesting pharmacological activities awaiting exploration. The present study is to characterize the role of Notch signaling in apoptotic cell death of SK-N-MC cells. The cells were treated with hydrogen peroxide (H2O2) or menadione to induce oxidative stress. The free-radical scavenging capabilities of EUK134 were studied through the MTT assay, glutathione peroxidase (GPx) enzyme activity assay, and glutathione (GSH) Levels. The extents of lipid peroxidation, protein carbonyl formation, and intracellular ROS levels, as markers of oxidative stress, were also studied. Our results showed that H2O2/menadione reduced GSH levels and GPx activity. However, EUK134 protected cells against ROS-induced cell death by down-regulation of lipid peroxidation and protein carbonyl formation as well as restoration of antioxidant enzymes activity. ROS induced apoptosis and increased NICD and HES1 expression. Inhibition of NICD production proved that Notch signaling is involved in apoptosis through p53 activation. Moreover, H2O2/menadione led to Numb protein down-regulation which upon EUK134 pretreatment, its level increased and subsequently prevented Notch pathway activation. We indicated that EUK134 can be a promising candidate in designing natural-based drugs for ROS-induced neurodegenerative diseases. Collectively, ROS activated Notch signaling in SK-N-MC cells leading to cell apoptosis.
Collapse
Affiliation(s)
- Maryam Kamarehei
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | |
Collapse
|
26
|
Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, Go MYY, Ng EKW, Arakawa T, Chan FKL, Sung JJY, Yu J. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol 2014; 234:302-15. [PMID: 24931004 PMCID: PMC4277686 DOI: 10.1002/path.4391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/26/2014] [Accepted: 06/10/2014] [Indexed: 01/12/2023]
Abstract
We report that the odd-skipped related 1 (OSR1) gene encoding a zinc-finger transcription factor was preferentially methylated in gastric cancer by genome-wide methylation screening. OSR1 expression was frequently silenced or down-regulated in gastric cancer cell lines. OSR1 expression was also significantly down-regulated at both mRNA and protein levels in primary gastric cancer tissues compared with adjacent normal tissues. The silencing or down-regulation of OSR1 was closely associated with promoter hypermethylation. Overexpression of OSR1 significantly inhibited cell growth, arrested the cell cycle, and induced apoptosis in the gastric cancer cell lines AGS, MKN28, and MGC803. Conversely, knockdown of OSR1 by OSR1-short hairpin RNA significantly enhanced cell growth, promoted the cell cycle, and inhibited apoptosis in the normal gastric epithelial cell line GES1. The dual-luciferase reporter assay revealed that OSR1 activated p53 transcription and repressed the T-cell factor (TCF)/lymphoid enhancer factor (LEF). Complementary DNA expression array and western blotting showed that OSR1 increased the expression of nuclear p53, p21, Fas, and death receptor-5, and suppressed the expression of cyclin D1 and cyclin-dependent kinase 4 in the p53 signalling pathway. In addition, OSR1 suppressed the expression of cytoplasmic β-catenin, TCF-1, and LEF1 in the Wnt/β-catenin signalling pathway. OSR1 methylation was detected in 51.8% of primary gastric cancer patients (85 of 164) by bisulphite genomic sequencing. Multivariate Cox regression analysis showed that OSR1 methylation was an independent predictor of poor survival. Kaplan–Meier survival curves revealed that OSR1 methylation was associated with shortened survival in TNM stage I–III patients. In conclusion, OSR1 acts as a functional tumour suppressor through the transcriptional activation of p53 and repression of TCF/LEF in gastric cancer. Detection of OSR1 methylation may serve as a potential biomarker of the early stage of gastric cancer. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Koji Otani
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fox DK, Ebert SM, Bongers KS, Dyle MC, Bullard SA, Dierdorff JM, Kunkel SD, Adams CM. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization. Am J Physiol Endocrinol Metab 2014; 307:E245-61. [PMID: 24895282 PMCID: PMC4121573 DOI: 10.1152/ajpendo.00010.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immobilization causes skeletal muscle atrophy via complex signaling pathways that are not well understood. To better understand these pathways, we investigated the roles of p53 and ATF4, two transcription factors that mediate adaptations to a variety of cellular stresses. Using mouse models, we demonstrate that 3 days of muscle immobilization induces muscle atrophy and increases expression of p53 and ATF4. Furthermore, muscle fibers lacking p53 or ATF4 are partially resistant to immobilization-induced muscle atrophy, and forced expression of p53 or ATF4 induces muscle fiber atrophy in the absence of immobilization. Importantly, however, p53 and ATF4 do not require each other to promote atrophy, and coexpression of p53 and ATF4 induces more atrophy than either transcription factor alone. Moreover, muscle fibers lacking both p53 and ATF4 are more resistant to immobilization-induced atrophy than fibers lacking only p53 or ATF4. Interestingly, the independent and additive nature of the p53 and ATF4 pathways allows for combinatorial control of at least one downstream effector, p21. Using genome-wide mRNA expression arrays, we identified p21 mRNA as a skeletal muscle transcript that is highly induced in immobilized muscle via the combined actions of p53 and ATF4. Additionally, in mouse muscle, p21 induces atrophy in a manner that does not require immobilization, p53 or ATF4, and p21 is required for atrophy induced by immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as essential and complementary mediators of immobilization-induced muscle atrophy and discover p21 as a critical downstream effector of the p53 and ATF4 pathways.
Collapse
Affiliation(s)
- Daniel K Fox
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Kale S Bongers
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Michael C Dyle
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Steven A Bullard
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| | - Jason M Dierdorff
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Steven D Kunkel
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
28
|
The impact of R213 mutation on p53-mediated p21 activity. Biochimie 2014; 99:215-8. [DOI: 10.1016/j.biochi.2013.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/20/2013] [Indexed: 12/18/2022]
|
29
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
30
|
Sane S, Abdullah A, Boudreau DA, Autenried RK, Gupta BK, Wang X, Wang H, Schlenker EH, Zhang D, Telleria C, Huang L, Chauhan SC, Rezvani K. Ubiquitin-like (UBX)-domain-containing protein, UBXN2A, promotes cell death by interfering with the p53-Mortalin interactions in colon cancer cells. Cell Death Dis 2014; 5:e1118. [PMID: 24625977 PMCID: PMC3973214 DOI: 10.1038/cddis.2014.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/02/2014] [Accepted: 02/07/2014] [Indexed: 02/08/2023]
Abstract
Mortalin (mot-2) induces inactivation of the tumor suppressor p53's transcriptional and apoptotic functions by cytoplasmic sequestration of p53 in select cancers. The mot-2-dependent cytoprotective function enables cancer cells to support malignant transformation. Abrogating the p53-mot-2 interaction can control or slow down the growth of cancer cells. In this study, we report the discovery of a ubiquitin-like (UBX)-domain-containing protein, UBXN2A, which binds to mot-2 and consequently inhibits the binding between mot-2 and p53. Genetic analysis showed that UBXN2A binds to mot-2's substrate binding domain, and it partly overlaps p53's binding site indicating UBXN2A and p53 likely bind to mot-2 competitively. By binding to mot-2, UBXN2A releases p53 from cytosolic sequestration, rescuing the tumor suppressor functions of p53. Biochemical analysis and functional assays showed that the overexpression of UBXN2A and the functional consequences of unsequestered p53 trigger p53-dependent apoptosis. Cells expressing shRNA against UBXN2A showed the opposite effect of that seen with UBXN2A overexpression. The expression of UBXN2A and its apoptotic effects were not observed in normal colonic epithelial cells and p53-/- colon cancer cells. Finally, significant reduction in tumor volume in a xenograft mouse model in response to UBXN2A expression was verified in vivo. Our results introduce UBXN2A as a home defense response protein, which can reconstitute inactive p53-dependent apoptotic pathways. Inhibition of mot-2-p53 interaction by UBXN2A is an attractive therapeutic strategy in mot-2-elevated tumors.
Collapse
Affiliation(s)
- S Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - A Abdullah
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - D A Boudreau
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - R K Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - B K Gupta
- Department of Pharmaceutical Sciences, Cancer Research Center, University of Tennessee Health Science Center, 19S Manassas Avenue, Memphis, TN, USA
| | - X Wang
- Departments of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - H Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - E H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - D Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - C Telleria
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - L Huang
- Departments of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - S C Chauhan
- Department of Pharmaceutical Sciences, Cancer Research Center, University of Tennessee Health Science Center, 19S Manassas Avenue, Memphis, TN, USA
| | - K Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| |
Collapse
|
31
|
Kamarehei M, Yazdanparast R, Aghazadeh S. Curcumin Protects SK-N-MC Cells from H<sub>2</sub>O<sub>2</sub>-Induced Cell Death by Modulation of Notch Signaling Pathway. CELLBIO 2014; 03:72-86. [DOI: 10.4236/cellbio.2014.32008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
|
32
|
Couture O, Lombardi E, Davis K, Hays E, Chandar N. Gene expression profiles resulting from stable loss of p53 mirrors its role in tissue differentiation. PLoS One 2013; 8:e82494. [PMID: 24312426 PMCID: PMC3842970 DOI: 10.1371/journal.pone.0082494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/25/2013] [Indexed: 01/24/2023] Open
Abstract
The tumor suppressor gene p53 is involved in a variety of cellular activities such as cellular stress responses, cell cycle regulation and differentiation. In our previous studies we have shown p53’s transcription activating role to be important in osteoblast differentiation. There is still a debate in the literature as to whether p53 inhibits or promotes differentiation. We have found p53 heterozygous mice to show a p53 dependency on some bone marker gene expression that is absent in knockout mice. Mice heterozygous for p53 also show a higher incidence of osteosarcomas than p53 knockout mice. This suggests that p53 is able to modify the environment within osteoblasts. In this study we compare changes in gene expression resulting after either a transient or stable reduction in p53. Accordingly we reduced p53 levels transiently and stably in C2C12 cells, which are capable of both myoblast and osteoblast differentiation, and compared the changes in gene expression of candidate genes regulated by the p53 pathway. Using a PCR array to assay for p53 target genes, we have found different expression profiles when comparing stable versus transient knockdown of p53. As expected, several genes with profound changes after transient p53 loss were related to apoptosis and cell cycle regulation. In contrast, stable p53 loss produced a greater change in MyoD and other transcription factors with tissue specific roles, suggesting that long term loss of p53 affects tissue homeostasis to a greater degree than changes resulting from acute loss of p53. These differences in gene expression were validated by measuring promoter activity of different pathway specific genes involved in differentiation. These studies suggest that an important role for p53 is context dependent, with a stable reduction in p53 expression affecting normal tissue physiology more than acute loss of p53.
Collapse
Affiliation(s)
- Oliver Couture
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Eric Lombardi
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Kendra Davis
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Emily Hays
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Nalini Chandar
- Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Candy PA, Phillips MR, Redfern AD, Colley SM, Davidson JA, Stuart LM, Wood BA, Zeps N, Leedman PJ. Notch-induced transcription factors are predictive of survival and 5-fluorouracil response in colorectal cancer patients. Br J Cancer 2013; 109:1023-30. [PMID: 23900217 PMCID: PMC3749585 DOI: 10.1038/bjc.2013.431] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/29/2013] [Accepted: 07/04/2013] [Indexed: 12/15/2022] Open
Abstract
Background: The purpose of this study was to evaluate the expression of Notch-induced transcription factors (NTFs) HEY1, HES1 and SOX9 in colorectal cancer (CRC) patients to determine their clinicopathologic and prognostic significance. Methods: Levels of HEY1, HES1 and SOX9 protein were measured by immunohistochemistry in a nonmalignant and malignant tissue microarray of 441 CRC patients, and the findings correlated with pathologic, molecular and clinical variables. Results: The NTFs HEY1, HES1 and SOX9 were overexpressed in tumours relative to colonic mucosa (OR=3.44, P<0.0001; OR=7.40, P<0.0001; OR=4.08 P<0.0001, respectively). HEY1 overexpression was a negative prognostic factor for all CRC patients (HR=1.29, P=0.023) and strongly correlated with perineural and vascular invasion and lymph node (LN) metastasis. In 5-fluorouracil (5-FU)-treated patients, the tumour overexpression of SOX9 correlated with markedly poorer survival (HR=8.72, P=0.034), but had no predictive effect in untreated patients (HR=0.70, P=0.29). When HEY1, HES1 and SOX9 expression were combined to predict survival with chemotherapy, in treated patients there was an additive increase in the risk of death with each NTF overexpressed (HR=2.09, P=0.01), but no prognostic import in the untreated patient group (HR=0.74, P=0.19). Conclusion: The present study is the first to discover that HEY1 overexpression correlates with poorer outcome in CRC, and NTF expression is predictive of CRC patient survival with 5-FU chemotherapy. If confirmed in future studies, testing of NTF expression has the potential to enter routine pathological practice for the selection of patients to undergo chemotherapy alone or in combination with Notch inhibitors.
Collapse
Affiliation(s)
- P A Candy
- Laboratory for Cancer Medicine, University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Western Australia 6000, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alberi L, Hoey SE, Brai E, Scotti AL, Marathe S. Notch signaling in the brain: in good and bad times. Ageing Res Rev 2013; 12:801-14. [PMID: 23570941 DOI: 10.1016/j.arr.2013.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/16/2013] [Accepted: 03/22/2013] [Indexed: 01/13/2023]
Abstract
Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.
Collapse
Affiliation(s)
- Lavinia Alberi
- Unit of Anatomy, Department of Medicine, University of Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
Kapasa M, Vlachakis D, Kostadima M, Sotiropoulou G, Kossida S. Towards the elucidation of the regulatory network guiding the insulin producing cells’ differentiation. Genomics 2012; 100:212-21. [DOI: 10.1016/j.ygeno.2012.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/21/2012] [Accepted: 07/05/2012] [Indexed: 11/26/2022]
|
36
|
López-Mateo I, Villaronga MÁ, Llanos S, Belandia B. The transcription factor CREBZF is a novel positive regulator of p53. Cell Cycle 2012; 11:3887-95. [PMID: 22983008 DOI: 10.4161/cc.22133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
CREBZF is a member of the mammalian ATF/CREB family of transcription factors. Here, we describe a novel functional interaction between CREBZF and the tumor suppressor p53. CREBZF was identified in a yeast two-hybrid screen using HEY1, recently characterized as an indirect p53 activator, as bait. CREBZF interacts in vitro with both HEY1 and p53, and CREBZF expression stabilizes and activates p53. Moreover, CREBZF cooperates synergistically with HEY1 to enhance p53 transcriptional activity. On the other hand, partial depletion of endogenous CREBZF diminishes p53 protein levels and inhibits HEY1-mediated activation of p53. CREBZF-positive effects on p53 signaling may reflect, at least in part, an observed induction of posttranslational modifications in p53 known to prevent its degradation. CREBZF expression protects HCT116 cells from UV radiation-induced cell death. In addition, CREBZF expression confers sensitivity to 5-fluorouracil, a p53-activating chemotherapeutic drug. Our study suggests that CREBZF may participate in the modulation of p53 tumor suppressor function.
Collapse
Affiliation(s)
- Irene López-Mateo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma. PLoS One 2012; 7:e40521. [PMID: 22905093 PMCID: PMC3414492 DOI: 10.1371/journal.pone.0040521] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 06/11/2012] [Indexed: 12/29/2022] Open
Abstract
Background Pemetrexed, a multi-folate inhibitor combined with a platinum compound is the first-line treatment of malignant mesothelioma, but median survival is still one year. Intrinsic and acquired resistance to pemetrexed is common, but its biological basis is obscure. Here we report for the first time a genome-wide profile of acquired resistance in the tumour from an exceptional case with advanced pleural mesothelioma and almost six years survival after 39 cycles of second-line pemetrexed/carboplatin treatment. Methodology and Principal Findings Genome-wide analysis with Illumina BeadChip Kit of 25,000 genes was performed on mRNA from pre-treatment and post-resistance biopsies from this individual as well on case and control samples from our previously published study (in total 17 samples). Cell specific expression of proteins encoded by selected genes were analysed by immunohistochemistry. Serial serum levels of CA125, CYFRA21-1 and SMRP levels were examined. TS protein, the main target of pemetrexed was overexpressed. Proteins and genes related to DNA damage response, elongation and telomere extension and repair related directly and indirectly to platinum resistance were overexpressed, as the CHK1 protein and the genes CHEK2, LIG3, POLD1, POLA2, FANCD2, PRPF19, RECQ5 respectively, the last two not previously described in mesothelioma. We observed a down-regulation of leukocyte transendothelial migration and cell adhesion molecules pathways. Silencing of NT5C in two mesothelioma cell lines did not sensitize the cells to Pemetrexed. Proposed resistance markers are TS, KRT7/ CK7, TYMP/ thymidine phosphorylase and down-regulated SPARCL1 and CDKN1B. Moreover, comparison of the primary expression of the sensitive versus a primary resistant case showed multi-fold overexpressed DNA repair, cell cycle, cytokinesis, and spindle formation in the latter. Serum CA125 and SMRP reflected the clinical and radiological course and tumour burden. Conclusions Genome-wide microarray of mesothelioma pre- and post-resistance biopsies indicated a novel resistance signature to pemetrexed/carboplatin that deserve validation in a larger cohort.
Collapse
|
38
|
Sichero L, Sobrinho JS, Villa LL. Identification of novel cellular transcription factors that regulate early promoters of human papillomavirus types 18 and 16. J Infect Dis 2012; 206:867-74. [PMID: 22740717 DOI: 10.1093/infdis/jis430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The long control region (LCR) of human papillomavirus (HPV) regulates early gene transcription by interaction with several viral and cellular transcription factors (TFs). METHODS To identify novel TFs that could influence early expression of HPV type 18 (HPV-18) and HPV type 16 (HPV-16), a high-throughput transfection array was used. RESULTS Among the 704 TFs tested, 28 activated and 36 inhibited the LCR of HPV-18 by more than 2-fold. For validation, C33 cells were cotransfected with increasing amounts of selected TF expression plasmids in addition to LCR-luciferase vectors of different molecular variants of HPV-18 and HPV-16. Among the TFs identified, only GATA3, FOXA1, and MYC have putative binding sites within the LCR sequence, as indicated using the TRANSFAC database. Furthermore, we demonstrated FOXA1 and MYC in vivo binding to the LCR of both HPV types using chromatin immunoprecipitation assay. CONCLUSIONS We identified new TFs implicated in the regulation of the LCR of HPV-18 and HPV-16. Many of these factors are mutated in cancer or are putative cancer biomarkers and could potentially be involved in the regulation of HPV early gene expression.
Collapse
Affiliation(s)
- Laura Sichero
- Department of Virology, Ludwig Institute for Cancer Research, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
39
|
Cheng C, Haasdijk R, Tempel D, van de Kamp EHM, Herpers R, Bos F, Den Dekker WK, Blonden LA, de Jong R, Bürgisser PE, Chrifi I, Biessen EA, Dimmeler S, Schulte-Merker S, Duckers HJ. Endothelial Cell–Specific FGD5 Involvement in Vascular Pruning Defines Neovessel Fate in Mice. Circulation 2012; 125:3142-58. [DOI: 10.1161/circulationaha.111.064030] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Caroline Cheng
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Remco Haasdijk
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Dennie Tempel
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Esther H. M. van de Kamp
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Robert Herpers
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Frank Bos
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Wijnand K. Den Dekker
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Lau A.J. Blonden
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Renate de Jong
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Petra E. Bürgisser
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Ihsan Chrifi
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Erik A.L. Biessen
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Stefanie Dimmeler
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Stefan Schulte-Merker
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| | - Henricus J. Duckers
- From the Molecular Cardiology Laboratory, Experimental Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (C.C. R. Haasdijk, E.H.M.v.d.K., R. Herpers, F.B., W.K.D.D., L.A.J.B., R.d.J., P.E.B., I.C., H.J.D.); Hubrecht Institute-KNAW & UMC Utrecht, the Netherlands (R. Herpers, F.B., S.S.-M.); Experimental Vascular Pathology Group, Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (E.A.L.B.); and Molecular Cardiology,
| |
Collapse
|
40
|
|
41
|
Negative regulation of Odd-skipped related 2 by TGF-beta achieves the induction of cellular migration and the arrest of cell cycle. Biochem Biophys Res Commun 2012; 421:696-700. [PMID: 22542937 DOI: 10.1016/j.bbrc.2012.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 11/24/2022]
Abstract
The transcription factor Odd-skipped related 2 (Osr2) functions in craniofacial and limb developments in mammals. We previously found that Osr2 gene expression is regulated by intracellular transcription factors such as Runx2, and C/EBP, whereas it remains unclear if extracellular factors would functionally regulate the Osr2 expression. In this study, we showed that TGF-β down-regulated the Osr2 expression, which is involved in regulation of cellular migration and cell cycle. Furthermore, the down-regulation was found to be mediated by Smad3/Smad4 and p38/ATF2 signaling molecules. The Osr2 promoter was shown to possess Smad3/4 binding element and ATF2 binding element between -647 and -64 of promoter. TGF-β induced cellular migration in C3H10T1/2 cells and arrested cell cycle at G1 phase in NMuMG-Fucci cells. In contrast, the Osr2 reduced the migration and also stimulated the cell-cycle progression. These results suggest that Osr2 is involved in TGF-β regulating cell migration and cell cycle via a Smad3-ATF2 transcriptional complex mediating pathway.
Collapse
|
42
|
Cairney CJ, Bilsland AE, Evans TRJ, Roffey J, Bennett DC, Narita M, Torrance CJ, Keith WN. Cancer cell senescence: a new frontier in drug development. Drug Discov Today 2012; 17:269-76. [PMID: 22314100 DOI: 10.1016/j.drudis.2012.01.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 12/21/2022]
Abstract
Senescence forms a universal block to tumorigenesis which impacts on all hallmarks of cancer, making it an attractive target for drug discovery. Therefore a strategy must be devised to focus this broad potential into a manageable drug discovery programme. Several issues remain to be addressed including the lack of robust senescence-inducing compounds and causally related biomarkers to measure cellular response. Here, we review the latest progress in translating senescence as a target for cancer therapy and some promising approaches to drug and biomarker discovery. Finally, we discuss the potential application of a senescence-induction therapy in a clinical setting.
Collapse
Affiliation(s)
- Claire J Cairney
- Institute of Cancer Sciences, University of Glasgow, CRUK Beatson Laboratories, Bearsden, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Notch and the p53 clan of transcription factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:223-40. [PMID: 22399351 DOI: 10.1007/978-1-4614-0899-4_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Notch 1 to 4 and the p53 clan, comprising p53, p63 and p73 plus numerous isoforms thereof, are gene transcription regulators that are critically involved in various aspects of cell differentiation, stem cell maintenance and tumour suppression. It is thus perhaps no surprise that extensive crosstalk between the Notch and p53 pathways is implemented during these processes. Typically, Notch together with p53 and even more so with transactivation competent p63 or p73, drives differentiation, whereas Notch combined with transactivation impaired p63 or p73 helps maintain undifferentiated stem cell compartments. With regard to cancer, it seems that Notch acts as a tumour suppressor in cellular contexts where Notch signalling supports p53 activation and both together can bring on its way an anti-proliferative programme of differentiation, senescence or apoptosis. In contrast, Notch often acts as an oncoprotein in contexts where it suppresses p53 activation and activity and where differentiation is unwanted. It is no accident that the latter pathways-the inhibition by Notch of p53 and differentiation-are operative in somatic stem cells as well as in tumour cells.
Collapse
|
44
|
Okada H, Uezu A, Mason FM, Soderblom EJ, Moseley MA, Soderling SH. SH3 domain-based phototrapping in living cells reveals Rho family GAP signaling complexes. Sci Signal 2011; 4:rs13. [PMID: 22126966 DOI: 10.1126/scisignal.2002189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rho family GAPs [guanosine triphosphatase (GTPase) activating proteins] negatively regulate Rho family GTPase activity and therefore modulate signaling events that control cytoskeletal dynamics. The spatial distribution of these GAPs and their specificity toward individual GTPases are controlled by their interactions with various proteins within signaling complexes. These interactions are likely mediated through the Src homology 3 (SH3) domain, which is abundant in the Rho family GAP proteome and exhibits a micromolar binding affinity, enabling the Rho family GAPs to participate in transient interactions with multiple binding partners. To capture these elusive GAP signaling complexes in situ, we developed a domain-based proteomics approach, starting with in vivo phototrapping of SH3 domain-binding proteins and the mass spectrometry identification of associated proteins for nine representative Rho family GAPs. After the selection of candidate binding proteins by cluster analysis, we performed peptide array-based high-throughput in vitro binding assays to confirm the direct interactions and map the SH3 domain-binding sequences. We thereby identified 54 SH3-mediated binding interactions (including 51 previously unidentified ones) for nine Rho family GAPs. We constructed Rho family GAP interactomes that provided insight into the functions of these GAPs. We further characterized one of the predicted functions for the Rac-specific GAP WRP and identified a role for WRP in mediating clustering of the postsynaptic scaffolding protein gephyrin and the GABA(A) (γ-aminobutyric acid type A) receptor at inhibitory synapses.
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
45
|
Orphan nuclear receptor PNR/NR2E3 stimulates p53 functions by enhancing p53 acetylation. Mol Cell Biol 2011; 32:26-35. [PMID: 22025681 DOI: 10.1128/mcb.05513-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since inactivation of tumor suppressor p53 functions is one of the most common features of human cancer cells, restoring p53 expression and activity is an important focus in cancer therapy. Here we report identification of photoreceptor-specific nuclear receptor (PNR)/NR2E3 as a positive regulator of p53 in a high-throughput genetic screen. In HeLa cells, PNR stimulated p53-responsive promoters in a p53-dependent fashion and induced apoptosis in several cell types. PNR also increased p53 protein stability and specific activity as a transcriptional activator. Our studies of the underlying mechanisms showed that PNR forms complexes with p53 and the acetyltransferase p300, stimulates p53 acetylation, and increases the expression of a subset of p53 target genes. Furthermore, PNR significantly boosted actinomycin D-stimulated p53 acetylation. The unique mechanisms by which PNR stimulates p53 acetylation and functions define this orphan nuclear receptor as a potentially valuable target and tool in p53-associated cancer therapy and offer new insights into the roles of PNR mutation in retinal diseases.
Collapse
|
46
|
Garg P, Jeppsson S, Dalmasso G, Ghaleb AM, McConnell BB, Yang VW, Gewirtz AT, Merlin D, Sitaraman SV. Notch1 regulates the effects of matrix metalloproteinase-9 on colitis-associated cancer in mice. Gastroenterology 2011; 141:1381-92. [PMID: 21723221 PMCID: PMC3186860 DOI: 10.1053/j.gastro.2011.06.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease increases the risks of colon cancer and colitis-associated cancer (CAC). Epithelial cell-derived matrix metalloproteinase (MMP)-9 mediates inflammation during acute colitis and the cleavage and activation of the transcription factor Notch1, which prevents differentiation of progenitor cells into goblet cells. However, MMP-9 also protects against the development of CAC and acts as a tumor suppressor. We investigated the mechanisms by which MMP-9 protects against CAC in mice. METHODS C57/B6 wild-type mice were given a single dose of azoxymethane and 2 cycles of dextran sulfate sodium (DSS). Mice were also given the γ-secretase inhibitor difluorophenacetyl-l-alanyl-S-phenylglycine t-butyl ester (DAPT) or dimethyl sulfoxide (control) during each DSS cycle; they were killed on day 56. We analyzed embryonic fibroblasts isolated from wild-type and MMP-9-/- mice and HCT116 cells that were stably transfected with MMP-9. RESULTS Wild-type mice were more susceptible to CAC following inhibition of Notch1 by DAPT, shown by increased numbers of tumors and level of dysplasia compared with controls. Inhibition of Notch1 signaling significantly reduced protein levels of active Notch1, p53, p21WAF1/Cip1, Bax-1, active caspase-3, as well as apoptosis, compared with controls. Similar results were observed in transgenic HCT116 cells and embryonic fibroblasts from MMP-9-/- mice on γ-radiation-induced damage of DNA. CONCLUSIONS MMP-9 mediates Notch1 signaling via p53 to regulate apoptosis, cell cycle arrest, and inflammation. By these mechanisms, it might prevent CAC.
Collapse
Affiliation(s)
- Pallavi Garg
- Division of Digestive Diseases, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | - Sabrina Jeppsson
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA
| | - Guillaume Dalmasso
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA
| | - Amr M. Ghaleb
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA
| | - Beth B. McConnell
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA
| | - Vincent W. Yang
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA
| | - Andrew T. Gewirtz
- Department of Pathology, Emory University School of Medicine, Atlanta, GA
| | - Didier Merlin
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA,Atlanta Veteran Affairs Medical Center, Atlanta, GA
| | - Shanthi V. Sitaraman
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
47
|
Škalamera D, Ranall MV, Wilson BM, Leo P, Purdon AS, Hyde C, Nourbakhsh E, Grimmond SM, Barry SC, Gabrielli B, Gonda TJ. A high-throughput platform for lentiviral overexpression screening of the human ORFeome. PLoS One 2011; 6:e20057. [PMID: 21629697 PMCID: PMC3101218 DOI: 10.1371/journal.pone.0020057] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/24/2011] [Indexed: 11/22/2022] Open
Abstract
In response to the growing need for functional analysis of the human genome, we have developed a platform for high-throughput functional screening of genes overexpressed from lentiviral vectors. Protein-coding human open reading frames (ORFs) from the Mammalian Gene Collection were transferred into lentiviral expression vector using the highly efficient Gateway recombination cloning. Target ORFs were inserted into the vector downstream of a constitutive promoter and upstream of an IRES controlled GFP reporter, so that their transfection, transduction and expression could be monitored by fluorescence. The expression plasmids and viral packaging plasmids were combined and transfected into 293T cells to produce virus, which was then used to transduce the screening cell line. We have optimised the transfection and transduction procedures so that they can be performed using robotic liquid handling systems in arrayed 96-well microplate, one-gene-per-well format, without the need to concentrate the viral supernatant. Since lentiviruses can infect both dividing and non-dividing cells, this system can be used to overexpress human ORFs in a broad spectrum of experimental contexts. We tested the platform in a 1990 gene pilot screen for genes that can increase proliferation of the non-tumorigenic mammary epithelial cell line MCF-10A after removal of growth factors. Transduced cells were labelled with the nucleoside analogue 5-ethynyl-2′-deoxyuridine (EdU) to detect cells progressing through S phase. Hits were identified using high-content imaging and statistical analysis and confirmed with vectors using two different promoters (CMV and EF1α). The screen demonstrates the reliability, versatility and utility of our screening platform, and identifies novel cell cycle/proliferative activities for a number of genes.
Collapse
Affiliation(s)
- Dubravka Škalamera
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Elevated transcript levels from the MDM2 P1 promoter and low p53 transcript levels are associated with poor prognosis in human pancreatic ductal adenocarcinoma. Pancreas 2011; 40:265-70. [PMID: 21404460 DOI: 10.1097/mpa.0b013e3181f95104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED OBJECTDIVES: Mouse double minute 2 is a key negative regulator of the p53 protein, a central node in the mediation of tumor suppression. The MDM2 gene contains 2 differently regulated promoters, MDM2-P1 and MDM2-P2, which differ strongly in their biological and clinical importance. METHODS We assess the clinical significance of the expression of messenger RNA (mRNA) transcripts originating from both MDM2 promoters, measured with quantitative reverse transcription polymerase chain reaction in microdissected tissues from 57 patients with pancreatic ductal adenocarcinoma (PDAC). Furthermore, we determine the clinical relevance of p53 mRNA transcript expression and incorporate the somatic p53 mutational status into our analyses. RESULTS Interestingly, elevated transcript levels from the P1 promoter, but not the P2 promoter, associate significantly with up to 6.3-fold increased relative risk for tumor-related death (Cox multivariate analysis: P = 0.013). Furthermore, transcripts originating from both MDM2 promoters are found to correlate significantly with p53 mRNA levels (up to r = 0.315; P = 0.017). In addition, low p53 mRNA expression associates with worse PDAC prognosis (relative risk = 2.28; P = 0.021). CONCLUSIONS This study presents the first differentiated analysis of the MDM2-P1, MDM2-P2, and p53 transcript expression in human PDAC and demonstrates the significant clinical implications of those transcripts. Furthermore, it suggests an additional facet in the regulation of MDM2 via its P1 promoter in this malignancy.
Collapse
|
49
|
Ghahramani Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G, Scherer SW. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res 2011; 1380:85-97. [DOI: 10.1016/j.brainres.2010.09.046] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 01/10/2023]
|
50
|
Bonev B, Pisco A, Papalopulu N. MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 2011; 20:19-32. [PMID: 21238922 PMCID: PMC3361082 DOI: 10.1016/j.devcel.2010.11.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/11/2010] [Accepted: 11/19/2010] [Indexed: 12/19/2022]
Abstract
Neural progenitors self-renew and generate neurons throughout the central nervous system. Here, we uncover an unexpected regional specificity in the properties of neural progenitor cells, revealed by the function of a microRNA—miR-9. miR-9 is expressed in neural progenitors, and its knockdown results in an inhibition of neurogenesis along the anterior-posterior axis. However, the underlying mechanism differs—in the hindbrain, progenitors fail to exit the cell cycle, whereas in the forebrain they undergo apoptosis, counteracting the proliferative effect. Among several targets, we functionally identify hairy1 as a primary target of miR-9, regulated at the mRNA level. hairy1 mediates the effects of miR-9 on proliferation, through Fgf8 signaling in the forebrain and Wnt signaling in the hindbrain, but affects apoptosis only in the forebrain, via the p53 pathway. Our findings show a positional difference in the responsiveness of progenitors to miR-9 depletion, revealing an underlying divergence of their properties.
Collapse
Affiliation(s)
- Boyan Bonev
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|