1
|
Displacement of the Na +/K + pump's transmembrane domains demonstrates conserved conformational changes in P-type 2 ATPases. Proc Natl Acad Sci U S A 2021; 118:2019317118. [PMID: 33597302 DOI: 10.1073/pnas.2019317118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cellular survival requires the ion gradients built by the Na+/K+ pump, an ATPase that alternates between two major conformations (E1 and E2). Here we use state-specific engineered-disulfide cross-linking to demonstrate that transmembrane segment 2 (M2) of the pump's α-subunit moves in directions that are inconsistent with distances observed in existing crystal structures of the Na+/K+ pump in E1 and E2. We characterize this movement with voltage-clamp fluorometry in single-cysteine mutants. Most mutants in the M1-M2 loop produced state-dependent fluorescence changes upon labeling with tetramethylrhodamine-6-maleimide (TMRM), which were due to quenching by multiple endogenous tryptophans. To avoid complications arising from multiple potential quenchers, we analyzed quenching of TMRM conjugated to R977C (in the static M9-M10 loop) by tryptophans introduced, one at a time, in M1-M2. This approach showed that tryptophans introduced in M2 quench TMRM only in E2, with D126W and L130W on the same helix producing the largest fluorescence changes. These observations indicate that M2 moves outward as Na+ is deoccluded from the E1 conformation, a mechanism consistent with cross-linking results and with proposals for other P-type 2 ATPases.
Collapse
|
2
|
Li LL, Ke XY, Jiang C, Qin SQ, Liu YY, Xian XH, Liu LZ, He JC, Chen YM, An HF, Sun N, Hu YH, Wang Y, Zhang LN, Lu QY. Na + , K + -ATPase participates in the protective mechanism of rat cerebral ischemia-reperfusion through the interaction with glutamate transporter-1. Fundam Clin Pharmacol 2021; 35:870-881. [PMID: 33481320 DOI: 10.1111/fcp.12652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Glutamate excitotoxicity in cerebral ischemia/reperfusion is an important cause of neurological damage. The aim of this study was to investigate the mechanism of Na+, K+-ATPase (NKA) involved in l ow concentration of ouabain (Oua, activating NKA)-induced protection of rat cerebral ischemia-reperfusion injury. The 2,3,5-triphenyltetrazolium chloride (TTC) staining and neurological deficit scores (NDS) were performed to evaluate rat cerebral injury degree respectively at 2 h, 6 h, 1 d and 3 d after reperfusion of middle cerebral artery occlusion (MCAO) 2 h in rats. NKA α1/α2 subunits and glutamate transporter-1 (GLT-1) protein expression were investigated by Western blotting. The cerebral infarct volume ratio were evidently decreased in Oua group vs MCAO/R group at 1 d and 3 d after reperfusion of 2 h MCAO in rats (*p < 0.05 ). Moreover, NDS were not significantly different (p > 0.05 ). NKA α1 was decreased at 6 h and 1 d after reperfusion of 2 h MCAO in rats, and was improved in Oua group. However, NKA α1 and α2 were increased at 3 d after reperfusion of 2 h MCAO in rats, and was decreased in Oua group. GLT-1 was decreased at 6 h, 1 d and 3 d after reperfusion of 2 h MCAO in rats, and was improved in Oua group. These data indicated that l ow concentration of Oua could improve MCAO/R injury through probably changing NKA α1/α2 and GLT-1 protein expression, then increasing GLT-1 function and promoting Glu transport and absorption, which could be useful to determine potential therapeutic strategies for patients with stroke. Low concentration of Oua improved rat MCAO/R injury via NKA α1/α2 and GLT-1.
Collapse
Affiliation(s)
- Lin-Lin Li
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Xue-Ying Ke
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Chen Jiang
- Forensic Medical College, Hebei Medical University, Hebei, China
| | - Shi-Qi Qin
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Yang-Yang Liu
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, Hebei, China
| | - Li-Zhe Liu
- Department of Pathophysiology, Hebei Medical University, Hebei, China
| | - Jin-Chen He
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Ya-Meng Chen
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Hong-Fei An
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Nan Sun
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Yue-Hua Hu
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Yan Wang
- North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Li-Nan Zhang
- Department of Pathophysiology, Hebei Medical University, Hebei, China
| | - Qi-Yong Lu
- Department of Neurosurgery, Hengshui Fifth People's Hospital, Hebei, China
| |
Collapse
|
3
|
Moreno C, Yano S, Bezanilla F, Latorre R, Holmgren M. Transient Electrical Currents Mediated by the Na +/K +-ATPase: A Tour from Basic Biophysics to Human Diseases. Biophys J 2020; 119:236-242. [PMID: 32579966 PMCID: PMC7376075 DOI: 10.1016/j.bpj.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 01/14/2023] Open
Abstract
The Na+/K+-ATPase is a chemical molecular machine responsible for the movement of Na+ and K+ ions across the cell membrane. These ions are moved against their electrochemical gradients, so the protein uses the free energy of ATP hydrolysis to transport them. In fact, the Na+/K+-ATPase is the single largest consumer of energy in most cells. In each pump cycle, the protein sequentially exports 3Na+ out of the cell, then imports 2K+ into the cell at an approximate rate of 200 cycles/s. In each half cycle of the transport process, there is a state in which ions are stably trapped within the permeation pathway of the protein by internal and external gates in their closed states. These gates are required to open alternately; otherwise, passive ion diffusion would be a wasteful end of the cell's energy. Once one of these gates open, ions diffuse from their binding sites to the accessible milieu, which involves moving through part of the electrical field across the membrane. Consequently, ions generate transient electrical currents first discovered more than 30 years ago. They have been studied in a variety of preparations, including native and heterologous expression systems. Here, we review three decades' worth of work using these transient electrical signals to understand the kinetic transitions of the movement of Na+ and K+ ions through the Na+/K+-ATPase and propose the significance that this work might have to the understanding of the dysfunction of human pump orthologs responsible for some newly discovered neurological pathologies.
Collapse
Affiliation(s)
- Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Sho Yano
- Medical Genetics and Genomic Medicine Training Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Sciences, Chicago, Illinois
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
4
|
Cowgill J, Chanda B. The contribution of voltage clamp fluorometry to the understanding of channel and transporter mechanisms. J Gen Physiol 2019; 151:1163-1172. [PMID: 31431491 PMCID: PMC6785729 DOI: 10.1085/jgp.201912372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cowgill and Chanda discuss the importance of voltage clamp fluorometry to the functional interpretation of ion channel and transporter structures. Key advances in single particle cryo-EM methods in the past decade have ushered in a resolution revolution in modern biology. The structures of many ion channels and transporters that were previously recalcitrant to crystallography have now been solved. Yet, despite having atomistic models of many complexes, some in multiple conformations, it has been challenging to glean mechanistic insight from these structures. To some extent this reflects our inability to unambiguously assign a given structure to a particular physiological state. One approach that may allow us to bridge this gap between structure and function is voltage clamp fluorometry (VCF). Using this technique, dynamic conformational changes can be measured while simultaneously monitoring the functional state of the channel or transporter. Many of the important papers that have used VCF to probe the gating mechanisms of channels and transporters have been published in the Journal of General Physiology. In this review, we provide an overview of the development of VCF and discuss some of the key problems that have been addressed using this approach. We end with a brief discussion of the outlook for this technique in the era of high-resolution structures.
Collapse
Affiliation(s)
- John Cowgill
- Graduate Program in Biophysics, University of Wisconsin, Madison, WI.,Department of Neuroscience, University of Wisconsin, Madison, WI
| | - Baron Chanda
- Department of Neuroscience, University of Wisconsin, Madison, WI .,Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| |
Collapse
|
5
|
Priest M, Bezanilla F. Functional Site-Directed Fluorometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 869:55-76. [PMID: 26381940 DOI: 10.1007/978-1-4939-2845-3_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Initially developed in the mid-1990s to examine the conformational changes of the canonical Shaker voltage-gated potassium channel, functional site-directed fluorometry has since been expanded to numerous other voltage-gated and ligand-gated ion channels as well as transporters, pumps, and other integral membrane proteins. The power of functional site-directed fluorometry, also known as voltage-clamp fluorometry, lies in its ability to provide information on the conformational changes in a protein in response to changes in its environment with high temporal resolution while simultaneously monitoring the function of that protein. Over time, applications of site-directed fluorometry have expanded to examine the interactions of ion channels with modulators ranging from membrane potential to ligands to accessory protein subunits to lipids. In the future, the range of questions answerable by functional site-directed fluorometry and its interpretive power should continue to improve, making it an even more powerful technique for dissecting the conformational dynamics of ion channels and other membrane proteins.
Collapse
Affiliation(s)
- Michael Priest
- Department of Biochemistry and Molecular Biology and Committee on Neurobiology, University of Chicago, Gordon Center for Integrative Science W229M, 929 East 57th Street, 60637, Chicago, IL, USA.
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology and Committee on Neurobiology, University of Chicago, Gordon Center for Integrative Science W229M, 929 East 57th Street, 60637, Chicago, IL, USA.
| |
Collapse
|
6
|
Dempski RE. Voltage Clamp Fluorometry of P-Type ATPases. Methods Mol Biol 2016; 1377:281-291. [PMID: 26695040 PMCID: PMC4717471 DOI: 10.1007/978-1-4939-3179-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Voltage clamp fluorometry has become a powerful tool to compare partial reactions of P-type ATPases such as the Na(+),K(+)-ATPase and H(+),K(+)-ATPase with conformational dynamics of these ion pumps. Here, we describe the methodology to heterologously express membrane proteins in X. laevis oocytes and site-specifically label these proteins with one or more fluorophores. Fluorescence changes are measured simultaneously with current measurements under two-electrode voltage clamp conditions.
Collapse
Affiliation(s)
- Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
7
|
Zhu W, Varga Z, Silva JR. Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:3-17. [PMID: 26724572 DOI: 10.1016/j.pbiomolbio.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/11/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models.
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zoltan Varga
- MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Hungary
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Watson MA, Cockroft SL. An Autonomously Reciprocating Transmembrane Nanoactuator. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Matthew A. Watson
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
9
|
Watson MA, Cockroft SL. An Autonomously Reciprocating Transmembrane Nanoactuator. Angew Chem Int Ed Engl 2015; 55:1345-9. [DOI: 10.1002/anie.201508845] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/09/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Matthew A. Watson
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
10
|
Derrer C, Wittek A, Bamberg E, Carpaneto A, Dreyer I, Geiger D. Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1. THE PLANT CELL 2013; 25:3010-21. [PMID: 23964025 PMCID: PMC3784595 DOI: 10.1105/tpc.113.113621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Proton-driven Suc transporters allow phloem cells of higher plants to accumulate Suc to more than 1 M, which is up to ~1000-fold higher than in the surrounding extracellular space. The carrier protein can accomplish this task only because proton and Suc transport are tightly coupled. This study provides insights into this coupling by resolving the first step in the transport cycle of the Suc transporter SUT1 from maize (Zea mays). Voltage clamp fluorometry measurements combining electrophysiological techniques with fluorescence-based methods enable the visualization of conformational changes of SUT1 expressed in Xenopus laevis oocytes. Using the Suc derivate sucralose, binding of which hinders conformational changes of SUT1, the association of protons to the carrier could be dissected from transport-associated movements of the protein. These combined approaches enabled us to resolve the binding of protons to the carrier and its interrelationship with the alternating movement of the protein. The data indicate that the rate-limiting step of the reaction cycle is determined by the accessibility of the proton binding site. This, in turn, is determined by the conformational change of the SUT1 protein, alternately exposing the binding pockets to the inward and to the outward face of the membrane.
Collapse
Affiliation(s)
- Carmen Derrer
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
| | - Anke Wittek
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
| | - Ernst Bamberg
- Max-Plant-Institute for Biophysics, Department of Biophysical Chemistry, D-60438 Frankfurt/Main, Germany
| | - Armando Carpaneto
- Instituto di Biofisica–Consiglio Nazionale delle Richerche, I-16149 Genova, Italy
| | - Ingo Dreyer
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Campus de Montegancedo, E-28223 Pozuelo de Alarcón (Madrid), Spain
| | - Dietmar Geiger
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
- Address correspondence to
| |
Collapse
|
11
|
|
12
|
Dürr KL, Tavraz NN, Friedrich T. Control of gastric H,K-ATPase activity by cations, voltage and intracellular pH analyzed by voltage clamp fluorometry in Xenopus oocytes. PLoS One 2012; 7:e33645. [PMID: 22448261 PMCID: PMC3308979 DOI: 10.1371/journal.pone.0033645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/14/2012] [Indexed: 11/24/2022] Open
Abstract
Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting that cations reach the binding sites through a rather high-field intra- and a rather low-field extracellular access channel, with fractional electrical distances of ∼0.5 and ∼0.2, respectively.
Collapse
Affiliation(s)
| | | | - Thomas Friedrich
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Richards R, Dempski RE. Examining the conformational dynamics of membrane proteins in situ with site-directed fluorescence labeling. J Vis Exp 2011:2627. [PMID: 21673634 PMCID: PMC3197104 DOI: 10.3791/2627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two electrode voltage clamp electrophysiology (TEVC) is a powerful tool to investigate the mechanism of ion transport1 for a wide variety of membrane proteins including ion channels2, ion pumps3, and transporters4. Recent developments have combined site-specific fluorophore labeling alongside TEVC to concurrently examine the conformational dynamics at specific residues and function of these proteins on the surface of single cells. We will describe a method to study the conformational dynamics of membrane proteins by simultaneously monitoring fluorescence and current changes using voltage-clamp fluorometry. This approach can be used to examine the molecular motion of membrane proteins site-specifically following cysteine replacement and site-directed fluorophore labeling5,6. Furthermore, this method provides an approach to determine distance constraints between specific residues7,8. This is achieved by selectively attaching donor and acceptor fluorophores to two mutated cysteine residues of interest. In brief, these experiments are performed following functional expression of the desired protein on the surface of Xenopus leavis oocytes. The large surface area of these oocytes enables facile functional measurements and a robust fluorescence signal5. It is also possible to readily change the extracellular conditions such as pH, ligand or cations/anions, which can provide further information on the mechanism of membrane proteins4. Finally, recent developments have also enabled the manipulation of select internal ions following co-expression with a second protein9. Our protocol is described in multiple parts. First, cysteine scanning mutagenesis proceeded by fluorophore labeling is completed at residues located at the interface of the transmembrane and extracellular domains. Subsequent experiments are designed to identify residues which demonstrate large changes in fluorescence intensity (<5%)3 upon a conformational change of the protein. Second, these changes in fluorescence intensity are compared to the kinetic parameters of the membrane protein in order to correlate the conformational dynamics to the function of the protein10. This enables a rigorous biophysical analysis of the molecular motion of the target protein. Lastly, two residues of the holoenzyme can be labeled with a donor and acceptor fluorophore in order to determine distance constraints using donor photodestruction methods. It is also possible to monitor the relative movement of protein subunits following labeling with a donor and acceptor fluorophore.
Collapse
Affiliation(s)
- Ryan Richards
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute
| | | |
Collapse
|
14
|
Dürr KL, Seuffert I, Friedrich T. Deceleration of the E1P-E2P transition and ion transport by mutation of potentially salt bridge-forming residues Lys-791 and Glu-820 in gastric H+/K+-ATPase. J Biol Chem 2010; 285:39366-79. [PMID: 20921224 DOI: 10.1074/jbc.m110.133470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A lysine residue within the highly conserved center of the fifth transmembrane segment in P(IIC)-type ATPase α-subunits is uniquely found in H,K-ATPases instead of a serine in all Na,K-ATPase isoforms. Because previous studies suggested a prominent role of this residue in determining the electrogenicity of non-gastric H,K-ATPase and in pK(a) modulation of the proton-translocating residues in the gastric H,K-ATPases as well, we investigated its functional significance for ion transport by expressing several Lys-791 variants of the gastric H,K-ATPase in Xenopus oocytes. Although the mutant proteins were all detected at the cell surface, none of the investigated mutants displayed any measurable K(+)-induced stationary currents. In Rb(+) uptake measurements, replacement of Lys-791 by Arg, Ala, Ser, and Glu substantially impaired transport activity and reduced the sensitivity toward the E(2)-specific inhibitor SCH28080. Furthermore, voltage clamp fluorometry using a reporter site in the TM5/TM6 loop for labeling with tetra-methylrhodamine-6-maleimide revealed markedly changed fluorescence signals. All four investigated mutants exhibited a strong shift toward the E(1)P state, in agreement with their reduced SCH28080 sensitivity, and an about 5-10-fold decreased forward rate constant of the E(1)P ↔ E(2)P conformational transition, thus explaining the E(1)P shift and the reduced Rb(+) transport activity. When Glu-820 in TM6 adjacent to Lys-791 was replaced by non-charged or positively charged amino acids, severe effects on fluorescence signals and Rb(+) transport were also observed, whereas substitution by aspartate was less disturbing. These results suggest that formation of an E(2)P-stabilizing interhelical salt bridge is essential to prevent futile proton exchange cycles of H(+) pumping P-type ATPases.
Collapse
Affiliation(s)
- Katharina L Dürr
- Technical University of Berlin, Institute of Chemistry, Secr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| | | | | |
Collapse
|
15
|
Abstract
Macromolecules drive the complex behavior of neurons. For example, channels and transporters control the movements of ions across membranes, SNAREs direct the fusion of vesicles at the synapse, and motors move cargo throughout the cell. Understanding the structure, assembly, and conformational movements of these and other neuronal proteins is essential to understanding the brain. Developments in fluorescence have allowed the architecture and dynamics of proteins to be studied in real time and in a cellular context with great accuracy. In this review, we cover classic and recent methods for studying protein structure, assembly, and dynamics with fluorescence. These methods include fluorescence and luminescence resonance energy transfer, single-molecule bleaching analysis, intensity measurements, colocalization microscopy, electron transfer, and bimolecular complementation analysis. We present the principles of these methods, highlight recent work that uses the methods, and discuss a framework for interpreting results as they apply to molecular neurobiology.
Collapse
|
16
|
Gill S, Gill R, Liang S. Validation of a Rb+ uptake assay for the mouse embryonic stem cell-derived cardiomyocytes Na+, K+ ATPase. Assay Drug Dev Technol 2010; 8:114-7. [PMID: 20158437 DOI: 10.1089/adt.2009.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human Na+, K+ ATPase, an ATP-driven ion transporter, is an emerging drug target for heart-related conditions. Three types of assays including purified enzyme, radiotracer flux, and cold Rb+ flux have been used to determine the activity of this transporter. As an alternative to primary cardiomyocytes, mouse embryonic stem cells-derived cardiomyocytes with functional expression of essential cardiac ion channels were used in the present studies. The results on its pharmacology with digitoxin and ouabain, the 2 well-known cardioglycosides, imply that these cardiomyocytes can be used as a predictive model for the identification of modulators of Na+, K+ ATPase in HTS format.
Collapse
Affiliation(s)
- Sikander Gill
- Department of R&D, Aurora Biomed Inc., 1001 E. Pender Street, Vancouver, BC V6A1W2, Canada.
| | | | | |
Collapse
|
17
|
Ion transport and energy transduction of P-type ATPases: Implications from electrostatic calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:721-9. [DOI: 10.1016/j.bbabio.2009.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 12/12/2022]
|
18
|
Voltage clamp fluorometry: Combining fluorescence and electrophysiological methods to examine the structure–function of the Na+/K+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:714-20. [DOI: 10.1016/j.bbabio.2009.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/29/2009] [Accepted: 03/30/2009] [Indexed: 11/23/2022]
|
19
|
Geys SA, Bamberg E, Dempski RE. Ligand-Dependent Effects on the Conformational Equilibrium of the Na+,K+-ATPase As Monitored by Voltage Clamp Fluorometry. Biophys J 2009; 96:4561-70. [DOI: 10.1016/j.bpj.2009.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 03/01/2009] [Accepted: 03/06/2009] [Indexed: 11/29/2022] Open
|
20
|
Mourot A, Bamberg E, Rettinger J. Agonist- and competitive antagonist-induced movement of loop 5 on the α subunit of the neuronal α4β4 nicotinic acetylcholine receptor. J Neurochem 2008; 105:413-24. [DOI: 10.1111/j.1471-4159.2007.05151.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Dürr KL, Tavraz NN, Zimmermann D, Bamberg E, Friedrich T. Characterization of Na,K-ATPase and H,K-ATPase Enzymes with Glycosylation-Deficient β-Subunit Variants by Voltage-Clamp Fluorometry in Xenopus Oocytes. Biochemistry 2008; 47:4288-97. [DOI: 10.1021/bi800092k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katharina L. Dürr
- Max Volmer Laboratory for Biophysical Chemistry, Institute of Chemistry, Technical University of Berlin, Secr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany, and Chemical and Pharmaceutical Sciences Department, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 1, 7-9, D-60439 Frankfurt/Main, Germany
| | - Neslihan N. Tavraz
- Max Volmer Laboratory for Biophysical Chemistry, Institute of Chemistry, Technical University of Berlin, Secr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany, and Chemical and Pharmaceutical Sciences Department, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 1, 7-9, D-60439 Frankfurt/Main, Germany
| | - Dirk Zimmermann
- Max Volmer Laboratory for Biophysical Chemistry, Institute of Chemistry, Technical University of Berlin, Secr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany, and Chemical and Pharmaceutical Sciences Department, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 1, 7-9, D-60439 Frankfurt/Main, Germany
| | - Ernst Bamberg
- Max Volmer Laboratory for Biophysical Chemistry, Institute of Chemistry, Technical University of Berlin, Secr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany, and Chemical and Pharmaceutical Sciences Department, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 1, 7-9, D-60439 Frankfurt/Main, Germany
| | - Thomas Friedrich
- Max Volmer Laboratory for Biophysical Chemistry, Institute of Chemistry, Technical University of Berlin, Secr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany, Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany, and Chemical and Pharmaceutical Sciences Department, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 1, 7-9, D-60439 Frankfurt/Main, Germany
| |
Collapse
|
22
|
Gorbunov D, Gorboulev V, Shatskaya N, Mueller T, Bamberg E, Friedrich T, Koepsell H. High-Affinity Cation Binding to Organic Cation Transporter 1 Induces Movement of Helix 11 and Blocks Transport after Mutations in a Modeled Interaction Domain between Two Helices. Mol Pharmacol 2007; 73:50-61. [DOI: 10.1124/mol.107.040170] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
23
|
Zhang X, Li ZC, Li KB, Lin S, Du FS, Li FM. Donor/acceptor vinyl monomers and their polymers: Synthesis, photochemical and photophysical behavior. Prog Polym Sci 2006. [DOI: 10.1016/j.progpolymsci.2006.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Dempski RE, Hartung K, Friedrich T, Bamberg E. Fluorometric measurements of intermolecular distances between the alpha- and beta-subunits of the Na+/K+-ATPase. J Biol Chem 2006; 281:36338-46. [PMID: 16980302 DOI: 10.1074/jbc.m604788200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na+/K+-ATPase maintains the physiological Na+ and K+ gradients across the plasma membrane in most animal cells. The functional unit of the ion pump is comprised of two mandatory subunits including the alpha-subunit, which mediates ATP hydrolysis and ion translocation, as well as the beta-subunit, which acts as a chaperone to promote proper membrane insertion and trafficking in the plasma membrane. To examine the conformational dynamics between the alpha- and beta-subunits of the Na+/K+-ATPase during ion transport, we have used fluorescence resonance energy transfer, under voltage clamp conditions on Xenopus laevis oocytes, to differentiate between two models that have been proposed for the relative orientation of the alpha- and beta-subunits. These experiments were performed by measuring the time constant of irreversible donor fluorophore destruction with fluorescein-5-maleimide as the donor fluorophore and in the presence or absence of tetramethylrhodamine-6-maleimide as the acceptor fluorophore following labeling on the M3-M4 or M5-M6 loop of the alpha-subunit and the beta-subunit. We have also used fluorescence resonance energy transfer to investigate the relative movement between the two subunits as the ion pump shuttles between the two main conformational states (E1 and E2) as described by the Albers-Post scheme. The results from this study have identified a model for the orientation of the beta-subunit in relation to the alpha-subunit and suggest that the alpha- and beta-subunits move toward each other during the E2 to E1 conformational transition.
Collapse
Affiliation(s)
- Robert E Dempski
- Department of Biophysical Chemistry, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
25
|
Savalli N, Kondratiev A, Toro L, Olcese R. Voltage-dependent conformational changes in human Ca(2+)- and voltage-activated K(+) channel, revealed by voltage-clamp fluorometry. Proc Natl Acad Sci U S A 2006; 103:12619-24. [PMID: 16895996 PMCID: PMC1567928 DOI: 10.1073/pnas.0601176103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Large conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channels regulate important physiological processes such as neurotransmitter release and vascular tone. BK(Ca) channels possess a voltage sensor mainly represented by the S4 transmembrane domain. Changes in membrane potential displace the voltage sensor, producing a conformational change that leads to channel opening. By site-directed fluorescent labeling of residues in the S3-S4 region and by using voltage clamp fluorometry, we have resolved the conformational changes the channel undergoes during activation. The voltage dependence of these conformational changes (detected as changes in fluorescence emission, fluorescence vs. voltage curves) always preceded the channel activation curves, as expected for protein rearrangements associated to the movement of the voltage sensor. Extremely slow conformational changes were revealed by fluorescent labeling of position 202, elicited by a mutual interaction of the fluorophore with the adjacent tryptophan 203.
Collapse
Affiliation(s)
| | | | - Ligia Toro
- Departments of *Anesthesiology–Division of Molecular Medicine and
- Molecular Pharmacology
- Brain Research Institute, and
- Cardiovascular Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-7115
| | - Riccardo Olcese
- Departments of *Anesthesiology–Division of Molecular Medicine and
- Brain Research Institute, and
- Cardiovascular Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-7115
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Underhaug J, Jakobsen LO, Esmann M, Malmendal A, Nielsen NC. NMR studies of the fifth transmembrane segment of Na+,K+-ATPase reveals a non-helical ion-binding region. FEBS Lett 2006; 580:4777-83. [PMID: 16904671 DOI: 10.1016/j.febslet.2006.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/07/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The structure of a synthetic peptide corresponding to the fifth membrane-spanning segment (M5) in Na(+),K(+)-ATPase in sodium dodecyl sulfate (SDS) micelles was determined using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The spectra reveal that this peptide is substantially less alpha-helical than the corresponding M5 peptide of Ca(2+)-ATPase. A well-defined alpha-helix is shown in the C-terminal half of the peptide. Apart from a short helical stretch at the N-terminus, the N-terminal half contains a non-helical region with two proline residues and sequence similarity to a non-structured transmembrane element of the Ca(2+)-ATPase. Furthermore, this region spans the residues implicated in Na(+) and K(+) transport, where they are likely to offer the flexibility needed to coordinate Na(+) as well as K(+) during active transport.
Collapse
Affiliation(s)
- Jarl Underhaug
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
27
|
Virkki LV, Murer H, Forster IC. Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order. ACTA ACUST UNITED AC 2006; 127:539-55. [PMID: 16636203 PMCID: PMC2151518 DOI: 10.1085/jgp.200609496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage clamp fluorometry (VCF) combines conventional two-electrode voltage clamp with fluorescence measurements to detect protein conformational changes, as sensed by a fluorophore covalently attached to the protein. We have applied VCF to a type IIb Na+-coupled phosphate cotransporter (NaPi-IIb), in which a novel cysteine was introduced in the putative third extracellular loop and expressed in Xenopus oocytes. Labeling this cysteine (S448C) with methanethiosulfonate (MTS) reagents blocked cotransport function, however previous electrophysiological studies (Lambert G., I.C. Forster, G. Stange, J. Biber, and H. Murer. 1999. J. Gen. Physiol. 114:637–651) suggest that substrate interactions with the protein can still occur, thus permitting study of a limited subset of states. After labeling S448C with the fluorophore tetramethylrhodamine MTS, we detected voltage- and substrate-dependent changes in fluorescence (ΔF), which suggested that this site lies in an environment that is affected by conformational change in the protein. ΔF was substrate dependent (no ΔF was detectable in 0 mM Na+) and showed little correlation with presteady-state charge movements, indicating that the two signals provide insight into different underlying physical processes. Interpretation of ion substitution experiments indicated that the substrate binding order differs from our previous model (Forster, I., N. Hernando, J. Biber, and H. Murer. 1998. J. Gen. Physiol. 112:1–18). In the new model, two (rather than one) Na+ ions precede Pi binding, and only the second Na+ binding transition is voltage dependent. Moreover, we show that Li+, which does not drive cotransport, interacts with the first Na+ binding transition. The results were incorporated in a new model of the transport cycle of type II Na+/Pi cotransporters, the validity of which is supported by simulations that successfully predict the voltage and substrate dependency of the experimentally determined fluorescence changes.
Collapse
Affiliation(s)
- Leila V Virkki
- Institute for Physiology and the Center for Integrative Human Physiology, University of Zurich, Switzerland
| | | | | |
Collapse
|
28
|
Virkki LV, Murer H, Forster IC. Mapping conformational changes of a type IIb Na+/Pi cotransporter by voltage clamp fluorometry. J Biol Chem 2006; 281:28837-49. [PMID: 16887801 DOI: 10.1074/jbc.m603861200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The fluorescence of a fluorophore depends on its environment, and if attached to a protein it may report on conformational changes. We have combined two-electrode voltage clamp with simultaneous fluorescence measurements to detect conformational changes in a type IIb Na(+)/P(i) cotransporter expressed in Xenopus oocytes. Four novel Cys, labeled with a fluorescent probe, yielded voltage- and substrate-dependent changes in fluorescence (F). Neither Cys substitution nor labeling significantly altered the mutant electrogenic properties. Different F responses to voltage and substrate were recorded at the four sites. S155C, located in an intracellular re-entrant loop in the first half of the protein, and E451C, located in an extracellular re-entrant loop in the second half of the protein, both showed Na(+), Li(+), and P(i)-dependent F signals. S226C and Q319C, located at opposite ends of a large extracellular loop in the middle of the protein, mainly responded to changes in Na(+) and Li(+). Hyperpolarization increased F for S155C and S226C but decreased F for Q319C and E451C. The labeling and F response of S155C, confirmed that the intracellular loop containing Ser-155 is re-entrant as it is accessible from the extracellular milieu. The behavior of S155C and E451C indicates a strong involvement of the two re-entrant loops in conformational changes during the transport cycle. Moreover, the data for S226C and Q319C suggest that also the large extracellular loop is associated with transport function. Finally, the reciprocal voltage dependences of the S155C-E451C and S226C-Q319C pairs suggest reciprocal conformational changes during the transport cycle for their respective local environments.
Collapse
Affiliation(s)
- Leila V Virkki
- Institute for Physiology and the Center for Integrative Human Physiology (ZIHP), University of Zurich, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
29
|
Ayuyan AG, Sokolov VS, Lenz AA, Apell HJ. Effect of chaotropic anions on the sodium transport by the Na,K-ATPase. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:247-54. [PMID: 16292645 DOI: 10.1007/s00249-005-0031-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 10/14/2005] [Accepted: 10/18/2005] [Indexed: 11/28/2022]
Abstract
The effect of choline iodide, bromide and chloride on the kinetics of the electrogenic sodium transport by the Na,K-ATPase was investigated in a model system of ATPase-containing membrane fragments adsorbed on the lipid bilayer membrane. The kinetic parameters of Na(+) transport were determined from short circuit currents after fast release of ATP from its caged precursor. The falling phase of the current transients could be fitted by a single exponential with the time constant, tau (2). Its temperature dependence allowed an estimation of the activation energy of the rate-limiting reaction step, the conformation transition E(1)/E(2). Choline iodide and bromide caused a decrease of the activation energy as well as the overall rate of the process expressed as the pre-exponential factor A of the Arrhenius equation. If choline iodide or bromide were present on the cytoplasmic and extracellular sides of the protein, the temperature dependent changes were more pronounced than when present on the cytoplasmic side only. These results can be explained by an effect of the anions on water structure on the extracellular surface of the protein, where a deep access channel connects the ion-binding sites with the solution. Chloride ions also caused a deceleration of the electrogenic transport, however, in contrast to iodide or bromide, they did not affect the activation energy, and were more effective when added on the cytoplasmic side. This effect can be explained by asymmetric screening of the negative surface charges which leads to a transmembrane electric potential that modifies the ion transfer.
Collapse
Affiliation(s)
- Artem G Ayuyan
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninski Prospect, 119071 Moscow, Russia
| | | | | | | |
Collapse
|
30
|
Dempski RE, Friedrich T, Bamberg E. The beta subunit of the Na+/K+-ATPase follows the conformational state of the holoenzyme. ACTA ACUST UNITED AC 2005; 125:505-20. [PMID: 15851504 PMCID: PMC2217500 DOI: 10.1085/jgp.200409186] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Na+/K+-ATPase is a ubiquitous plasma membrane ion pump that utilizes ATP hydrolysis to regulate the intracellular concentration of Na+ and K+. It is comprised of at least two subunits, a large catalytic alpha subunit that mediates ATP hydrolysis and ion transport, and an ancillary beta subunit that is required for proper trafficking of the holoenzyme. Although processes mediated by the alpha subunit have been extensively studied, little is known about the participation of the beta subunit in conformational changes of the enzyme. To elucidate the role of the beta subunit during ion transport, extracellular amino acids proximal to the transmembrane region of the sheep beta1 subunit were individually replaced for cysteines. This enabled sulfhydryl-specific labeling with the environmentally sensitive fluorescent dye tetramethylrhodamine-6-maleimide (TMRM) upon expression in Xenopus oocytes. Investigation by voltage-clamp fluorometry identified three reporter positions on the beta1 subunit that responded with fluorescence changes to alterations in ionic conditions and/or membrane potential. These experiments for the first time show real-time detection of conformational rearrangements of the Na+/K+-ATPase through a fluorophore-labeled beta subunit. Simultaneous recording of presteady-state or stationary currents together with fluorescence signals enabled correlation of the observed environmental changes of the beta subunit to certain reaction steps of the Na+/K+-ATPase, which involve changes in the occupancy of the two principle conformational states, E1P and E2P. From these experiments, evidence is provided that the beta1-S62C mutant can be directly used to monitor the conformational state of the enzyme, while the F64C mutant reveals a relaxation process that is triggered by sodium transport but evolves on a much slower time scale. Finally, shifts in voltage dependence and kinetics observed for mutant K65C show that this charged lysine residue, which is conserved in beta1 isoforms, directly influences the effective potential that determines voltage dependence of extracellular cation binding and release.
Collapse
Affiliation(s)
- Robert E Dempski
- Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | | |
Collapse
|
31
|
Koenderink JB, Zifarelli G, Qiu LY, Schwarz W, De Pont JJHHM, Bamberg E, Friedrich T. Na,K-ATPase mutations in familial hemiplegic migraine lead to functional inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:61-8. [PMID: 15843000 DOI: 10.1016/j.bbamem.2005.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 01/10/2005] [Accepted: 01/10/2005] [Indexed: 12/14/2022]
Abstract
The Na,K-ATPase is an ion-translocating transmembrane protein that actively maintains the electrochemical gradients for Na+ and K+ across the plasma membrane. The functional protein is a heterodimer comprising a catalytic alpha-subunit (four isoforms) and an ancillary beta-subunit (three isoforms). Mutations in the alpha2-subunit have recently been implicated in familial hemiplegic migraine type 2, but almost no thorough studies of the functional consequences of these mutations have been provided. We investigated the functional properties of the mutations L764P and W887R in the human Na,K-ATPase alpha2-subunit upon heterologous expression in Xenopus oocytes. No Na,K-ATPase-specific pump currents could be detected in cells expressing these mutants. The binding of radiolabelled [3H]ouabain to intact cells suggested that this could be due to a lack of plasma membrane expression. However, plasma membrane isolation showed that the mutated pumps are well expressed at the plasma membrane. 86Rb+-flux and ATPase activity measurements demonstrated that the mutants are inactive. Therefore, the primary disease-causing mechanism is loss-of-function of the Na,K-ATPase alpha2-isoform.
Collapse
Affiliation(s)
- Jan B Koenderink
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Blunck R, Starace DM, Correa AM, Bezanilla F. Detecting rearrangements of shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells. Biophys J 2005; 86:3966-80. [PMID: 15189893 PMCID: PMC1304298 DOI: 10.1529/biophysj.103.034512] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Time-resolved fluorescence detection of site-directed probes is a major tool in the investigation of structure-function relationships of voltage-dependent ion channels. However, the technique has been limited so far to the Xenopus-oocyte system making it difficult to study proteins, like, e.g., the prokaryotic sodium channel NaChBac, whose expression in oocytes is insufficient or whose physiological functions are distorted in oocytes. To expand the application of site-directed fluorescence detection to these proteins, we used two techniques-semiconfocal epifluorescence and total internal reflection fluorescence-to detect time-resolved fluorescence changes from site-directed labeled proteins expressed in mammalian cells under patch-clamp conditions, and investigated the characteristics and limitations of the techniques. The voltage-sensitive dye, di-8-ANEPPS, was used to monitor control of the membrane voltage in epifluorescence and total internal reflection fluorescence. Fluorescence changes in patch-clamped cells were recorded from a Shaker channel mutant (M356C) labeled in the S3-S4 linker using semiconfocal epifluorescence. The gating kinetics and fluorescence changes were in accordance with previous studies using fluorescence spectroscopy in Xenopus-oocyte systems. We applied our technique to the prokaryotic sodium channel NaChBac. Voltage-dependent protein-rearrangements of S4 could be detected that are independent of inactivation. Comparison of the S3-S4 linker regions revealed structural differences to the KvAP voltage sensor. The results from the NaChBac channel point to structural requirements for the S3-S4 loop to generate a fluorescence signal.
Collapse
Affiliation(s)
- Rikard Blunck
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
33
|
Mandal AK, Yang Y, Kertesz TM, Argüello JM. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. J Biol Chem 2004; 279:54802-7. [PMID: 15494391 DOI: 10.1074/jbc.m410854200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
P(IB)-type ATPases have an essential role maintaining copper homeostasis. Metal transport by these membrane proteins requires the presence of a transmembrane metal occlusion/binding site. Previous studies showed that Cys residues in the H6 transmembrane segment are required for metal transport. In this study, the participation in metal binding of conserved residues located in transmembrane segments H7 and H8 was tested using CopA, a model Cu(+)-ATPase from Archaeoglobus fulgidus. Four invariant amino acids in the central portion of H7 (Tyr(682) and Asn(683)) and H8 (Met(711) and Ser(715)) were identified as required for Cu(+) binding. Replacement of these residues abolished enzyme activity. These proteins did not undergo Cu(+)-dependent phosphorylation by ATP but were phosphorylated by P(i) in the absence of Cu(+). Moreover, the presence of Cu(+) could not prevent the enzyme phosphorylation by P(i). Other conserved residues in the H7-H8 region were not required for metal binding. Mutation of two invariant Pro residues had little effect on enzyme function. Replacement of residues located close to the cytoplasmic end of H7-H8 led to inactive enzymes. However, these were able to interact with Cu(+) and undergo phosphorylation. This suggests that the integrity of this region is necessary for conformational transitions but not for ligand binding. These data support the presence of a unique transmembrane Cu(+) binding/translocation site constituted by Tyr-Asn in H7, Met and Ser in H8, and two Cys in H6 of Cu(+)-ATPases. The likely Cu(+) coordination during transport appears distinct from that observed in Cu(+) chaperone proteins or catalytic/redox metal binding sites.
Collapse
Affiliation(s)
- Atin K Mandal
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | | | | | | |
Collapse
|
34
|
Gill S, Gill R, Wicks D, Despotovski S, Liang D. Development of an HTS Assay for Na+, K+-ATPase Using Nonradioactive Rubidium Ion Uptake. Assay Drug Dev Technol 2004; 2:535-42. [PMID: 15671651 DOI: 10.1089/adt.2004.2.535] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A high-throughput screening (HTS) assay was developed for the Na(+),K(+)-ATPase channel in order to study rubidium uptake as a measure of the functional activity and modulation of this exchanger. The assay uses elemental rubidium as a tracer for K(+) ions. Three cell lines were used to study the exchanger, and the assay was performed in a 96-well microtiter plate format. Rb(+) uptake was carried by the CHO-K1 cells at 37 degrees C; the maximum ion influx was at 80 min of incubation of the cell line in the medium containing 5.4 mM RbCl. The cells were incubated in Rb(+) uptake buffer (5.4 mM) and with the pump blocker ouabain for 1, 2, and 3 h, respectively. A complete block of the Rb(+) uptake was observed with a 5 mM concentration of ouabain for all the three time intervals. The ouabain 50% inhibitory concentration (IC(50)) value for CHO-K1 cell line ATPase was observed to be 298 microM after 3 h of incubation. In addition, IC(50) values of 94 and 89 microM were observed at 30 min of incubation, indicating that the protocol shows reproducible results. A Z' factor higher than 0.7 was observed in the assays. These studies extend the profile of Na(+),K(+)-ATPases and demonstrate the feasibility of this HTS assay system to screen for compounds that pharmacologically modulate the function of Na(+),K(+)-ATPase.
Collapse
|
35
|
|
36
|
Qiu LY, Koenderink JB, Swarts HGP, Willems PHGM, De Pont JJHHM. Phe783, Thr797, and Asp804 in transmembrane hairpin M5-M6 of Na+,K+-ATPase play a key role in ouabain binding. J Biol Chem 2003; 278:47240-4. [PMID: 12972417 DOI: 10.1074/jbc.m308833200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of transmembrane hairpins M3-M4 and M5-M6 of Na+,K+-ATPase in a backbone of H+,K+-ATPase (HN34/56) is both required and sufficient for high affinity ouabain binding. Since replacement of transmembrane hairpin M3-M4 by the N terminus up to transmembrane segment 3 (HNN3/56) resulted in a low affinity ouabain binding, hairpin M5-M6 seems to be essential for ouabain binding. To assess which residues of M5-M6 are required for ouabain action, we divided this transmembrane hairpin in seven parts and individually replaced these parts by the corresponding sequences of H+,K+-ATPase in chimera HN34/56. Three of these chimeras failed to bind ouabain following expression in Xenopus laevis oocytes. Altogether, these three chimeras contained 7 amino acids that were specific for Na+,K+-ATPase. Individual replacement of these 7 amino acids by the corresponding amino acids in H+,K+-ATPase revealed a dramatic loss of ouabain binding for F783Y, T797C, and D804E. As a proof of principle, the Na+,K+-ATPase equivalents of these 3 amino acids were introduced in different combinations in chimera HN34. The presence of all 3 amino acids appeared to be required for ouabain action. Docking of ouabain onto a three-dimensional-model of Na+,K+-ATPase suggests that Asp804, in contrast to Phe783 and Thr797, does not actually form part of the ouabain-binding pocket. Most likely, the presence of this amino acid is required for adopting of the proper conformation for ouabain binding.
Collapse
Affiliation(s)
- Li Yan Qiu
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Koenderink JB, Geibel S, Grabsch E, De Pont JJHHM, Bamberg E, Friedrich T. Electrophysiological analysis of the mutated Na,K-ATPase cation binding pocket. J Biol Chem 2003; 278:51213-22. [PMID: 14532287 DOI: 10.1074/jbc.m306384200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.
Collapse
Affiliation(s)
- Jan B Koenderink
- Department of Biophysical Chemistry, Max-Planck-Institute of Biophysics, Marie-Curie-Strasse 15, D-60439 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|