1
|
Chavez DE, Hains T, Espinoza-Ulloa S, Wayne RK, Chaves JA. Whole-genome analysis reveals the diversification of Galapagos rail (Aves: Rallidae) and confirms the success of goat eradication programs. J Hered 2024; 115:444-457. [PMID: 38498380 DOI: 10.1093/jhered/esae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Similar to other insular birds around the world, the Galapagos rail (Laterallus spilonota Gould, 1841) exhibits reduced flight capacity following its colonization of the archipelago ~1.2 mya. Despite their short evolutionary history, rails have colonized seven different islands spanning the entire width of the archipelago. Galapagos rails were once common on islands with sufficiently high altitudes to support shrubs in humid habitats. After humans introduced goats, this habitat was severely reduced due to overgrazing. Habitat loss devastated some rail populations, with less than 50 individuals surviving, rendering the genetic diversity of Galapagos rail a pressing conservation concern. Additionally, one enigma is the reappearance of rails on the island of Pinta after they were considered extirpated. Our approach was to investigate the evolutionary history and geographic distribution of Galapagos rails as well as examine the genome-wide effects of historical population bottlenecks using 39 whole genomes across different island populations. We recovered an early divergence of rail ancestors leading to the isolated populations on Pinta and a second clade comprising the rest of the islands, historically forming a single landmass. Subsequently, the separation of the landmass ~900 kya may have led to the isolation of the Isabela population with more panmictic populations found on Santa Cruz and Santiago islands. We found that rails genomes contain long runs of homozygosity (>2 Mb) that could be related to the introduction of goats. Finally, our findings show that the modern eradication of goats was critical to avoiding episodes of inbreeding in most populations.
Collapse
Affiliation(s)
- Daniel E Chavez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Escuela de Biología, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre, Quito 170901, Ecuador
- Arizona Cancer Evolution Center, The Biodesign Institute, AZ School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, United States
- Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605, United States
- Grainger Bioinformatics Center, The Field Museum, Chicago, IL 60605, United States
| | - Sebastian Espinoza-Ulloa
- Escuela de Biología, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre, Quito 170901, Ecuador
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, CA 94132-1722, United States
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galapagos Science Center, Universidad San Francisco de Quito USFQ, Islas Galápagos, Ecuador
| |
Collapse
|
2
|
Bhattacharya R, Brown JS, Gatenby RA, Ibrahim-Hashim A. A gene for all seasons: The evolutionary consequences of HIF-1 in carcinogenesis, tumor growth and metastasis. Semin Cancer Biol 2024; 102-103:17-24. [PMID: 38969311 DOI: 10.1016/j.semcancer.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Department of Cancer Biology, University of South Florida, United States; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Evolutionary Biology, University of Illinois, at Chicago, United States
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Radiology, H. Lee Moffitt Cancer Center, United States.
| | - Arig Ibrahim-Hashim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, United States.
| |
Collapse
|
3
|
Camargo-Martinez ND, Camacho-Erazo M, Amarillo-Suárez AR, Herrera HW, Sarmiento CE. Morphologic Differentiation of the Exotic Parasitoid Eupelmus pulchriceps (Hymenoptera: Eupelmidae) in the Galapagos Archipelago. NEOTROPICAL ENTOMOLOGY 2024; 53:140-153. [PMID: 38133733 PMCID: PMC10834596 DOI: 10.1007/s13744-023-01097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
The historical and geographical properties of the archipelagos allow a detailed study of species diversification, and phenotypic traits can indicate the extent of such processes. Eupelmus pulchriceps (Cameron, 1904) is an exotic species to the Galapagos archipelago, and generalist parasitoid that attacks a beetle species that consumes the seeds of the invasive shrub Leucaena leucocephala (Lam.) de Wit. Despite extensive sampling, the wasp is recorded only in Santa Cruz and San Cristobal islands of the Galapagos archipelago. Thus, using 112 female wasps, we compare body size, proportion, and allometric differentiations within and between the two islands. There were no body size differences between islands. A PerMANOVA indicates differences between the islands and a single differentiation between two localities of one island. Allometric differences between islands were not the same for all structures. These results are consistent with the greater distance between islands than between localities and suggest a differentiation process. The variables with allometric differentiation are associated with wings and ovipositor, possibly responding to different ecological pressures. It is interesting that this parasitoid, recently arrived at the archipelago, is already showing differentiation. Also, it is essential to monitor the behavior of these wasps in the archipelago, given their potential to access other species affecting the trophic interactions of the local biota.
Collapse
Affiliation(s)
- Nicolas David Camargo-Martinez
- Lab de Sistemática y Biología Comparada de Insectos, Instituto de Ciencias Naturales, Univ Nacional de Colombia, Bogotá, Colombia
| | - Mariana Camacho-Erazo
- Museo de Entomología, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Ecuador
| | - Angela R Amarillo-Suárez
- Depto de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Univ Javeriana, Bogotá, Colombia
| | - Henri W Herrera
- Museo de Entomología, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Ecuador
| | - Carlos E Sarmiento
- Lab de Sistemática y Biología Comparada de Insectos, Instituto de Ciencias Naturales, Univ Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
4
|
Bellvert A, Adrián-Serrano S, Macías-Hernández N, Toft S, Kaliontzopoulou A, Arnedo MA. The Non-Dereliction in Evolution: Trophic Specialisation Drives Convergence in the Radiation of Red Devil Spiders (Araneae: Dysderidae) in the Canary Islands. Syst Biol 2023; 72:998-1012. [PMID: 37474131 DOI: 10.1093/sysbio/syad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural selection plays a key role in deterministic evolution, as clearly illustrated by the multiple cases of repeated evolution of ecomorphological characters observed in adaptive radiations. Unlike most spiders, Dysdera species display a high variability of cheliceral morphologies, which has been suggested to reflect different levels of specialization to feed on isopods. In this study, we integrate geometric morphometrics and experimental trials with a fully resolved phylogeny of the highly diverse endemic species from the Canary Islands to 1) quantitatively delimit the different cheliceral morphotypes present in the archipelago, 2) test their association with trophic specialization, as reported for continental species, 3) reconstruct the evolution of these ecomorphs throughout the diversification of the group, 4) test the hypothesis of convergent evolution of the different morphotypes, and 5) examine whether specialization constitutes a case of evolutionary irreversibility in this group. We show the existence of 9 cheliceral morphotypes and uncovered their significance for trophic ecology. Further, we demonstrate that similar ecomorphs evolved multiple times in the archipelago, providing a novel study system to explain how convergent evolution and irreversibility due to specialization may be combined to shape phenotypic diversification in adaptive radiations.
Collapse
Affiliation(s)
- Adrià Bellvert
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Silvia Adrián-Serrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria Macías-Hernández
- Department of Animal Biology, Edaphology and Geology, Universidad de La Laguna, Tenerife, Canary Islands, Spain
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History, University of Helsinki, Finland
| | - Søren Toft
- Department of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Århus C, Denmark
| | - Antigoni Kaliontzopoulou
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel A Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Jensen EL, Quinzin MC, Miller JM, Russello MA, Garrick RC, Edwards DL, Glaberman S, Chiari Y, Poulakakis N, Tapia W, Gibbs JP, Caccone A. A new lineage of Galapagos giant tortoises identified from museum samples. Heredity (Edinb) 2022; 128:261-270. [PMID: 35217806 PMCID: PMC8987048 DOI: 10.1038/s41437-022-00510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.
Collapse
Affiliation(s)
- Evelyn L Jensen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Maud C Quinzin
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua M Miller
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Danielle L Edwards
- Department of Life & Environmental Sciences, University of California, Merced, CA, USA
| | - Scott Glaberman
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Nikos Poulakakis
- Department of Biology, School of Sciences and Engineering, University of Crete, Irakleio, Greece.,The Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Irakleio, Greece
| | - Washington Tapia
- Galapagos Conservancy, 11150 Fairfax Boulevard #408, Fairfax, VA, 22030, USA.,University of Málaga, Campus Teatinos, Apdo. 59, 29080, Málaga, Spain
| | - James P Gibbs
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Recuerda M, Carlos Illera J, Blanco G, Zardoya R, Milá B. Sequential colonization of oceanic archipelagos led to a species-level radiation in the common chaffinch complex (Aves: Fringilla coelebs). Mol Phylogenet Evol 2021; 164:107291. [PMID: 34384903 DOI: 10.1016/j.ympev.2021.107291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Oceanic archipelagos are excellent systems for studying speciation, yet inference of evolutionary process requires that the colonization history of island organisms be known with accuracy. Here, we used phylogenomics and patterns of genetic diversity to infer the sequence and timing of colonization of Macaronesia by mainland common chaffinches (Fringilla coelebs), and assessed whether colonization of the different archipelagos has resulted in a species-level radiation. To reconstruct the evolutionary history of the complex we generated a molecular phylogeny based on genome-wide SNP loci obtained from genotyping-by-sequencing, we ran ancestral range biogeographic analyses, and assessed fine-scale genetic structure between and within archipelagos using admixture analysis. To test for a species-level radiation, we applied a probabilistic tree-based species delimitation method (mPTP) and an integrative taxonomy approach including phenotypic differences. Results revealed a circuitous colonization pathway in Macaronesia, from the mainland to the Azores, followed by Madeira, and finally the Canary Islands. The Azores showed surprisingly high genetic diversity, similar to that found on the mainland, and the other archipelagos showed the expected sequential loss of genetic diversity. Species delimitation methods supported the existence of several species within the complex. We conclude that the common chaffinch underwent a rapid radiation across Macaronesia that was driven by the sequential colonization of the different archipelagos, resulting in phenotypically and genetically distinct, independent evolutionary lineages. We recommend a taxonomic revision of the complex that takes into account its genetic and phenotypic diversity.
Collapse
Affiliation(s)
- María Recuerda
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain.
| | - Juan Carlos Illera
- Biodiversity Research Unit (UO-CSIC-PA), Oviedo University, 33600 Mieres, Asturias, Spain
| | - Guillermo Blanco
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| | - Rafael Zardoya
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC),Madrid 28006, Spain
| |
Collapse
|
7
|
Phillips JG, Linscott TM, Rankin AM, Kraemer AC, Shoobs NF, Parent CE. Archipelago-Wide Patterns of Colonization and Speciation Among an Endemic Radiation of Galápagos Land Snails. J Hered 2021; 111:92-102. [PMID: 31841140 DOI: 10.1093/jhered/esz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023] Open
Abstract
Newly arrived species on young or remote islands are likely to encounter less predation and competition than source populations on continental landmasses. The associated ecological release might facilitate divergence and speciation as colonizing lineages fill previously unoccupied niche space. Characterizing the sequence and timing of colonization on islands represents the first step in determining the relative contributions of geographical isolation and ecological factors in lineage diversification. Herein, we use genome-scale data to estimate timing of colonization in Naesiotus snails to the Galápagos islands from mainland South America. We test inter-island patterns of colonization and within-island radiations to understand their contribution to community assembly. Partly contradicting previously published topologies, phylogenetic reconstructions suggest that most Naesiotus species form island-specific clades, with within-island speciation dominating cladogenesis. Galápagos Naesiotus also adhere to the island progression rule, with colonization proceeding from old to young islands and within-island diversification occurring earlier on older islands. Our work provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galápagos lineages.
Collapse
Affiliation(s)
- John G Phillips
- Department of Biological Sciences, University of Idaho, Moscow ID.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID.,BEACON Center for Evolution in Action, East Lansing, MI
| | - T Mason Linscott
- Department of Biological Sciences, University of Idaho, Moscow ID.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID.,BEACON Center for Evolution in Action, East Lansing, MI
| | - Andrew M Rankin
- Department of Biological Sciences, University of Idaho, Moscow ID.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID.,BEACON Center for Evolution in Action, East Lansing, MI
| | - Andrew C Kraemer
- Department of Biological Sciences, University of Idaho, Moscow ID.,Department of Biology, Creighton University, Omaha, NE
| | - Nathaniel F Shoobs
- Department of Malacology, Academy of Natural Sciences of Drexel University, Philadelphia, PA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA
| | - Christine E Parent
- Department of Biological Sciences, University of Idaho, Moscow ID.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID.,BEACON Center for Evolution in Action, East Lansing, MI
| |
Collapse
|
8
|
Poulakakis N, Miller JM, Jensen EL, Beheregaray LB, Russello MA, Glaberman S, Boore J, Caccone A. Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nikos Poulakakis
- Department of Biology School of Sciences and Engineering University of Crete Heraklio Greece
- Natural History Museum of Crete School of Sciences and Engineering University of Crete Heraklio Greece
| | - Joshua M. Miller
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Evelyn L. Jensen
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | | | | | - Scott Glaberman
- Department of Environmental Science and Policy George Mason University Fairfax VA USA
| | - Jeffrey Boore
- Providence St. Joseph Health and Institute for Systems Biology Seattle WA USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| |
Collapse
|
9
|
Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC, Harmon LJ, Hendry AP, Knope ML, Mallet J, Martin C, Parent CE, Patton AH, Pfennig KS, Rubinoff D, Schluter D, Seehausen O, Shaw KL, Stacy E, Stervander M, Stroud JT, Wagner C, Wogan GOU. Comparing Adaptive Radiations Across Space, Time, and Taxa. J Hered 2020; 111:1-20. [PMID: 31958131 PMCID: PMC7931853 DOI: 10.1093/jhered/esz064] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.
Collapse
Affiliation(s)
- Rosemary G Gillespie
- University of California, Berkeley, Essig Museum of Entomology & Department of Environmental Science, Policy, and Management, Berkeley, CA
| | - Gordon M Bennett
- University of California Merced, Life and Environmental Sciences Unit, Merced, CA
| | - Luc De Meester
- University of Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belguim
| | - Jeffrey L Feder
- University of Notre Dame, Dept. of Biological Sciences, Notre Dame, IN
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Luke J Harmon
- University of Idaho, Dept. of Biological Sciences, Moscow, ID
| | | | | | | | - Christopher Martin
- University of California Berkeley, Integrative Biology and Museum of Vertebrate Zoology, Berkeley, CA
| | | | - Austin H Patton
- Washington State University, School of Biological Sciences, Pullman, WA
| | - Karin S Pfennig
- University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC
| | - Daniel Rubinoff
- University of Hawaiʻi at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI
| | | | - Ole Seehausen
- Institute of Ecology & Evolution, University of Bern, Bern, BE, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Eawag, Kastanienbaum, LU, Switzerland
| | - Kerry L Shaw
- Cornell University, Neurobiology and Behavior, Tower Road,, Ithaca, NY
| | - Elizabeth Stacy
- University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV
| | - Martin Stervander
- University of Oregon, Institute of Ecology and Evolution, Eugene, OR
| | - James T Stroud
- Washington University in Saint Louis, Biology, Saint Louis, MO
| | | | - Guinevere O U Wogan
- University of California Berkeley, Environmental Science Policy, and Management, Berkeley, CA
| |
Collapse
|
10
|
Quinzin MC, Sandoval-Castillo J, Miller JM, Beheregaray LB, Russello MA, Hunter EA, Gibbs JP, Tapia W, Villalva F, Caccone A. Genetically informed captive breeding of hybrids of an extinct species of Galapagos tortoise. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:1404-1414. [PMID: 30901116 DOI: 10.1111/cobi.13319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.
Collapse
Affiliation(s)
- Maud C Quinzin
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, 06520, U.S.A
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Joshua M Miller
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, 06520, U.S.A
| | - Luciano B Beheregaray
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Elizabeth A Hunter
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, U.S.A
| | - James P Gibbs
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, 247 Illick Hall, Syracuse, NY, 13210, U.S.A
| | - Washington Tapia
- Giant Tortoise Restoration Initiative, Galapagos Conservancy, Fairfax, VA, 22030, U.S.A
| | - Freddy Villalva
- Galapagos National Park Directorate, Puerto Ayora, Galapagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, 06520, U.S.A
| |
Collapse
|
11
|
Miller JM, Quinzin MC, Edwards DL, Eaton DAR, Jensen EL, Russello MA, Gibbs JP, Tapia W, Rueda D, Caccone A. Genome-Wide Assessment of Diversity and Divergence Among Extant Galapagos Giant Tortoise Species. J Hered 2019; 109:611-619. [PMID: 29986032 DOI: 10.1093/jhered/esy031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Maud C Quinzin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Danielle L Edwards
- Life and Environmental Sciences, University of California, Merced, Merced, CA
| | - Deren A R Eaton
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Evelyn L Jensen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - James P Gibbs
- College of Environmental Science & Forestry, State University of New York, Syracuse, NY
| | - Washington Tapia
- Galapagos Conservancy, Fairfax, VA.,Galápagos National Park Directorate, Puerto Ayora, Galápagos, Ecuador
| | - Danny Rueda
- Galápagos National Park Directorate, Puerto Ayora, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| |
Collapse
|
12
|
Wollenberg Valero KC, Marshall JC, Bastiaans E, Caccone A, Camargo A, Morando M, Niemiller ML, Pabijan M, Russello MA, Sinervo B, Werneck FP, Sites JW, Wiens JJ, Steinfartz S. Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes (Basel) 2019; 10:genes10090646. [PMID: 31455040 PMCID: PMC6769790 DOI: 10.3390/genes10090646] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
In this contribution, the aspects of reptile and amphibian speciation that emerged from research performed over the past decade are reviewed. First, this study assesses how patterns and processes of speciation depend on knowing the taxonomy of the group in question, and discuss how integrative taxonomy has contributed to speciation research in these groups. This study then reviews the research on different aspects of speciation in reptiles and amphibians, including biogeography and climatic niches, ecological speciation, the relationship between speciation rates and phenotypic traits, and genetics and genomics. Further, several case studies of speciation in reptiles and amphibians that exemplify many of these themes are discussed. These include studies of integrative taxonomy and biogeography in South American lizards, ecological speciation in European salamanders, speciation and phenotypic evolution in frogs and lizards. The final case study combines genomics and biogeography in tortoises. The field of amphibian and reptile speciation research has steadily moved forward from the assessment of geographic and ecological aspects, to incorporating other dimensions of speciation, such as genetic mechanisms and evolutionary forces. A higher degree of integration among all these dimensions emerges as a goal for future research.
Collapse
Affiliation(s)
| | - Jonathon C Marshall
- Department of Zoology, Weber State University, 1415 Edvalson Street, Dept. 2505, Ogden, UT 84401, USA
| | - Elizabeth Bastiaans
- Department of Biology, State University of New York, College at Oneonta, Oneonta, NY 13820, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Arley Camargo
- Centro Universitario de Rivera, Universidad de la República, Ituzaingó 667, Rivera 40000, Uruguay
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC, CENPAT-CONICET) Bv. Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Fernanda P Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-000, Brazil
| | - Jack W Sites
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Steinfartz
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Amori G, Luiselli L. A Review of the Mono- and Bispecific Genera of Turtles and Tortoises Worldwide, with an Assessment of the Island Endemics: Implications for Conservation. CHELONIAN CONSERVATION AND BIOLOGY 2018. [DOI: 10.2744/ccb-1296.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Giovanni Amori
- CNR-—Institute for Ecosystem Study, viale dell'Università 32, 00185 Rome, Italy [giovanni.amori@unir
| | - Luca Luiselli
- Department of Applied and Environmental Biology, Rivers State University of Science and Technology,
| |
Collapse
|
14
|
Gaughran SJ, Quinzin MC, Miller JM, Garrick RC, Edwards DL, Russello MA, Poulakakis N, Ciofi C, Beheregaray LB, Caccone A. Theory, practice, and conservation in the age of genomics: The Galápagos giant tortoise as a case study. Evol Appl 2018; 11:1084-1093. [PMID: 30026799 PMCID: PMC6050186 DOI: 10.1111/eva.12551] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
High-throughput DNA sequencing allows efficient discovery of thousands of single nucleotide polymorphisms (SNPs) in nonmodel species. Population genetic theory predicts that this large number of independent markers should provide detailed insights into population structure, even when only a few individuals are sampled. Still, sampling design can have a strong impact on such inferences. Here, we use simulations and empirical SNP data to investigate the impacts of sampling design on estimating genetic differentiation among populations that represent three species of Galápagos giant tortoises (Chelonoidis spp.). Though microsatellite and mitochondrial DNA analyses have supported the distinctiveness of these species, a recent study called into question how well these markers matched with data from genomic SNPs, thereby questioning decades of studies in nonmodel organisms. Using >20,000 genomewide SNPs from 30 individuals from three Galápagos giant tortoise species, we find distinct structure that matches the relationships described by the traditional genetic markers. Furthermore, we confirm that accurate estimates of genetic differentiation in highly structured natural populations can be obtained using thousands of SNPs and 2-5 individuals, or hundreds of SNPs and 10 individuals, but only if the units of analysis are delineated in a way that is consistent with evolutionary history. We show that the lack of structure in the recent SNP-based study was likely due to unnatural grouping of individuals and erroneous genotype filtering. Our study demonstrates that genomic data enable patterns of genetic differentiation among populations to be elucidated even with few samples per population, and underscores the importance of sampling design. These results have specific implications for studies of population structure in endangered species and subsequent management decisions.
Collapse
Affiliation(s)
| | - Maud C. Quinzin
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Joshua M. Miller
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | | | | | - Michael A. Russello
- Department of BiologyUniversity of British Columbia, Okanagan CampusKelownaBCCanada
| | - Nikos Poulakakis
- Department of BiologySchool of Sciences and EngineeringUniversity of CreteHeraklion, CreteGreece
- Natural History Museum of CreteSchool of Sciences and EngineeringUniversity of CreteHeraklion, CreteGreece
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceSesto Fiorentino (FI)Italy
| | - Luciano B. Beheregaray
- Molecular Ecology LabSchool of Biological SciencesFlinders UniversityAdelaideSAAustralia
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
15
|
Daniels SR, Klaus S. Divergent evolutionary origins and biogeographic histories of two freshwater crabs (Brachyura: Potamonautes) on the West African conveyer belt islands of São Tomé and Príncipe. Mol Phylogenet Evol 2018; 127:119-128. [PMID: 29772349 DOI: 10.1016/j.ympev.2018.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/03/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
Abstract
We examined the colonization history and phylogeographic structure of the two endemic freshwater crab species (Potamonautes margaritarius and P. principe) inhabiting the volcanic islands of São Tomé and Príncipe, respectively, using mitochondrial and nuclear DNA sequence data. All samples were sequenced for the mtDNA COI locus and used in the phylogeographic analyses, while a single specimen per lineage was sequenced for the two remaining loci (16S rRNA and histone 3) and used in the phylogenetic reconstruction. Phylogenetic results reveal that P. principe diverged early within a clade of East/Southern African Potamonautes during the Miocene, while P. margaritarius diverged between the Late Eocene to Early Miocene. Furthermore, the two species are not sister taxa and are distantly related. These results corroborate previously hypothesised independent transoceanic dispersal events that resulted in the establishment of the endemic freshwater crab fauna of the two islands. Within P. margaritarius, we observed two reciprocally monophyletic clades on São Tomé Island. Clade one occurred in the southeast and southwest of the island, while clade two occurred in the northeast and the northwest; the divergence between the latter two clades was estimated to be of Pleistocene age. The two clades within P. margartarius are genetically highly structured and characterised by the absence of shared maternal haplotypes, suggesting possible speciation within P. margartarius. In contrast P. principe exhibits a shallow population genetic structure. Possible mechanisms of colonization and cladogenesis in the two freshwater crabs are discussed.
Collapse
Affiliation(s)
- Savel R Daniels
- Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland, 7602, South Africa.
| | - Sebastian Klaus
- Department of Ecology and Evolution, J.W. Goethe-University, Biologicum, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Jensen EL, Miller JM, Edwards DL, Garrick RC, Tapia W, Caccone A, Russello MA. Temporal Mitogenomics of the Galapagos Giant Tortoise from Pinzón Reveals Potential Biases in Population Genetic Inference. J Hered 2018; 109:631-640. [DOI: 10.1093/jhered/esy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Evelyn L Jensen
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Joshua M Miller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | | | - Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS
| | - Washington Tapia
- Department of Applied Research, Galapagos National Park Service, Puerto Ayora, Galápagos, Ecuador
- Galapagos Conservancy, Santa Cruz, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Michael A Russello
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
17
|
Comparative phylogeography of oceanic archipelagos: Hotspots for inferences of evolutionary process. Proc Natl Acad Sci U S A 2017; 113:7986-93. [PMID: 27432948 DOI: 10.1073/pnas.1601078113] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Remote island archipelagos offer superb opportunities to study the evolution of community assembly because of their relatively young and simple communities where speciation contributes to the origin and evolution of community structure. There is great potential for common phylogeographic patterns among remote archipelagos that originate through hotspot volcanism, particularly when the islands formed are spatially isolated and linearly arranged. The progression rule is characterized by a phylogeographic concordance between island age and lineage age in a species radiation. Progression is most likely to arise when a species radiation begins on an older island before the emergence of younger islands of a hotspot archipelago. In the simplest form of progression, colonization of younger islands as they emerge and offer appropriate habitat, is coincident with cladogenesis. In this paper, we review recent discoveries of the progression rule on seven hotspot archipelagos. We then discuss advantages that progression offers to the study of community assembly, and insights that community dynamics may offer toward understanding the evolution of progression. We describe results from two compelling cases of progression where the mosaic genome may offer insights into contrasting demographic histories that shed light on mechanisms of speciation and progression on remote archipelagos.
Collapse
|
18
|
Ortega-Del Vecchyo D, Piñero D, Jardón-Barbolla L, van Heerwaarden J. Appropriate homoplasy metrics in linked SSRs to predict an underestimation of demographic expansion times. BMC Evol Biol 2017; 17:213. [PMID: 28893173 PMCID: PMC5594565 DOI: 10.1186/s12862-017-1046-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homoplasy affects demographic inference estimates. This effect has been recognized and corrective methods have been developed. However, no studies so far have defined what homoplasy metrics best describe the effects on demographic inference, or have attempted to estimate such metrics in real data. Here we study how homoplasy in chloroplast microsatellites (cpSSR) affects inference of population expansion time. cpSSRs are popular markers for inferring historical demography in plants due to their high mutation rate and limited recombination. RESULTS In cpSSRs, homoplasy is usually quantified as the probability that two markers or haplotypes that are identical by state are not identical by descent (Homoplasy index, P). Here we propose a new measure of multi-locus homoplasy in linked SSR called Distance Homoplasy (DH), which measures the proportion of pairwise differences not observed due to homoplasy, and we compare it to P and its per cpSSR locus average, which we call Mean Size Homoplasy (MSH). We use simulations and analytical derivations to show that, out of the three homoplasy metrics analyzed, MSH and DH are more correlated to changes in the population expansion time and to the underestimation of that demographic parameter using cpSSR. We perform simulations to show that Approximate Bayesian Computation (ABC) can be used to obtain reasonable estimates of MSH and DH. Finally, we use ABC to estimate the expansion time, MSH and DH from a chloroplast SSR dataset in Pinus caribaea. To our knowledge, this is the first time that homoplasy has been estimated in population genetic data. CONCLUSIONS We show that MSH and DH should be used to quantify how homoplasy affects estimates of population expansion time. We also demonstrate how ABC provides a methodology to estimate homoplasy in population genetic data.
Collapse
Affiliation(s)
- Diego Ortega-Del Vecchyo
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Department of Integrative Biology, University of California, Berkeley, USA.
| | - Daniel Piñero
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lev Jardón-Barbolla
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Joost van Heerwaarden
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Plant Production Systems, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
19
|
Genetics of Skeletal Evolution in Unusually Large Mice from Gough Island. Genetics 2016; 204:1559-1572. [PMID: 27694627 DOI: 10.1534/genetics.116.193805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Organisms on islands often undergo rapid morphological evolution, providing a platform for understanding mechanisms of phenotypic change. Many examples of evolution on islands involve the vertebrate skeleton. Although the genetic basis of skeletal variation has been studied in laboratory strains, especially in the house mouse Mus musculus domesticus, the genetic determinants of skeletal evolution in natural populations remain poorly understood. We used house mice living on the remote Gough Island-the largest wild house mice on record-to understand the genetics of rapid skeletal evolution in nature. Compared to a mainland reference strain from the same subspecies (WSB/EiJ), the skeleton of Gough Island mice is considerably larger, with notable expansions of the pelvis and limbs. The Gough Island mouse skeleton also displays changes in shape, including elongations of the skull and the proximal vs. distal elements in the limbs. Quantitative trait locus (QTL) mapping in a large F2 intercross between Gough Island mice and WSB/EiJ reveals hundreds of QTL that control skeletal dimensions measured at 5, 10, and/or 16 weeks of age. QTL exhibit modest, mostly additive effects, and Gough Island alleles are associated with larger skeletal size at most QTL. The QTL with the largest effects are found on a few chromosomes and affect suites of skeletal traits. Many of these loci also colocalize with QTL for body weight. The high degree of QTL colocalization is consistent with an important contribution of pleiotropy to skeletal evolution. Our results provide a rare portrait of the genetic basis of skeletal evolution in an island population and position the Gough Island mouse as a model system for understanding mechanisms of rapid evolution in nature.
Collapse
|
20
|
Jensen EL, Mooers AØ, Caccone A, Russello MA. I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation. PeerJ 2016; 4:e2350. [PMID: 27635324 PMCID: PMC5012326 DOI: 10.7717/peerj.2350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE) that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability. We applied this metric to a phylogenetic network based on mitochondrial control region data from extant and recently extinct giant Galápagos tortoises, a highly endangered group of closely related species. We found that the restoration of two extinct species (a project currently underway) will contribute the greatest gain in phylogenetic diversity, and present an ordered list of rankings that is the optimum complementarity set for conservation prioritization.
Collapse
Affiliation(s)
- Evelyn L Jensen
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna , BC , Canada
| | - Arne Ø Mooers
- Biological Sciences, Simon Fraser University , Burnaby , BC , Canada
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University , New Haven , CT , United States
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna , BC , Canada
| |
Collapse
|
21
|
Exploring the legacy of goat grazing: signatures of habitat fragmentation on genetic patterns of endemic weevil populations in Northern Isabela Island, Galápagos (Ecuador). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0831-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Description of a New Galapagos Giant Tortoise Species (Chelonoidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz Island. PLoS One 2015; 10:e0138779. [PMID: 26488886 PMCID: PMC4619298 DOI: 10.1371/journal.pone.0138779] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022] Open
Abstract
The taxonomy of giant Galapagos tortoises (Chelonoidis spp.) is currently based primarily on morphological characters and island of origin. Over the last decade, compelling genetic evidence has accumulated for multiple independent evolutionary lineages, spurring the need for taxonomic revision. On the island of Santa Cruz there is currently a single named species, C. porteri. Recent genetic and morphological studies have shown that, within this taxon, there are two evolutionarily and spatially distinct lineages on the western and eastern sectors of the island, known as the Reserva and Cerro Fatal populations, respectively. Analyses of DNA from natural populations and museum specimens, including the type specimen for C. porteri, confirm the genetic distinctiveness of these two lineages and support elevation of the Cerro Fatal tortoises to the rank of species. In this paper, we identify DNA characters that define this new species, and infer evolutionary relationships relative to other species of Galapagos tortoises.
Collapse
|
23
|
Garrick RC, Kajdacsi B, Russello MA, Benavides E, Hyseni C, Gibbs JP, Tapia W, Caccone A. Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises. Ecol Evol 2015; 5:676-94. [PMID: 25691990 PMCID: PMC4328771 DOI: 10.1002/ece3.1388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term population history can influence the genetic effects of recent bottlenecks. Therefore, for threatened or endangered species, an understanding of the past is relevant when formulating conservation strategies. Levels of variation at neutral markers have been useful for estimating local effective population sizes (N e ) and inferring whether population sizes increased or decreased over time. Furthermore, analyses of genotypic, allelic frequency, and phylogenetic information can potentially be used to separate historical from recent demographic changes. For 15 populations of Galápagos giant tortoises (Chelonoidis sp.), we used 12 microsatellite loci and DNA sequences from the mitochondrial control region and a nuclear intron, to reconstruct demographic history on shallow (past ∽100 generations, ∽2500 years) and deep (pre-Holocene, >10 thousand years ago) timescales. At the deep timescale, three populations showed strong signals of growth, but with different magnitudes and timing, indicating different underlying causes. Furthermore, estimated historical N e of populations across the archipelago showed no correlation with island age or size, underscoring the complexity of predicting demographic history a priori. At the shallow timescale, all populations carried some signature of a genetic bottleneck, and for 12 populations, point estimates of contemporary N e were very small (i.e., < 50). On the basis of the comparison of these genetic estimates with published census size data, N e generally represented ∽0.16 of the census size. However, the variance in this ratio across populations was considerable. Overall, our data suggest that idiosyncratic and geographically localized forces shaped the demographic history of tortoise populations. Furthermore, from a conservation perspective, the separation of demographic events occurring on shallow versus deep timescales permits the identification of naturally rare versus newly rare populations; this distinction should facilitate prioritization of management action.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - Brittney Kajdacsi
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Michael A Russello
- Department of Biology, University of British ColumbiaOkanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Chaz Hyseni
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - James P Gibbs
- College of Environmental Science and Forestry, State University of New YorkSyracuse, New York, 13210
| | - Washington Tapia
- Department of Applied Research, Galápagos National Park ServicePuerto Ayora, Galápagos, Ecuador
- Biodiver S.A. ConsultoresKm 5 Vía a Baltra, Isla Santa Cruz, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| |
Collapse
|
24
|
Beheregaray LB, Cooke GM, Chao NL, Landguth EL. Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia. Front Genet 2015; 5:477. [PMID: 25653668 PMCID: PMC4301025 DOI: 10.3389/fgene.2014.00477] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/29/2014] [Indexed: 11/26/2022] Open
Abstract
Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas.
Collapse
Affiliation(s)
- Luciano B Beheregaray
- Molecular Ecology Lab, School of Biological Sciences, Flinders University Adelaide, SA, Australia
| | - Georgina M Cooke
- The Australian Museum, The Australian Museum Research Institute Sydney, NSW, Australia
| | - Ning L Chao
- Departamento de Ciências Pesqueiras, Universidade Federal do Amazonas Manaus, Brazil ; National Museum of Marine Biology and Aquarium Pintung, Taiwan
| | - Erin L Landguth
- Division of Biological Sciences, University of Montana Missoula, MT, USA
| |
Collapse
|
25
|
Garrick RC, Benavides E, Russello MA, Hyseni C, Edwards DL, Gibbs JP, Tapia W, Ciofi C, Caccone A. Lineage fusion in Galápagos giant tortoises. Mol Ecol 2014; 23:5276-90. [DOI: 10.1111/mec.12919] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Ryan C. Garrick
- Department of Biology; University of Mississippi; Oxford MS 38677 USA
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06520 USA
| | - Michael A. Russello
- Department of Biology; University of British Columbia; Okanagan Campus Kelowna BC V1V 1V7 Canada
| | - Chaz Hyseni
- Department of Biology; University of Mississippi; Oxford MS 38677 USA
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06520 USA
| | - Danielle L. Edwards
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06520 USA
| | - James P. Gibbs
- College of Environmental Science & Forestry; State University of New York; Syracuse NY 13210 USA
| | - Washington Tapia
- Department of Applied Research; Galápagos National Park Service; Puerto Ayora Isla Santa Cruz Galápagos Ecuador
- Biodiver S.A. Consultores; Km 5 Vía a Baltra Isla Santa Cruz Galápagos Ecuador
| | - Claudio Ciofi
- Department of Evolutionary Biology; University of Florence; Via Romana 17 50125 Florence Italy
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06520 USA
| |
Collapse
|
26
|
Cryptic structure and niche divergence within threatened Galápagos giant tortoises from southern Isabela Island. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0622-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Nistelberger H, Byrne M, Coates D, Roberts JD. Strong phylogeographic structure in a millipede indicates Pleistocene Vicariance between populations on banded iron formations in semi-arid Australia. PLoS One 2014; 9:e93038. [PMID: 24663390 PMCID: PMC3963978 DOI: 10.1371/journal.pone.0093038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/25/2014] [Indexed: 11/30/2022] Open
Abstract
The Yilgarn Banded Iron Formations of Western Australia are topographical features that behave as terrestrial islands within the otherwise flat, semi-arid landscape. The formations are characterised by a high number of endemic species, some of which are distributed across multiple formations without inhabiting the intervening landscape. These species provide an ideal context for phylogeographic analysis, to investigate patterns of genetic variation at both spatial and temporal scales. We examined genetic variation in the spirostreptid millipede, Atelomastix bamfordi, found on five of these Banded Iron Formations at two mitochondrial loci and 11 microsatellite loci. Strong phylogeographic structuring indicated the five populations became isolated during the Pleistocene, a period of intensifying aridity in this landscape, when it appears populations have been restricted to pockets of moist habitat provided by the formations. The pattern of reciprocal monophyly identified within the mtDNA and strong differentiation within the nuclear microsatellite data highlight the evolutionary significance of these divergent populations and we suggest the degree of differentiation warrants designation of each as a conservation unit.
Collapse
Affiliation(s)
- Heidi Nistelberger
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Margaret Byrne
- Science Division, Department of Parks and Wildlife, Bentley Delivery Centre, Bentley, Western Australia, Australia
| | - David Coates
- Science Division, Department of Parks and Wildlife, Bentley Delivery Centre, Bentley, Western Australia, Australia
| | - J. Dale Roberts
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
28
|
Geraghty PT, Williamson JE, Macbeth WG, Wintner SP, Harry AV, Ovenden JR, Gillings MR. Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific. PLoS One 2013; 8:e75169. [PMID: 24086462 PMCID: PMC3783459 DOI: 10.1371/journal.pone.0075169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. METHODS AND FINDINGS Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and F ST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717-0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia's east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04). CONCLUSIONS The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.
Collapse
Affiliation(s)
- Pascal T. Geraghty
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Cronulla Fisheries Research Centre of Excellence, New South Wales Department of Primary Industries, Sydney, New South Wales, Australia
| | - Jane E. Williamson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - William G. Macbeth
- Cronulla Fisheries Research Centre of Excellence, New South Wales Department of Primary Industries, Sydney, New South Wales, Australia
| | - Sabine P. Wintner
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, KwaZulu-Natal, South Africa
| | - Alastair V. Harry
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
| | - Jennifer R. Ovenden
- Molecular Fisheries Laboratory, the University of Queensland, St. Lucia, Queensland, Australia
| | - Michael R. Gillings
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Caetano S, Currat M, Pennington RT, Prado D, Excoffier L, Naciri Y. Recent colonization of the Galápagos by the tree Geoffroea spinosa Jacq. (Leguminosae). Mol Ecol 2012; 21:2743-60. [PMID: 22509817 DOI: 10.1111/j.1365-294x.2012.05562.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study puts together genetic data and an approximate bayesian computation (ABC) approach to infer the time at which the tree Geoffroea spinosa colonized the Galápagos Islands. The genetic diversity and differentiation between Peru and Galápagos population samples, estimated using three chloroplast spacers and six microsatellite loci, reveal significant differences between two mainland regions separated by the Andes mountains (Inter Andean vs. Pacific Coast) as well as a significant genetic differentiation of island populations. Microsatellites identify two distinct geographical clusters, the Galápagos and the mainland, and chloroplast markers show a private haplotype in the Galápagos. The nuclear distinctiveness of the Inter Andean populations suggests current restricted pollen flow, but chloroplast points to cross-Andean dispersals via seeds, indicating that the Andes might not be an effective biogeographical barrier. The ABC analyses clearly point to the colonization of the Galápagos within the last 160,000 years and possibly as recently as 4750 years ago (475 generations). Founder events associated with colonization of the two islands where the species occurs are detected, with Española having been colonized after Floreana. We discuss two nonmutually exclusive possibilities for the colonization of the Galápagos, recent natural dispersal vs. human introduction.
Collapse
Affiliation(s)
- S Caetano
- Plant Systematics and Biodiversity Laboratory, Molecular Phylogeny and Genetics Unit, Conservatoire et Jardin botaniques, 1 Chemin de l'Impératrice, CP 60, CH-1292 Chambésy, Genève, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Sequeira AS, Stepien CC, Sijapati M, Roque Albelo L. Comparative genetic structure and demographic history in endemic galapagos weevils. J Hered 2012; 103:206-20. [PMID: 22174444 PMCID: PMC3283505 DOI: 10.1093/jhered/esr124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 10/12/2011] [Accepted: 10/12/2011] [Indexed: 11/12/2022] Open
Abstract
The challenge of maintaining genetic diversity within populations can be exacerbated for island endemics if they display population dynamics and behavioral attributes that expose them to genetic drift without the benefits of gene flow. We assess patterns of the genetic structure and demographic history in 27 populations of 9 species of flightless endemic Galápagos weevils from 9 of the islands and 1 winged introduced close relative. Analysis of mitochondrial DNA reveals a significant population structure and moderately variable, though demographically stable, populations for lowland endemics (F(ST) = 0.094-0.541; π: 0.014-0.042; Mismatch P = 0.003-0.026; and D((Tajima)) = -0.601 to 1.203), in contrast to signals of past contractions and expansions in highland specialists on 2 islands (Mismatch P = 0.003-0.026 and D((Tajima)) = -0.601 to 1.203). We interpret this series of variable and highly structured population groups as a system of long-established, independently founded island units, where structuring could be a signal of microallopatric differentiation due to patchy host plant distribution and poor dispersal abilities. We suggest that the severe reduction and subsequent increase of a suitably moist habitat that accompanied past climatic variation could have contributed to the observed population fluctuations in highland specialists. We propose the future exploration of hybridization between the introduced and highland endemic species on Santa Cruz, especially given the expansion of the introduced species into the highlands, the sensitivity to past climatic variation detected in highland populations, and the potentially threatened state of single-island endemics.
Collapse
Affiliation(s)
- Andrea S Sequeira
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | | | |
Collapse
|
31
|
Poulakakis N, Russello M, Geist D, Caccone A. Unravelling the peculiarities of island life: vicariance, dispersal and the diversification of the extinct and extant giant Galápagos tortoises. Mol Ecol 2011; 21:160-73. [PMID: 22098061 DOI: 10.1111/j.1365-294x.2011.05370.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In isolated oceanic islands, colonization patterns are often interpreted as resulting from dispersal rather than vicariant events. Such inferences may not be appropriate when island associations change over time and new islands do not form in a simple linear trend. Further complexity in the phylogeography of ocean islands arises when dealing with endangered taxa as extinctions, uncertainty on the number of evolutionary 'units', and human activities can obscure the progression of colonization events. Here, we address these issues through a reconstruction of the evolutionary history of giant Galápagos tortoises, integrating DNA data from extinct and extant species with information on recent human activities and newly available geological data. Our results show that only three of the five extinct or nearly extinct species should be considered independent evolutionary units. Dispersal from mainland South America started at approximately 3.2 Ma after the emergence of the two oldest islands of San Cristobal and Española. Dispersal from older to younger islands began approximately 1.74 Ma and was followed by multiple colonizations from different sources within the archipelago. Vicariant events, spurred by island formation, coalescence, and separation, contributed to lineage diversifications on Pinzón and Floreana dating from 1.26 and 0.85 Ma. This work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and highlights the need to take into account both vicariance and dispersal when dealing with organisms from islands whose associations are not simply explained by a linear emergence model.
Collapse
Affiliation(s)
- Nikos Poulakakis
- Molecular Systematics Lab, Natural History Museum of Crete, University of Crete, Iraklion, Crete.
| | | | | | | |
Collapse
|
32
|
Daniels SR. Reconstructing the colonisation and diversification history of the endemic freshwater crab (Seychellum alluaudi) in the granitic and volcanic Seychelles Archipelago. Mol Phylogenet Evol 2011; 61:534-42. [DOI: 10.1016/j.ympev.2011.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 11/26/2022]
|
33
|
Chiari Y, Claude J. Study of the carapace shape and growth in two Galápagos tortoise lineages. J Morphol 2011; 272:379-86. [PMID: 21246597 DOI: 10.1002/jmor.10923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 11/08/2022]
Abstract
Galápagos tortoises possess two main shell forms, domed and saddleback, that correlate with the biogeographic history of this species group. However, the lack of description of morphological shell variation within and among populations has prevented the understanding of the contribution of evolutionary forces and the potential role of ontogeny in shaping morphological shell differences. Here, we analyze two lineages of Galápagos tortoises inhabiting Santa Cruz Island by applying geometric morphometrics in combination with a photogrammetry 3D reconstruction method on a set of tortoises of different ages (from juvenile to adult). The aim of this study is to describe morphological features on the carapace that could be used for taxonomic recognition by taking into account confounding factors, such as the morphological changes occurring during growth. Our results indicate that despite the shared similarities of growth patterns and of morphological changes observed during growth, the two lineages and the different sexes can be distinguished on the basis of distinct carapace features. Lineages differ by the shape of the vertebral (especially concerning their width) and pleural scutes, with one lineage having a more compressed carapace shape, whereas the other possesses a carapace that is more elongated and expanded toward the sides as well as an higher positioning of the first vertebral scute. Furthermore, females have a more elongated and wider carapace shape than males. Finally, carapace shape changes with growth, with vertebral scutes becoming narrower and pleural scutes becoming larger during late ontogeny.
Collapse
Affiliation(s)
- Ylenia Chiari
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106, USA.
| | | |
Collapse
|
34
|
De Busschere C, Hendrickx F, Van Belleghem SM, Backeljau T, Lens L, Baert L. Parallel habitat specialization within the wolf spider genus Hogna from the Galápagos. Mol Ecol 2010; 19:4029-45. [PMID: 20695996 DOI: 10.1111/j.1365-294x.2010.04758.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Within most island archipelagos, such as the Galápagos, similar ecological gradients are found on geographically isolated islands. Species radiations in response to these ecological gradients may follow different scenarios being (i) a single habitat specialization event followed by secondary colonization of each ecotype on the different islands or (ii) repeated and parallel habitat specialization on each island separately. This latter scenario has been considered less likely as gene flow might hamper such ecotypic differentiation. At least for the Galápagos, the extent to which this process is involved in species radiations remains yet poorly understood. Within the wolf spider genus Hogna, seven species are described that can be divided into three different ecotypes based on general morphology and habitat preference i.e. species that inhabit the pampa vegetation in the highlands, species that occur in coastal dry habitats and one generalist species. Comparison of the species phylogeny based on one mitochondrial (COI) and one nuclear (28S) gene fragment convincingly demonstrates that 'pampa' and 'coastal dry' species evolved in parallel on the islands Santa Cruz and San Cristóbal. Despite the observation that allozymes analysis indicated that each species forms a distinct genetic cluster, phylogenetic divergence within these species complexes was very low and paraphyletic and most likely due to hybridization rather than incomplete lineage sorting, as demonstrated for the Santa Cruz species complex. This suggests that within-island speciation occurred under low levels of gene flow. Species phylogeny in general did not follow the progression of island emergence as a molecular clock analysis suggested that island endemic species may have diverged after as well as before the emergence of the islands. This represents the first clear example of parallel and within-island speciation because of habitat specialization on the Galápagos and that such divergence most likely occurred under historic gene flow.
Collapse
|
35
|
Balmer O, Ciofi C, Galbraith DA, Swingland IR, Zug GR, Caccone A. Population genetic structure of Aldabra giant tortoises. J Hered 2010; 102:29-37. [PMID: 20805288 DOI: 10.1093/jhered/esq096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evolution of population structure on islands is the result of physical processes linked to volcanism, orogenic events, changes in sea level, as well as habitat variation. We assessed patterns of genetic structure in the giant tortoise of the Aldabra atoll, where previous ecological studies suggested population subdivisions as a result of landscape discontinuity due to unsuitable habitat and island separation. Analysis of mitochondrial DNA (mtDNA) control region sequences and allelic variation at 8 microsatellite loci were conducted on tortoises sampled in 3 locations on the 2 major islands of Aldabra. We found no variation in mtDNA sequences. This pattern corroborated earlier work supporting the occurrence of a founding event during the last interglacial period and a further reduction in genetic variability during historical time. On the other hand, significant population structure recorded at nuclear loci suggested allopatric divergence possibly due to geographical barriers among islands and ecological partitions hindering tortoise movements within islands. This is the first attempt to study the population genetics of Aldabra tortoises, which are now at carrying capacity in an isolated terrestrial ecosystem where ecological factors appear to have a strong influence on population dynamics.
Collapse
Affiliation(s)
- Oliver Balmer
- Institute of Zoology, University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Inference of population history by coupling exploratory and model-driven phylogeographic analyses. Int J Mol Sci 2010; 11:1190-227. [PMID: 20480016 PMCID: PMC2871112 DOI: 10.3390/ijms11041190] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022] Open
Abstract
Understanding the nature, timing and geographic context of historical events and population processes that shaped the spatial distribution of genetic diversity is critical for addressing questions relating to speciation, selection, and applied conservation management. Cladistic analysis of gene trees has been central to phylogeography, but when coupled with approaches that make use of different components of the information carried by DNA sequences and their frequencies, the strength and resolution of these inferences can be improved. However, assessing concordance of inferences drawn using different analytical methods or genetic datasets, and integrating their outcomes, can be challenging. Here we overview the strengths and limitations of different types of genetic data, analysis methods, and approaches to historical inference. We then turn our attention to the potentially synergistic interactions among widely-used and emerging phylogeographic analyses, and discuss some of the ways that spatial and temporal concordance among inferences can be assessed. We close this review with a brief summary and outlook on future research directions.
Collapse
|
37
|
Russello MA, Poulakakis N, Gibbs JP, Tapia W, Benavides E, Powell JR, Caccone A. DNA from the past informs ex situ conservation for the future: an "extinct" species of Galápagos tortoise identified in captivity. PLoS One 2010; 5:e8683. [PMID: 20084268 PMCID: PMC2800188 DOI: 10.1371/journal.pone.0008683] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/20/2009] [Indexed: 12/02/2022] Open
Abstract
Background Although not unusual to find captive relicts of species lost in the wild, rarely are presumed extinct species rediscovered outside of their native range. A recent study detected living descendents of an extinct Galápagos tortoise species (Chelonoidis elephantopus) once endemic to Floreana Island on the neighboring island of Isabela. This finding adds to the growing cryptic diversity detected among these species in the wild. There also exists a large number of Galápagos tortoises in captivity of ambiguous origin. The recently accumulated population-level haplotypic and genotypic data now available for C. elephantopus add a critical reference population to the existing database of 11 extant species for investigating the origin of captive individuals of unknown ancestry. Methodology/Findings We reanalyzed mitochondrial DNA control region haplotypes and microsatellite genotypes of 156 captive individuals using an expanded reference database that included all extant Galápagos tortoise species as well as the extinct species from Floreana. Nine individuals (six females and three males) exhibited strong signatures of Floreana ancestry and a high probability of assignment to C. elephantopus as detected by Bayesian assignment and clustering analyses of empirical and simulated data. One male with high assignment probability to C. elephantopus based on microsatellite genotypic data also possessed a “Floreana-like” mitochondrial DNA haplotype. Significance Historical DNA analysis of museum specimens has provided critical spatial and temporal components to ecological, evolutionary, taxonomic and conservation-related research, but rarely has it informed ex situ species recovery efforts. Here, the availability of population-level genotypic data from the extinct C. elephantopus enabled the identification of nine Galápagos tortoise individuals of substantial conservation value that were previously misassigned to extant species of varying conservation status. As all captive individuals of C. elephantopus ancestry currently reside at a centralized breeding facility on Santa Cruz, these findings permit breeding efforts to commence in support of the reestablishment of this extinct species to its native range.
Collapse
Affiliation(s)
- Michael A Russello
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
38
|
Steinfartz S, Glaberman S, Lanterbecq D, Russello MA, Rosa S, Hanley TC, Marquez C, Snell HL, Snell HM, Gentile G, Dell'Olmo G, Powell AM, Caccone A. Progressive colonization and restricted gene flow shape island-dependent population structure in Galápagos marine iguanas (Amblyrhynchus cristatus). BMC Evol Biol 2009; 9:297. [PMID: 20028547 PMCID: PMC2807874 DOI: 10.1186/1471-2148-9-297] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 12/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine iguanas (Amblyrhynchus cristatus) inhabit the coastlines of large and small islands throughout the Galápagos archipelago, providing a rich system to study the spatial and temporal factors influencing the phylogeographic distribution and population structure of a species. Here, we analyze the microevolution of marine iguanas using the complete mitochondrial control region (CR) as well as 13 microsatellite loci representing more than 1200 individuals from 13 islands. RESULTS CR data show that marine iguanas occupy three general clades: one that is widely distributed across the northern archipelago, and likely spread from east to west by way of the South Equatorial current, a second that is found mostly on the older eastern and central islands, and a third that is limited to the younger northern and western islands. Generally, the CR haplotype distribution pattern supports the colonization of the archipelago from the older, eastern islands to the younger, western islands. However, there are also signatures of recurrent, historical gene flow between islands after population establishment. Bayesian cluster analysis of microsatellite genotypes indicates the existence of twenty distinct genetic clusters generally following a one-cluster-per-island pattern. However, two well-differentiated clusters were found on the easternmost island of San Cristóbal, while nine distinct and highly intermixed clusters were found on youngest, westernmost islands of Isabela and Fernandina. High mtDNA and microsatellite genetic diversity were observed for populations on Isabela and Fernandina that may be the result of a recent population expansion and founder events from multiple sources. CONCLUSIONS While a past genetic study based on pure FST analysis suggested that marine iguana populations display high levels of nuclear (but not mitochondrial) gene flow due to male-biased dispersal, the results of our sex-biased dispersal tests and the finding of strong genetic differentiation between islands do not support this view. Therefore, our study is a nice example of how recently developed analytical tools such as Bayesian clustering analysis and DNA sequence-based demographic analyses can overcome potential biases introduced by simply relying on FST estimates from markers with different inheritance patterns.
Collapse
Affiliation(s)
- Sebastian Steinfartz
- Department of Ecology and Evolutionary Biology and Yale Institute for Biospheric Studies - Molecular Systematics and Conservation Genetics Laboratory, New Haven, Connecticut 06511, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morphometrics parallel genetics in a newly discovered and endangered taxon of Galápagos tortoise. PLoS One 2009; 4:e6272. [PMID: 19609441 PMCID: PMC2707613 DOI: 10.1371/journal.pone.0006272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 06/07/2009] [Indexed: 11/19/2022] Open
Abstract
Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva) exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.
Collapse
|
40
|
Benavides E, Baum R, Snell HM, Snell HL, Sites JW. Island biogeography of Galápagos lava lizards (Tropiduridae: Microlophus): species diversity and colonization of the archipelago. Evolution 2009; 63:1606-26. [PMID: 19154379 DOI: 10.1111/j.1558-5646.2009.00617.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The "lava lizards" (Microlophus) are distributed throughout the Galápagos Archipelago, and consist of radiations derived from two independent colonizations. The "Eastern Radiation" includes M. bivittatus and M. habeli endemic to San Cristobal and Marchena Islands. The "Western Radiation" includes five to seven historically recognized species distributed across almost the entire Archipelago. We combine dense geographic sampling and multilocus sequence data to estimate a phylogenetic hypothesis for the Western Radiation, to delimit species boundaries in this radiation, and to estimate a time frame for colonization events. Our phylogenetic hypothesis rejects two earlier topologies for the Western Radiation and paraphyly of M. albemarlensis, while providing strong support for single colonizations on each island. The colonization history implied by our phylogeny is consistent with general expectations of an east-to-west route predicted by the putative age of island groups, and prevailing ocean currents in the Archipelago. Additionally, combined evidence suggests that M. indefatigabilis from Santa Fe should be recognized as a full species. Finally, molecular divergence estimates suggest that the two colonization events likely occurred on the oldest existing islands, and the Western Radiation represents a recent radiation that, in most cases, has produced species that are considerably younger than the islands they inhabit.
Collapse
Affiliation(s)
- Edgar Benavides
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | |
Collapse
|
41
|
Parent CE, Caccone A, Petren K. Colonization and diversification of Galápagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Philos Trans R Soc Lond B Biol Sci 2008; 363:3347-61. [PMID: 18782729 PMCID: PMC2607378 DOI: 10.1098/rstb.2008.0118] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Remote oceanic islands have long been recognized as natural models for the study of evolutionary processes involved in diversification. Their remoteness provides opportunities for isolation and divergence of populations, which make islands remarkable settings for the study of diversification. Groups of islands may share a relatively similar geological history and comparable climate, but their inhabitants experience subtly different environments and have distinct evolutionary histories, offering the potential for comparative studies. A range of organisms have colonized the Galápagos Islands, and various lineages have radiated throughout the archipelago to form unique assemblages. This review pays particular attention to molecular phylogenetic studies of Galápagos terrestrial fauna. We find that most of the Galápagos terrestrial fauna have diversified in parallel to the geological formation of the islands. Lineages have occasionally diversified within islands, and the clearest cases occur in taxa with very low vagility and on large islands with diverse habitats. Ecology and habitat specialization appear to be critical in speciation both within and between islands. Although the number of phylogenetic studies is continuously increasing, studies of natural history, ecology, evolution and behaviour are essential to completely reveal how diversification proceeded on these islands.
Collapse
Affiliation(s)
- Christine E Parent
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada.
| | | | | |
Collapse
|
42
|
Beheregaray LB. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 2008; 17:3754-74. [PMID: 18627447 DOI: 10.1111/j.1365-294x.2008.03857.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phylogeography is a young, vigorous and integrative field of study that uses genetic data to understand the history of populations. This field has recently expanded into many areas of biology and also into several historical disciplines of Earth sciences. In this review, I present a numerical synthesis of the phylogeography literature based on an examination of over 3000 articles published during the first 20 years of the field (i.e. from 1987 to 2006). Information from several topics needed to evaluate the progress, tendencies and deficiencies of the field is summarized for 10 major groups of organisms and at a global scale. The topics include the geography of phylogeographic surveys, comparative nature of studies, temporal scales and major environments investigated, and genetic markers used. I also identify disparities in research productivity between the developing and the developed world, and propose ways to reduce some of the challenges faced by phylogeographers from less affluent countries. Phylogeography has experienced explosive growth in recent years fuelled by developments in DNA technology, theory and statistical analysis. I argue that the intellectual maturation of the field will eventually depend not only on these recent developments, but also on syntheses of comparative information across different regions of the globe. For this to become a reality, many empirical phylogeographic surveys in regions of the Southern Hemisphere (and in developing countries of the Northern Hemisphere) are needed. I expect the information and views presented here will assist in promoting international collaborative work in phylogeography and in guiding research efforts at both regional and global levels.
Collapse
Affiliation(s)
- Luciano B Beheregaray
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
43
|
Historical DNA analysis reveals living descendants of an extinct species of Galápagos tortoise. Proc Natl Acad Sci U S A 2008; 105:15464-9. [PMID: 18809928 DOI: 10.1073/pnas.0805340105] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Giant tortoises, a prominent symbol of the Galápagos archipelago, illustrate the influence of geological history and natural selection on the diversification of organisms. Because of heavy human exploitation, 4 of the 15 known species (Geochelone spp.) have disappeared. Charles Darwin himself detailed the intense harvesting of one species, G. elephantopus, which once was endemic to the island of Floreana. This species was believed to have been exterminated within 15 years of Darwin's historic visit to the Galápagos in 1835. The application of modern DNA techniques to museum specimens combined with long-term study of a system creates new opportunities for identifying the living remnants of extinct taxa in the wild. Here, we use mitochondrial DNA and microsatellite data obtained from museum specimens to show that the population on Floreana was evolutionarily distinct from all other Galápagos tortoise populations. It was demonstrated that some living individuals on the nearby island of Isabela are genetically distinct from the rest of the island's inhabitants. Surprisingly, we found that these "non-native" tortoises from Isabela are of recent Floreana ancestry and closely match the genetic data provided by the museum specimens. Thus, we show that the genetic line of G. elephantopus has not been completely extinguished and still exists in an intermixed population on Isabela. With enough individuals to commence a serious captive breeding program, this finding may help reestablish a species that was thought to have gone extinct more than a century ago and illustrates the power of long-term genetic analysis and the critical role of museum specimens in conservation biology.
Collapse
|
44
|
MACÍAS-HERNÁNDEZ NURIA, OROMÍ PEDRO, ARNEDO MIQUELA. Patterns of diversification on old volcanic islands as revealed by the woodlouse-hunter spider genus Dysdera (Araneae, Dysderidae) in the eastern Canary Islands. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.01007.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Sequeira AS, Lanteri AA, Albelo LR, Bhattacharya S, Sijapati M. Colonization history, ecological shifts and diversification in the evolution of endemic Galápagos weevils. Mol Ecol 2008; 17:1089-107. [PMID: 18261050 DOI: 10.1111/j.1365-294x.2007.03642.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mitochondrial DNA sequence data were obtained for eight species of flightless Galapaganus endemic weevils and one winged close relative in order to study their colonization history and modes of diversification in the Galápagos Archipelago. Contrary to most other insular radiations, the phylogeny estimates we recovered for Galapaganus do not follow the progression rule of island biogeography. The penalized likelihood age estimates of colonization of the archipelago exceed the age of the emerged islands and underscore the potential role of now sunken seamounts for the early evolution of Galapaganus. The phylogeny proposes one intra-island origin for Galapaganus endemics, but monophyly tests suggest a larger contribution of in-situ speciation on older islands. Generalist habitat preferences were reconstructed as ancestral while shifts to highland habitats were reconstructed as having evolved independently on different islands. Magnitudes and patterns of diversification rate were found to differ between older and younger islands. Our analyses reveal that the colonization sequence of islands and timing of colonization of Galapaganus could be linked with the geological and volcanic history of the islands in a rather complex scenario. Even though most islands appear to have been colonized soon after their emergence, there are notable deviations from the pattern of sequential colonization expected under the progression rule when considering only the extant emerged islands. Patterns of diversification rate variation on older and younger islands correspond to the volcanic activity or remnants of such activity, while the pattern of independent evolution of restricted habitat preferences in different islands suggests that habitat shifts could also have contributed to species diversity in Galapaganus.
Collapse
Affiliation(s)
- A S Sequeira
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | | | | | |
Collapse
|
46
|
JORDAN MA, SNELL HL. Historical fragmentation of islands and genetic drift in populations of Galápagos lava lizards (Microlophus albemarlensis complex). Mol Ecol 2008; 17:1224-37. [DOI: 10.1111/j.1365-294x.2007.03658.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Garrick RC, Dyer RJ, Beheregaray LB, Sunnucks P. Babies and bathwater: a comment on the premature obituary for nested clade phylogeographical analysis. Mol Ecol 2008; 17:1401-3; discussion 1404. [PMID: 18284568 DOI: 10.1111/j.1365-294x.2008.03675.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R C Garrick
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | |
Collapse
|
48
|
Daniels SR, Hofmeyr MD, Henen BT, Crandall KA. Living with the genetic signature of Miocene induced change: evidence from the phylogeographic structure of the endemic angulate tortoise Chersina angulata. Mol Phylogenet Evol 2007; 45:915-26. [PMID: 17936644 DOI: 10.1016/j.ympev.2007.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 07/31/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
The phylogeographic structure of the monotypic endemic southern African angulate tortoise Chersina angulata was investigated throughout its distribution with the use of partial sequences from three mtDNA loci (COI, cyt b and ND4). Phylogeographic and phylogenetic structuring obtained for the three mtDNA markers were highly congruent and suggested the presence of two genetically distinct, reciprocally monophyletic evolutionary lineages. Group one contained two subclades with haplotypes from the north-western Cape and south-western Cape, respectively, while haplotypes from the southern Cape comprised group two. The two major clades were separated by nine and eight mutational steps for COI and ND4, respectively. Of the three mtDNA gene regions examined, the ND4 partial sequence contained the most phylogenetic signal. Haplotype diversity was generally low and we recovered 34 haplotypes for the 125 animals sequenced for the ND4 subunit. Nested clade analyses performed on the variable ND4 partial sequences suggested the presence of two major refugial areas for this species. The demographic history of the taxon was characterised by range expansion and prolonged historical fragmentation. Divergence time estimates suggest that the temporal and spatial distribution of the taxon was sculpted by changes in temperature and rainfall patterns since the late Miocene. Corroborative evidence from other reptiles is also suggestive of a late Miocene divergence, indicating that this was a major epoch for cladogenesis in southern Africa. Apart from the genetic differences between the two major clades, we also note morphometric and behavioural differences, alluding to the presence of two putative taxa nested within C. angulata.
Collapse
Affiliation(s)
- Savel R Daniels
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | |
Collapse
|
49
|
Arnedo MA, Agnarsson I, Gillespie RG. Molecular insights into the phylogenetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna. ZOOL SCR 2007. [DOI: 10.1111/j.1463-6409.2007.00280.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Russello MA, Glaberman S, Gibbs JP, Marquez C, Powell JR, Caccone A. A cryptic taxon of Galápagos tortoise in conservation peril. Biol Lett 2007; 1:287-90. [PMID: 17148189 PMCID: PMC1617146 DOI: 10.1098/rsbl.2005.0317] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As once boldly stated, 'bad taxonomy can kill', highlighting the critical importance of accurate taxonomy for the conservation of endangered taxa. The concept continues to evolve almost 15 years later largely because most legal protections aimed at preserving biological diversity are based on formal taxonomic designations. In this paper we report unrecognized genetic divisions within the giant tortoises of the Galápagos. We found three distinct lineages among populations formerly considered a single taxon on the most populous and accessible island of Santa Cruz; their diagnosability, degree of genetic divergence and phylogenetic placement merit the recognition of at least one new taxon. These results demonstrate the fundamental importance of continuing taxonomic investigations to recognize biological diversity and designate units of conservation, even within long-studied organisms such as Galápagos tortoises, whose evolutionary heritage and contribution to human intellectual history warrant them special attention.
Collapse
Affiliation(s)
- Michael A Russello
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|