1
|
Antonaru LA, Rad-Menéndez C, Mbedi S, Sparmann S, Pope M, Oliver T, Wu S, Green DH, Gugger M, Nürnberg DJ. Evolution of far-red light photoacclimation in cyanobacteria. Curr Biol 2025:S0960-9822(25)00502-0. [PMID: 40367945 DOI: 10.1016/j.cub.2025.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/20/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
Cyanobacteria oxygenated the atmosphere of early Earth and continue to be key players in global carbon and nitrogen cycles. A phylogenetically diverse subset of extant cyanobacteria can perform photosynthesis with far-red light through a process called far-red light photoacclimation, or FaRLiP. This phenotype is enabled by a cluster of ∼20 genes and involves the synthesis of red-shifted chlorophylls d and f, together with paralogs of the ubiquitous photosynthetic machinery used in visible light. The FaRLiP gene cluster is present in diverse, environmentally important cyanobacterial groups, but its origin, evolutionary history, and connection to early biotic environments have remained unclear. This study takes advantage of the recent increase in (meta)genomic data to help clarify this issue: sequence data mining, metagenomic assembly, and phylogenetic tree networks were used to recover more than 600 new FaRLiP gene sequences, corresponding to 51 new gene clusters. These data enable high-resolution phylogenetics and-by relying on multiple gene trees, together with gene arrangement conservation-support FaRLiP appearing early in cyanobacterial evolution. Sampling information shows that considerable FaRLiP diversity can be observed in microbialites to the present day, and we hypothesize that the process was associated with the formation of microbial mats and stromatolites in the early Paleoproterozoic. The ancestral FaRLiP cluster was reconstructed, revealing features that have been maintained for billions of years. Overall, far-red-light-driven oxygenic photosynthesis may have played a significant role in Earth's early history.
Collapse
Affiliation(s)
- Laura A Antonaru
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Institute for Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Cecilia Rad-Menéndez
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban PA37 1QA, UK
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research, 14195 Berlin, Germany; Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Sarah Sparmann
- Berlin Center for Genomics in Biodiversity Research, 14195 Berlin, Germany; Leibniz Institute for Freshwater Research and Inland Fisheries, 12587 Berlin, Germany
| | - Matthew Pope
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Esox Biologics, London W12 0BZ, UK
| | - Thomas Oliver
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, the Netherlands
| | - Shujie Wu
- Institute for Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany; Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - David H Green
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban PA37 1QA, UK
| | - Muriel Gugger
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, 75015 Paris, France
| | - Dennis J Nürnberg
- Institute for Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany; Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Fu Q, Huang R, Li F, Beardall J, Hutchins DA, Liu J, Gao K. Warming and UV Radiation Alleviate the Effect of Virus Infection on the Microalga Emiliania huxleyi. PLANT, CELL & ENVIRONMENT 2025; 48:1829-1841. [PMID: 39494748 DOI: 10.1111/pce.15262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The marine microalga Emiliania huxleyi is widely distributed in the surface oceans and is prone to infection by coccolithoviruses that can terminate its blooms. However, little is known about how global change factors like solar UV radiation (UVR) and ocean warming affect the host-virus interaction. We grew the microalga at 2 temperature levels with or without the virus in the presence or absence of UVR and investigated the physiological and transcriptional responses. We showed that viral infection noticeably reduced photosynthesis and growth of the alga but was less harmful to its physiology under conditions where UVR influenced viral DNA expression. In the virus-infected cells, the combination of UVR and warming (+4°C) led to a 13-fold increase in photosynthetic carbon fixation rate, with warming alone contributing a change of about 5-7-fold. This was attributed to upregulated expression of genes related to carboxylation and light-harvesting proteins under the influence of UVR, and to warming-reduced infectivity. In the absence of UVR, viral infection downregulated the metabolic pathways of photosynthesis and fatty acid degradation. Our results suggest that solar UV exposure in a warming ocean can reduce the severity of viral attack on this ecologically important microalga, potentially prolonging its blooms.
Collapse
Affiliation(s)
- Qianqian Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Yancheng Aquatic Science Research Institute, Yancheng Agricultural College, Yancheng, China
| | - Ruiping Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China
| | - Futian Li
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - David A Hutchins
- Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
3
|
Zhou Z, Tran PQ, Martin C, Rohwer RR, Baker BJ, McMahon KD, Anantharaman K. Unravelling viral ecology and evolution over 20 years in a freshwater lake. Nat Microbiol 2025; 10:231-245. [PMID: 39753667 DOI: 10.1038/s41564-024-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025]
Abstract
As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors. Double-stranded DNA phages from the class Caudoviricetes dominated the community. We identified 574 auxiliary metabolic gene families representing over 140,000 auxiliary metabolic genes, including important genes such as psbA (photosynthesis), pmoC (methane oxidation) and katG (hydrogen peroxide decomposition), which were consistently present and active across decades and seasons. Positive associations and niche differentiation between virus-host pairs, including keystone Cyanobacteria, methanotrophs and Nanopelagicales, emerged during seasonal changes. Inorganic carbon and ammonium influenced viral abundances, underscoring viral roles in both 'top-down' and 'bottom-up' interactions. Evolutionary processes favoured fitness genes, reduced genomic heterogeneity and dominant sub-populations. This study transforms understanding of viral ecology and evolution in Earth's microbiomes.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Robin R Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Brett J Baker
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Marine Science, Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
4
|
Zhou K, Kosmopoulos JC, Colón ED, Badciong PJ, Anantharaman K. V- and V L-Scores Uncover Viral Signatures and Origins of Protein Families. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619987. [PMID: 39554153 PMCID: PMC11565772 DOI: 10.1101/2024.10.24.619987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Viruses are key drivers of microbial diversity, nutrient cycling, and co-evolution in ecosystems, yet their study is hindered due to challenges in culturing. Traditional gene-centric methods, which focus on a few hallmark genes like for capsids, miss much of the viral genome, leaving key viral proteins and functions undiscovered. Here, we introduce two powerful annotation-free metrics, V-score and VL-score, designed to quantify the "virus-likeness" of protein families and genomes and create an open-access searchable database, 'V-Score-Search'. By applying V- and VL-scores to public databases (KEGG, Pfam, and eggNOG), we link 38-77% of protein families with viruses, a 9-16x increase over current estimates. These metrics outperform existing approaches, enabling precise detection of viral genomes, prophages, and host-derived auxiliary viral genes (AVGs) from fragmented sequences, and significantly improving genome binning. Remarkably, we identify up to 17x more AVGs, dominated by non-metabolic proteins of unknown function. This innovation unlocks new insights into virus signatures and host interactions, with wide-ranging implications from genomics to biotechnology.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Etan Dieppa Colón
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | | | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
5
|
Vila-Nistal M, Logares R, Gasol JM, Martinez-Garcia M. Time Series Data Provide Insights into the Evolution and Abundance of One of the Most Abundant Viruses in the Marine Virosphere: The Uncultured Pelagiphages vSAG 37-F6. Viruses 2024; 16:1669. [PMID: 39599783 PMCID: PMC11598899 DOI: 10.3390/v16111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Viruses play a pivotal role in ecosystems by influencing biochemical cycles and impacting the structure and evolution of their host cells. The widespread pelagiphages infect Pelagibacter spp., the most abundant marine microbe on Earth, and thus play a significant role in carbon transformation through the viral shunt. Among these viruses, the uncultured lytic pelagiphage vSAG 37-F6, uncovered by single-virus genomics, is likely the most numerous virus in the ocean. While previous research has delved into the diversity and spatial distribution of vSAG 37-F6, there is still a gap in understanding its temporal dynamics, hindering our insight into its ecological impact. We explored the temporal dynamics of vSAG 37-F6, assessing periodic fluctuations in abundance and evolutionary patterns using long- and short-term data series. In the long-term series (7 years), metagenomics showed negative selection acting on all viral genes, with a highly conserved overall diversity over time composed of a pool of yearly emergent, highly similar novel strains that exhibited a seasonal abundance pattern with two peaks during winter and fall and a decrease in months with higher UV radiation. Most non-synonymous polymorphisms occurred in structural viral proteins located in regions with low conformational restrictions, suggesting that many of the viral genes of this population are highly purified over its evolution. At the fine-scale resolution (24 h time series), combining digital PCR and metagenomics, we identified two peaks of cellular infection for the targeted vSAG 37-F6 viral strain (up to approximately 103 copies/ng of prokaryotic DNA), one before sunrise and the second shortly after midday. Considering the high number of co-occurring strains of this microdiverse virus, the abundance values at the species or genus level could be orders of magnitudes higher. These findings represent a significant advancement in understanding the dynamics of the potentially most abundant oceanic virus, providing valuable insights into ecologically relevant marine viruses.
Collapse
Affiliation(s)
- Marina Vila-Nistal
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, 03690 Alicante, Spain;
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, 03690 Alicante, Spain
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain; (R.L.); (J.M.G.)
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain; (R.L.); (J.M.G.)
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, 03690 Alicante, Spain;
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, 03690 Alicante, Spain
| |
Collapse
|
6
|
Meza-Padilla I, McConkey BJ, Nissimov JI. Structural models predict a significantly higher binding affinity between the NblA protein of cyanophage Ma-LMM01 and the phycocyanin of Microcystis aeruginosa NIES-298 compared to the host homolog. Virus Evol 2024; 10:veae082. [PMID: 39411151 PMCID: PMC11477984 DOI: 10.1093/ve/veae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Horizontal gene transfer events between viruses and hosts are widespread across the virosphere. In cyanophage-host systems, such events often involve the transfer of genes involved in photosynthetic processes. The genome of the lytic cyanophage Ma-LMM01 infecting the toxic, bloom-forming, freshwater Microcystis aeruginosa NIES-298 contains a homolog of the non-bleaching A (nblA) gene, which was probably transferred from a cyanobacterial host. The function of the NblA protein is to disassemble phycobilisomes, cyanobacterial light-harvesting complexes that can comprise up to half of the cellular soluble protein content. NblA thus plays an essential dual role in cyanobacteria: it protects the cell from high-light intensities and increases the intracellular nitrogen pool under nutrient limitation. NblA has previously been shown to interact with phycocyanin, one of the main components of phycobilisomes. Using structural modeling and protein-protein docking, we show that the NblA dimer of Ma-LMM01 is predicted to have a significantly higher binding affinity for M. aeruginosa NIES-298 phycocyanin (αβ)6 hexamers, compared to the host homolog. Protein-protein docking suggests that the viral NblA structural model is able to bind deeper into the phycocyanin groove. The main structural difference between the virus and host NblA appears to be an additional α-helix near the N-terminus of the viral NblA, which interacts with the inside of the phycocyanin groove and could thus be considered partly responsible for this deeper binding. Interestingly, phylogenetic analyses indicate that this longer nblA was probably acquired from a different Microcystis host. Based on infection experiments and previous findings, we propose that a higher binding affinity of the viral NblA to the host phycocyanin may represent a selective advantage for the virus, whose infection cycle requires an increased phycobilisome degradation rate that is not fulfilled by the NblA of the host.
Collapse
Affiliation(s)
- Isaac Meza-Padilla
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Brendan J McConkey
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Tian F, Wainaina JM, Howard-Varona C, Domínguez-Huerta G, Bolduc B, Gazitúa MC, Smith G, Gittrich MR, Zablocki O, Cronin DR, Eveillard D, Hallam SJ, Sullivan MB. Prokaryotic-virus-encoded auxiliary metabolic genes throughout the global oceans. MICROBIOME 2024; 12:159. [PMID: 39198891 PMCID: PMC11360552 DOI: 10.1186/s40168-024-01876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Prokaryotic microbes have impacted marine biogeochemical cycles for billions of years. Viruses also impact these cycles, through lysis, horizontal gene transfer, and encoding and expressing genes that contribute to metabolic reprogramming of prokaryotic cells. While this impact is difficult to quantify in nature, we hypothesized that it can be examined by surveying virus-encoded auxiliary metabolic genes (AMGs) and assessing their ecological context. RESULTS We systematically developed a global ocean AMG catalog by integrating previously described and newly identified AMGs and then placed this catalog into ecological and metabolic contexts relevant to ocean biogeochemistry. From 7.6 terabases of Tara Oceans paired prokaryote- and virus-enriched metagenomic sequence data, we increased known ocean virus populations to 579,904 (up 16%). From these virus populations, we then conservatively identified 86,913 AMGs that grouped into 22,779 sequence-based gene clusters, 7248 (~ 32%) of which were not previously reported. Using our catalog and modeled data from mock communities, we estimate that ~ 19% of ocean virus populations carry at least one AMG. To understand AMGs in their metabolic context, we identified 340 metabolic pathways encoded by ocean microbes and showed that AMGs map to 128 of them. Furthermore, we identified metabolic "hot spots" targeted by virus AMGs, including nine pathways where most steps (≥ 0.75) were AMG-targeted (involved in carbohydrate, amino acid, fatty acid, and nucleotide metabolism), as well as other pathways where virus-encoded AMGs outnumbered cellular homologs (involved in lipid A phosphates, phosphatidylethanolamine, creatine biosynthesis, phosphoribosylamine-glycine ligase, and carbamoyl-phosphate synthase pathways). CONCLUSIONS Together, this systematically curated, global ocean AMG catalog and analyses provide a valuable resource and foundational observations to understand the role of viruses in modulating global ocean metabolisms and their biogeochemical implications. Video Abstract.
Collapse
Affiliation(s)
- Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - James M Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Cristina Howard-Varona
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Guillermo Domínguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
- Centro Oceanográfico de Málaga (IEO-CSIC), Puerto Pesquero S/N, 29640, Fuengirola (Málaga), Spain
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | | | - Garrett Smith
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Marissa R Gittrich
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Dylan R Cronin
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Damien Eveillard
- Université de Nantes, CNRS, LS2N, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara GO-SEE, Paris, France
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA.
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA.
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
George NA, Zhou Z, Anantharaman K, Hug LA. Discarded diversity: Novel megaphages, auxiliary metabolic genes, and virally encoded CRISPR-Cas systems in landfills. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596742. [PMID: 38854013 PMCID: PMC11160803 DOI: 10.1101/2024.05.30.596742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Viruses are the most abundant microbial entity on the planet, impacting microbial community structure and ecosystem services. Despite outnumbering Bacteria and Archaea by an order of magnitude, viruses have been comparatively underrepresented in reference databases. Metagenomic examinations have illustrated that viruses of Bacteria and Archaea have been specifically understudied in engineered environments. Here we employed metagenomic and computational biology methods to examine the diversity, host interactions, and genetic systems of viruses predicted from 27 samples taken from three municipal landfills across North America. Results We identified numerous viruses that are not represented in reference databases, including the third largest bacteriophage genome identified to date (~678 kbp), and note a cosmopolitan diversity of viruses in landfills that are distinct from viromes in other systems. Host-virus interactions were examined via host CRISPR spacer to viral protospacer mapping which captured hyper-targeted viral populations and six viral populations predicted to infect across multiple phyla. Virally-encoded auxiliary metabolic genes (AMGs) were identified with the potential to augment hosts' methane, sulfur, and contaminant degradation metabolisms, including AMGs not previously reported in literature. CRISPR arrays and CRISPR-Cas systems were identified from predicted viral genomes, including the two largest bacteriophage genomes to contain these genetic features. Some virally encoded Cas effector proteins appear distinct relative to previously reported Cas systems and are interesting targets for potential genome editing tools. Conclusions Our observations indicate landfills, as heterogeneous contaminated sites with unique selective pressures, are key locations for diverse viruses and atypical virus-host dynamics.
Collapse
Affiliation(s)
- Nikhil A. George
- Department of Biology, University of Waterloo, Waterloo ON, Canada
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | | | - Laura A. Hug
- Department of Biology, University of Waterloo, Waterloo ON, Canada
| |
Collapse
|
9
|
Warwick-Dugdale J, Tian F, Michelsen ML, Cronin DR, Moore K, Farbos A, Chittick L, Bell A, Zayed AA, Buchholz HH, Bolanos LM, Parsons RJ, Allen MJ, Sullivan MB, Temperton B. Long-read powered viral metagenomics in the oligotrophic Sargasso Sea. Nat Commun 2024; 15:4089. [PMID: 38744831 PMCID: PMC11094077 DOI: 10.1038/s41467-024-48300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxa Prochlorococcus and Pelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.
Collapse
Affiliation(s)
- Joanna Warwick-Dugdale
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK.
- Plymouth Marine Laboratory, Plymouth, Devon, PL1 3DH, UK.
| | - Funing Tian
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | | | - Dylan R Cronin
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Karen Moore
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Audrey Farbos
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Lauren Chittick
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Ashley Bell
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Ahmed A Zayed
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Holger H Buchholz
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Luis M Bolanos
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Rachel J Parsons
- Bermuda Institute of Ocean Sciences, St.George's, GE, 01, Bermuda
- School of Ocean Futures, Arizona State University, Tempe, AZ, US
| | - Michael J Allen
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Matthew B Sullivan
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK.
| |
Collapse
|
10
|
Zhong Q, Liao B, Liu J, Shen W, Wang J, Wei L, Ma Y, Dong PT, Bor B, McLean JS, Chang Y, Shi W, Cen L, Wu M, Liu J, Li Y, He X, Le S. Episymbiotic Saccharibacteria TM7x modulates the susceptibility of its host bacteria to phage infection and promotes their coexistence. Proc Natl Acad Sci U S A 2024; 121:e2319790121. [PMID: 38593079 PMCID: PMC11032452 DOI: 10.1073/pnas.2319790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophages (phages) play critical roles in modulating microbial ecology. Within the human microbiome, the factors influencing the long-term coexistence of phages and bacteria remain poorly investigated. Saccharibacteria (formerly TM7) are ubiquitous members of the human oral microbiome. These ultrasmall bacteria form episymbiotic relationships with their host bacteria and impact their physiology. Here, we showed that during surface-associated growth, a human oral Saccharibacteria isolate (named TM7x) protects its host bacterium, a Schaalia odontolytica strain (named XH001) against lytic phage LC001 predation. RNA-Sequencing analysis identified in XH001 a gene cluster with predicted functions involved in the biogenesis of cell wall polysaccharides (CWP), whose expression is significantly down-regulated when forming a symbiosis with TM7x. Through genetic work, we experimentally demonstrated the impact of the expression of this CWP gene cluster on bacterial-phage interaction by affecting phage binding. In vitro coevolution experiments further showed that the heterogeneous populations of TM7x-associated and TM7x-free XH001, which display differential susceptibility to LC001 predation, promote bacteria and phage coexistence. Our study highlights the tripartite interaction between the bacterium, episymbiont, and phage. More importantly, we present a mechanism, i.e., episymbiont-mediated modulation of gene expression in host bacteria, which impacts their susceptibility to phage predation and contributes to the formation of "source-sink" dynamics between phage and bacteria in biofilm, promoting their long-term coexistence within the human microbiome.
Collapse
Affiliation(s)
- Qiu Zhong
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Jiazhen Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Wei Shen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing401336, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Leilei Wei
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing400038, China
| | - Yansong Ma
- Department of Orthodontics, Capital Medical University, Beijing100050, China
| | - Pu-Ting Dong
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Batbileg Bor
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, WA98119
- Department of Microbiology, University of Washington, Seattle, WA98195
| | - Yunjie Chang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
| | - Wenyuan Shi
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Lujia Cen
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Miaomiao Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Xuesong He
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| |
Collapse
|
11
|
Cai L, Li H, Deng J, Zhou R, Zeng Q. Biological interactions with Prochlorococcus: implications for the marine carbon cycle. Trends Microbiol 2024; 32:280-291. [PMID: 37722980 DOI: 10.1016/j.tim.2023.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
The unicellular picocyanobacterium Prochlorococcus is the most abundant photoautotroph and contributes substantially to global CO2 fixation. In the vast euphotic zones of the open ocean, Prochlorococcus converts CO2 into organic compounds and supports diverse organisms, forming an intricate network of interactions that regulate the magnitude of carbon cycling and storage in the ocean. An understanding of the biological interactions with Prochlorococcus is critical for accurately estimating the contributions of Prochlorococcus and interacting organisms to the marine carbon cycle. This review synthesizes the primary production contributed by Prochlorococcus in the global ocean. We outline recent progress on the interactions of Prochlorococcus with heterotrophic bacteria, phages, and grazers that multifacetedly determine Prochlorococcus carbon production and fate. We discuss that climate change might affect the biological interactions with Prochlorococcus and thus the marine carbon cycle.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haofu Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Junwei Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiqian Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China; Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
12
|
Bhattarai B, Bhattacharjee AS, Coutinho FH, Goel R. Investigating the viral ecology and contribution to the microbial ecology in full-scale mesophilic anaerobic digesters. CHEMOSPHERE 2024; 349:140743. [PMID: 37984648 DOI: 10.1016/j.chemosphere.2023.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
In an attempt to assess the diversity of viruses and their potential to modulate the metabolism of functional microorganisms in anaerobic digesters, we collected digestate from three mesophilic anaerobic digesters in full-scale wastewater treatment plants treating real municipal wastewater. The reads were analyzed using bioinformatics algorithms to elucidate viral diversity, identify their potential role in modulating the metabolism of functional microorganisms, and provide essential genomic information for the potential use of virus-mediated treatment in controlling the anaerobic digester microbiome. We found that Siphoviridae was the dominant family in mesophilic anaerobic digesters, followed by Myoviridae and Podoviridae. Lysogeny was prevalent in mesophilic anaerobic digesters as the majority of metagenome-assembled genomes contained at least one viral genome within them. One virus within the genome of an acetoclastic methanogen (Methanothrix soehngenii) was observed with a gene (fwdE) acquired via lateral transfer from hydrogenotrophic methanogens. The virus-mediated acquisition of fwdE gene enables possibility of mixotrophic methanogenesis in Methanothrix soehngenii. This evidence highlighted that lysogeny provides fitness advantage to methanogens in anaerobic digesters by adding flexibility to changing substrates. Similarly, we found auxiliary metabolic genes, such as cellulase and alpha glucosidase, of bacterial origin responsible for sludge hydrolysis in viruses. Additionally, we discovered novel viral genomes and provided genomic information on viruses infecting acidogenic, acetogenic, and pathogenic bacteria that can potentially be used for virus-mediated treatment to deal with the souring problem in anaerobic digesters and remove pathogens from biosolids before land application. Collectively, our study provides a genome-level understanding of virome in conjunction with the microbiome in anaerobic digesters that can be used to optimize the anaerobic digestion process for efficient biogas generation.
Collapse
Affiliation(s)
- Bishav Bhattarai
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| | - Ananda Shankar Bhattacharjee
- Department of Environmental Sciences, The University of California, Riverside, Riverside, CA, United States; USDA-ARS, United States Salinity Laboratory, Riverside, CA, United States
| | - Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, Consejo Superior de Investigaciones Científicas (ICM-CISC), Barcelona, Spain
| | - Ramesh Goel
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
13
|
Dames NR, Rocke E, Pitcher G, Rybicki E, Pfaff M, Moloney CL. Ecological roles of nano-picoplankton in stratified waters of an embayment in the southern Benguela. FEMS Microbiol Lett 2024; 371:fnae094. [PMID: 39508239 PMCID: PMC11643359 DOI: 10.1093/femsle/fnae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024] Open
Abstract
Nano-picoplankton are the dominant primary producers during the postupwelling period in St Helena Bay, South Africa. Their dynamics on short timescales are not well-understood and neither are the community composition, structure, and potential functionality of the surrounding microbiome. Samples were collected over five consecutive days in March 2018 from three depths (1, 25, and 50 m) at a single sampling station in St Helena Bay. There was clear depth-differentiation between the surface and depth in both diversity and function throughout the sampling period for the archaea, bacteria, and eukaryotes. Daily difference in eukaryote diversity, was more pronounced at 1 and 25 m with increased abundances of Syndiniales and Bacillariophyta. Surface waters were dominated by photosynthetic and photoheterotrophic microorganisms, while samples at depth were linked to nitrogen cycling processes, with high abundances of nitrifiers and denitrifiers. Strong depth gradients found in the nutrient transporters for ammonia were good indicators of measured uptake rates. This study showed that nano-picoplankton dynamics were driven by light availability, nutrient concentrations, carbon biomass, and oxygenation. The nano-picoplankton help sustain ecosystem functioning in St Helena Bay through their ecological roles, which emphasizes the need to monitor this size fraction of the plankton.
Collapse
Affiliation(s)
- Nicole R Dames
- Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
- Marine and Antarctic Centre for Innovation and Sustainability, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, United States
| | - Emma Rocke
- Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
- Marine and Antarctic Centre for Innovation and Sustainability, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
| | - Grant Pitcher
- Coastal and Marine Research, Department of Forestry, Fisheries and Environment, Martin Hammerschlag Way, Cape Town, South Africa
| | - Edward Rybicki
- Biopharming Research Unit, Department of Cell and Molecular Biology, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
| | - Maya Pfaff
- Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
| | - Coleen L Moloney
- Department of Biological Sciences, University of Cape Town, Private Bag X2, Rhondebosch 7700, South Africa
| |
Collapse
|
14
|
Williams TA, Davin AA, Szánthó LL, Stamatakis A, Wahl NA, Woodcroft BJ, Soo RM, Eme L, Sheridan PO, Gubry-Rangin C, Spang A, Hugenholtz P, Szöllősi GJ. Phylogenetic reconciliation: making the most of genomes to understand microbial ecology and evolution. THE ISME JOURNAL 2024; 18:wrae129. [PMID: 39001714 PMCID: PMC11293204 DOI: 10.1093/ismejo/wrae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The core idea is to model how gene trees evolve along a species tree and to explain differences between them via evolutionary events including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for studying genome evolution and highlight recent applications including ancestral gene content inference, the rooting of species trees, and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host-microbe interactions, and symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, temperature, and oxygen use offer enormous potential for understanding the rich tapestry of microbial life.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS81TQ, United Kingdom
| | - Adrian A Davin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Lénárd L Szánthó
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Alexandros Stamatakis
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Noah A Wahl
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Rochelle M Soo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura Eme
- Unité d’Ecologie, Systématique et Evolution, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul O Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gergely J Szöllősi
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
- Institute of Evolution, HUN REN Centre for Ecological Research, 1121 Budapest, Hungary
| |
Collapse
|
15
|
Heinrichs ME, Piedade GJ, Popa O, Sommers P, Trubl G, Weissenbach J, Rahlff J. Breaking the Ice: A Review of Phages in Polar Ecosystems. Methods Mol Biol 2024; 2738:31-71. [PMID: 37966591 DOI: 10.1007/978-1-0716-3549-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages, or phages, are viruses that infect and replicate within bacterial hosts, playing a significant role in regulating microbial populations and ecosystem dynamics. However, phages from extreme environments such as polar regions remain relatively understudied due to challenges such as restricted ecosystem access and low biomass. Understanding the diversity, structure, and functions of polar phages is crucial for advancing our knowledge of the microbial ecology and biogeochemistry of these environments. In this review, we will explore the current state of knowledge on phages from the Arctic and Antarctic, focusing on insights gained from -omic studies, phage isolation, and virus-like particle abundance data. Metagenomic studies of polar environments have revealed a high diversity of phages with unique genetic characteristics, providing insights into their evolutionary and ecological roles. Phage isolation studies have identified novel phage-host interactions and contributed to the discovery of new phage species. Virus-like particle abundance and lysis rate data, on the other hand, have highlighted the importance of phages in regulating bacterial populations and nutrient cycling in polar environments. Overall, this review aims to provide a comprehensive overview of the current state of knowledge about polar phages, and by synthesizing these different sources of information, we can better understand the diversity, dynamics, and functions of polar phages in the context of ongoing climate change, which will help to predict how polar ecosystems and residing phages may respond to future environmental perturbations.
Collapse
Affiliation(s)
- Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ovidiu Popa
- Institute of Quantitative and Theoretical Biology Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
16
|
Zhou K, Wong TY, Long L, Anantharaman K, Zhang W, Wong WC, Zhang R, Qian PY. Genomic and transcriptomic insights into complex virus-prokaryote interactions in marine biofilms. THE ISME JOURNAL 2023; 17:2303-2312. [PMID: 37875603 PMCID: PMC10689801 DOI: 10.1038/s41396-023-01546-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Marine biofilms are complex communities of microorganisms that play a crucial ecological role in oceans. Although prokaryotes are the dominant members of these biofilms, little is known about their interactions with viruses. By analysing publicly available and newly sequenced metagenomic data, we identified 2446 virus-prokaryote connections in 84 marine biofilms. Most of these connections were between the bacteriophages in the Uroviricota phylum and the bacteria of Proteobacteria, Cyanobacteria and Bacteroidota. The network of virus-host pairs is complex; a single virus can infect multiple prokaryotic populations or a single prokaryote is susceptible to several viral populations. Analysis of genomes of paired prokaryotes and viruses revealed the presence of 425 putative auxiliary metabolic genes (AMGs), 239 viral genes related to restriction-modification (RM) systems and 38,538 prokaryotic anti-viral defence-related genes involved in 15 defence systems. Transcriptomic evidence from newly established biofilms revealed the expression of viral genes, including AMGs and RM, and prokaryotic defence systems, indicating the active interplay between viruses and prokaryotes. A comparison between biofilms and seawater showed that biofilm prokaryotes have more abundant defence genes than seawater prokaryotes, and the defence gene composition differs between biofilms and the surrounding seawater. Overall, our study unveiled active viruses in natural biofilms and their complex interplay with prokaryotes, which may result in the blooming of defence strategists in biofilms. The detachment of bloomed defence strategists may reduce the infectivity of viruses in seawater and result in the emergence of a novel role of marine biofilms.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lexin Long
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Weipeng Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
17
|
Hicks E, Rogers NMK, Hendren CO, Kuehn MJ, Wiesner MR. Extracellular Vesicles and Bacteriophages: New Directions in Environmental Biocolloid Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16728-16742. [PMID: 37898880 PMCID: PMC11623402 DOI: 10.1021/acs.est.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
There is a long-standing appreciation among environmental engineers and scientists regarding the importance of biologically derived colloidal particles and their environmental fate. This interest has been recently renewed in considering bacteriophages and extracellular vesicles, which are each poised to offer engineers unique insights into fundamental aspects of environmental microbiology and novel approaches for engineering applications, including advances in wastewater treatment and sustainable agricultural practices. Challenges persist due to our limited understanding of interactions between these nanoscale particles with unique surface properties and their local environments. This review considers these biological particles through the lens of colloid science with attention given to their environmental impact and surface properties. We discuss methods developed for the study of inert (nonbiological) particle-particle interactions and the potential to use these to advance our understanding of the environmental fate and transport of extracellular vesicles and bacteriophages.
Collapse
Affiliation(s)
- Ethan Hicks
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas M K Rogers
- Department of Mechanical Engineering, Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
- Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, North Carolina 28608, United States
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Mark R Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
18
|
Cissell EC, McCoy SJ. Top-heavy trophic structure within benthic viral dark matter. Environ Microbiol 2023; 25:2303-2320. [PMID: 37381050 DOI: 10.1111/1462-2920.16457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
A better understanding of system-specific viral ecology in diverse environments is needed to predict patterns of virus-host trophic structure in the Anthropocene. This study characterised viral-host trophic structure within coral reef benthic cyanobacterial mats-a globally proliferating cause and consequence of coral reef degradation. We employed deep longitudinal multi-omic sequencing to characterise the viral assemblage (ssDNA, dsDNA, and dsRNA viruses) and profile lineage-specific host-virus interactions within benthic cyanobacterial mats sampled from Bonaire, Caribbean Netherlands. We recovered 11,012 unique viral populations spanning at least 10 viral families across the orders Caudovirales, Petitvirales, and Mindivirales. Gene-sharing network analyses provided evidence for extensive genomic novelty of mat viruses from reference and environmental viral sequences. Analysis of coverage ratios of viral sequences and computationally predicted hosts spanning 15 phyla and 21 classes revealed virus-host abundance (from DNA) and activity (from RNA) ratios consistently exceeding 1:1, suggesting a top-heavy intra-mat trophic structure with respect to virus-host interactions. Overall, our article contributes a curated database of viral sequences found in Caribbean coral reef benthic cyanobacterial mats (vMAT database) and provides multiple lines of field-based evidence demonstrating that viruses are active members of mat communities, with broader implications for mat functional ecology and demography.
Collapse
Affiliation(s)
- Ethan C Cissell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophie J McCoy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Lücking D, Mercier C, Alarcón-Schumacher T, Erdmann S. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME COMMUNICATIONS 2023; 3:112. [PMID: 37848554 PMCID: PMC10582014 DOI: 10.1038/s43705-023-00317-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Environmental virus metagenomes, commonly referred to as "viromes", are typically generated by physically separating virus-like particles (VLPs) from the microbial fraction based on their size and mass. However, most methods used to purify VLPs, enrich extracellular vesicles (EVs) and gene transfer agents (GTAs) simultaneously. Consequently, the sequence space traditionally referred to as a "virome" contains host-associated sequences, transported via EVs or GTAs. We therefore propose to call the genetic material isolated from size-fractionated (0.22 µm) and DNase-treated samples protected environmental DNA (peDNA). This sequence space contains viral genomes, DNA transduced by viruses and DNA transported in EVs and GTAs. Since there is no genetic signature for peDNA transported in EVs, GTAs and virus particles, we rely on the successful removal of contaminating remaining cellular and free DNA when analyzing peDNA. Using marine samples collected from the North Sea, we generated a thoroughly purified peDNA dataset and developed a bioinformatic pipeline to determine the potential origin of the purified DNA. This pipeline was applied to our dataset as well as existing global marine "viromes". Through this pipeline, we identified known GTA and EV producers, as well as organisms with actively transducing proviruses as the source of the peDNA, thus confirming the reliability of our approach. Additionally, we identified novel and widespread EV producers, and found quantitative evidence suggesting that EV-mediated gene transfer plays a significant role in driving horizontal gene transfer (HGT) in the world's oceans.
Collapse
Affiliation(s)
- Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Coraline Mercier
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | | | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
20
|
Cai L, Liu H, Zhang W, Xiao S, Zeng Q, Dang S. Cryo-EM structure of cyanophage P-SCSP1u offers insights into DNA gating and evolution of T7-like viruses. Nat Commun 2023; 14:6438. [PMID: 37833330 PMCID: PMC10575957 DOI: 10.1038/s41467-023-42258-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Cyanophages, together with their host cyanobacteria, play important roles in marine biogeochemical cycles and control of marine food webs. The recently identified MPP-C (Marine Picocyanobacteria Podovirus clade C) cyanophages, belonging to the T7-like podoviruses, contain the smallest genomes among cyanopodoviruses and exhibit distinct infection kinetics. However, understanding of the MPP-C cyanophage infection process is hindered by the lack of high-resolution structural information. Here, we report the cryo-EM structure of the cyanophage P-SCSP1u, a representative member of the MPP-C phages, in its native form at near-atomic resolution, which reveals the assembly mechanism of the capsid and molecular interaction of the portal-tail complex. Structural comparison of the capsid proteins of P-SCSP1u and other podoviruses with known structures provides insights into the evolution of T7-like viruses. Furthermore, our study provides the near-atomic resolution structure of portal-tail complex for T7-like viruses. On the basis of previously reported structures of phage T7, we identify an additional valve and gate to explain the DNA gating mechanism for the T7-like viruses.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Hang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wen Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shiwei Xiao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China.
- Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- HKUST-Shenzhen Research Institute, Nanshan, Shenzhen 518057, China.
| |
Collapse
|
21
|
Rahlff J, Esser SP, Plewka J, Heinrichs ME, Soares A, Scarchilli C, Grigioni P, Wex H, Giebel HA, Probst AJ. Marine viruses disperse bidirectionally along the natural water cycle. Nat Commun 2023; 14:6354. [PMID: 37816747 PMCID: PMC10564846 DOI: 10.1038/s41467-023-42125-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Marine viruses in seawater have frequently been studied, yet their dispersal from neuston ecosystems at the air-sea interface towards the atmosphere remains a knowledge gap. Here, we show that 6.2% of the studied virus population were shared between air-sea interface ecosystems and rainwater. Virus enrichment in the 1-mm thin surface microlayer and sea foams happened selectively, and variant analysis proved virus transfer to aerosols collected at ~2 m height above sea level and rain. Viruses detected in rain and these aerosols showed a significantly higher percent G/C base content compared to marine viruses. CRISPR spacer matches of marine prokaryotes to foreign viruses from rainwater prove regular virus-host encounters at the air-sea interface. Our findings on aerosolization, adaptations, and dispersal support transmission of viruses along the natural water cycle.
Collapse
Affiliation(s)
- Janina Rahlff
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany.
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Sarah P Esser
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Julia Plewka
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - André Soares
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Claudio Scarchilli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123, Rome, Italy
| | - Paolo Grigioni
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123, Rome, Italy
| | - Heike Wex
- Atmospheric Microphysics, Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Center for Marine Sensors (ZfMarS), Carl von Ossietzky University of Oldenburg, 26382, Wilhelmshaven, Germany
| | - Alexander J Probst
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
22
|
Ru J, Xue J, Sun J, Cova L, Deng L. Unveiling the hidden role of aquatic viruses in hydrocarbon pollution bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132299. [PMID: 37597386 DOI: 10.1016/j.jhazmat.2023.132299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Hydrocarbon pollution poses substantial environmental risks to water and soil. Bioremediation, which utilizes microorganisms to manage pollutants, offers a cost-effective solution. However, the role of viruses, particularly bacteriophages (phages), in bioremediation remains unexplored. This study examines the diversity and activity of hydrocarbon-degradation genes encoded by environmental viruses, focusing on phages, within public databases. We identified 57 high-quality phage-encoded auxiliary metabolic genes (AMGs) related to hydrocarbon degradation, which we refer to as virus-encoded hydrocarbon degradation genes (vHYDEGs). These genes are encoded by taxonomically diverse aquatic phages and highlight the under-characterized global virosphere. Six protein families involved in the initial alkane hydroxylation steps were identified. Phylogenetic analyses revealed the diverse evolutionary trajectories of vHYDEGs across habitats, revealing previously unknown biodegraders linked evolutionarily with vHYDEGs. Our findings suggest phage AMGs may contribute to alkane and aromatic hydrocarbon degradation, participating in the initial, rate-limiting hydroxylation steps, thereby aiding hydrocarbon pollution bioremediation and promoting their propagation. To support future research, we developed vHyDeg, a database containing identified vHYDEGs with comprehensive annotations, facilitating the screening of hydrocarbon degradation AMGs and encouraging their bioremediation applications.
Collapse
Affiliation(s)
- Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany; Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany; Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jianfeng Sun
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Linda Cova
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany; Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising 85354, Germany.
| |
Collapse
|
23
|
Murúa P, Garvetto A, Egan S, Gachon CMM. The Reemergence of Phycopathology: When Algal Biology Meets Ecology and Biosecurity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:231-255. [PMID: 37253694 DOI: 10.1146/annurev-phyto-020620-120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Viruses, bacteria, and eukaryotic symbionts interact with algae in a variety of ways to cause disease complexes, often shaping marine and freshwater ecosystems. The advent of phyconomy (a.k.a. seaweed agronomy) represents a need for a greater understanding of algal disease interactions, where underestimated cryptic diversity and lack of phycopathological basis are prospective constraints for algal domestication. Here, we highlight the limited yet increasing knowledge of algal pathogen biodiversity and the ecological interaction with their algal hosts. Finally, we discuss how ecology and cultivation experience contribute to and reinforce aquaculture practice, with the potential to reshape biosecurity policies of seaweed cultivation worldwide.
Collapse
Affiliation(s)
- Pedro Murúa
- Instituto de Acuicultura, Universidad Austral de Chile-Sede Puerto Montt, Los Lagos, Chile;
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Andrea Garvetto
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Tyrol, Austria
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Claire M M Gachon
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
24
|
Wang Y, Ferrinho S, Connaris H, Goss RJM. The Impact of Viral Infection on the Chemistries of the Earth's Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria. Biomolecules 2023; 13:1218. [PMID: 37627283 PMCID: PMC10452541 DOI: 10.3390/biom13081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cyanobacteria are the most abundant photosynthesizers on earth, and as such, they play a central role in marine metabolite generation, ocean nutrient cycling, and the control of planetary oxygen generation. Cyanobacteriophage infection exerts control on all of these critical processes of the planet, with the phage-ported homologs of genes linked to photosynthesis, catabolism, and secondary metabolism (marine metabolite generation). Here, we analyze the 153 fully sequenced cyanophages from the National Center for Biotechnology Information (NCBI) database and the 45 auxiliary metabolic genes (AMGs) that they deliver into their hosts. Most of these AMGs are homologs of those found within cyanobacteria and play a key role in cyanobacterial metabolism-encoding proteins involved in photosynthesis, central carbon metabolism, phosphate metabolism, methylation, and cellular regulation. A greater understanding of cyanobacteriophage infection will pave the way to a better understanding of carbon fixation and nutrient cycling, as well as provide new tools for synthetic biology and alternative approaches for the use of cyanobacteria in biotechnology and sustainable manufacturing.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Scarlet Ferrinho
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Helen Connaris
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Rebecca J. M. Goss
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| |
Collapse
|
25
|
Zhou Z, Martin C, Kosmopoulos JC, Anantharaman K. ViWrap: A modular pipeline to identify, bin, classify, and predict viral-host relationships for viruses from metagenomes. IMETA 2023; 2:e118. [PMID: 38152703 PMCID: PMC10751022 DOI: 10.1002/imt2.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 12/29/2023]
Abstract
Viruses are increasingly being recognized as important components of human and environmental microbiomes. However, viruses in microbiomes remain difficult to study because of the difficulty in culturing them and the lack of sufficient model systems. As a result, computational methods for identifying and analyzing uncultivated viral genomes from metagenomes have attracted significant attention. Such bioinformatics approaches facilitate the screening of viruses from enormous sequencing datasets originating from various environments. Though many tools and databases have been developed for advancing the study of viruses from metagenomes, there is a lack of integrated tools enabling a comprehensive workflow and analyses platform encompassing all the diverse segments of virus studies. Here, we developed ViWrap, a modular pipeline written in Python. ViWrap combines the power of multiple tools into a single platform to enable various steps of virus analysis, including identification, annotation, genome binning, species- and genus-level clustering, assignment of taxonomy, prediction of hosts, characterization of genome quality, comprehensive summaries, and intuitive visualization of results. Overall, ViWrap enables a standardized and reproducible pipeline for both extensive and stringent characterization of viruses from metagenomes, viromes, and microbial genomes. Our approach has flexibility in using various options for diverse applications and scenarios, and its modular structure can be easily amended with additional functions as necessary. ViWrap is designed to be easily and widely used to study viruses in human and environmental systems. ViWrap is publicly available via GitHub (https://github.com/AnantharamanLab/ViWrap). A detailed description of the software, its usage, and interpretation of results can be found on the website.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Cody Martin
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - James C. Kosmopoulos
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | | |
Collapse
|
26
|
Hesketh-Best PJ, Bosco-Santos A, Garcia SL, O’Beirne MD, Werne JP, Gilhooly WP, Silveira CB. Viruses of sulfur oxidizing phototrophs encode genes for pigment, carbon, and sulfur metabolisms. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:126. [PMID: 38665202 PMCID: PMC11041744 DOI: 10.1038/s43247-023-00796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2024]
Abstract
Viral infections modulate bacterial metabolism and ecology. Here, we investigated the hypothesis that viruses influence the ecology of purple and green sulfur bacteria in anoxic and sulfidic lakes, analogs of euxinic oceans in the geologic past. By screening metagenomes from lake sediments and water column, in addition to publicly-available genomes of cultured purple and green sulfur bacteria, we identified almost 300 high and medium-quality viral genomes. Viruses carrying the gene psbA, encoding the small subunit of photosystem II protein D1, were ubiquitous, suggesting viral interference with the light reactions of sulfur oxidizing autotrophs. Viruses predicted to infect these autotrophs also encoded auxiliary metabolic genes for reductive sulfur assimilation as cysteine, pigment production, and carbon fixation. These observations show that viruses have the genomic potential to modulate the production of metabolic markers of phototrophic sulfur bacteria that are used to identify photic zone euxinia in the geologic past.
Collapse
Affiliation(s)
| | - Alice Bosco-Santos
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Sofia L. Garcia
- Department of Biology, University of Miami, Coral Gables, FL USA
| | - Molly D. O’Beirne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA USA
| | - Josef P. Werne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA USA
| | - William P. Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN USA
| | | |
Collapse
|
27
|
Luo L, Ma X, Guo R, Jiang T, Wang T, Shao H, He H, Wang H, Liang Y, McMinn A, Guo C, Wang M. Characterization and genomic analysis of a novel Synechococcus phage S-H9-2 belonging to Bristolvirus genus isolated from the Yellow Sea. Virus Res 2023; 328:199072. [PMID: 36781075 DOI: 10.1016/j.virusres.2023.199072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Cyanophages are known to influence the population dynamics and community structure of cyanobacteria and thus play an important role in biogeochemical cycles in aquatic ecosystems. In this study, a novel Synechococcus phage S-H9-2 infecting Synechococcus sp. WH 8102 was isolated from the coastal water of the Yellow Sea. Synechococcus phage S-H9-2 contains a 187,320 bp genome of double-stranded DNA with a G + C content of 40.3%, 202 potential open reading frames (ORFs), and 15 tRNAs. Phylogenetic analysis and nucleotide-based intergenomic similarity suggest that Synechococcus phage S-H9-2 belongs to the Bristolvirus genus under the family Kyanoviridae. Homologs of the S-H9-2 open reading frame can be found in a variety of marine environments, as shown by the results of mapping the genome sequence of S-H9-2 to the Global Ocean Viromes 2.0 dataset. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as phylogenetic relationships based on complete genome sequences, reflect the mechanism of phage-host interaction and host-specific strategies for adaptation to environmental conditions. This study enriches the current genomic database of cyanophage and contributed to our understanding of the virus-host interactions and their adaption to the environment.
Collapse
Affiliation(s)
- Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaohong Ma
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao266011, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tiancong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, SA
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China; The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
28
|
Zhu X, Li Z, Tong Y, Chen L, Sun T, Zhang W. From natural to artificial cyanophages: Current progress and application prospects. ENVIRONMENTAL RESEARCH 2023; 223:115428. [PMID: 36746205 DOI: 10.1016/j.envres.2023.115428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The over proliferation of harmful cyanobacteria and their cyanotoxins resulted in damaged aquatic ecosystem, polluted drinking water and threatened human health. Cyanophages are a kind of viruses that exclusively infect cyanobacteria, which is considered as a potential strategy to deal with cyanobacterial blooms. Nevertheless, the infecting host range and/or lysis efficiency of natural cyanophages is limited, rising the necessity of constructing non-natural cyanophages via artificial modification, design and synthesis to expand their host range and/or efficiency. The paper firstly reviewed representative cyanophages such as P60 with a short latent period of 1.5 h and S-CBS1 having a burst size up to 200 PFU/cell. To explore the in-silico design principles, we critically summarized the interactions between cyanophages and the hosts, indicating modifying the recognized receptors, enhancing the adsorption ability, changing the lysogeny and excluding the defense of hosts are important for artificial cyanophages. The research progress of synthesizing artificial cyanophages were summarized subsequently, raising the importance of developing genetic manipulation technologies and their rescue strategies in the future. Meanwhile, Large-scale preparation of cyanophages for bloom control is a big challenge. The application prospects of artificial cyanophages besides cyanobacteria bloom control like adaptive evolution and phage therapy were discussed at last. The review will promote the design, synthesis and application of cyanophages for cyanobacteria blooms, which may provide new insights for the related water pollution control and ensuring hydrosphere security.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Zipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China.
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
29
|
George NA, Hug LA. CRISPR-resolved virus-host interactions in a municipal landfill include non-specific viruses, hyper-targeted viral populations, and interviral conflicts. Sci Rep 2023; 13:5611. [PMID: 37019939 PMCID: PMC10076291 DOI: 10.1038/s41598-023-32078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Viruses are the most abundant microbial guild on the planet, impacting microbial community structure and ecosystem services. Viruses are specifically understudied in engineered environments, including examinations of their host interactions. We examined host-virus interactions via host CRISPR spacer to viral protospacer mapping in a municipal landfill across two years. Viruses comprised ~ 4% of both the unassembled reads and assembled basepairs. A total of 458 unique virus-host connections captured hyper-targeted viral populations and host CRISPR array adaptation over time. Four viruses were predicted to infect across multiple phyla, suggesting that some viruses are far less host-specific than is currently understood. We detected 161 viral elements that encode CRISPR arrays, including one with 187 spacers, the longest virally-encoded CRISPR array described to date. Virally-encoded CRISPR arrays targeted other viral elements in interviral conflicts. CRISPR-encoding proviruses integrated into host chromosomes were latent examples of CRISPR-immunity-based superinfection exclusion. The bulk of the observed virus-host interactions fit the one-virus-one-host paradigm, but with limited geographic specificity. Our networks highlight rare and previously undescribed complex interactions influencing the ecology of this dynamic engineered system. Our observations indicate landfills, as heterogeneous contaminated sites with unique selective pressures, are key locations for atypical virus-host dynamics.
Collapse
Affiliation(s)
- Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
30
|
Cai L, Xu B, Li H, Xu Y, Wei W, Zhang R. Spatiotemporal Shift of T4-Like Phage Community Structure in the Three Largest Estuaries of China. Microbiol Spectr 2023; 11:e0520322. [PMID: 36877016 PMCID: PMC10101079 DOI: 10.1128/spectrum.05203-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
Estuaries are one of the most highly productive and economically important ecosystems at the continent-ocean interface. Estuary productivity is largely determined by the microbial community structure and activity. Viruses are major agents of microbial mortality and are key drivers of global geochemical cycles. However, the taxonomic diversity of viral communities and their spatial-temporal distribution in estuarine ecosystems have been poorly studied. In this study, we investigated the T4-like viral community composition at three major Chinese estuaries in winter and in summer. Diverse T4-like viruses, which were divided into three main clusters (Clusters I to III), were revealed. The Marine Group of Cluster III, with seven identified subgroups, was the most dominant (averaging 76.5% of the total sequences) in the Chinese estuarine ecosystems. Significant variations of T4-like viral community composition were observed among estuaries and seasons, with higher diversity occurring in winter. Among various environmental variables, temperature was a main driver of the viral communities. This study demonstrates viral assemblage diversification and seasonality in Chinese estuarine ecosystems. IMPORTANCE Viruses are ubiquitous but largely uncharacterized members of aquatic environments that cause significant mortality in microbial communities. Recent large-scale oceanic projects have greatly advanced our understanding of viral ecology in marine environments, but those studies mostly focused on oceanic regions. There have yet to be spatiotemporal studies of viral communities in estuarine ecosystems, which are unique habitats that play a significant role in global ecology and biogeochemistry. This work is the first comprehensive study that provides a detailed picture of the spatial and seasonal variation of viral communities (specifically, T4-like viral communities) in three major estuarine ecosystems in China. These findings provide much-needed knowledge regarding estuarine viral ecosystems, which currently lags in oceanic ecosystem research.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bu Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huifang Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Shandong, China
| | - Wei Wei
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
31
|
Zhou Z, Martin C, Kosmopoulos JC, Anantharaman K. ViWrap: A modular pipeline to identify, bin, classify, and predict viral-host relationships for viruses from metagenomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526317. [PMID: 36778280 PMCID: PMC9915498 DOI: 10.1101/2023.01.30.526317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viruses are increasingly being recognized as important components of human and environmental microbiomes. However, viruses in microbiomes remain difficult to study because of difficulty in culturing them and the lack of sufficient model systems. As a result, computational methods for identifying and analyzing uncultivated viral genomes from metagenomes have attracted significant attention. Such bioinformatics approaches facilitate screening of viruses from enormous sequencing datasets originating from various environments. Though many tools and databases have been developed for advancing the study of viruses from metagenomes, there is a lack of integrated tools enabling a comprehensive workflow and analyses platform encompassing all the diverse segments of virus studies. Here, we developed ViWrap, a modular pipeline written in Python. ViWrap combines the power of multiple tools into a single platform to enable various steps of virus analysis including identification, annotation, genome binning, species- and genus-level clustering, assignment of taxonomy, prediction of hosts, characterization of genome quality, comprehensive summaries, and intuitive visualization of results. Overall, ViWrap enables a standardized and reproducible pipeline for both extensive and stringent characterization of viruses from metagenomes, viromes, and microbial genomes. Our approach has flexibility in using various options for diverse applications and scenarios, and its modular structure can be easily amended with additional functions as necessary. ViWrap is designed to be easily and widely used to study viruses in human and environmental systems. ViWrap is publicly available via GitHub (https://github.com/AnantharamanLab/ViWrap). A detailed description of the software, its usage, and interpretation of results can be found on the website.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, 53706, USA
| |
Collapse
|
32
|
An Estuarine Cyanophage S-CREM1 Encodes Three Distinct Antitoxin Genes and a Large Number of Non-Coding RNA Genes. Viruses 2023; 15:v15020380. [PMID: 36851594 PMCID: PMC9964418 DOI: 10.3390/v15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cyanophages play important roles in regulating the population dynamics, community structure, metabolism, and evolution of cyanobacteria in aquatic ecosystems. Here, we report the genomic analysis of an estuarine cyanophage, S-CREM1, which represents a new genus of T4-like cyanomyovirus and exhibits new genetic characteristics. S-CREM1 is a lytic phage which infects estuarine Synechococcus sp. CB0101. In contrast to many cyanomyoviruses that usually have a broad host range, S-CREM1 only infected the original host strain. In addition to cyanophage-featured auxiliary metabolic genes (AMGs), S-CREM1 also contains unique AMGs, including three antitoxin genes, a MoxR family ATPase gene, and a pyrimidine dimer DNA glycosylase gene. The finding of three antitoxin genes in S-CREM1 implies a possible phage control of host cells during infection. One small RNA (sRNA) gene and three cis-regulatory RNA genes in the S-CREM1 genome suggest potential molecular regulations of host metabolism by the phage. In addition, S-CREM1 contains a large number of tRNA genes which may reflect a genomic adaption to the nutrient-rich environment. Our study suggests that we are still far from understanding the viral diversity in nature, and the complicated virus-host interactions remain to be discovered. The isolation and characterization of S-CREM1 further our understanding of the gene diversity of cyanophages and phage-host interactions in the estuarine environment.
Collapse
|
33
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023; 186:47-62.e16. [PMID: 36608657 DOI: 10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.
Collapse
Affiliation(s)
- Thomas Hackl
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC Groningen, the Netherlands.
| | - Raphaël Laurenceau
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Markus J Ankenbrand
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; University of Würzburg, Center for Computational and Theoretical Biology, 97070 Würzburg, Germany
| | - Christina Bliem
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Zev Cariani
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaina Thomas
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Keven D Dooley
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Aldo A Arellano
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Shane L Hogle
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Paul Berube
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Gabriel E Leventhal
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Ahmed A Zayed
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Matthew B Sullivan
- Department of Microbiology & Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Steven J Biller
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA
| | - Sallie W Chisholm
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Fuchsman CA, Garcia Prieto D, Hays MD, Cram JA. Associations between picocyanobacterial ecotypes and cyanophage host genes across ocean basins and depth. PeerJ 2023; 11:e14924. [PMID: 36874978 PMCID: PMC9983427 DOI: 10.7717/peerj.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Background Cyanophages, viruses that infect cyanobacteria, are globally abundant in the ocean's euphotic zone and are a potentially important cause of mortality for marine picocyanobacteria. Viral host genes are thought to increase viral fitness by either increasing numbers of genes for synthesizing nucleotides for virus replication, or by mitigating direct stresses imposed by the environment. The encoding of host genes in viral genomes through horizontal gene transfer is a form of evolution that links viruses, hosts, and the environment. We previously examined depth profiles of the proportion of cyanophage containing various host genes in the Eastern Tropical North Pacific Oxygen Deficient Zone (ODZ) and at the subtropical North Atlantic (BATS). However, cyanophage host genes have not been previously examined in environmental depth profiles across the oceans. Methodology We examined geographical and depth distributions of picocyanobacterial ecotypes, cyanophage, and their viral-host genes across ocean basins including the North Atlantic, Mediterranean Sea, North Pacific, South Pacific, and Eastern Tropical North and South Pacific ODZs using phylogenetic metagenomic read placement. We determined the proportion of myo and podo-cyanophage containing a range of host genes by comparing to cyanophage single copy core gene terminase (terL). With this large dataset (22 stations), network analysis identified statistical links between 12 of the 14 cyanophage host genes examined here with their picocyanobacteria host ecotypes. Results Picyanobacterial ecotypes, and the composition and proportion of cyanophage host genes, shifted dramatically and predictably with depth. For most of the cyanophage host genes examined here, we found that the composition of host ecotypes predicted the proportion of viral host genes harbored by the cyanophage community. Terminase is too conserved to illuminate the myo-cyanophage community structure. Cyanophage cobS was present in almost all myo-cyanophage and did not vary in proportion with depth. We used the composition of cobS phylotypes to track changes in myo-cyanophage composition. Conclusions Picocyanobacteria ecotypes shift with changes in light, temperature, and oxygen and many common cyanophage host genes shift concomitantly. However, cyanophage phosphate transporter gene pstS appeared to instead vary with ocean basin and was most abundant in low phosphate regions. Abundances of cyanophage host genes related to nutrient acquisition may diverge from host ecotype constraints as the same host can live in varying nutrient concentrations. Myo-cyanophage community in the anoxic ODZ had reduced diversity. By comparison to the oxic ocean, we can see which cyanophage host genes are especially abundant (nirA, nirC, and purS) or not abundant (myo psbA) in ODZs, highlighting both the stability of conditions in the ODZ and the importance of nitrite as an N source to ODZ endemic LLV Prochlorococcus.
Collapse
Affiliation(s)
- Clara A Fuchsman
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - David Garcia Prieto
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - Matthew D Hays
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - Jacob A Cram
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| |
Collapse
|
35
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023. [DOI: doi.org/10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Cyanophages as an important factor in the early evolution of oxygenic photosynthesis. Sci Rep 2022; 12:20581. [PMID: 36446879 PMCID: PMC9709159 DOI: 10.1038/s41598-022-24795-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Cyanophages are viruses that infect cyanobacteria. An interesting feature of many of them is the presence of psbA and psbD, genes that encode D1 and D2 proteins, respectively. The D1 and D2 are core proteins of the photosystem II (PSII) in cyanobacteria, algae and plants and influence the proper function of oxygenic photosynthesis (OP) in all oxyphototrophs on Earth. The frequent occurrence of psbA and psbD in cyanophages raises the question whether these genes coevolved with hosts during the early stages of cyanophage and cyanobacterial evolution, or whether they are direct descendants of genes adopted from the genomes of cyanobacterial hosts. The phylogeny of D1/D2 proteins encoded in the genomes of selected cyanophages and oxyphototrophs was reconstructed. In addition, common ancestral sequences of D1 and D2 proteins were predicted for cyanophages and oxyphototrophs. Based on this, the reconstruction of the 3D structures of D1 and D2 proteins was performed. In addition, the ratio of non-synonymous to synonymous (dN/dS) nucleotide substitutions in the coding sequences (CDSs) of psbA and psbD was determined. The results of the predicted spatial structures of the D1 and D2 proteins and purifying selection for the CDSs of psbA and psbD suggest that they belong to the ancient proteins, which may have formed the primordial PSII. It cannot be ruled out that they involved in water oxidation in cyanobacteria-like organisms at early stages of the evolution of life on Earth and coevolved with ancient cyanophages. The data are also discussed in the context of the origin of viruses.
Collapse
|
37
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
38
|
Genomes from Uncultivated Pelagiphages Reveal Multiple Phylogenetic Clades Exhibiting Extensive Auxiliary Metabolic Genes and Cross-Family Multigene Transfers. mSystems 2022; 7:e0152221. [PMID: 35972150 PMCID: PMC9599517 DOI: 10.1128/msystems.01522-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter, they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter. Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality.
Collapse
|
39
|
Growth Substrate and Prophage Induction Collectively Influence Metabolite and Lipid Profiles in a Marine Bacterium. mSystems 2022; 7:e0058522. [PMID: 35972149 PMCID: PMC9600351 DOI: 10.1128/msystems.00585-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacterial growth substrates influence a variety of biological functions, including the biosynthesis and regulation of lipid intermediates. The extent of this rewiring is not well understood nor has it been considered in the context of virally infected cells. Here, we used a one-host-two-temperate phage model system to probe the combined influence of growth substrate and phage infection on host carbon and lipid metabolism. Using untargeted metabolomics and lipidomics, we reported the detection of a suite of metabolites and lipid classes for two Sulfitobacter lysogens provided with three growth substrates of differing complexity and nutrient composition (yeast extract/tryptone [complex], glutamate and acetate). The growth medium led to dramatic differences in the detectable intracellular metabolites, with only 15% of 175 measured metabolites showing overlap across the three growth substrates. Between-strain differences were most evident in the cultures grown on acetate, followed by glutamate then complex medium. Lipid distribution profiles were also distinct between cultures grown on different substrates as well as between the two lysogens grown in the same medium. Five phospholipids, three aminolipid, and one class of unknown lipid-like features were identified. Most (≥94%) of these 75 lipids were quantifiable in all samples. Metabolite and lipid profiles were strongly determined by growth medium composition and modestly by strain type. Because fluctuations in availability and form of carbon substrates and nutrients, as well as virus pressure, are common features of natural systems, the influence of these intersecting factors will undoubtedly be imprinted in the metabolome and lipidome of resident bacteria. IMPORTANCE Community-level metabolomics approaches are increasingly used to characterize natural microbial populations. These approaches typically depend upon temporal snapshots from which the status and function of communities are often inferred. Such inferences are typically drawn from lab-based studies of select model organisms raised under limited growth conditions. To better interpret community-level data, the extent to which ecologically relevant bacteria demonstrate metabolic flexibility requires elucidation. Herein, we used an environmentally relevant model heterotrophic marine bacterium to assess the relationship between growth determinants and metabolome. We also aimed to assess the contribution of phage activity to the host metabolome. Striking differences in primary metabolite and lipid profiles appeared to be driven primarily by growth regime and, secondarily, by phage type. These findings demonstrated the malleable nature of metabolomes and lipidomes and lay the foundation for future studies that relate cellular composition with function in complex environmental microbial communities.
Collapse
|
40
|
Al-Shayeb B, Schoelmerich MC, West-Roberts J, Valentin-Alvarado LE, Sachdeva R, Mullen S, Crits-Christoph A, Wilkins MJ, Williams KH, Doudna JA, Banfield JF. Borgs are giant genetic elements with potential to expand metabolic capacity. Nature 2022; 610:731-736. [PMID: 36261517 PMCID: PMC9605863 DOI: 10.1038/s41586-022-05256-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
Anaerobic methane oxidation exerts a key control on greenhouse gas emissions1, yet factors that modulate the activity of microorganisms performing this function remain poorly understood. Here we discovered extraordinarily large, diverse DNA sequences that primarily encode hypothetical proteins through studying groundwater, sediments and wetland soil where methane production and oxidation occur. Four curated, complete genomes are linear, up to approximately 1 Mb in length and share genome organization, including replichore structure, long inverted terminal repeats and genome-wide unique perfect tandem direct repeats that are intergenic or generate amino acid repeats. We infer that these are highly divergent archaeal extrachromosomal elements with a distinct evolutionary origin. Gene sequence similarity, phylogeny and local divergence of sequence composition indicate that many of their genes were assimilated from methane-oxidizing Methanoperedens archaea. We refer to these elements as 'Borgs'. We identified at least 19 different Borg types coexisting with Methanoperedens spp. in four distinct ecosystems. Borgs provide methane-oxidizing Methanoperedens archaea access to genes encoding proteins involved in redox reactions and energy conservation (for example, clusters of multihaem cytochromes and methyl coenzyme M reductase). These data suggest that Borgs might have previously unrecognized roles in the metabolism of this group of archaea, which are known to modulate greenhouse gas emissions, but further studies are now needed to establish their functional relevance.
Collapse
Affiliation(s)
- Basem Al-Shayeb
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Luis E Valentin-Alvarado
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Susan Mullen
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Alexander Crits-Christoph
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kenneth H Williams
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Rocky Mountain Biological Lab, Gothic, CO, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Schwartz DA, Lehmkuhl BK, Lennon JT. Phage-Encoded Sigma Factors Alter Bacterial Dormancy. mSphere 2022; 7:e0029722. [PMID: 35856690 PMCID: PMC9429907 DOI: 10.1128/msphere.00297-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here, we focus on dormancy in the Bacillota, where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship or reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. We characterized the distribution of sigma factors in over 4,000 genomes of diverse phages capable of infecting hosts that span the bacterial domain. From this, we identified homologs of sporulation-specific sigma factors in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, we provide evidence that sporulation-like sigma factors are nonessential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis, some of these phage-derived sigma factors can activate the bacterial sporulation gene network and lead to a reduction in spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth. IMPORTANCE As obligate parasites, phages exert strong top-down pressure on host populations with eco-evolutionary implications for community dynamics and ecosystem functioning. The process of phage infection, however, is constrained by bottom-up processes that influence the energetic and nutritional status of susceptible hosts. Many phages have acquired auxiliary genes from bacteria, which can be used to exploit host metabolism with consequences for phage fitness. In this study, we demonstrate that phages infecting spore-forming bacteria carry homologs of sigma factors, which their hosts use to orchestrate gene expression during spore development. By tapping into regulatory gene networks, phages may manipulate the physiology and survival strategies of nongrowing bacteria in ways that influence host-parasite coevolution.
Collapse
Affiliation(s)
- D. A. Schwartz
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - B. K. Lehmkuhl
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - J. T. Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
42
|
Heyerhoff B, Engelen B, Bunse C. Auxiliary Metabolic Gene Functions in Pelagic and Benthic Viruses of the Baltic Sea. Front Microbiol 2022; 13:863620. [PMID: 35875520 PMCID: PMC9301287 DOI: 10.3389/fmicb.2022.863620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Marine microbial communities are facing various ecosystem fluctuations (e.g., temperature, organic matter concentration, salinity, or redox regimes) and thus have to be highly adaptive. This might be supported by the acquisition of auxiliary metabolic genes (AMGs) originating from virus infections. Marine bacteriophages frequently contain AMGs, which allow them to augment their host’s metabolism or enhance virus fitness. These genes encode proteins for the same metabolic functions as their highly similar host homologs. In the present study, we analyzed the diversity, distribution, and composition of marine viruses, focusing on AMGs to identify their putative ecologic role. We analyzed viruses and assemblies of 212 publicly available metagenomes obtained from sediment and water samples across the Baltic Sea. In general, the virus composition in both compartments differed compositionally. While the predominant viral lifestyle was found to be lytic, lysogeny was more prevalent in sediments than in the pelagic samples. The highest proportion of AMGs was identified in the genomes of Myoviridae. Overall, the most abundantly occurring AMGs are encoded for functions that protect viruses from degradation by their hosts, such as methylases. Additionally, some detected AMGs are known to be involved in photosynthesis, 7-cyano-7-deazaguanine synthesis, and cobalamin biosynthesis among other functions. Several AMGs that were identified in this study were previously detected in a large-scale analysis including metagenomes from various origins, i.e., different marine sites, wastewater, and the human gut. This supports the theory of globally conserved core AMGs that are spread over virus genomes, regardless of host or environment.
Collapse
|
43
|
Calatrava V, Stephens TG, Gabr A, Bhaya D, Bhattacharya D, Grossman AR. Retrotransposition facilitated the establishment of a primary plastid in the thecate amoeba Paulinella. Proc Natl Acad Sci U S A 2022; 119:e2121241119. [PMID: 35639693 PMCID: PMC9191642 DOI: 10.1073/pnas.2121241119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/01/2022] [Indexed: 12/23/2022] Open
Abstract
The evolution of eukaryotic life was predicated on the development of organelles such as mitochondria and plastids. During this complex process of organellogenesis, the host cell and the engulfed prokaryote became genetically codependent, with the integration of genes from the endosymbiont into the host nuclear genome and subsequent gene loss from the endosymbiont. This process required that horizontally transferred genes become active and properly regulated despite inherent differences in genetic features between donor (endosymbiont) and recipient (host). Although this genetic reorganization is considered critical for early stages of organellogenesis, we have little knowledge about the mechanisms governing this process. The photosynthetic amoeba Paulinella micropora offers a unique opportunity to study early evolutionary events associated with organellogenesis and primary endosymbiosis. This amoeba harbors a “chromatophore,” a nascent photosynthetic organelle derived from a relatively recent cyanobacterial association (∼120 million years ago) that is independent of the evolution of primary plastids in plants (initiated ∼1.5 billion years ago). Analysis of the genome and transcriptome of Paulinella revealed that retrotransposition of endosymbiont-derived nuclear genes was critical for their domestication in the host. These retrocopied genes involved in photoprotection in cyanobacteria became expanded gene families and were “rewired,” acquiring light-responsive regulatory elements that function in the host. The establishment of host control of endosymbiont-derived genes likely enabled the cell to withstand photo-oxidative stress generated by oxygenic photosynthesis in the nascent organelle. These results provide insights into the genetic mechanisms and evolutionary pressures that facilitated the metabolic integration of the host–endosymbiont association and sustained the evolution of a photosynthetic organelle.
Collapse
Affiliation(s)
- Victoria Calatrava
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Arwa Gabr
- Graduate Program in Molecular Biosciences, Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, NJ 08854
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| |
Collapse
|
44
|
Hicks E, Wiesner MR. Exploring the design implications of bacteriophages in mixed suspensions by considering attachment and break-up. WATER RESEARCH 2022; 216:118303. [PMID: 35320767 DOI: 10.1016/j.watres.2022.118303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The validity and usefulness of implementing bacteriophages into water treatment systems as agents of targeted bacterial inactivation is yet to be determined. While some concerns are still more purely biological in nature other concerns are still chiefly rooted in design feasibility. This work investigated bacteriophage heteroaggregation, a process whereby phages attach to non-host background particles, to explore different design options for water quality engineers, especially tuning mixing velocity. This was done by adapting batch/mixing assays, originally developed to study inert particle heteroaggregation, to characterize bacteriophage and kaolinite heteroaggregation using modified Smoluchowski parameters under different ionic strength conditions. This work found that regardless of the ionic strength or the tested phage to kaolinite ratios heteroaggregation occurred rapidly and was likely driven by extended DLVO forces. A model of bacteriophage-kaolinite heteroaggregation was generated and showed promising correspondence with observed laboratory data. This model, along with other findings, suggests that should bacteriophages be utilized as agents of host inactivation they ought to be used following particle separation processes to reduce the likelihood of phage scavenging through attachment to particulate matter rather than the targeted bacteria.
Collapse
Affiliation(s)
- Ethan Hicks
- Center for the Environmental Implications of Nanotechnology (CEINT) and the Department of Civil and Environmental Engineering at Duke University, Durham, N.C., USA
| | - Mark R Wiesner
- Center for the Environmental Implications of Nanotechnology (CEINT) and the Department of Civil and Environmental Engineering at Duke University, Durham, N.C., USA.
| |
Collapse
|
45
|
Salih H, Karaynir A, Yalcin M, Oryasin E, Holyavkin C, Basbulbul G, Bozdogan B. Metagenomic analysis of wastewater phageome from a University Hospital in Turkey. Arch Microbiol 2022; 204:353. [DOI: 10.1007/s00203-022-02962-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022]
|
46
|
Abstract
Microfluidics has enabled a new era of cellular and molecular assays due to the small length scales, parallelization, and the modularity of various analysis and actuation functions. Droplet microfluidics, in particular, has been instrumental in providing new tools for biology with its ability to quickly and reproducibly generate drops that act as individual reactors. A notable beneficiary of this technology has been single-cell RNA sequencing, which has revealed new heterogeneities and interactions for the fundamental unit of life. However, viruses far surpass the diversity of cellular life, affect the dynamics of all ecosystems, and are a chronic source of global health crises. Despite their impact on the world, high-throughput and high-resolution viral profiling has been difficult, with conventional methods being limited to population-level averaging, large sample volumes, and few cultivable hosts. Consequently, most viruses have not been identified and studied. Droplet microfluidics holds the potential to address many of these limitations and offers new levels of sensitivity and throughput for virology. This Feature highlights recent efforts that have applied droplet microfluidics to the detection and study of viruses, including for diagnostics, virus-host interactions, and cell-independent virus assays. In combination with traditional virology methods, droplet microfluidics should prove a potent tool toward achieving a better understanding of the most abundant biological species on Earth.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes. Viruses 2022; 14:v14050887. [PMID: 35632629 PMCID: PMC9146016 DOI: 10.3390/v14050887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
As significant drivers of cyanobacteria mortality, cyanophages have been known to regulate the population dynamics, metabolic activities, and community structure of this most important marine autotrophic picoplankton and, therefore, influence the global primary production and biogeochemical cycle in aquatic ecosystems. In the present study, a lytic Synechococcus phage, namely S-SZBM1, was isolated and identified. Cyanophage S-SZBM1 has a double-stranded DNA genome of 177,834 bp with a G+C content of 43.31% and contains a total of 218 predicted ORFs and six tRNA genes. Phylogenetic analysis and nucleotide-based intergenomic similarity suggested that cyanophage S-SZBM1 belongs to a new genus under the family Kyanoviridae. A variety of auxiliary metabolic genes (AMGs) that have been proved or speculated to relate to photosynthesis, carbon metabolism, nucleotide synthesis and metabolism, cell protection, and other cell metabolism were identified in cyanophage S-SZBM1 genome and may affect host processes during infection. In addition, 24 of 32 predicted structural proteins were identified by a high-throughput proteome analysis which were potentially involved in the assembly processes of virion. The genomic and proteomic analysis features of cyanophage S-SZBM1 offer a valuable insight into the interactions between cyanophages and their hosts during infection.
Collapse
|
48
|
Aherfi S, Brahim Belhaouari D, Pinault L, Baudoin JP, Decloquement P, Abrahao J, Colson P, Levasseur A, Lamb DC, Chabriere E, Raoult D, La Scola B. Incomplete tricarboxylic acid cycle and proton gradient in Pandoravirus massiliensis: is it still a virus? THE ISME JOURNAL 2022; 16:695-704. [PMID: 34556816 PMCID: PMC8857278 DOI: 10.1038/s41396-021-01117-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
The discovery of Acanthamoeba polyphaga Mimivirus, the first isolated giant virus of amoeba, challenged the historical hallmarks defining a virus. Giant virion sizes are known to reach up to 2.3 µm, making them visible by optical microscopy. Their large genome sizes of up to 2.5 Mb can encode proteins involved in the translation apparatus. We have investigated possible energy production in Pandoravirus massiliensis. Mitochondrial membrane markers allowed for the detection of a membrane potential in purified virions and this was enhanced by a regulator of the tricarboxylic acid cycle but abolished by the use of a depolarizing agent. Bioinformatics was employed to identify enzymes involved in virion proton gradient generation and this approach revealed that eight putative P. massiliensis proteins exhibited low sequence identities with known cellular enzymes involved in the universal tricarboxylic acid cycle. Further, all eight viral genes were transcribed during replication. The product of one of these genes, ORF132, was cloned and expressed in Escherichia coli, and shown to function as an isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle. Our findings show for the first time that a membrane potential can exist in Pandoraviruses, and this may be related to tricarboxylic acid cycle. The presence of a proton gradient in P. massiliensis makes this virus a form of life for which it is legitimate to ask the question "what is a virus?".
Collapse
Affiliation(s)
- Sarah Aherfi
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Djamal Brahim Belhaouari
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jean-Pierre Baudoin
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Philippe Decloquement
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jonatas Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo, Horizonte, Brazil
| | - Philippe Colson
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - David C Lamb
- Faculty of Health and Life Sciences, Swansea University, Swansea, UK
| | - Eric Chabriere
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix Marseille Univ, IRD, MEPHI, Marseille, France.
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France.
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France.
| |
Collapse
|
49
|
Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. THE ISME JOURNAL 2022; 16:488-499. [PMID: 34429521 PMCID: PMC8776855 DOI: 10.1038/s41396-021-01085-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Marine cyanobacteria of the genera Synechococcus and Prochlorococcus are the most abundant photosynthetic organisms on earth, spanning vast regions of the oceans and contributing significantly to global primary production. Their viruses (cyanophages) greatly influence cyanobacterial ecology and evolution. Although many cyanophage genomes have been sequenced, insight into the functional role of cyanophage genes is limited by the lack of a cyanophage genetic engineering system. Here, we describe a simple, generalizable method for genetic engineering of cyanophages from multiple families, that we named REEP for REcombination, Enrichment and PCR screening. This method enables direct investigation of key cyanophage genes, and its simplicity makes it adaptable to other ecologically relevant host-virus systems. T7-like cyanophages often carry integrase genes and attachment sites, yet exhibit lytic infection dynamics. Here, using REEP, we investigated their ability to integrate and maintain a lysogenic life cycle. We found that these cyanophages integrate into the host genome and that the integrase and attachment site are required for integration. However, stable lysogens did not form. The frequency of integration was found to be low in both lab cultures and the oceans. These findings suggest that T7-like cyanophage integration is transient and is not part of a classical lysogenic cycle.
Collapse
|
50
|
DeWerff SJ, Zhang C, Schneider J, Whitaker RJ. Intraspecific antagonism through viral toxin encoded by chronic Sulfolobus spindle-shaped virus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200476. [PMID: 34839697 PMCID: PMC8628083 DOI: 10.1098/rstb.2020.0476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023] Open
Abstract
Virus-host interactions evolve along a symbiosis continuum from antagonism to mutualism. Long-term associations between virus and host, such as those in chronic infection, will select for traits that drive the interaction towards mutualism, especially when susceptible hosts are rare in the population. Virus-host mutualism has been demonstrated in thermophilic archaeal populations where Sulfolobus spindle-shaped viruses (SSVs) provide a competitive advantage to their host Sulfolobus islandicus by producing a toxin that kills uninfected strains. Here, we determine the genetic basis of this killing phenotype by identifying highly transcribed genes in cells that are chronically infected with a diversity of SSVs. We demonstrate that these genes alone confer growth inhibition by being expressed in uninfected cells via a Sulfolobus expression plasmid. Challenge of chronically infected strains with vector-expressed toxins revealed a nested network of cross-toxicity among divergent SSVs, with both broad and specific toxin efficacies. This suggests that competition between viruses and/or their hosts could maintain toxin diversity. We propose that competitive interactions among chronic viruses to promote their host fitness form the basis of virus-host mutualism. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Samantha J. DeWerff
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Changyi Zhang
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John Schneider
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel J. Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|