1
|
Nakajima T, Yamamoto R, Matsuse K, Fuji M, Fujii K, Hirata S, Abdelrahman M, Sato M, Hirai MY, Shigyo M. Metabolite Profiling and Association Analysis of Leaf Tipburn in Heat-Tolerant Bunching Onion Varieties. PLANTS (BASEL, SWITZERLAND) 2025; 14:187. [PMID: 39861542 PMCID: PMC11768682 DOI: 10.3390/plants14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
The bunching onion is an important leafy vegetable, prized for its distinctive flavor and color. It is consumed year-round in Japan, where a stable supply is essential. However, in recent years, the challenges posed by climate change and global warming have resulted in adverse effects on bunching onions, including stunted growth, discoloration, and the development of leaf tipburn, threatening both crop quality and yield. Furthermore, as bunching onion belongs to the Allium genus, which includes globally significant vegetables such as onion and garlic, studying the impact of climate change on bunching onion serves as an ideal model. The insights gained can also be applied to other crops and regions. This study investigates the effects of different summer growth conditions on the metabolite profile of heat-tolerant bunching onions with dark green leaf blade coloration and examines their association with leaf tipburn. Pigment compound quantification, functional component analysis, leaf tipburn rate assessment, and widely targeted metabolome profiling were performed across two commercial F1 varieties, one purebred variety, and six Yamaguchi Prefecture-bred F1 lines under different growing conditions. The results obtained were subjected to comparative analyses based on the varieties and groups classified by high and low leaf tipburn rates. The results revealed that β-carotene accumulation peaked with May sowing and July harvest, while the highest accumulation of other pigment compounds was observed with May sowing and September harvest. Additionally, metabolome analysis related to leaf tipburn rates identified several organosulfur compounds, with gamma-glutamyl-propenyl cysteine sulfoxide emerging as one of the key compounds. Based on the intensity data, the fold change of this metabolite was calculated to be 1.66, indicating an increase in the leaf tipburn group compared to the control group. In the control groups, organosulfur compounds appeared to undergo turnover in preparation for stress response. In contrast, in the leaf tipburn groups, it is hypothesized that organosulfur compounds were converted into precursors of pungency, resulting in inadequate responses to stress. This study aims to elucidate the mechanisms through which organosulfur compounds transition into pungent compounds and to develop varieties with improved resistance to leaf tipburn.
Collapse
Affiliation(s)
- Tetsuya Nakajima
- Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Reina Yamamoto
- Laboratory of Vegetable Crop Science, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kanako Matsuse
- Laboratory of Vegetable Crop Science, Division of Yamaguchi University and Kasetsart University Joint Master’s Degree Program in Agricultural and Life Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masato Fuji
- Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koei Fujii
- Yamaguchi Prefectural Agriculture and Forestry General Technology Center, 10318 Mure, Hofu 747-0004, Japan
| | - Sho Hirata
- Laboratory of Agroecology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mostafa Abdelrahman
- Center of Biotechnology and Genomics, Texas Tech University, Lubbock, TX 49409, USA
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masayoshi Shigyo
- Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
- Laboratory of Vegetable Crop Science, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
2
|
Arafat MY, Narula K, Kumar M, Chakraborty N, Chakraborty S. Proteo-metabolomic Dissection of Extracellular Matrix Reveals Alterations in Cell Wall Integrity and Calcium Signaling Governs Wall-Associated Susceptibility during Stem Rot Disease in Jute. J Proteome Res 2024; 23:3217-3234. [PMID: 38572503 DOI: 10.1021/acs.jproteome.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The plant surveillance system confers specificity to disease and immune states by activating distinct molecular pathways linked to cellular functionality. The extracellular matrix (ECM), a preformed passive barrier, is dynamically remodeled at sites of interaction with pathogenic microbes. Stem rot, caused by Macrophomina phaseolina, adversely affects fiber production in jute. However, how wall related susceptibility affects the ECM proteome and metabolome remains undetermined in bast fiber crops. Here, stem rot responsive quantitative temporal ECM proteome and metabolome were developed in jute upon M. phaseolina infection. Morpho-histological examination revealed that leaf shredding was accompanied by reactive oxygen species production in patho-stressed jute. Electron microscopy showed disease progression and ECM architecture remodeling due to necrosis in the later phase of fungal attack. Using isobaric tags for relative and absolute quantitative proteomics and liquid chromatography-tandem mass spectrometry, we identified 415 disease-responsive proteins involved in wall integrity, acidification, proteostasis, hydration, and redox homeostasis. The disease-related correlation network identified functional hubs centered on α-galactosidase, pectinesterase, and thaumatin. Gas chromatography-mass spectrometry analysis pointed toward enrichment of disease-responsive metabolites associated with the glutathione pathway, TCA cycle, and cutin, suberin, and wax metabolism. Data demonstrated that wall-degrading enzymes, structural carbohydrates, and calcium signaling govern rot responsive wall-susceptibility. Proteomics data were deposited in Pride (PXD046937; PXD046939).
Collapse
Affiliation(s)
- Md Yasir Arafat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Kanika Narula
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mohit Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
3
|
Tabeta H, Hirai MY. l-2-Aminopimelic acid acts as an auxin mimic to induce lateral root formation across diverse plant species. FEBS Lett 2024; 598:1855-1863. [PMID: 38782630 DOI: 10.1002/1873-3468.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The identification of chemicals that modulate plant development and adaptive responses to stresses has attracted increasing attention for agricultural applications. Recent basic studies have identified functional amino acids that are essential for plant organogenesis, indicating that amino acids can regulate plant growth. In this study, we newly identified 2-aminopimelic acid (2APA), a nonproteinogenic amino acid, as a novel bioactive compound involved in root morphogenesis. This biological effect was confirmed in several plant species. Our phenotypic analysis revealed that the bioactive 2APA is an l-form stereoisomer. Overall, our study identified a promising root growth regulator and provided insight into the intricate metabolism related to root morphology.
Collapse
Affiliation(s)
| | - Masami Y Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Japan
| |
Collapse
|
4
|
Xia P, Zhang Y, Zhang X. The Potential Relevance of PnDREBs to Panax notoginseng Nitrogen Sensitiveness. Biochem Genet 2024; 62:2631-2651. [PMID: 37999875 DOI: 10.1007/s10528-023-10567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
The dehydration response element-binding (DREB) transcription factor is a subfamily of AP2/ERF. It actively responds to various abiotic stresses in plants. As one of the representative plants, Panax notoginseng is sensitive to Nitrogen (N). Here, bioinformatics analysis, the identification, chromosomal location, phylogeny, structure, cis-acting elements, and collinearity of PnDREBs were analyzed. In addition, the expression levels of PnDREBs were analyzed by quantitative reverse transcription PCR. In this study, 54 PnDREBs were identified and defined as PnDREB1 to PnDREB54. They were divided into 6 subfamilies (A1-A6). And 44 PnDREBs were irregularly distributed on 10 of 12 chromosomes. Each group showed specific motifs and exon-intron structures. By predicting cis-acting elements, the PnDREBs may participate in biotic stress, abiotic stress, and hormone induction. Collinear analysis showed that fragment duplication events were beneficial to the amplification and evolution of PnDREB members. The expression of PnDREBs showed obvious tissue specificity in its roots, flowers, and leaves. In addition, under the action of ammonium nitrogen and nitrate nitrogen at the 15 mM level, the level of PnDREB genes expression in roots varied to different degrees. In this study, we identified and characterized PnDREBs for the first time, and analyzed that PnDREBs may be related to the response of P. Notoginseng to N sensitiveness. The results of this study lay a foundation for further research on the function of PnDREBs in P. Notoginseng.
Collapse
Affiliation(s)
- Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Yan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xuemin Zhang
- Tianjin TASLY Modern Chinese Medicine Resources Co., Ltd., Tianjin, 300402, People's Republic of China
| |
Collapse
|
5
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Zhang R, Li X, Qu J, Zhang D, Cao L, Qin X, Li Z. Intercropping with maize and sorghum-induced saikosaponin accumulation in Bupleurum chinense DC. by liquid chromatography-mass spectrometry-based metabolomics. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5035. [PMID: 38726730 DOI: 10.1002/jms.5035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 08/24/2024]
Abstract
Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.
Collapse
Affiliation(s)
- Rui Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiangchuan Li
- Shanxi Institute of Medicine and Life Sciences, Taiyuan, China
| | - Jixu Qu
- Shanxi Institute of Medicine and Life Sciences, Taiyuan, China
| | - Doudou Zhang
- Shanxi Institute of Medicine and Life Sciences, Taiyuan, China
| | - Linxu Cao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
7
|
Yan Q, Zhang G, Zhang X, Huang L. A Review of Transcriptomics and Metabolomics in Plant Quality and Environmental Response: From Bibliometric Analysis to Science Mapping and Future Trends. Metabolites 2024; 14:272. [PMID: 38786749 PMCID: PMC11123105 DOI: 10.3390/metabo14050272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Transcriptomics and metabolomics offer distinct advantages in investigating the differentially expressed genes and cellular entities that have the greatest influence on end-phenotype, making them crucial techniques for studying plant quality and environmental responses. While numerous relevant articles have been published, a comprehensive summary is currently lacking. This review aimed to understand the global and longitudinal research trends of transcriptomics and metabolomics in plant quality and environmental response (TMPQE). Utilizing bibliometric methods, we presented a comprehensive science mapping of the social structure, conceptual framework, and intellectual foundation of TMPQE. We uncovered that TMPQE research has been categorized into three distinct stages since 2020. A citation analysis of the 29 most cited articles, coupled with a content analysis of recent works (2020-2023), highlight five potential research streams in plant quality and environmental responses: (1) biosynthetic pathways, (2) abiotic stress, (3) biotic stress, (4) development and ripening, and (5) methodologies and tools. Current trends and future directions are shaped by technological advancements, species diversity, evolving research themes, and an environmental ecology focus. Overall, this review provides a novel and comprehensive perspective to understand the longitudinal trend on TMPQE.
Collapse
Affiliation(s)
| | | | | | - Linfang Huang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, HaiDian District, Beijing 100193, China; (Q.Y.); (G.Z.); (X.Z.)
| |
Collapse
|
8
|
Nanni A, Titus-McQuillan J, Bankole KS, Pardo-Palacios F, Signor S, Vlaho S, Moskalenko O, Morse A, Rogers RL, Conesa A, McIntyre LM. Nucleotide-level distance metrics to quantify alternative splicing implemented in TranD. Nucleic Acids Res 2024; 52:e28. [PMID: 38340337 PMCID: PMC10954468 DOI: 10.1093/nar/gkae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Advances in affordable transcriptome sequencing combined with better exon and gene prediction has motivated many to compare transcription across the tree of life. We develop a mathematical framework to calculate complexity and compare transcript models. Structural features, i.e. intron retention (IR), donor/acceptor site variation, alternative exon cassettes, alternative 5'/3' UTRs, are compared and the distance between transcript models is calculated with nucleotide level precision. All metrics are implemented in a PyPi package, TranD and output can be used to summarize splicing patterns for a transcriptome (1GTF) and between transcriptomes (2GTF). TranD output enables quantitative comparisons between: annotations augmented by empirical RNA-seq data and the original transcript models; transcript model prediction tools for longread RNA-seq (e.g. FLAIR versus Isoseq3); alternate annotations for a species (e.g. RefSeq vs Ensembl); and between closely related species. In C. elegans, Z. mays, D. melanogaster, D. simulans and H. sapiens, alternative exons were observed more frequently in combination with an alternative donor/acceptor than alone. Transcript models in RefSeq and Ensembl are linked and both have unique transcript models with empirical support. D. melanogaster and D. simulans, share many transcript models and long-read RNAseq data suggests that both species are under-annotated. We recommend combined references.
Collapse
Affiliation(s)
- Adalena Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - James Titus-McQuillan
- University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte, NC, USA
| | - Kinfeosioluwa S Bankole
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | | | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Srna Vlaho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Oleksandr Moskalenko
- University of Florida Research Computing, University of Florida, Gainesville, FL 32611, USA
| | - Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Rebekah L Rogers
- University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte, NC, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology. Spanish National Research Council, Paterna, Spain
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Yu K, Liang P, Yu H, Liu H, Guo J, Yan X, Li Z, Li G, Wang Y, Wang C. Integrating Transcriptome and Chemical Analyses to Provide Insights into Biosynthesis of Terpenoids and Flavonoids in the Medicinal Industrial Crop Andrographis paniculate and Its Antiviral Medicinal Parts. Molecules 2024; 29:852. [PMID: 38398604 PMCID: PMC10893308 DOI: 10.3390/molecules29040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Andrographis paniculata is a medicinal plant traditionally used to produce diterpene lactones and flavonoids, which possess various biological activities. Widely distributed in China, India, and other Southeast Asia countries, A. paniculata has become an important economic crop, significantly treating SARS-CoV-2, and is being cultivated on a large scale in southern China. The biosynthesis of active ingredients in A. paniculata are regulated and controlled by genes, but their specific roles are still not fully understood. To further explore the growth regulation factors and utilization of its medicinal parts of this industrial crop, chemical and transcriptome analyses were conducted on the roots, stems, and leaves of A. paniculata to identify the biosynthesis pathways and related candidate genes of the active ingredients. The chemical analysis revealed that the main components of A. paniculata were diterpene lactones and flavonoids, which displayed potential ability to treat SARS-CoV-2 through molecular docking. Moreover, the transcriptome sequencing annotated a total of 40,850 unigenes, including 7962 differentially expressed genes. Among these, 120 genes were involved in diterpene lactone biosynthesis and 60 genes were involved in flavonoid biosynthesis. The expression of diterpene lactone-related genes was the highest in leaves and the lowest in roots, consistent with our content determination results. It is speculated that these highly expressed genes in leaves may be involved in the biosynthesis pathway of diterpenes. Furthermore, two class Ⅰ terpene synthases in A. paniculata transcriptome were also annotated, providing reference for the downstream pathway of the diterpene lactone biosynthesis. With their excellent market value, our experiments will promote the study of the biosynthetic genes for active ingredients in A. paniculata and provide insights for subsequent in vitro biosynthesis.
Collapse
Affiliation(s)
- Kuo Yu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Pengjie Liang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Hui Liu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Xiaohui Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Guoqiang Li
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| |
Collapse
|
10
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
11
|
Cadena-Zamudio JD, Monribot-Villanueva JL, Pérez-Torres CA, Alatorre-Cobos F, Guerrero-Analco JA, Ibarra-Laclette E. Non-Targeted Metabolomic Analysis of Arabidopsis thaliana (L.) Heynh: Metabolic Adaptive Responses to Stress Caused by N Starvation. Metabolites 2023; 13:1021. [PMID: 37755301 PMCID: PMC10535036 DOI: 10.3390/metabo13091021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
As sessile organisms, plants develop the ability to respond and survive in changing environments. Such adaptive responses maximize phenotypic and metabolic fitness, allowing plants to adjust their growth and development. In this study, we analyzed the metabolic plasticity of Arabidopsis thaliana in response to nitrate deprivation by untargeted metabolomic analysis and using wild-type (WT) genotypes and the loss-of-function nia1/nia2 double mutant. Secondary metabolites were identified using seedlings grown on a hydroponic system supplemented with optimal or limiting concentrations of N (4 or 0.2 mM, respectively) and harvested at 15 and 30 days of age. Then, spectral libraries generated from shoots and roots in both ionization modes (ESI +/-) were compared. Totals of 3407 and 4521 spectral signals (m/z_rt) were obtained in the ESI+ and ESI- modes, respectively. Of these, approximately 50 and 65% were identified as differentially synthetized/accumulated. This led to the presumptive identification of 735 KEGG codes (metabolites) belonging to 79 metabolic pathways. The metabolic responses in the shoots and roots of WT genotypes at 4 mM of N favor the synthesis/accumulation of metabolites strongly related to growth. In contrast, for the nia1/nia2 double mutant (similar as the WT genotype at 0.2 mM N), metabolites identified as differentially synthetized/accumulated help cope with stress, regulating oxidative stress and preventing programmed cell death, meaning that metabolic responses under N starvation compromise growth to prioritize a defensive response.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
| | - Fulgencio Alatorre-Cobos
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
- Centro de Investigación Científica de Yucatán (CICY), Unidad de Biotecnología, Merida 97205, Yucatan, Mexico
| | - José Antonio Guerrero-Analco
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| |
Collapse
|
12
|
Bhattacharyya S, Giridhar M, Meier B, Peiter E, Vothknecht UC, Chigri F. Global transcriptome profiling reveals root- and leaf-specific responses of barley ( Hordeum vulgare L.) to H 2O 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1223778. [PMID: 37771486 PMCID: PMC10523330 DOI: 10.3389/fpls.2023.1223778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
In cereal crops, such as barley (Hordeum vulgare L.), the ability to appropriately respond to environmental cues is an important factor for yield stability and thus for agricultural production. Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), are key components of signal transduction cascades involved in plant adaptation to changing environmental conditions. H2O2-mediated stress responses include the modulation of expression of stress-responsive genes required to cope with different abiotic and biotic stresses. Despite its importance, knowledge of the effects of H2O2 on the barley transcriptome is still scarce. In this study, we identified global transcriptomic changes induced after application of 10 mM H2O2 to five-day-old barley plants. In total, 1883 and 1001 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Most of these DEGs were organ-specific, with only 209 DEGs commonly regulated and 37 counter-regulated between both plant parts. A GO term analysis further confirmed that different processes were affected in roots and leaves. It revealed that DEGs in leaves mostly comprised genes associated with hormone signaling, response to H2O2 and abiotic stresses. This includes many transcriptions factors and small heat shock proteins. DEGs in roots mostly comprised genes linked to crucial aspects of H2O2 catabolism and oxidant detoxification, glutathione metabolism, as well as cell wall modulation. These categories include many peroxidases and glutathione transferases. As with leaves, the H2O2 response category in roots contains small heat shock proteins, however, mostly different members of this family were affected and they were all regulated in the opposite direction in the two plant parts. Validation of the expression of the selected commonly regulated DEGs by qRT-PCR was consistent with the RNA-seq data. The data obtained in this study provide an insight into the molecular mechanisms of oxidative stress responses in barley, which might also play a role upon other stresses that induce oxidative bursts.
Collapse
Affiliation(s)
| | - Maya Giridhar
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ute C. Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Fatima Chigri
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Aharoni A, Goodacre R, Fernie AR. Plant and microbial sciences as key drivers in the development of metabolomics research. Proc Natl Acad Sci U S A 2023; 120:e2217383120. [PMID: 36930598 PMCID: PMC10041103 DOI: 10.1073/pnas.2217383120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
This year marks the 25th anniversary of the coinage of the term metabolome [S. G. Oliver et al., Trends Biotech. 16, 373-378 (1998)]. As the field rapidly advances, it is important to take stock of the progress which has been made to best inform the disciplines future. While a medical-centric perspective on metabolomics has recently been published [M. Giera et al., Cell Metab. 34, 21-34 (2022)], this largely ignores the pioneering contributions made by the plant and microbial science communities. In this perspective, we provide a contemporary overview of all fields in which metabolomics is employed with particular emphasis on both methodological and application breakthroughs made in plant and microbial sciences that have shaped this evolving research discipline from the very early days of its establishment. This will not cover all types of metabolomics assays currently employed but will focus mainly on those utilizing mass spectrometry-based measurements since they are currently by far the most prominent. Having established the historical context of metabolomics, we will address the key challenges currently facing metabolomics and offer potential approaches by which these can be faced. Most salient among these is the fact that the vast majority of mass features are as yet not annotated with high confidence; what we may refer to as definitive identification. We discuss the potential of both standard compound libraries and artificial intelligence technologies to address this challenge and the use of natural variance-based approaches such as genome-wide association studies in attempt to assign specific functions to the myriad of structurally similar and complex specialized metabolites. We conclude by stating our contention that as these challenges are epic and that they will need far greater cooperative efforts from biologists, chemists, and computer scientists with an interest in all kingdoms of life than have been made to date. Ultimately, a better linkage of metabolome and genome data will likely also be needed particularly considering the Earth BioGenome Project.
Collapse
Affiliation(s)
- Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot76100, Israel
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7BE, UK
| | - Alisdair R. Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Potsdam14476, Germany
| |
Collapse
|
14
|
Yamamura M, Kumatani M, Shiraishi A, Matsuura Y, Kobayashi K, Suzuki A, Kawamura A, Satake H, Ragamustari SK, Suzuki S, Suzuki H, Shibata D, Kawai S, Ono E, Umezawa T. Two O-Methyltransferases from Phylogenetically Unrelated Cow Parsley (Anthriscus sylvestris) and Hinoki-Asunaro (Thujopsis dolabrata var. hondae) as a Signature of Lineage-Specific Evolution in Lignan Biosynthesis. PLANT & CELL PHYSIOLOGY 2023; 64:124-147. [PMID: 36412832 DOI: 10.1093/pcp/pcac164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
O-Methyltransferases (OMTs) play important roles in antitumor lignan biosynthesis. To date, six OMTs catalyzing the methylation of dibenzylbutyrolactone lignans as biosynthetic precursors of antitumor lignans have been identified. However, there is still no systematic understanding of the diversity and regularity of the biosynthetic mechanisms among various plant lineages. Herein, we report the characterization of two OMTs from Anthriscus sylvestris and Thujopsis dolabrata var. hondae [designated as AsSecoNorYatein (SNY) OMT and TdSNYOMT] together with the six known OMTs to evaluate their diversity and regularity. Although A. sylvestris 5-O-methylthujaplicatin (SecoNorYatein) and 4-O-demethylyatein (NorYatein) OMT (AsSNYOMT) and TdSNYOMT accept 5-O-methylthujaplicatin and 4-O-demethylyatein as substrates, phylogenetic analysis indicated that these two OMTs shared low amino acid sequence identity, 33.8%, indicating a signature of parallel evolution. The OMTs and the six previously identified OMTs were found to be diverse in terms of their substrate specificity, regioselectivity and amino acid sequence identity, indicating independent evolution in each plant species. Meanwhile, two-entropy analysis detected four amino acid residues as being specifically acquired by dibenzylbutyrolactone lignan OMTs. Site-directed mutation of AsSNYOMT indicated that two of them contributed specifically to 5-O-methylthujaplicatin methylation. The results provide a new example of parallel evolution and the diversity and regularity of OMTs in plant secondary (specialized) metabolism.
Collapse
Affiliation(s)
- Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Minami-josanjima-cho 2-1, Tokushima, 770-8502 Japan
| | - Masato Kumatani
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Yu Matsuura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Keisuke Kobayashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Ayano Suzuki
- Faculty of Agriculture, Shizuoka University, Ohya 836, Surugaku, Shizuoka, 422-8529 Japan
| | - Atsushi Kawamura
- Faculty of Agriculture, Shizuoka University, Ohya 836, Surugaku, Shizuoka, 422-8529 Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Safendrri Komara Ragamustari
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, Indonesian Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM 46, Cibinong, Bogor, 16911 Indonesia
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| | - Hideyuki Suzuki
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Daisuke Shibata
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Shingo Kawai
- Faculty of Agriculture, Shizuoka University, Ohya 836, Surugaku, Shizuoka, 422-8529 Japan
| | - Eiichiro Ono
- Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| |
Collapse
|
15
|
Comparative Analysis of Physiological, Hormonal and Transcriptomic Responses Reveal Mechanisms of Saline-Alkali Tolerance in Autotetraploid Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms232416146. [PMID: 36555786 PMCID: PMC9783840 DOI: 10.3390/ijms232416146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Saline-alkali soil has posed challenges to the growth of agricultural crops, while polyploidy often show greater adaptability in diverse and extreme environments including saline-alkali stress, but its defense mechanisms in rice remain elusive. Herein, we explored the mechanisms of enhanced saline-alkali tolerance of autotetraploid rice 93-11T relative to diploid rice 93-11D, based on physiological, hormonal and transcriptomic profilings. Physiologically, the enhanced saline-alkali tolerance in 93-11T was manifested in higher soluble sugar accumulation and stronger superoxide dismutase (SOD) and peroxidase (POD) activities in leaves during 24 h after saline-alkali shock. Furthermore, various hormone levels in leaves of 93-11T altered greatly, such as the negative correlation between salicylic acid (SA) and the other four hormones changed to positive correlation due to polyploidy. Global transcriptome profiling revealed that the upregulated differentially expressed genes (DEGs) in leaves and roots of 93-11T were more abundant than that in 93-11D, and there were more DEGs in roots than in leaves under saline-alkali stress. Genes related to phytohormone signal transduction of auxin (AUX) and SA in roots, lignin biosynthesis in leaves or roots, and wax biosynthesis in leaves were obviously upregulated in 93-11T compared with 93-11D under saline-alkali condition. Collectively, 93-11T subjected to saline-alkali stress possibly possesses higher osmotic regulation ability due to cuticular wax synthesis, stronger negative regulation of reactive oxygen species (ROS) production by increasing the SA levels and maintaining relative lower levels of IAA, and higher antioxidant capacity by increasing activities of SOD and POD, as well as lignin biosynthesis. Our research provides new insights for exploring the mechanisms of saline-alkali tolerance in polyploid rice and discovering new gene targets for rice genetic improvement.
Collapse
|
16
|
Pavlů J, Kerchev P, Černý M, Novák J, Berka M, Jobe TO, López Ramos JM, Saiz-Fernández I, Rashotte AM, Kopriva S, Brzobohatý B. Cytokinin modulates the metabolic network of sulfur and glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7417-7433. [PMID: 36226742 DOI: 10.1093/jxb/erac391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone cytokinin is implicated in a range of growth, developmental, and defense processes. A growing body of evidence supports a crosstalk between cytokinin and nutrient signaling pathways, such as nitrate availability. Cytokinin signaling regulates sulfur-responsive gene expression, but the underlying molecular mechanisms and their impact on sulfur-containing metabolites have not been systematically explored. Using a combination of genetic and pharmacological tools, we investigated the interplay between cytokinin signaling and sulfur homeostasis. Exogenous cytokinin triggered sulfur starvation-like gene expression accompanied by a decrease in sulfate and glutathione content. This process was uncoupled from the activity of the major transcriptional regulator of sulfate starvation signaling SULFUR LIMITATION 1 and an important glutathione-degrading enzyme, γ-glutamyl cyclotransferase 2;1, expression of which was robustly up-regulated by cytokinin. Conversely, glutathione accumulation was observed in mutants lacking the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE 3 and in cytokinin-deficient plants. Cytokinin-deficient plants displayed improved root growth upon exposure to glutathione-depleting chemicals which was attributed to a higher capacity to maintain glutathione levels. These results shed new light on the interplay between cytokinin signaling and sulfur homeostasis. They position cytokinin as an important modulator of sulfur uptake, assimilation, and remobilization in plant defense against xenobiotics and root growth.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Timothy O Jobe
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - José Maria López Ramos
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aaron Michael Rashotte
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
17
|
Tabeta H, Higashi Y, Okazaki Y, Toyooka K, Wakazaki M, Sato M, Saito K, Hirai MY, Ferjani A. Skotomorphogenesis exploits threonine to promote hypocotyl elongation. QUANTITATIVE PLANT BIOLOGY 2022; 3:e26. [PMID: 37077988 PMCID: PMC10095960 DOI: 10.1017/qpb.2022.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 05/02/2023]
Abstract
Mobilisation of seed storage reserves is important for seedling establishment in Arabidopsis. In this process, sucrose is synthesised from triacylglycerol via core metabolic processes. Mutants with defects in triacylglycerol-to-sucrose conversion display short etiolated seedlings. We found that whereas sucrose content in the indole-3-butyric acid response 10 (ibr10) mutant was significantly reduced, hypocotyl elongation in the dark was unaffected, questioning the role of IBR10 in this process. To dissect the metabolic complexity behind cell elongation, a quantitative-based phenotypic analysis combined with a multi-platform metabolomics approach was applied. We revealed that triacylglycerol and diacylglycerol breakdown were disrupted in ibr10, resulting in low sugar content and poor photosynthetic ability. Importantly, batch-learning self-organised map clustering revealed that threonine level was correlated with hypocotyl length. Consistently, exogenous threonine supply stimulated hypocotyl elongation, indicating that sucrose levels are not always correlated with etiolated seedling length, suggesting the contribution of amino acids in this process.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Masami Y Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
18
|
Mao Y, Chen H, Zhao J, Li Y, Feng L, Yang Y, Zhang Y, Wei P, Hou D. Molecular cloning, functional characterization and expression of the β-amyrin synthase gene involved in saikosaponin biosynthesis in Bupleurum chinense DC. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2022; 32:284-295. [PMID: 36160316 PMCID: PMC9483273 DOI: 10.1007/s13562-022-00804-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/23/2022] [Indexed: 05/24/2023]
Abstract
Bupleurum chinense DC. is a commonly used plant in traditional Chinese medicine, and saikosaponins(SSs) are the main active oleanane-typetriterpene saponins in B. chinense. β-Amyrin synthase (β-AS) is an important enzyme in oleanane-type triterpenoid saponin synthesis, but its role in saikosaponin synthesis has rarely been studied. Here, the putative β-AS gene BcBAS1(Accession No.ON890382) selected according to metabolomic and transcriptomic analyses was cloned and functionally characterized by heterologous expression in Escherichia coli and Pichia pastoris, and its subcellular localization and expression patterns were examined. The molecular weight of the BcBAS1 recombinant protein was approximately 87 kDa, and this protein could catalyse the production of β-amyrin, the precursor of SSs. Furthermore, BcBAS1 was located in the cytosol, and relative expression in four tissues of the four genotypes was positively correlated with SSa and SSd contents. Our results indicate that BcBAS1 is a β-AS gene and may play an important role in saikosaponin biosynthesis and regulation. This study sheds light on the role of β-AS genes in the synthesis of SSs and provides insights for the metabolic engineering of SSs.
Collapse
Affiliation(s)
- Yanping Mao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
- College of Life Science and Biotechnology, Mianyang Teachers’ College, 621000 Mianyang, China
| | - Hua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Jun Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yuchan Li
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Liang Feng
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yuping Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yiguan Zhang
- Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Ping Wei
- Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Dabin Hou
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| |
Collapse
|
19
|
Proanthocyanidins Alleviate Cadmium Stress in Industrial Hemp (Cannabis sativa L.). PLANTS 2022; 11:plants11182364. [PMID: 36145765 PMCID: PMC9504380 DOI: 10.3390/plants11182364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022]
Abstract
Industrial hemp (Cannabis sativa L.), an annual herbaceous cash crop, is widely used for the remediation of heavy metal-contaminated soils due to its short growth cycle, high tolerance, high biomass, and lack of susceptibility to transfer heavy metals into the human food chain. In this study, a significant increase in proanthocyanidins was found in Yunnan hemp no. 1 after cadmium stress. Proanthocyanidins are presumed to be a key secondary metabolite for cadmium stress mitigation. Therefore, to investigate the effect of proanthocyanidins on industrial hemp under cadmium stress, four experimental treatments were set up: normal environment, cadmium stress, proanthocyanidin treatment, and cadmium stress after pretreatment with proanthocyanidins. The phenotypes from the different treatments were compared. The experimental results showed that pretreatment with proanthocyanidins significantly alleviated cadmium toxicity in industrial hemp. The transcriptome and metabolome of industrial hemp were evaluated in the different treatments. Proanthocyanidin treatment and cadmium stress in industrial hemp mainly affected gene expression in metabolic pathways associated with glutathione metabolism, phenylpropanoids, and photosynthesis, which in turn altered the metabolite content in metabolic pathways of phenylalanine, vitamin metabolism, and carotenoid synthesis. The combined transcriptomic and metabolomic analysis revealed that proanthocyanidins mitigated cadmium toxicity by enhancing photosynthesis, secondary metabolite synthesis, and antioxidant synthesis. In addition, exogenous proanthocyanidins and cadmium ions acted simultaneously on EDS1 to induce the production of large amounts of salicylic acid in the plant. Finally, overexpression of CsANR and CsLAR, key genes for proanthocyanidins synthesis in industrial hemp, was established in Arabidopsis plants. The corresponding plants were subjected to cadmium stress, and the results showed that CsLAR transgenic plants were more tolerant to cadmium than the CsANR transgenic and wild-type Arabidopsis plants. The results showed that salicylic acid and jasmonic acid were increased in Arabidopsis overexpressing CsLAR compared to AT wild-type Arabidopsis, and levels of secondary metabolites were significantly higher in Arabidopsis overexpressing CsLAR than in AT wild-type Arabidopsis. These results revealed how proanthocyanidins alleviated cadmium stress and laid the foundation for breeding industrial hemp varieties with higher levels of proanthocyanidins and greater tolerance.
Collapse
|
20
|
Yan S, Bhawal R, Yin Z, Thannhauser TW, Zhang S. Recent advances in proteomics and metabolomics in plants. MOLECULAR HORTICULTURE 2022; 2:17. [PMID: 37789425 PMCID: PMC10514990 DOI: 10.1186/s43897-022-00038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 10/05/2023]
Abstract
Over the past decade, systems biology and plant-omics have increasingly become the main stream in plant biology research. New developments in mass spectrometry and bioinformatics tools, and methodological schema to integrate multi-omics data have leveraged recent advances in proteomics and metabolomics. These progresses are driving a rapid evolution in the field of plant research, greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment. Here, we review the recent progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications to plant biology research using several case studies related to mechanistic understanding of stress response, gene/protein function characterization, metabolic and signaling pathways exploration, and natural product discovery. We also present a projection concerning future perspectives in MS-based proteomics and metabolomics development including their applications to and challenges for system biology. This review is intended to provide readers with an overview of how advanced MS technology, and integrated application of proteomics and metabolomics can be used to advance plant system biology research.
Collapse
Affiliation(s)
- Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
22
|
Zheng T, Han J, Su KX, Sun BY, Liu SM. Regulation mechanisms of flavonoids biosynthesis of Hancheng Dahongpao peels (Zanthoxylum bungeanum Maxim) at different development stages by integrated metabolomics and transcriptomics analysis. BMC PLANT BIOLOGY 2022; 22:251. [PMID: 35596133 PMCID: PMC9123719 DOI: 10.1186/s12870-022-03642-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Flavonoids have strong free radical scavenging and antioxidant capacity. The high abundance of flavonoids in Chinese prickly ash peels have many benefits to human health. In this study, 'Hancheng Dahongpao', a main cultivar, was taken as materials to investigate the flavonoids biosynthesis mechanism of Zanthoxylum bungeanum Maxim at three key development stages by integration of metabolomics and transcriptomics analysis. RESULTS A total of 19 differentially accumulated metabolites were identified, the key flavonoids compounds were kaempferol, quercetin and their glycoside derivatives, and two major anthocyanins (peonidin O-hexoside and peonidin 3-O-glucoside). 5 gene networks/modules including 15 important candidate genes were identified, which was highly correlated with flavonoids. Among these genes, ZM-163828 and ZM-184209 were strongly correlated with kaempferol and quercetin, and ZM-125833 and ZM-97481 were controlled the anthocyanins biosynthesis. Moreover, it was shown that MYB-ZM1, MYB-ZM3, MYB-ZM5, MYB-ZM6 and MYB-ZM7 coordinately controlled flavonoids accumulation through regulating the structural genes. CONCLUSIONS Generally, this study systematically revealed the flavonoids metabolic pathways and candidate genes involved in flavonoids biosynthesis and laid a foundation for the potential targets for the breeding of new valuable Chinese prickly ash cultivars.
Collapse
Affiliation(s)
- Tao Zheng
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China
| | - Jun Han
- Forestry and Grassland Bureau of Xunhua Salar autonomous county, Xunhua, 811100, China.
| | - Ke-Xing Su
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China
| | - Bing-Yin Sun
- Yangling Vocational &Technical College, Yangling, 712100, China
| | - Shu-Ming Liu
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China.
| |
Collapse
|
23
|
Javed T, I I, Singhal RK, Shabbir R, Shah AN, Kumar P, Jinger D, Dharmappa PM, Shad MA, Saha D, Anuragi H, Adamski R, Siuta D. Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:877544. [PMID: 35574130 PMCID: PMC9106419 DOI: 10.3389/fpls.2022.877544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 05/05/2023]
Abstract
The efficiency with which plants use nutrients to create biomass and/or grain is determined by the interaction of environmental and plant intrinsic factors. The major macronutrients, especially nitrogen (N), limit plant growth and development (1.5-2% of dry biomass) and have a direct impact on global food supply, fertilizer demand, and concern with environmental health. In the present time, the global consumption of N fertilizer is nearly 120 MT (million tons), and the N efficiency ranges from 25 to 50% of applied N. The dynamic range of ideal internal N concentrations is extremely large, necessitating stringent management to ensure that its requirements are met across various categories of developmental and environmental situations. Furthermore, approximately 60 percent of arable land is mineral deficient and/or mineral toxic around the world. The use of chemical fertilizers adds to the cost of production for the farmers and also increases environmental pollution. Therefore, the present study focused on the advancement in fertilizer approaches, comprising the use of biochar, zeolite, and customized nano and bio-fertilizers which had shown to be effective in improving nitrogen use efficiency (NUE) with lower soil degradation. Consequently, adopting precision farming, crop modeling, and the use of remote sensing technologies such as chlorophyll meters, leaf color charts, etc. assist in reducing the application of N fertilizer. This study also discussed the role of crucial plant attributes such as root structure architecture in improving the uptake and transport of N efficiency. The crosstalk of N with other soil nutrients plays a crucial role in nutrient homeostasis, which is also discussed thoroughly in this analysis. At the end, this review highlights the more efficient and accurate molecular strategies and techniques such as N transporters, transgenes, and omics, which are opening up intriguing possibilities for the detailed investigation of the molecular components that contribute to nitrogen utilization efficiency, thus expanding our knowledge of plant nutrition for future global food security.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Indu I
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rajesh Kumar Singhal
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, Seed Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Pawan Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Arid Horticulture, Bikaner, India
| | - Dinesh Jinger
- Research Centre, Indian Council of Agricultural Research (ICAR)-Indian Institute of Soil and Water Conservation, Anand, India
| | - Prathibha M. Dharmappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Horticultural Research, Bengaluru, India
| | - Munsif Ali Shad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene, Hubei Hongshan Laboratory, Wuhan, China
| | - Debanjana Saha
- Centurion University of Technology and Management, Jatni, India
| | - Hirdayesh Anuragi
- Indian Council of Agricultural Research (ICAR)- Central Agroforestry Research Institute, Jhansi, India
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| |
Collapse
|
24
|
Zhan X, Chen Z, Chen R, Shen C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:877304. [PMID: 35463424 PMCID: PMC9024250 DOI: 10.3389/fpls.2022.877304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
25
|
Li J, Zhang D, Yin L, Li Z, Yu C, Du H, Jiang X, Yang C, Liu Y. Integration analysis of metabolome and transcriptome profiles revealed the age-dependent dynamic change in chicken meat. Food Res Int 2022; 156:111171. [DOI: 10.1016/j.foodres.2022.111171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/31/2023]
|
26
|
Di Filippo M, Pescini D, Galuzzi BG, Bonanomi M, Gaglio D, Mangano E, Consolandi C, Alberghina L, Vanoni M, Damiani C. INTEGRATE: Model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS Comput Biol 2022; 18:e1009337. [PMID: 35130273 PMCID: PMC8853556 DOI: 10.1371/journal.pcbi.1009337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 02/17/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolism is directly and indirectly fine-tuned by a complex web of interacting regulatory mechanisms that fall into two major classes. On the one hand, the expression level of the catalyzing enzyme sets the maximal theoretical flux level (i.e., the net rate of the reaction) for each enzyme-controlled reaction. On the other hand, metabolic regulation controls the metabolic flux through the interactions of metabolites (substrates, cofactors, allosteric modulators) with the responsible enzyme. High-throughput data, such as metabolomics and transcriptomics data, if analyzed separately, do not accurately characterize the hierarchical regulation of metabolism outlined above. They must be integrated to disassemble the interdependence between different regulatory layers controlling metabolism. To this aim, we propose INTEGRATE, a computational pipeline that integrates metabolomics and transcriptomics data, using constraint-based stoichiometric metabolic models as a scaffold. We compute differential reaction expression from transcriptomics data and use constraint-based modeling to predict if the differential expression of metabolic enzymes directly originates differences in metabolic fluxes. In parallel, we use metabolomics to predict how differences in substrate availability translate into differences in metabolic fluxes. We discriminate fluxes regulated at the metabolic and/or gene expression level by intersecting these two output datasets. We demonstrate the pipeline using a set of immortalized normal and cancer breast cell lines. In a clinical setting, knowing the regulatory level at which a given metabolic reaction is controlled will be valuable to inform targeted, truly personalized therapies in cancer patients.
Collapse
Affiliation(s)
- Marzia Di Filippo
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
| | - Dario Pescini
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
| | - Bruno Giovanni Galuzzi
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Marcella Bonanomi
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Daniela Gaglio
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate, Italy
| | - Clarissa Consolandi
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate, Italy
| | - Lilia Alberghina
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Marco Vanoni
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Chiara Damiani
- ISBE/SYSBIO Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
- * E-mail:
| |
Collapse
|
27
|
Satyavathi CT, Tomar RS, Ambawat S, Kheni J, Padhiyar SM, Desai H, Bhatt SB, Shitap MS, Meena RC, Singhal T, Sankar SM, Singh SP, Khandelwal V. Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.]. Sci Rep 2022; 12:276. [PMID: 34997160 PMCID: PMC8742121 DOI: 10.1038/s41598-021-04388-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pearl millet is an important staple food crop of poor people and excels all other cereals due to its unique features of resilience to adverse climatic conditions. It is rich in micronutrients like iron and zinc and amenable for focused breeding for these micronutrients along with high yield. Hence, this is a key to alleviate malnutrition and ensure nutritional security. This study was conducted to identify and validate candidate genes governing grain iron and zinc content enabling the desired modifications in the genotypes. Transcriptome sequencing using ION S5 Next Generation Sequencer generated 43.5 million sequence reads resulting in 83,721 transcripts with N50 of 597 bp and 84.35% of transcripts matched with the pearl millet genome assembly. The genotypes having high iron and zinc showed differential gene expression during different stages. Of which, 155 were up-regulated and 251 were down-regulated while during flowering stage and milking stage 349 and 378 transcripts were differentially expressed, respectively. Gene annotation and GO term showed the presence of transcripts involved in metabolic activities associated with uptake and transport of iron and zinc. Information generated will help in gaining insights into iron and zinc metabolism and develop genotypes with high yield, grain iron and zinc content.
Collapse
Affiliation(s)
- C Tara Satyavathi
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India.
| | - Rukam S Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Supriya Ambawat
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Jasminkumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shital M Padhiyar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hiralben Desai
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - S B Bhatt
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M S Shitap
- Department of Agricultural Statistics, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Ramesh Chand Meena
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Tripti Singhal
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S Mukesh Sankar
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S P Singh
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - Vikas Khandelwal
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| |
Collapse
|
28
|
Najafi S, Razavi SM, Khoshkam M, Asadi A. Green Synthesized of Sulfur Nanoparticles and Its Application on Lettuce Plants Metabolic Profiling. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00918-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Dumas T, Courant F, Almunia C, Boccard J, Rosain D, Duporté G, Armengaud J, Fenet H, Gomez E. An integrated metabolomics and proteogenomics approach reveals molecular alterations following carbamazepine exposure in the male mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 286:131793. [PMID: 34364230 DOI: 10.1016/j.chemosphere.2021.131793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Carbamazepine is one of the most abundant pharmaceutical active compounds detected in aquatic systems. Based on laboratory exposures, carbamazepine has been proven to adversely affect aquatic organisms. However, the underlying molecular events remain poorly understood. This study aims to investigate the molecular mechanisms potentially associated with toxicological effects of carbamazepine on the mussel Mytilus galloprovincialis exposed for 3 days at realistic concentrations encountered in coastal environments (80 ng/L and 8 μg/L). An integrated metabolomics and proteogenomics approach, including data fusion strategy, was applied to gain more insight in molecular events and cellular processes triggered by carbamazepine exposure. Consistent metabolic and protein signatures revealed a metabolic rewiring and cellular stress at both concentrations (e.g. intensification of protein synthesis, transport and catabolism processes, disruption of lipid and amino acid metabolisms). These highlighted molecular signatures point to the induction of autophagy, closely related with carbamazepine mechanism of action, as well as a destabilization of the lysosomal membranes and an enzymatic overactivity of the peroxisomes. Induction of programmed cell death was highlighted by the modulation of apoptotic cognate proteins. The proposed integrative omics data analysis was shown to be highly relevant to identify the modulations of the two molecular levels, i.e. metabolites and proteins. Multi-omics approach is able to explain the resulting complex biological system, and document stronger toxicological pieces of evidence on pharmaceutical active compounds at environmental concentrations in sentinel organisms.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - Christine Almunia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
| | - David Rosain
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Geoffroy Duporté
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
30
|
Srivastava RK, Satyavathi CT, Mahendrakar MD, Singh RB, Kumar S, Govindaraj M, Ghazi IA. Addressing Iron and Zinc Micronutrient Malnutrition Through Nutrigenomics in Pearl Millet: Advances and Prospects. Front Genet 2021; 12:723472. [PMID: 34868202 PMCID: PMC8637740 DOI: 10.3389/fgene.2021.723472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Iron (Fe) and zinc (Zn) micronutrient deficiencies are significant health concerns, particularly among the underprivileged and resource-poor people in the semi-arid tropics globally. Pearl millet is regarded as a climate-smart crop with low water and energy footprints. It thrives well under adverse agro-ecologies such as high temperatures and limited rainfall. Pearl millet is regarded as a nutri-cereal owing to health-promoting traits such as high grain Fe and Zn content, metabolizable energy, high antioxidant and polyphenols, high proportion of slowly digestible starches, dietary fibers, and favorable essential amino acid profile compared to many cereals. Higher genetic variability for grain Fe and Zn content has facilitated considerable progress in mapping and mining QTLs, alleles and genes underlying micronutrient metabolism. This has been made possible by developing efficient genetic and genomic resources in pearl millet over the last decade. These include genetic stocks such as bi-parental RIL mapping populations, association mapping panels, chromosome segment substitution lines (CSSLs) and TILLING populations. On the genomics side, considerable progress has been made in generating genomic markers, such as SSR marker repository development. This was followed by the development of a next-generation sequencing-based genome-wide SNP repository. The circa 1,000 genomes re-sequencing project played a significant role. A high-quality reference genome was made available by re-sequencing of world diversity panel, mapping population parents and hybrid parental lines. This mini-review attempts to provide information on the current developments on mapping Fe and Zn content in pearl millet and future outlook.
Collapse
Affiliation(s)
- Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - C Tara Satyavathi
- All India Coordinated Research Project on Pearl Millet (Indian Council of Agricultural Research), Jodhpur, India
| | - Mahesh D Mahendrakar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Ram B Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University (AAU), Anand, India
| | - Mahalingam Govindaraj
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Irfan A Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
31
|
Oloyede OO, Wagstaff C, Methven L. Influence of Cabbage ( Brassica oleracea) Accession and Growing Conditions on Myrosinase Activity, Glucosinolates and Their Hydrolysis Products. Foods 2021; 10:foods10122903. [PMID: 34945451 PMCID: PMC8700869 DOI: 10.3390/foods10122903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Glucosinolates are secondary plant metabolites present in Brassica vegetables. The endogenous enzyme myrosinase is responsible for the hydrolysis of glucosinolates, yielding a variety of compounds, including health-promoting isothiocyanates. The influence of cabbage accession and growing conditions on myrosinase activity, glucosinolates (GSL) and their hydrolysis products (GHPs) of 18 gene-bank cabbage accessions was studied. Growing conditions, cabbage morphotype and accession all significantly affected myrosinase activity and concentration of glucosinolates and their hydrolysis products. In general, cabbages grown in the field with lower growth temperatures had significantly higher myrosinase activity than glasshouse samples. Profile and concentration of glucosinolates and their hydrolysis products differed across the accessions studied. Aliphatic glucosinolates accounted for more than 60 % of total glucosinolates in most of the samples assessed. Nitriles and epithionitriles were the most abundant hydrolysis products formed. The results obtained showed that consumption of raw cabbages might reduce the amount of beneficial hydrolysis products available to the consumer, as more nitriles were produced from hydrolysis compared to beneficial isothiocyanates. However, red and white cabbages contained high concentrations of glucoraphanin and its isothiocyanate, sulforaphane. This implies that careful selection of accessions with ample concentrations of certain glucosinolates can improve the health benefits derived from raw cabbage consumption.
Collapse
|
32
|
Sun L, Liu LP, Wang YZ, Yang L, Zhang C, Yue MX, Dabbour M, Mintah BK, Wang L. Effect of ultrasonication on the metabolome and transcriptome profile changes in the fermentation of Ganoderma lucidum. Microbiol Res 2021; 254:126916. [PMID: 34798539 DOI: 10.1016/j.micres.2021.126916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Development of an efficient liquid fermentation method is helpful for food and pharmaceutical applications. This study investigated the effect of ultrasonication on the liquid fermentation of Ganoderma lucidum, a popular edible and medical fungi. Significant changes at both metabolic and transcriptional levels in mycelia were induced by ultrasound treatment. Compared with the control, 857 differential metabolites were identified (578 up- and 279 down-regulated metabolites), with more metabolites biosynthesis after sonication; 569 differentially expressed genes (DEGs) (267 up- and 302 down-) and 932 DEGs (378 up- and 554 down-) were identified in ultrasound-treated samples with recovery time of 0.5 and 3 h, respectively. Furthermore, 334 DEGs were continuously induced within the recovery time of 3 h, indicating the lasting influence of sonication on mycelia. The DEGs and differential metabolites were mainly involved in pathways of carbohydrate, energy metabolism, amino acids, terpenoids biosynthesis and metabolism and membrane transport, suggesting that ultrasound induced multifaceted effects on primary and secondary metabolism. Ultrasonication enhanced the triterpenoids production of G. lucidum (34.96 %) by up-regulating the expression of terpenoids synthase genes. This study shows that the application of ultrasound in liquid fermentation of G. lucidum is an efficient approach to produce more metabolites.
Collapse
Affiliation(s)
- Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li-Ping Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ya-Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei-Xiang Yue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Benjamin Kumah Mintah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
33
|
He Y, Chen H, Zhao J, Yang Y, Yang B, Feng L, Zhang Y, Wei P, Hou D, Zhao J, Yu M. Transcriptome and metabolome analysis to reveal major genes of saikosaponin biosynthesis in Bupleurum chinense. BMC Genomics 2021; 22:839. [PMID: 34798822 PMCID: PMC8603497 DOI: 10.1186/s12864-021-08144-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. In the present study, we performed an integrated analysis of metabolic composition and the expressed genes involved in saikosaponin biosynthetic pathways among four organs (the root, flower, stem, and leaf) of B. chinense to discover the genes related to the saikosaponin biosynthetic pathway. RESULTS Transcript and metabolite profiles were generated through high-throughput RNA-sequencing (RNA-seq) data analysis and liquid chromatography tandem mass spectrometry, respectively. Evaluation of saikosaponin contents and transcriptional changes showed 152 strong correlations (P < 0.05) over 3 compounds and 77 unigenes. These unigenes belonged to eight gene families: the acetoacetyl CoA transferase (AACT) (6), HMG-CoA synthase (HMGS) (2), HMG-CoA reductase (HMGR) (2), mevalonate diphosphate decarboxylase (MVD) (1), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) (3), farnesyl diphosphate synthase (FPPS) (11), β-amyrin synthase (β-AS) (13) and cytochrome P450 enzymes (P450s) (39) families. CONCLUSIONS Our results investigated the diversity of the saikosaponin triterpene biosynthetic pathway in the roots, stems, leaves and flowers of B. chinese by integrated transcriptomic and metabolomic analysis, implying that manipulation of P450s genes such as Bc95697 and Bc35434 might improve saikosaponin biosynthesis. This is a good candidate for the genetic improvement of this important medicinal plant.
Collapse
Affiliation(s)
- Yilian He
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Hua Chen
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Jun Zhao
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Yuxia Yang
- Institute of Medicinal Plant Resources, Sichuan Academy of Traditional Chinese Medicine Sciences, 51 4th Section S. Renmin Road, Chengdu, 610041, Sichuan, China
| | - Bin Yang
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Liang Feng
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Yiguan Zhang
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China
| | - Ping Wei
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China
| | - Dabin Hou
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China.
| | - Ma Yu
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China. .,Laboratory of Medicinal Plant Cultivation, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
34
|
Maia M, Figueiredo A, Cordeiro C, Sousa Silva M. FT-ICR-MS-based metabolomics: A deep dive into plant metabolism. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34545595 DOI: 10.1002/mas.21731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics involves the identification and quantification of metabolites to unravel the chemical footprints behind cellular regulatory processes and to decipher metabolic networks, opening new insights to understand the correlation between genes and metabolites. In plants, it is estimated the existence of hundreds of thousands of metabolites and the majority is still unknown. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a powerful analytical technique to tackle such challenges. The resolving power and sensitivity of this ultrahigh mass accuracy mass analyzer is such that a complex mixture, such as plant extracts, can be analyzed and thousands of metabolite signals can be detected simultaneously and distinguished based on the naturally abundant elemental isotopes. In this review, FT-ICR-MS-based plant metabolomics studies are described, emphasizing FT-ICR-MS increasing applications in plant science through targeted and untargeted approaches, allowing for a better understanding of plant development, responses to biotic and abiotic stresses, and the discovery of new natural nutraceutical compounds. Improved metabolite extraction protocols compatible with FT-ICR-MS, metabolite analysis methods and metabolite identification platforms are also explored as well as new in silico approaches. Most recent advances in MS imaging are also discussed.
Collapse
Affiliation(s)
- Marisa Maia
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Figueiredo
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Cordeiro
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Sousa Silva
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
35
|
Statistical Integration of 'Omics Data Increases Biological Knowledge Extracted from Metabolomics Data: Application to Intestinal Exposure to the Mycotoxin Deoxynivalenol. Metabolites 2021; 11:metabo11060407. [PMID: 34205708 PMCID: PMC8233929 DOI: 10.3390/metabo11060407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
The effects of low doses of toxicants are often subtle and information extracted from metabolomic data alone may not always be sufficient. As end products of enzymatic reactions, metabolites represent the final phenotypic expression of an organism and can also reflect gene expression changes caused by this exposure. Therefore, the integration of metabolomic and transcriptomic data could improve the extracted biological knowledge on these toxicants induced disruptions. In the present study, we applied statistical integration tools to metabolomic and transcriptomic data obtained from jejunal explants of pigs exposed to the food contaminant, deoxynivalenol (DON). Canonical correlation analysis (CCA) and self-organizing map (SOM) were compared for the identification of correlated transcriptomic and metabolomic features, and O2-PLS was used to model the relationship between exposure and selected features. The integration of both 'omics data increased the number of discriminant metabolites discovered (39) by about 10 times compared to the analysis of the metabolomic dataset alone (3). Besides the disturbance of energy metabolism previously reported, assessing correlations between both functional levels revealed several other types of damage linked to the intestinal exposure to DON, including the alteration of protein synthesis, oxidative stress, and inflammasome activation. This confirms the added value of integration to enrich the biological knowledge extracted from metabolomics.
Collapse
|
36
|
Zhang J, Zhao J, Tan Q, Qiu X, Mei S. Comparative transcriptome analysis reveals key genes associated with pigmentation in radish (Raphanus sativus L.) skin and flesh. Sci Rep 2021; 11:11434. [PMID: 34075070 PMCID: PMC8169917 DOI: 10.1038/s41598-021-90633-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Radish (Raphanus sativus) is an important vegetable worldwide that exhibits different flesh and skin colors. The anthocyanins responsible for the red and purple coloring in radishes possess nutritional value and pharmaceutical potential. To explore the structural and regulatory networks related to anthocyanin biosynthesis and identify key genes, we performed comparative transcriptome analyses of the skin and flesh of six colored radish accessions. The transcript profiles showed that each accession had a species-specific transcript profile. For radish pigmentation accumulation, the expression levels of anthocyanin biosynthetic genes (RsTT4, RsC4H, RsTT7, RsCCOAMT, RsDFR, and RsLDOX) were significantly upregulated in the red- and purple-colored accessions, but were downregulated or absent in the white and black accessions. The correlation test, combined with metabolome (PCC > 0.95), revealed five structural genes (RsTT4, RsDFR, RsCCOAMT, RsF3H, and RsBG8L) and three transcription factors (RsTT8-1, RsTT8-2, and RsPAR1) to be significantly correlated with flavonoids in the skin of the taproot. Four structural genes (RsBG8L, RsDFR, RsCCOAMT, and RsLDOX) and nine transcription factors (RsTT8-1, RsTT8-2, RsMYB24L, RsbHLH57, RsPAR2L, RsbHLH113L, RsOGR3L, RsMYB24, and RsMYB34L) were found to be significantly correlated with metabolites in the flesh of the taproot. This study provides a foundation for future studies on the gene functions and genetic diversity of radish pigmentation and should aid in the cultivation of new valuable radish varieties.
Collapse
Affiliation(s)
- Jifang Zhang
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Jian Zhao
- grid.410753.4Novogene Bioinformatics Institute, Beijing, China
| | - Qunyun Tan
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Xiaojun Qiu
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Shiyong Mei
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| |
Collapse
|
37
|
Thomas S, Kumar R, Sharma K, Barpanda A, Sreelakshmi Y, Sharma R, Srivastava S. iTRAQ-based proteome profiling revealed the role of Phytochrome A in regulating primary metabolism in tomato seedling. Sci Rep 2021; 11:7540. [PMID: 33824368 PMCID: PMC8024257 DOI: 10.1038/s41598-021-87208-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
In plants, during growth and development, photoreceptors monitor fluctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR-light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de-etiolate in continuous FR. Here we used iTRAQ-based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR-mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identified a decreased abundance of enzymes involved in photosynthesis and carbon fixation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profile associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant.
Collapse
Affiliation(s)
- Sherinmol Thomas
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India
| | - Rakesh Kumar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
- Deptartment of Life Science, Central University of Karnataka, Kadaganchi, Kalaburagi, Karnataka, 585367, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Abhilash Barpanda
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sanjeeva Srivastava
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
38
|
Perkowska I, Siwinska J, Olry A, Grosjean J, Hehn A, Bourgaud F, Lojkowska E, Ihnatowicz A. Identification and Quantification of Coumarins by UHPLC-MS in Arabidopsis thaliana Natural Populations. Molecules 2021; 26:1804. [PMID: 33806877 PMCID: PMC8005220 DOI: 10.3390/molecules26061804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Coumarins are phytochemicals occurring in the plant kingdom, which biosynthesis is induced under various stress factors. They belong to the wide class of specialized metabolites well known for their beneficial properties. Due to their high and wide biological activities, coumarins are important not only for the survival of plants in changing environmental conditions, but are of great importance in the pharmaceutical industry and are an active source for drug development. The identification of coumarins from natural sources has been reported for different plant species including a model plant Arabidopsis thaliana. In our previous work, we demonstrated a presence of naturally occurring intraspecies variation in the concentrations of scopoletin and its glycoside, scopolin, the major coumarins accumulating in Arabidopsis roots. Here, we expanded this work by examining a larger group of 28 Arabidopsis natural populations (called accessions) and by extracting and analysing coumarins from two different types of tissues-roots and leaves. In the current work, by quantifying the coumarin content in plant extracts with ultra-high-performance liquid chromatography coupled with a mass spectrometry analysis (UHPLC-MS), we detected a significant natural variation in the content of simple coumarins like scopoletin, umbelliferone and esculetin together with their glycosides: scopolin, skimmin and esculin, respectively. Increasing our knowledge of coumarin accumulation in Arabidopsis natural populations, might be beneficial for the future discovery of physiological mechanisms of action of various alleles involved in their biosynthesis. A better understanding of biosynthetic pathways of biologically active compounds is the prerequisite step in undertaking a metabolic engineering research.
Collapse
Affiliation(s)
- Izabela Perkowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (J.S.); (E.L.)
| | - Joanna Siwinska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (J.S.); (E.L.)
| | - Alexandre Olry
- Université de Lorraine-INRAE, LAE, 54000 Nancy, France; (A.O.); (J.G.); (A.H.)
| | - Jérémy Grosjean
- Université de Lorraine-INRAE, LAE, 54000 Nancy, France; (A.O.); (J.G.); (A.H.)
| | - Alain Hehn
- Université de Lorraine-INRAE, LAE, 54000 Nancy, France; (A.O.); (J.G.); (A.H.)
| | | | - Ewa Lojkowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (J.S.); (E.L.)
| | - Anna Ihnatowicz
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (J.S.); (E.L.)
| |
Collapse
|
39
|
Wan T, Feng Y, Liang C, Pan L, He L, Cai Y. Metabolomics and Transcriptomics Analyses of Two Contrasting Cherry Rootstocks in Response to Drought Stress. BIOLOGY 2021; 10:201. [PMID: 33800812 PMCID: PMC8001747 DOI: 10.3390/biology10030201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
Drought is one of the main factors affecting sweet cherry yields, and cherry rootstocks can provide a range of tree vigor levels to better match sweet cherries with the characteristics of the soil. To investigate the molecular events of the cherry to water deficiency, we performed transcriptomic and metabolomic analyses of Prunus mahaleb CDR-1 (drought-tolerant cherry rootstock (DT)) and P. cerasus × P. canescens Gisela 5 (drought-susceptible cherry rootstock (DS)), respectively. The results revealed 253 common drought-responsive genes in leaves and roots in DT and 17 in DS; 59 upregulated metabolites were explored in leaves in DT and 19 were explored in DS. Differentially expressed metabolites related to the cyanoamino acid metabolism pathway and phenylpropanoid biosynthesis pathway may be key factors in the difference in drought resistance in the two rootstocks. Moreover, six central metabolites-3-cyanoalanine, phenylalanine, quinic acid, asparagine, p-benzoquinone, and phytosphingosine-were identified as potential biological markers of drought response in cherries and may be key factors in the difference in drought resistance, along with caffeic acid and chlorogenic acid. We also selected 17 differentially expressed genes as core candidate genes and the mechanism of DT in response to drought is summarized.
Collapse
Affiliation(s)
- Tian Wan
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| | - Ying Feng
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| | - Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China;
| | - Liuyi Pan
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| | - Ling He
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| | - Yuliang Cai
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| |
Collapse
|
40
|
van Tilborg D, Saccenti E. Cancers in Agreement? Exploring the Cross-Talk of Cancer Metabolomic and Transcriptomic Landscapes Using Publicly Available Data. Cancers (Basel) 2021; 13:393. [PMID: 33494351 PMCID: PMC7865504 DOI: 10.3390/cancers13030393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
One of the major hallmarks of cancer is the derailment of a cell's metabolism. The multifaceted nature of cancer and different cancer types is transduced by both its transcriptomic and metabolomic landscapes. In this study, we re-purposed the publicly available transcriptomic and metabolomics data of eight cancer types (breast, lung, gastric, renal, liver, colorectal, prostate, and multiple myeloma) to find and investigate differences and commonalities on a pathway level among different cancer types. Topological analysis of inferred graphical Gaussian association networks showed that cancer was strongly defined in genetic networks, but not in metabolic networks. Using different statistical approaches to find significant differences between cancer and control cases, we highlighted the difficulties of high-level data-merging and in using statistical association networks. Cancer transcriptomics and metabolomics and landscapes were characterized by changed macro-molecule production, however, only major metabolic deregulations with highly impacted pathways were found in liver cancer. Cell cycle was enriched in breast, liver, and colorectal cancer, while breast and lung cancer were distinguished by highly enriched oncogene signaling pathways. A strong inflammatory response was observed in lung cancer and, to some extent, renal cancer. This study highlights the necessity of combining different omics levels to obtain a better description of cancer characteristics.
Collapse
Affiliation(s)
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng, 6708 WE Wageningen, The Netherlands;
| |
Collapse
|
41
|
Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, Li J, Sirohi MH, Wang F. Applications of Multi-Omics Technologies for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:563953. [PMID: 34539683 PMCID: PMC8446515 DOI: 10.3389/fpls.2021.563953] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2021] [Indexed: 05/19/2023]
Abstract
Multiple "omics" approaches have emerged as successful technologies for plant systems over the last few decades. Advances in next-generation sequencing (NGS) have paved a way for a new generation of different omics, such as genomics, transcriptomics, and proteomics. However, metabolomics, ionomics, and phenomics have also been well-documented in crop science. Multi-omics approaches with high throughput techniques have played an important role in elucidating growth, senescence, yield, and the responses to biotic and abiotic stress in numerous crops. These omics approaches have been implemented in some important crops including wheat (Triticum aestivum L.), soybean (Glycine max), tomato (Solanum lycopersicum), barley (Hordeum vulgare L.), maize (Zea mays L.), millet (Setaria italica L.), cotton (Gossypium hirsutum L.), Medicago truncatula, and rice (Oryza sativa L.). The integration of functional genomics with other omics highlights the relationships between crop genomes and phenotypes under specific physiological and environmental conditions. The purpose of this review is to dissect the role and integration of multi-omics technologies for crop breeding science. We highlight the applications of various omics approaches, such as genomics, transcriptomics, proteomics, metabolomics, phenomics, and ionomics, and the implementation of robust methods to improve crop genetics and breeding science. Potential challenges that confront the integration of multi-omics with regard to the functional analysis of genes and their networks as well as the development of potential traits for crop improvement are discussed. The panomics platform allows for the integration of complex omics to construct models that can be used to predict complex traits. Systems biology integration with multi-omics datasets can enhance our understanding of molecular regulator networks for crop improvement. In this context, we suggest the integration of entire omics by employing the "phenotype to genotype" and "genotype to phenotype" concept. Hence, top-down (phenotype to genotype) and bottom-up (genotype to phenotype) model through integration of multi-omics with systems biology may be beneficial for crop breeding improvement under conditions of environmental stresses.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- *Correspondence: Yaodong Yang
| | - Mumtaz Ali Saand
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Department of Botany, Shah Abdul Latif University, Khairpur, Pakistan
| | - Liyun Huang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Walid Badawy Abdelaal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jun Zhang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Fuyou Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
42
|
Raza A, Su W, Hussain MA, Mehmood SS, Zhang X, Cheng Y, Zou X, Lv Y. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2021; 12:721681. [PMID: 34691103 PMCID: PMC8532563 DOI: 10.3389/fpls.2021.721681] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 05/18/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oilseed crop in the world. Its productivity is significantly influenced by numerous abiotic stresses, including cold stress (CS). Consequently, enhancement in CS tolerance is becoming an important area for agricultural investigation and crop improvement. Therefore, the current study aimed to identify the stress-responsive genes, metabolites, and metabolic pathways based on a combined transcriptome and metabolome analysis to understand the CS responses and tolerance mechanisms in the cold-tolerant (C18) and cold-sensitive (C6) rapeseed varieties. Based on the metabolome analysis, 31 differentially accumulated metabolites (DAMs) were identified between different comparisons of both varieties at the same time points. From the transcriptome analysis, 2,845, 3,358, and 2,819 differentially expressed genes (DEGs) were detected from the comparison of C6-0 vs. C18-0, C6-1 vs. C18-1, and C6-7 vs. C18-7. By combining the transcriptome and metabolome data sets, we found that numerous DAMs were strongly correlated with several differentially expressed genes (DEGs). A functional enrichment analysis of the DAMs and the correlated DEGs specified that most DEGs and DAMs were mainly enriched in diverse carbohydrates and amino acid metabolisms. Among them, starch and sucrose metabolism and phenylalanine metabolism were significantly enriched and played a vital role in the CS adaption of rapeseed. Six candidate genes were selected from the two pathways for controlling the adaption to low temperature. In a further validation, the T-DNA insertion mutants of their Arabidopsis homologous, including 4cl3, cel5, fruct4, ugp1, axs1, and bam2/9, were characterized and six lines differed significantly in levels of freezing tolerance. The outcome of the current study provided new prospects for the understanding of the molecular basis of CS responses and tolerance mechanisms in rapeseed and present a set of candidate genes for use in improving CS adaptability in the same plant.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Wei Su
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xuekun Zhang
- College of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
- *Correspondence: Yan Lv
| |
Collapse
|
43
|
Tiong J, Sharma N, Sampath R, MacKenzie N, Watanabe S, Metot C, Lu Z, Skinner W, Lu Y, Kridl J, Baumann U, Heuer S, Kaiser B, Okamoto M. Improving Nitrogen Use Efficiency Through Overexpression of Alanine Aminotransferase in Rice, Wheat, and Barley. FRONTIERS IN PLANT SCIENCE 2021; 12:628521. [PMID: 33584777 PMCID: PMC7875890 DOI: 10.3389/fpls.2021.628521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 05/20/2023]
Abstract
Nitrogen is an essential nutrient for plants, but crop plants are inefficient in the acquisition and utilization of applied nitrogen. This often results in producers over applying nitrogen fertilizers, which can negatively impact the environment. The development of crop plants with more efficient nitrogen usage is, therefore, an important research goal in achieving greater agricultural sustainability. We utilized genetically modified rice lines over-expressing a barley alanine aminotransferase (HvAlaAT) to help characterize pathways which lead to more efficient use of nitrogen. Under the control of a stress-inducible promoter OsAnt1, OsAnt1:HvAlaAT lines have increased above-ground biomass with little change to both nitrate and ammonium uptake rates. Based on metabolic profiles, carbon metabolites, particularly those involved in glycolysis and the tricarboxylic acid (TCA) cycle, were significantly altered in roots of OsAnt1:HvAlaAT lines, suggesting higher metabolic turnover. Moreover, transcriptomic data revealed that genes involved in glycolysis and TCA cycle were upregulated. These observations suggest that higher activity of these two processes could result in higher energy production, driving higher nitrogen assimilation, consequently increasing biomass production. Other potential mechanisms contributing to a nitrogen-use efficient phenotype include involvements of phytohormonal responses and an alteration in secondary metabolism. We also conducted basic growth studies to evaluate the effect of the OsAnt1:HvAlaAT transgene in barley and wheat, which the transgenic crop plants increased seed production under controlled environmental conditions. This study provides comprehensive profiling of genetic and metabolic responses to the over-expression of AlaAT and unravels several components and pathways which contribute to its nitrogen-use efficient phenotype.
Collapse
Affiliation(s)
- Jingwen Tiong
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Niharika Sharma
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Ramya Sampath
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Nenah MacKenzie
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Sayuri Watanabe
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Claire Metot
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Zhongjin Lu
- Arcadia Biosciences, Davis, CA, United States
| | | | - Yingzhi Lu
- Arcadia Biosciences, Davis, CA, United States
| | - Jean Kridl
- Arcadia Biosciences, Davis, CA, United States
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Sigrid Heuer
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- Rothamsted Research, Harpenden, United Kingdom
| | - Brent Kaiser
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- Centre for Carbon, Water and Food, University of Sydney, Brownlow Hill, NSW, Australia
| | - Mamoru Okamoto
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- *Correspondence: Mamoru Okamoto,
| |
Collapse
|
44
|
Maurya J, Bandyopadhyay T, Prasad M. Transcriptional regulators of nitrate metabolism: Key players in improving nitrogen use in crops. J Biotechnol 2020; 324:121-133. [PMID: 33031844 DOI: 10.1016/j.jbiotec.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/19/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
Abstract
Green revolution has boosted crop yields by the development of varieties which rely on high fertilizer application. Since then, higher productivity has largely witnessed excessive nitrogen (N) fertilizer application resulting in many environmentally and agronomically unsustainable consequences. One possible solution to this problem is to develop varieties with efficient N use endowed with genetically superior N metabolizing machinery, thereby significantly reducing N loss in soil and facilitating gainful yield performance at lower N conditions. Nitrate (NO3-) is the major form of N acquired by plants in aerobic soils. Hence, its efficient acquisition, transport, assimilation into complex organic compounds, and overall homeostasis is crucial to ensure productivity under optimal and suboptimal N conditions. Transcription factors are prime regulators of these processes, and insights into their mechanism of action and the resultant effect on N metabolism are crucial to generating crops with efficient and durable nitrogen use efficiency. The present review, therefore, presents a comprehensive updated account of major N responsive transcription factor families, their cross-talk with other growth factors, and explores existing and potential areas of their biotechnological application to maximize crop yields.
Collapse
Affiliation(s)
- Jyoti Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
45
|
Gutsch A, Hendrix S, Guerriero G, Renaut J, Lutts S, Alseekh S, Fernie AR, Hausman JF, Vangronsveld J, Cuypers A, Sergeant K. Long-Term Cd Exposure Alters the Metabolite Profile in Stem Tissue of Medicago sativa. Cells 2020; 9:E2707. [PMID: 33348837 PMCID: PMC7765984 DOI: 10.3390/cells9122707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
As a common pollutant, cadmium (Cd) is one of the most toxic heavy metals accumulating in agricultural soils through anthropogenic activities. The uptake of Cd by plants is the main entry route into the human food chain, whilst in plants it elicits oxidative stress by unbalancing the cellular redox status. Medicago sativa was subjected to chronic Cd stress for five months. Targeted and untargeted metabolic analyses were performed. Long-term Cd exposure altered the amino acid composition with levels of asparagine, histidine and proline decreasing in stems but increasing in leaves. This suggests tissue-specific metabolic stress responses, which are often not considered in environmental studies focused on leaves. In stem tissue, profiles of secondary metabolites were clearly separated between control and Cd-exposed plants. Fifty-one secondary metabolites were identified that changed significantly upon Cd exposure, of which the majority are (iso)flavonoid conjugates. Cadmium exposure stimulated the phenylpropanoid pathway that led to the accumulation of secondary metabolites in stems rather than cell wall lignification. Those metabolites are antioxidants mitigating oxidative stress and preventing cellular damage. By an adequate adjustment of its metabolic composition, M. sativa reaches a new steady state, which enables the plant to acclimate under chronic Cd stress.
Collapse
Affiliation(s)
- Annelie Gutsch
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (S.H.); (J.V.); (A.C.)
| | - Sophie Hendrix
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (S.H.); (J.V.); (A.C.)
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Gea Guerriero
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
| | - Jenny Renaut
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute—Agronomy, Université Catholique de Louvain, 5, Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium;
| | - Saleh Alseekh
- Max-Planck-Institute of Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (S.A.); (A.R.F.)
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Max-Planck-Institute of Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (S.A.); (A.R.F.)
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jean-Francois Hausman
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (S.H.); (J.V.); (A.C.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (S.H.); (J.V.); (A.C.)
| | - Kjell Sergeant
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
| |
Collapse
|
46
|
Aarabi F, Naake T, Fernie AR, Hoefgen R. Coordinating Sulfur Pools under Sulfate Deprivation. TRENDS IN PLANT SCIENCE 2020; 25:1227-1239. [PMID: 32800669 DOI: 10.1016/j.tplants.2020.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 05/22/2023]
Abstract
Plants display manifold metabolic changes on sulfate deficiency (S deficiency) with all sulfur-containing pools of primary and secondary metabolism affected. O-Acetylserine (OAS), whose levels are rapidly altered on S deficiency, is correlated tightly with novel regulators of plant sulfur metabolism that have key roles in balancing plant sulfur pools, including the Sulfur Deficiency Induced genes (SDI1 and SDI2), More Sulfur Accumulation1 (MSA1), and GGCT2;1. Despite the importance of OAS in the coordination of S pools under stress, mechanisms of OAS perception and signaling have remained elusive. Here, we put particular focus on the general OAS-responsive genes but also elaborate on the specific roles of SDI1 and SDI2 genes, which downregulate the glucosinolate (GSL) pool size. We also highlight the key open questions in sulfur partitioning.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thomas Naake
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
47
|
Luo J, Havé M, Clément G, Tellier F, Balliau T, Launay-Avon A, Guérard F, Zivy M, Masclaux-Daubresse C. Integrating multiple omics to identify common and specific molecular changes occurring in Arabidopsis under chronic nitrate and sulfate limitations. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6471-6490. [PMID: 32687580 DOI: 10.1093/jxb/eraa337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.
Collapse
Affiliation(s)
- Jie Luo
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Marien Havé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Florence Guérard
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
48
|
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. FRONTIERS IN PLANT SCIENCE 2020; 11:556972. [PMID: 33013974 DOI: 10.3389/fpls.2020.556972/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 05/27/2023]
Abstract
The drought stress responses of vascular plants are complex regulatory mechanisms because they include various physiological responses from signal perception under water deficit conditions to the acquisition of drought stress resistance at the whole-plant level. It is thought that plants first recognize water deficit conditions in roots and that several molecular signals then move from roots to shoots. Finally, a phytohormone, abscisic acid (ABA) is synthesized mainly in leaves. However, the detailed molecular mechanisms of stress sensors and the regulators that initiate ABA biosynthesis in response to drought stress conditions are still unclear. Another important issue is how plants adjust ABA propagation, stress-mediated gene expression and metabolite composition to acquire drought stress resistance in different tissues throughout the whole plant. In this review, we summarize recent advances in research on drought stress responses, focusing on long-distance signaling from roots to shoots, ABA synthesis and transport, and metabolic regulation in both cellular and whole-plant levels of Arabidopsis and crops. We also discuss coordinated mechanisms for acquiring drought stress adaptations and resistance via tissue-to-tissue communication and long-distance signaling.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kaoru Urano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
49
|
Zhang JY, Cun Z, Wu HM, Chen JW. Integrated analysis on biochemical profiling and transcriptome revealed nitrogen-driven difference in accumulation of saponins in a medicinal plant Panax notoginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:564-580. [PMID: 32912490 DOI: 10.1016/j.plaphy.2020.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The medicinal plant Panax notoginseng is considered a promising source of secondary metabolites due to its saponins. However, there are relatively few studies on the response of saponins to nitrogen (N) availability and the mechanisms underlying the N-driven regulation of saponins. Saponins content and saponins -related genes were analyzed in roots of P. notoginseng grown under low N (LN), moderate N (MN) and high N (HN). Saponins was obviously increased in LN individuals with a reduction in β-glucosidase activity. LN facilitated root architecture and N uptake rate. Compared with the LN individuals, 2872 and 1122 genes were incorporated into as differently expressed genes (DEGs) in the MN and HN individuals. Clustering and enrichment showed that DEGs related to "carbohydrate biosynthesis", "plant hormone signal transduction", "terpenoid backbone biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis" were enriched. The up-regulation of some saponins-related genes and microelement transporters was found in LN plants. Whereas the expression of IPT3, AHK4 and GS2 in LN plants fell far short of that in HN ones. Anyways, LN-induced accumulation of C-based metabolites as saponins might derive from the interaction between N and phytohormones in processing of N acquisition, and HN-induced reduction of saponins might be result from an increase in the form of β-glucosidase activity and N-dependent cytokinins (CKs) biosynthesis.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China
| | - Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
50
|
The Morphoregulatory Role of Thidiazuron: Metabolomics-Guided Hypothesis Generation for Mechanisms of Activity. Biomolecules 2020; 10:biom10091253. [PMID: 32872300 PMCID: PMC7564436 DOI: 10.3390/biom10091253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022] Open
Abstract
Thidiazuron (TDZ) is a diphenylurea synthetic herbicide and plant growth regulator used to defoliate cotton crops and to induce regeneration of recalcitrant species in plant tissue culture. In vitro cultures of African violet thin petiole sections are an ideal model system for studies of TDZ-induced morphogenesis. TDZ induces de novo shoot organogenesis at low concentrations and somatic embryogenesis at higher concentrations of exposure. We used an untargeted metabolomics approach to identify metabolites in control and TDZ-treated tissues. Statistical analysis including metabolite clustering, pattern and pathway tools, logical algorithms, synthetic biotransformations and hormonomics identified TDZ-induced changes in metabolism. A total of 18,602 putative metabolites with extracted masses and predicted formulae were identified with 1412 features that were found only in TDZ-treated tissues and 312 that increased in response to TDZ. The monomer of TDZ was not detected intact in the tissues but putative oligomers were found in the database and we hypothesize that these may form by a Diels–Alder reaction. Accumulation oligomers in the tissue may act as a reservoir, slowly releasing the active TDZ monomer over time. Cleavage of the amide bridge released TDZ-metabolites into the tissues including organic nitrogen and sulfur containing compounds. Metabolomics data analysis generated six novel hypotheses that can be summarized as an overall increase in uptake of sugars from the culture media, increase in primary metabolism, redirection of terpene metabolism and mediation of stress metabolism via indoleamine and phenylpropanoid metabolism. Further research into the specific mechanisms hypothesized is likely to unravel the mode of action of TDZ and to provide new insights into the control of plant morphogenesis.
Collapse
|