1
|
Tafech A, Stéphanou A. On the Importance of Acidity in Cancer Cells and Therapy. BIOLOGY 2024; 13:225. [PMID: 38666837 PMCID: PMC11048434 DOI: 10.3390/biology13040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Cancer cells are associated with high glycolytic activity, which results in acidification of the tumor microenvironment. The occurrence of this stressful condition fosters tumor aggressiveness, with the outcome of invasiveness and metastasis that are linked to a poor clinical prognosis. Acidosis can be both the cause or consequence of alterations in the functions and expressions of transporters involved in intracellular acidity regulation. This review aims to explore the origin of acidity in cancer cells and the various mechanisms existing in tumors to resist, survive, or thrive in the acidic environment. It highlights the difficulties in measuring the intracellular pH evolution that impedes our understanding of the many regulatory and feedback mechanisms. It finally presents the consequences of acidity on tumor development as well as the friend or foe role of acidity in therapy.
Collapse
Affiliation(s)
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
2
|
Abstract
All cells must control the activities of their ion channels and transporters to maintain physiologically appropriate gradients of solutes and ions. The complexity of underlying regulatory mechanisms is staggering, as exemplified by insulin regulation of transporter trafficking. Simpler strategies occur in single-cell organisms, where subsets of transporters act as solute sensors to regulate expression of their active homologues. This Viewpoint highlights still simpler mechanisms by which Na transporters use their own transport sites as sensors for regulation. The underlying principle is inherent to Na/K pumps in which aspartate phosphorylation and dephosphorylation are controlled by occupation of transport sites for Na and K, respectively. By this same principle, Na binding to transport sites can control intrinsic inactivation reactions that are in turn modified by extrinsic signaling factors. Cardiac Na/Ca exchangers (NCX1s) and Na/K pumps are the best examples. Inactivation of NCX1 occurs when cytoplasmic Na sites are fully occupied and is regulated by lipid signaling. Inactivation of cardiac Na/K pumps occurs when cytoplasmic Na-binding sites are not fully occupied, and inactivation is in turn regulated by Ca signaling. Potentially, Na/H exchangers (NHEs) and epithelial Na channels (ENaCs) are regulated similarly. Extracellular protons and cytoplasmic Na ions oppose secondary activation of NHEs by cytoplasmic protons. ENaCs undergo inactivation as cytoplasmic Na rises, and small diffusible molecules of an unidentified nature are likely involved. Multiple other ion channels have recently been shown to be regulated by transiting ions, thereby underscoring that ion permeation and channel gating need not be independent processes.
Collapse
|
3
|
Winklemann I, Matsuoka R, Meier PF, Shutin D, Zhang C, Orellana L, Sexton R, Landreh M, Robinson CV, Beckstein O, Drew D. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO J 2020; 39:e105908. [PMID: 33118634 PMCID: PMC7737618 DOI: 10.15252/embj.2020105908] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Na+ /H+ exchangers (NHEs) are ancient membrane-bound nanomachines that work to regulate intracellular pH, sodium levels and cell volume. NHE activities contribute to the control of the cell cycle, cell proliferation, cell migration and vesicle trafficking. NHE dysfunction has been linked to many diseases, and they are targets of pharmaceutical drugs. Despite their fundamental importance to cell homeostasis and human physiology, structural information for the mammalian NHE was lacking. Here, we report the cryogenic electron microscopy structure of NHE isoform 9 (SLC9A9) from Equus caballus at 3.2 Å resolution, an endosomal isoform highly expressed in the brain and associated with autism spectrum (ASD) and attention deficit hyperactivity (ADHD) disorders. Despite low sequence identity, the NHE9 architecture and ion-binding site are remarkably similar to distantly related bacterial Na+ /H+ antiporters with 13 transmembrane segments. Collectively, we reveal the conserved architecture of the NHE ion-binding site, their elevator-like structural transitions, the functional implications of autism disease mutations and the role of phosphoinositide lipids to promote homodimerization that, together, have important physiological ramifications.
Collapse
Affiliation(s)
- Iven Winklemann
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Rei Matsuoka
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Pascal F Meier
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Denis Shutin
- Department of ChemistryUniversity of OxfordOxfordUK
| | - Chenou Zhang
- Department of PhysicsCenter for Biological PhysicsArizona State UniversityTempeAZUSA
| | - Laura Orellana
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Ricky Sexton
- Department of PhysicsCenter for Biological PhysicsArizona State UniversityTempeAZUSA
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstituteStockholmSweden
| | | | - Oliver Beckstein
- Department of PhysicsCenter for Biological PhysicsArizona State UniversityTempeAZUSA
| | - David Drew
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| |
Collapse
|
4
|
|
5
|
Fry NAS, Liu CC, Garcia A, Hamilton EJ, Karimi Galougahi K, Kim YJ, Whalley DW, Bundgaard H, Rasmussen HH. Targeting Cardiac Myocyte Na +-K + Pump Function With β3 Adrenergic Agonist in Rabbit Model of Severe Congestive Heart Failure. Circ Heart Fail 2020; 13:e006753. [PMID: 32842758 DOI: 10.1161/circheartfailure.119.006753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormally high cytosolic Na+ concentrations in advanced heart failure impair myocardial contractility. Stimulation of the membrane Na+-K+ pump should lower Na+ concentrations, and the β3 adrenoceptor (β3 AR) mediates pump stimulation in myocytes. We examined if β3 AR-selective agonists given in vivo increase myocyte Na+-K+ pump activity and reverse organ congestion in severe heart failure (HF). METHODS Indices for HF were lung-, heart-, and liver: body weight ratios and ascites after circumflex coronary artery ligation in rabbits. Na+-K+ pump current, Ip, was measured in voltage-clamped myocytes from noninfarct myocardium. Rabbits were treated with the β3 AR agonists CL316,243 or ASP9531, starting 2 weeks after coronary ligation. RESULTS Coronary ligation caused ascites in most rabbits, significantly increased lung-, heart-, and liver: body weight ratios, and decreased Ip relative to that for 10 sham-operated rabbits. Treatment with CL316,243 for 3 days significantly reduced lung-, heart-, and liver: body weight ratios and prevalence of ascites in 8 rabbits with HF relative to indices for 13 untreated rabbits with HF. It also increased Ip significantly to levels of myocytes from sham-operated rabbits. Treatment with ASP9531 for 14 days significantly reduced indices of organ congestion in 6 rabbits with HF relative to indices of 6 untreated rabbits, and it eliminated ascites. β3 AR agonists did not significantly change heart rates or blood pressures. CONCLUSIONS Parallel β3 AR agonists-induced reversal of Na+-K+ pump inhibition and indices of congestion suggest pump inhibition is a useful target for treatment with β3 AR agonists in congestive HF.
Collapse
Affiliation(s)
- Natasha A S Fry
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.)
| | - Chia-Chi Liu
- University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.)
| | | | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.)
| | | | - Yeon Jae Kim
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.).,University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.)
| | - David W Whalley
- University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.).,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (D.W.W., H.H.R.)
| | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark (H.B.)
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.).,University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.).,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (D.W.W., H.H.R.)
| |
Collapse
|
6
|
Acidic residues of extracellular loop 3 of the Na +/H + exchanger type 1 are important in cation transport. Mol Cell Biochem 2020; 468:13-20. [PMID: 32130622 DOI: 10.1007/s11010-020-03707-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Mammalian Na+/H+ exchanger type I isoform (NHE1) is a ubiquitously expressed membrane protein that regulates intracellular pH (pHi) by removing one intracellular proton in exchange for one extracellular sodium ion. Abnormal activity of the protein occurs in cardiovascular disease and breast cancer. The purpose of this study is to examine the role of negatively charged amino acids of extracellular loop 3 (EL3) in the activity of the NHE protein. We mutated glutamic acid 217 and aspartic acid 226 to alanine, and to glutamine and asparagine, respectively. We examined effects on expression levels, cell surface targeting and activity of NHE1, and also characterized affinity for extracellular sodium and lithium ions. Individual mutation of these amino acids had little effect on protein function. However, mutation of both these amino acids together impaired transport, decreasing the Vmax for both Na+ and Li+ ions. We suggested that amino acids E217 and D226 form part of a negatively charged coordination sphere, which facilitates cation transport in the NHE1 protein.
Collapse
|
7
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
8
|
Messerli MA, Sarkar A. Advances in Electrochemistry for Monitoring Cellular Chemical Flux. Curr Med Chem 2019; 26:4984-5002. [PMID: 31057100 DOI: 10.2174/0929867326666190506111629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 11/22/2022]
Abstract
The transport of organic and inorganic molecules, along with inorganic ions across the plasma membrane results in chemical fluxes that reflect the cellular function in healthy and diseased states. Measurement of these chemical fluxes enables the characterization of protein function and transporter stoichiometry, characterization of a single cell and embryo viability prior to implantation, and screening of pharmaceutical agents. Electrochemical sensors emerge as sensitive and non-invasive tools for measuring chemical fluxes immediately outside the cells in the boundary layer, that are capable of monitoring a diverse range of transported analytes including inorganic ions, gases, neurotransmitters, hormones, and pharmaceutical agents. Used on their own or in combination with other methods, these sensors continue to expand our understanding of the function of rare cells and small tissues. Advances in sensor construction and detection strategies continue to improve sensitivity under physiological conditions, diversify analyte detection, and increase throughput. These advances will be discussed in the context of addressing technical challenges to measuring chemical flux in the boundary layer of cells and measuring the resultant changes to the chemical concentration in the bulk media.
Collapse
Affiliation(s)
- Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD. United States
| | - Anyesha Sarkar
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD. United States
| |
Collapse
|
9
|
Morris CE. Cytotoxic Swelling of Sick Excitable Cells - Impaired Ion Homeostasis and Membrane Tension Homeostasis in Muscle and Neuron. CURRENT TOPICS IN MEMBRANES 2018; 81:457-496. [PMID: 30243439 DOI: 10.1016/bs.ctm.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
When they become simultaneously leaky to both Na+ and Cl-, excitable cells are vulnerable to potentially lethal cytotoxic swelling. Swelling ensues in spite of an isosmotic milieu because the entering ions add osmolytes to the cytoplasm's high concentration of impermeant anionic osmolytes. An influx of osmotically-obliged water is unavoidable. A cell that cannot stanch at least one the leaks will succumb to death by Donnan effect. "Sick excitable cells" are those injured through ischemia, trauma, inflammation, hyperactivity, genetically-impaired membrane skeletons and other insults, all of which foster bleb-damage to regions of the plasma membrane. Nav channels resident in damaged membrane exhibit left-shifted kinetics; the corresponding Nav window conductance constitutes a Na+-leak. In cortical neurons, sustained depolarization to ∼-20mV elicits a sustained lethal gCl. Underlying Vrest in skeletal muscle is a constitutively active gCl; not surprisingly therefore, dystrophic muscle fibers, which are prone to bleb damage and which exhibit Nav-leak and Na+-overload, are prone to cytotoxic swelling. To restore viability in cytotoxically swelling neurons and muscle, the imperative of fully functional ion homeostasis is well-recognized. However, as emphasized here, in a healthy excitable cell, fully functional membrane tension homeostasis is also imperative. ATPase-pumps keep plasma membrane batteries charged, and ATPase-motor proteins maintain membrane tone. In sick excitable cells, neither condition prevails.
Collapse
Affiliation(s)
- Catherine E Morris
- Senior Scientist Emeritus, Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
10
|
Babich V, Henry MK, Di Sole F. Application of Electrophysiology Measurement to Study the Activity of Electro-Neutral Transporters. J Vis Exp 2018. [PMID: 29443070 DOI: 10.3791/56630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The transport of ions through cell membranes ensures the fine control of ion content within and outside the cell that is indispensable for cell survival. These transport mechanisms are mediated by the activities of specialized transporter proteins. Specifically,pH dynamics are finely controlled by plasma membrane proton (H+) extrusion systems, such as the Na+/H+ exchanger (NHE) protein family. Despite extensive efforts to study the mechanisms underlying NHE regulation, our current understanding of the biophysical and molecular properties of the NHE family is inadequate because of the limited availability of methods to effectively measure NHE activity. In this manuscript, we used H+-selective electrodes during whole-cell patch clamping recording to measure NHE-induced H+ flux. We proposed this approach to overcome some limitations of typically used methods to measure NHE activity, such as radioactive uptake and fluorescent membrane permeants. Measurement of NHE activity using the described method enables high sensitivity and time resolution and more efficient control of intracellular H+ concentrations. H+-selective electrodes are based on the fact that transporter activity creates an ion gradient in close proximity to the cell membrane. An H+-selective electrode moving up to and away from the cell membrane in a repetitive, oscillatory fashion records a voltage difference that is dependent on H+ flux. While H+-selective electrodes are used to detect H+ flux moving out of the cell, the patch clamp method in the whole-cell configuration is used to control the intracellular ion composition. Moreover, application of the giant patch clamp technique allows modification of the intracellular composition of not only ions but also lipids. The transporter activity of NHE isoform 3 (NHE3) was measured using this technical approach to study the molecular basis of NHE3 regulation by phosphoinositides.
Collapse
Affiliation(s)
- Victor Babich
- Physiology and Pharmacology Department, Des Moines University; School of Liberal Arts and Sciences, Mercy College of Health Sciences
| | - Matthew K Henry
- Physiology and Pharmacology Department, Des Moines University
| | | |
Collapse
|
11
|
Zhang L, Bellve K, Fogarty K, Kobertz WR. Fluorescent Visualization of Cellular Proton Fluxes. Cell Chem Biol 2016; 23:1449-1457. [PMID: 27916567 DOI: 10.1016/j.chembiol.2016.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/22/2016] [Accepted: 10/27/2016] [Indexed: 01/20/2023]
Abstract
Cells use plasma membrane proton fluxes to maintain cytoplasmic and extracellular pH and to mediate the co-transport of metabolites and ions. Because proton-coupled transport often involves movement of multiple substrates, traditional electrical measurements provide limited information about proton transport at the cell surface. Here we visualize voltage-dependent proton fluxes over the entire landscape of a cell by covalently attaching small-molecule fluorescent pH sensors to the cell's glycocalyx. We found that the extracellularly facing sensors enable real-time detection of proton accumulation and depletion at the plasma membrane, providing an indirect readout of channel and transporter activity that correlated with whole-cell proton current. Moreover, the proton wavefront emanating from one cell was readily visible as it crossed over nearby cells. Given that any small-molecule fluorescent sensor can be covalently attached to a cell's glycocalyx, our approach is readily adaptable to visualize most electrogenic and non-electrogenic transport events at the plasma membrane.
Collapse
Affiliation(s)
- Lejie Zhang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA; Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | - Karl Bellve
- Biomedical Imaging Group, Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | - Kevin Fogarty
- Biomedical Imaging Group, Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | - William R Kobertz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA; Programs in Neuroscience and Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA.
| |
Collapse
|
12
|
Warren TJ, Van Hook MJ, Supuran CT, Thoreson WB. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina. J Physiol 2016; 594:6661-6677. [PMID: 27345444 DOI: 10.1113/jp272533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS In the vertebrate retina, photoreceptors influence the signalling of neighbouring photoreceptors through lateral-inhibitory interactions mediated by horizontal cells (HCs). These interactions create antagonistic centre-surround receptive fields important for detecting edges and generating chromatically opponent responses in colour vision. The mechanisms responsible for inhibitory feedback from HCs involve changes in synaptic cleft pH that modulate photoreceptor calcium currents. However, the sources of synaptic protons involved in feedback and the mechanisms for their removal from the cleft when HCs hyperpolarize to light remain unknown. Our results indicate that Na+ -H+ exchangers are the principal source of synaptic cleft protons involved in HC feedback but that synaptic cleft alkalization during light-evoked hyperpolarization of HCs also involves changes in bicarbonate transport across the HC membrane. In addition to delineating processes that establish lateral inhibition in the retina, these results contribute to other evidence showing the key role for pH in regulating synaptic signalling throughout the nervous system. ABSTRACT Lateral-inhibitory feedback from horizontal cells (HCs) to photoreceptors involves changes in synaptic cleft pH accompanying light-evoked changes in HC membrane potential. We analysed HC to cone feedback by studying surround-evoked light responses of cones and by obtaining paired whole cell recordings from cones and HCs in salamander retina. We tested three potential sources for synaptic cleft protons: (1) generation by extracellular carbonic anhydrase (CA), (2) release from acidic synaptic vesicles and (3) Na+ /H+ exchangers (NHEs). Neither antagonizing extracellular CA nor blocking loading of protons into synaptic vesicles eliminated feedback. However, feedback was eliminated when extracellular Na+ was replaced with choline and significantly reduced by an NHE inhibitor, cariporide. Depriving NHEs of intracellular protons by buffering HC cytosol with a pH 9.2 pipette solution eliminated feedback, whereas alkalinizing the cone cytosol did not, suggesting that HCs are a major source for protons in feedback. We also examined mechanisms for changing synaptic cleft pH in response to changes in HC membrane potential. Increasing the trans-membrane proton gradient by lowering the extracellular pH from 7.8 to 7.4 to 7.1 strengthened feedback. While maintaining constant extracellular pH with 1 mm HEPES, removal of bicarbonate abolished feedback. Elevating intracellular bicarbonate levels within HCs prevented this loss of feedback. A bicarbonate transport inhibitor, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), also blocked feedback. Together, these results suggest that NHEs are the primary source of extracellular protons in HC feedback but that changes in cleft pH accompanying changes in HC membrane voltage also require bicarbonate flux across the HC membrane.
Collapse
Affiliation(s)
- Ted J Warren
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew J Van Hook
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Claudiu T Supuran
- University of Florence, Neurofarba Department, Sesto Fiorentino, Italy
| | - Wallace B Thoreson
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
13
|
Abstract
The longstanding focus in chronic kidney disease (CKD) research has been on the glomerulus, which is sensible because this is where glomerular filtration occurs, and a large proportion of progressive CKD is associated with significant glomerular pathology. However, it has been known for decades that tubular atrophy is also a hallmark of CKD and that it is superior to glomerular pathology as a predictor of glomerular filtration rate decline in CKD. Nevertheless, there are vastly fewer studies that investigate the causes of tubular atrophy, and fewer still that identify potential therapeutic targets. The purpose of this review is to discuss plausible mechanisms of tubular atrophy, including tubular epithelial cell apoptosis, cell senescence, peritubular capillary rarefaction and downstream tubule ischemia, oxidative stress, atubular glomeruli, epithelial-to-mesenchymal transition, interstitial inflammation, lipotoxicity and Na(+)/H(+) exchanger-1 inactivation. Once a a better understanding of tubular atrophy (and interstitial fibrosis) pathophysiology has been obtained, it might then be possible to consider tandem glomerular and tubular therapeutic strategies, in a manner similar to cancer chemotherapy regimens, which employ multiple drugs to simultaneously target different mechanistic pathways.
Collapse
|
14
|
Jentsch TJ. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol 2016; 17:293-307. [PMID: 27033257 DOI: 10.1038/nrm.2016.29] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells need to regulate their volume to counteract osmotic swelling or shrinkage, as well as during cell division, growth, migration and cell death. Mammalian cells adjust their volume by transporting potassium, sodium, chloride and small organic osmolytes using plasma membrane channels and transporters. This generates osmotic gradients, which drive water in and out of cells. Key players in this process are volume-regulated anion channels (VRACs), the composition of which has recently been identified and shown to encompass LRRC8 heteromers. VRACs also transport metabolites and drugs and function in extracellular signal transduction, apoptosis and anticancer drug resistance.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
15
|
Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor. BIOSENSORS-BASEL 2016; 6:11. [PMID: 27043644 PMCID: PMC4931471 DOI: 10.3390/bios6020011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
Abstract
We present a novel method for the rapid measurement of pH fluxes at close proximity to the surface of the plasma membrane in mammalian cells using an ion-sensitive field-effect transistor (ISFET). In conjuction with an efficient continuous superfusion system, the ISFET sensor was capable of recording rapid changes in pH at the cells’ surface induced by intervals of ammonia loading and unloading, even when using highly buffered solutions. Furthermore, the system was able to isolate physiologically relevant signals by not only detecting the transients caused by ammonia loading and unloading, but display steady-state signals as would be expected by a proton transport-mediated influence on the extracellular proton-gradient. Proof of concept was demonstrated through the use of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a small molecule inhibitor of sodium/hydrogen exchangers (NHE). As the primary transporter responsible for proton balance during cellular regulation of pH, non-electrogenic NHE transport is notoriously difficult to detect with traditional methods. Using the NHE positive cell lines, Chinese hamster ovary (CHO) cells and NHE3-reconstituted mouse skin fibroblasts (MSF), the sensor exhibited a significant response to EIPA inhibition, whereas NHE-deficient MSF cells were unaffected by application of the inhibitor.
Collapse
|
16
|
Counillon L, Bouret Y, Marchiq I, Pouysségur J. Na(+)/H(+) antiporter (NHE1) and lactate/H(+) symporters (MCTs) in pH homeostasis and cancer metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2465-80. [PMID: 26944480 DOI: 10.1016/j.bbamcr.2016.02.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
The Na(+)/H(+)-exchanger NHE1 and the monocarboxylate transporters MCT1 and MCT4 are crucial for intracellular pH regulation, particularly under active metabolism. NHE1, a reversible antiporter, uses the energy provided by the Na(+) gradient to expel H(+) ions generated in the cytosol. The reversible H(+)/lactate(-) symporters MCT1 and 4 cotransport lactate and proton, leading to the net extrusion of lactic acid in glycolytic tumors. In the first two sections of this article we review important features and remaining questions on the structure, biochemical function and cellular roles of these transporters. We then use a fully-coupled mathematical model to simulate their relative contribution to pH regulation in response to lactate production, as it occurs in highly hypoxic and glycolytic tumor cells. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Laurent Counillon
- University of Nice-Sophia Antipolis, LP2M UMR7370, Faculty of Medicine, 28 Avenue Valombrose, 06107 Nice France; Laboratories of Excellence Ion Channel Science and Therapeutics, France.
| | - Yann Bouret
- University of Nice-Sophia Antipolis, LPMC UMR 7336, 28 Avenue Valrose, 06108 Nice, France
| | - Ibtissam Marchiq
- IRCAN, Centre A. Lacassagne, University of Nice-Sophia Antipolis, 33 Avenue Valombrose, 06107 Nice, France
| | - Jacques Pouysségur
- IRCAN, Centre A. Lacassagne, University of Nice-Sophia Antipolis, 33 Avenue Valombrose, 06107 Nice, France; Centre Scientifique de Monaco (CSM), 8, Quai Antoine 1er, Monaco.
| |
Collapse
|
17
|
Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 2015; 72:2061-74. [PMID: 25680790 DOI: 10.1007/s00018-015-1848-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/17/2023]
Abstract
The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.
Collapse
|
18
|
Contrasting effects of arachidonic acid and docosahexaenoic acid membrane incorporation into cardiomyocytes on free cholesterol turnover. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1413-21. [DOI: 10.1016/j.bbalip.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
|
19
|
Hendus-Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na⁺/H⁺ exchangers. CURRENT TOPICS IN MEMBRANES 2014; 73:69-148. [PMID: 24745981 DOI: 10.1016/b978-0-12-800223-0.00002-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian Na⁺/H⁺ exchangers of the SLC9A family are widely expressed and involved in numerous essential physiological processes. Their primary function is to mediate the 1:1 exchange of Na⁺ for H⁺ across the membrane in which they reside, and they play central roles in regulation of body, cellular, and organellar pH. Their function is tightly regulated through mechanisms involving interactions with multiple protein and lipid-binding partners, phosphorylations, and other posttranslational modifications. Biochemical and mutational analyses indicate that the SLC9As have a short intracellular N-terminus, 12 transmembrane (TM) helices necessary and sufficient for ion transport, and a C-terminal cytoplasmic tail region with essential regulatory roles. No high-resolution structures of the SLC9As exist; however, models based on crystal structures of the bacterial NhaAs support the 12 TM organization and suggest that TMIV and XI may form a central part of the ion-translocation pathway, whereas pH sensing may involve TMII, TMIX, and several intracellular loops. Similar to most ion transporters studied, SLC9As likely exist as coupled dimers in the membrane, and this appears to be important for the well-studied cooperativity of H⁺ binding. The aim of this work is to summarize and critically discuss the currently available evidence on the structural dynamics, regulation, and binding partner interactions of SLC9As, focusing in particular on the most widely studied isoform, SLC9A1/NHE1. Further, novel bioinformatic and structural analyses are provided that to some extent challenge the existing paradigm on how ions are transported by mammalian SLC9As.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Abstract
Tightly coupled exchange of Na(+) for H(+) occurs across the surface membrane of virtually all living cells. For years, the underlying molecular entity was unknown and the full physiological significance of the exchange process was not appreciated, but much knowledge has been gained in the last two decades. We now realize that, unlike most of the other transporters that specialize in supporting one specific function, Na(+)/H(+) exchangers (NHE) participate in a remarkable assortment of physiological processes, ranging from pH homeostasis and epithelial salt transport, to systemic and cellular volume regulation. In parallel, we have learned a great deal about the biochemistry and molecular biology of Na(+)/H(+) exchange. Indeed, it has now become apparent that exchange is mediated not by one, but by a diverse family of related yet distinct carriers (antiporters) sometimes present in different cell types and located in various intracellular compartments. Each one of these has unique structural features that dictate its functional role and mode of regulation. The biological relevance of Na(+)/H(+) exchange is emphasized by its evolutionary conservation; analogous exchangers are present from bacteria to man. Because of its wide distribution and versatile function, Na(+)/H(+) exchange has attracted an enormous amount of interest and therefore generated a vast literature. The vastness and complexity of the field has been compounded by the multiplicity of NHE isoforms. For reasons of space and in the spirit of this series, this overview is restricted to the family of mammalian NHEs.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
21
|
Shimada-Shimizu N, Hisamitsu T, Nakamura TY, Hirayama N, Wakabayashi S. Na+/H+ exchanger 1 is regulated via its lipid-interacting domain, which functions as a molecular switch: a pharmacological approach using indolocarbazole compounds. Mol Pharmacol 2013; 85:18-28. [PMID: 24136992 DOI: 10.1124/mol.113.089268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plasma membrane Na(+)/H(+) exchanger 1 (NHE1) is rapidly activated in response to various stimuli. The membrane-proximal cytoplasmic region (∼60 residues), termed the lipid-interacting domain (LID), is an important regulatory domain of NHE1. Here, we used a pharmacological approach to further characterize the role of LID in the regulation of NHE1. Pharmacological analysis using staurosporine-like indolocarbazole and bisindolylmaleimide compounds suggested that the phorbol ester- and receptor agonist-induced activation of NHE1 occurs through a protein kinase C-independent mechanism. In particular, only indolocarbazole compounds that inhibited NHE1 activation were able to interact with the LID, suggesting that the inhibition of NHE1 activation is achieved through the direct action of these compounds on the LID. Furthermore, in addition to phorbol esters and a receptor agonist, okadaic acid and hyperosmotic stress, which are known to activate NHE1 through unknown mechanisms, were found to promote membrane association of the LID concomitant with NHE1 activation; these effects were inhibited by staurosporine, as well as by a mutation in the LID. Binding experiments using the fluorescent ATP analog trinitrophenyl ATP revealed that ATP and the NHE1 activator phosphatidylinositol 4,5-bisphosphate bind competitively to the LID. These findings suggest that modulation of NHE1 activity by various activators and inhibitors occurs through the direct binding of these molecules to the LID, which alters the association of the LID with the plasma membrane.
Collapse
Affiliation(s)
- Naoko Shimada-Shimizu
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (N.S.-S., T.H., T.Y.N., S.W.); and Basic Medical Science & Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan (N.H.)
| | | | | | | | | |
Collapse
|
22
|
Babich V, Vadnagara K, Di Sole F. The biophysical and molecular basis of intracellular pH sensing by Na+/H+ exchanger-3. FASEB J 2013; 27:4646-58. [PMID: 23934281 DOI: 10.1096/fj.12-225466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Epithelial Na(+)/H(+) exchanger-3 (NHE3) transport is fundamental for renal and intestinal sodium reabsorption. Cytoplasmic protons are thought to serve as allosteric modifiers of the exchanger and to trigger its transport through protein conformational change. This effect presupposes an intracellular pH (pHi) dependence of NHE3 activity, although the biophysical and molecular basis of NHE3 pHi sensitivity have not been defined. NHE3, when complexed with the calcineurin homologous protein-1 (CHP1), had a shift in pHi sensitivity (0.4 units) toward the acidic side in comparison with NHE3 alone, as measured by oscillating pH electrodes combined with whole-cell patch clamping. Indeed, CHP1 interaction with NHE3 inhibited NHE3 transport in a pHi -dependent manner. CHP1 binding to NHE3 also affected its acute regulation. Intracellular perfusion of peptide from the CHP1 binding region (or pHi modification to reduce the CHP1 amount bound to NHE3) was permissive and cooperative for dopamine inhibition of NHE3 but reversed that of adenosine. Thus, CHP1 interaction with NHE3 apparently establishes the exchanger set point for pHi, and modification in this set point is effective in the hormonal stimuli-mediated regulation of NHE3. CHP1 may serve as a regulatory cofactor for NHE3 conformational change, dependent on intracellular protonation.
Collapse
Affiliation(s)
- Victor Babich
- 1Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSFII, Suite S005, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
23
|
Fine M, Lu FM, Lin MJ, Moe O, Wang HR, Hilgemann DW. Human-induced pluripotent stem cell-derived cardiomyocytes for studies of cardiac ion transporters. Am J Physiol Cell Physiol 2013; 305:C481-91. [PMID: 23804202 DOI: 10.1152/ajpcell.00143.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes (iCell Cardiomyocytes) with ion channel activities that are remarkably similar to adult cardiomyocytes. Here, we extend this characterization to cardiac ion transporters. Additionally, we document facile molecular biological manipulation of iCell Cardiomyocytes to overexpress and knockdown transporters and regulatory proteins. Na/Ca exchange (NCX1) and Na/K pump currents were recorded via patch clamp, and Na/H and Cl/OH exchanges were recorded via oscillating proton-selective microelectrodes during patch clamp. Flux densities of all transport systems are similar to those of nonrodent adult cardiomyocytes. NCX1 protein and NCX1 currents decline after NCX1 small interfering (si)RNA transfection with similar time courses (τ ≈ 2 days), and an NCX1-Halo fusion protein is internalized after its extracellular labeling by AlexaFluor488 Ligand with a similar time course. Loss of the cardiac regulatory protein phospholemman (PLM) occurs over a longer time course (τ ≈ 60 h) after PLM small interfering RNA transfection. Similar to multiple previous reports for adult cardiomyocytes, Na/K pump currents in iCell Cardiomyocytes are not enhanced by activating cAMP production with either maximal or submaximal cytoplasmic Na and using either forskolin or isoproterenol to activate adenylate cyclases. Finally, we describe Ca influx-dependent changes of iCell Cardiomyocyte capacitance (Cm). Large increases of Cm occur during Ca influx via NCX1, thereby documenting large internal membrane reserves that can fuse to the sarcolemma, and subsequent declines of Cm document active endocytic processes. Together, these results document a great potential of iCell Cardiomyocytes for both short- and long-term studies of cardiac ion transporters and their regulation.
Collapse
Affiliation(s)
- Michael Fine
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
24
|
Regulation of the cardiac Na⁺/H⁺ exchanger in health and disease. J Mol Cell Cardiol 2013; 61:68-76. [PMID: 23429007 DOI: 10.1016/j.yjmcc.2013.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
The Na(+) gradient produced across the cardiac sarcolemma by the ATP-dependent Na(+)-pump is a constant source of energy for Na(+)-dependent transporters. The plasma membrane Na(+)/H(+) exchanger (NHE) is one such secondary active transporter, regulating intracellular pH, Na(+) concentration, and cell volume. NHE1, the major isoform found in the heart, is activated in response to a variety of stimuli such as hormones and mechanical stress. This important characteristic of NHE1 is intimately linked to heart diseases, including maladaptive cardiac hypertrophy and subsequent heart failure, as well as acute ischemic-reperfusion injury. NHE1 activation results in elevation of pH and intracellular Na(+) concentration, which potentially enhance downstream signaling cascades in the myocardium. Therefore, in addition to determining the mechanism underlying regulation of NHE1 activity, it is important to understand how the ionic signal produced by NHE1 is transmitted to the downstream targets. Extensive studies have identified many accessory factors that interact with NHE1. Here, we have summarized the recent progress on understanding the molecular mechanism underlying NHE1 regulation and have shown a possible signaling pathway leading to cardiac remodeling, which is initiated from NHE1. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
|
25
|
Shimada-Shimizu N, Hisamitsu T, Nakamura TY, Wakabayashi S. Evidence that Na+/H+ exchanger 1 is an ATP-binding protein. FEBS J 2013; 280:1430-42. [PMID: 23331996 DOI: 10.1111/febs.12138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/27/2012] [Accepted: 01/11/2013] [Indexed: 11/29/2022]
Abstract
Na(+)/H(+) exchanger (NHE) 1 is a member of the solute carrier superfamily, which regulates intracellular ionic homeostasis. NHE1 is known to require cellular ATP for its activity, despite there being no requirement for energy input from ATP hydrolysis. In this study, we investigated whether NHE1 is an ATP-binding protein. We designed a baculovirus vector carrying both epitope-tagged NHE1 and its cytosolic subunit CHP1, and expressed the functional NHE1-CHP1 complex on the surface of Sf9 insect cells. Using the purified complex protein consisting of NHE1 and CHP1 from Sf9 cells, we examined a photoaffinity labeling reaction with 8-azido-ATP-biotin. UV irradiation promoted the incorporation of 8-azido-ATP into NHE1, but not into CHP1, with an apparent Kd of 29.1 µM in the presence of Mg(2+). The nonlabeled nucleotides ATP, GTP, TTP and CTP all inhibited this crosslinking. However, ATP had the strongest inhibitory effect, with an apparent inhibition constant (IC50) for ATP of 2.2 mM, close to the ATP concentration giving the half-maximal activation of NHE1 activity. Importantly, crosslinking was more strongly inhibited by ATP than by ADP, suggesting that ATP is dissociated from NHE1 upon ATP hydrolysis. Limited proteolysis with thrombin and deletion mutant analysis revealed that the 8-azido-ATP-binding site is within the C-terminal cytoplasmic domain of NHE1. Equilibrium dialysis with NHE1-derived peptides provided evidence that ATP directly binds to the proximal cytoplasmic region (Gly542-Pro598), which is critical for ATP-dependent regulation of NHE1. These findings suggest that NHE1 is an ATP-binding transporter. Thus, ATP may serve as a direct activator of NHE1.
Collapse
Affiliation(s)
- Naoko Shimada-Shimizu
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
26
|
Pang V, Counillon L, Lagadic-Gossmann D, Poet M, Lacroix J, Sergent O, Khan R, Rauch C. On the role of the difference in surface tensions involved in the allosteric regulation of NHE-1 induced by low to mild osmotic pressure, membrane tension and lipid asymmetry. Cell Biochem Biophys 2012; 63:47-57. [PMID: 22331497 PMCID: PMC3326373 DOI: 10.1007/s12013-012-9340-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sodium-proton exchanger 1 (NHE-1) is a membrane transporter that exchanges Na(+) for H(+) ion across the membrane of eukaryotic cells. It is cooperatively activated by intracellular protons, and this allosteric regulation is modulated by the biophysical properties of the plasma membrane and related lipid environment. Consequently, NHE-1 is a mechanosensitive transporter that responds to osmotic pressure, and changes in membrane composition. The purpose of this study was to develop the relationship between membrane surface tension, and the allosteric balance of a mechanosensitive transporter such as NHE-1. In eukaryotes, the asymmetric composition of membrane leaflets results in a difference in surface tensions that is involved in the creation of a reservoir of intracellular vesicles and membrane buds contributing to buffer mechanical constraints. Therefore, we took this phenomenon into account in this study and developed a set of relations between the mean surface tension, membrane asymmetry, fluid phase endocytosis and the allosteric equilibrium constant of the transporter. We then used the experimental data published on the effects of osmotic pressure and membrane modification on the NHE-1 allosteric constant to fit these equations. We show here that NHE-1 mechanosensitivity is more based on its high sensitivity towards the asymmetry between the bilayer leaflets compared to mean global membrane tension. This compliance to membrane asymmetry is physiologically relevant as with their slower transport rates than ion channels, transporters cannot respond as high pressure-high conductance fast-gating emergency valves.
Collapse
Affiliation(s)
- Vincent Pang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Reboulleau A, Robert V, Vedie B, Doublet A, Grynberg A, Paul JL, Fournier N. Involvement of cholesterol efflux pathway in the control of cardiomyocytes cholesterol homeostasis. J Mol Cell Cardiol 2012; 53:196-205. [PMID: 22668787 DOI: 10.1016/j.yjmcc.2012.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/10/2012] [Accepted: 05/26/2012] [Indexed: 11/16/2022]
Abstract
Although cholesterol-rich microdomains are highly involved in the functions of cardiomyocytes, the cholesterol homeostasis is largely unknown in these cells. We developed experimental procedures to assess cholesterol synthesis, cholesterol masses and cholesterol efflux from primary cultures of cardiac myocytes obtained from 2 to 4 days old Wistar rats. We first observed that cardiomyocytes poorly internalized exogenously supplied native or modified LDL and that free cholesterol (FC) efflux to free apolipoprotein AI (apo AI) and to HDL was mediated by ATP binding cassette transporter A1 (ABCA1) and likely by ATP binding cassette transporter G1 (ABCG1), respectively, which are both upregulated by liver X receptor/retinoid X receptor (LXR/RXR) activation. We then investigated the consequences of cholesterol synthesis inhibition on cholesterol homeostasis using an HMGCoA reductase inhibitor (pravastatin, 90% effective concentration (EC90): 0.11 mM, 18 h). We observed no impact of cholesterol synthesis inhibition on the FC or cholesteryl ester (CE) masses. Consistently with no FC mass changes, pravastatin treatment had no notable impact on LDL receptors mRNA expression or on the capacity of cardiomyocytes to uptake radiolabeled LDL. Conversely, pravastatin treatment induced a significant decrease of cholesterol efflux to both apo AI and HDL whereas the passive aqueous diffusion remained unchanged. The cholesterol efflux pathway reductions induced by cholesterol synthesis inhibition were not caused by a reduction of ABC transporter expression (mRNA or protein). These results show that cardiac myocytes down-regulate active cholesterol efflux processes when endogenous cholesterol synthesis is inhibited, allowing them to preserve cholesterol homeostasis.
Collapse
Affiliation(s)
- Anne Reboulleau
- Univ Paris-Sud, EA 4529, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proc Natl Acad Sci U S A 2012; 109:8770-5. [PMID: 22586095 DOI: 10.1073/pnas.1200051109] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanosensitive (MS) channels of small (MscS) and large (MscL) conductance are the major players in the protection of bacterial cells against hypoosmotic shock. Although a great deal is known about structure and function of these channels, much less is known about how membrane lipids may influence their mechanosensitivity and function. In this study, we use liposome coreconstitution to examine the effects of different types of lipids on MscS and MscL mechanosensitivity simultaneously using the patch-clamp technique and confocal microscopy. Fluorescence lifetime imaging (FLIM)-FRET microscopy demonstrated that coreconstitution of MscS and MscL led to clustering of these channels causing a significant increase in the MscS activation threshold. Furthermore, the MscL/MscS threshold ratio dramatically decreased in thinner compared with thicker bilayers and upon addition of cholesterol, known to affect the bilayer thickness, stiffness and pressure profile. In contrast, application of micromolar concentrations of lysophosphatidylcholine (LPC) led to an increase of the MscL/MscS threshold ratio. These data suggest that differences in hydrophobic mismatch and bilayer stiffness, change in transbilayer pressure profile, and close proximity of MscL and MscS affect the structural dynamics of both channels to a different extent. Our findings may have far-reaching implications for other types of ion channels and membrane proteins that, like MscL and MscS, may coexist in multiple molecular complexes and, consequently, have their activation characteristics significantly affected by changes in the lipid environment and their proximity to each other.
Collapse
|
29
|
Gilmore SF, Nanduri H, Parikh AN. Programmed bending reveals dynamic mechanochemical coupling in supported lipid bilayers. PLoS One 2012; 6:e28517. [PMID: 22216096 PMCID: PMC3245222 DOI: 10.1371/journal.pone.0028517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/09/2011] [Indexed: 12/31/2022] Open
Abstract
In living cells, mechanochemical coupling represents a dynamic means by which membrane components are spatially organized. An extra-ordinary example of such coupling involves curvature-dependent polar localization of chemically-distinct lipid domains at bacterial poles, which also undergo dramatic reequilibration upon subtle changes in their interfacial environment such as during sporulation. Here, we demonstrate that such interfacially-triggered mechanochemical coupling can be recapitulated in vitro by simultaneous, real-time introduction of mechanically-generated periodic curvatures and attendant strain-induced lateral forces in lipid bilayers supported on elastomeric substrates. In particular, we show that real-time wrinkling of the elastomeric substrate prompts a dynamic domain reorganization within the adhering bilayer, producing large, oriented liquid-ordered domains in regions of low curvature. Our results suggest a mechanism in which interfacial forces generated during surface wrinkling and the topographical deformation of the bilayer combine to facilitate dynamic reequilibration prompting the observed domain reorganization. We anticipate this curvature-generating model system will prove to be a simple and versatile tool for a broad range of studies of curvature-dependent dynamic reorganizations in membranes that are constrained by the interfacial elastic and dynamic frameworks such as the cell wall, glycocalyx, and cytoskeleton.
Collapse
Affiliation(s)
- Sean F. Gilmore
- Department of Applied Science, University of California Davis, Davis, California, United States of America
| | - Harika Nanduri
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Atul N. Parikh
- Department of Applied Science, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- Department of Chemical Engineering and Materials Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abu Jawdeh BG, Khan S, Deschênes I, Hoshi M, Goel M, Lock JT, Shinlapawittayatorn K, Babcock G, Lakhe-Reddy S, DeCaro G, Yadav SP, Mohan ML, Naga Prasad SV, Schilling WP, Ficker E, Schelling JR. Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival. J Biol Chem 2011; 286:42435-42445. [PMID: 22020933 DOI: 10.1074/jbc.m110.212845] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).
Collapse
Affiliation(s)
- Bassam G Abu Jawdeh
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Shenaz Khan
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Isabelle Deschênes
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Malcolm Hoshi
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Monu Goel
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey T Lock
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Krekwit Shinlapawittayatorn
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Gerald Babcock
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Sujata Lakhe-Reddy
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Garren DeCaro
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Satya P Yadav
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | - Maradumane L Mohan
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | | | - William P Schilling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Eckhard Ficker
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey R Schelling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.
| |
Collapse
|
31
|
Pedersen SF, Kapus A, Hoffmann EK. Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 2011; 22:1587-97. [PMID: 21852585 DOI: 10.1681/asn.2010121284] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular osmolarity and whole body volume homeostasis. There are a variety of molecular signals that respond to perturbations in cell volume and osmosensors or volume sensors responding to these signals. The early signals of volume perturbation include integrins, the cytoskeleton, receptor tyrosine kinases, and transient receptor potential channels. We also present current evidence on the localization and function of central and peripheral systemic osmosensors and conclude with a brief look at the still limited evidence on pathophysiological conditions associated with deranged sensing of cell volume.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
32
|
Abstract
Cell volume homeostasis and its fine-tuning to the specific physiological context at any given moment are processes fundamental to normal cell function. The understanding of cell volume regulation owes much to August Krogh, yet has advanced greatly over the last decades. In this review, we outline the historical context of studies of cell volume regulation, focusing on the lineage started by Krogh, Bodil Schmidt-Nielsen, Hans-Henrik Ussing, and their students. The early work was focused on understanding the functional behaviour, kinetics and thermodynamics of the volume-regulatory ion transport mechanisms. Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased understanding of their structures. Finally, much current research in the field focuses on the most up- and downstream components of these paths: how cells sense changes in cell volume, and how cell volume changes in turn regulate cell function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- E K Hoffmann
- Section of Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
33
|
Simonin A, Fuster D. Nedd4-1 and beta-arrestin-1 are key regulators of Na+/H+ exchanger 1 ubiquitylation, endocytosis, and function. J Biol Chem 2010; 285:38293-303. [PMID: 20855896 DOI: 10.1074/jbc.m110.115089] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ubiquitously expressed mammalian Na(+)/H(+) exchanger 1 (NHE1) controls cell volume and pH but is also critically involved in complex biological processes like cell adhesion, cell migration, cell proliferation, and mechanosensation. Pathways controlling NHE1 turnover at the plasma membrane, however, are currently unclear. Here, we demonstrate that NHE1 undergoes ubiquitylation at the plasma membrane by a process that is unprecedented for a mammalian ion transport protein. This process requires the adapter protein β-arrestin-1 that interacts with both the E3 ubiquitin ligase Nedd4-1 and the NHE1 C terminus. Truncation of NHE1 C terminus to amino acid 550 abolishes binding to β-arrestin-1 and NHE1 ubiquitylation. Overexpression of β-arrestin-1 or of wild type but not ligase-dead Nedd4-1 increases NHE1 ubiquitylation. siRNA-mediated knock-down of Nedd4-1 or β-arrestin-1 reduces NHE1 ubiquitylation and endocytosis leading to increased NHE1 surface levels. Fibroblasts derived from β-arrestin-1 and Nedd4-1 knock-out mice show loss of NHE1 ubiquitylation, increased plasmalemmal NHE1 levels and greatly enhanced NHE1 transport compared with wild-type fibroblasts. These findings reveal Nedd4-1 and β-arrestin-1 as key regulators of NHE1 ubiquitylation, endocytosis, and function. Our data suggest a broader role for β-arrestins in the regulation of membrane ion transport proteins than currently known.
Collapse
Affiliation(s)
- Alexandre Simonin
- Department of Nephrology and Hypertension, University Hospital of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | | |
Collapse
|
34
|
Milosavljevic N, Duranton C, Djerbi N, Puech PH, Gounon P, Lagadic-Gossmann D, Dimanche-Boitrel MT, Rauch C, Tauc M, Counillon L, Poët M. Nongenomic Effects of Cisplatin: Acute Inhibition of Mechanosensitive Transporters and Channels without Actin Remodeling. Cancer Res 2010; 70:7514-22. [DOI: 10.1158/0008-5472.can-10-1253] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Mohan S, Tse CM, Gabelli SB, Sarker R, Cha B, Fahie K, Nadella M, Zachos NC, Tu-Sekine B, Raben D, Amzel LM, Donowitz M. NHE3 activity is dependent on direct phosphoinositide binding at the N terminus of its intracellular cytosolic region. J Biol Chem 2010; 285:34566-78. [PMID: 20736165 DOI: 10.1074/jbc.m110.165712] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The small intestinal BB Na(+)/H(+) antiporter NHE3 accounts for the majority of intestinal sodium and water absorption. It is highly regulated with both postprandial inhibition and stimulation sequentially occurring. Phosphatidylinositide 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositide 3,4,5-trisphosphate (PI(3,4,5)P(3)) binding is involved with regulation of multiple transporters. We tested the hypothesis that phosphoinositides bind NHE3 under basal conditions and are necessary for its acute regulation. His(6) proteins were made from the NHE3 C-terminal region divided into four parts as follows: F1 (amino acids 475-589), F2 (amino acids 590-667), F3 (amino acids 668-747), and F4 (amino acids 748-832) and purified by a nickel column. Mutations were made in the F1 region of NHE3 and cloned in pet30a and pcDNA3.1 vectors. PI(4,5)P(2) and PI(3,4,5)P(3) bound only to the NHE3 F1 fusion protein (amino acids 475-589) on liposomal pulldown assays. Mutations were made in the putative lipid binding region of the F1 domain and studied for alterations in lipid binding and Na(+)/H(+) exchange as follows: Y501A/R503A/K505A; F509A/R511A/R512A; R511L/R512L; R520/FR527F; and R551L/R552L. Our results indicate the following. 1) The F1 domain of the NHE3 C terminus has phosphoinositide binding regions. 2) Mutations of these regions alter PI(4,5)P(2) and PI(3,4,5)P(3) binding and basal NHE3 activity. 3) The magnitude of serum stimulation of NHE3 correlates with PI(4,5)P(2) and PI(3,4,5)P(3) binding of NHE3. 4) Wortmannin inhibition of PI3K did not correlate with PI(4,5)P(2) or PI(3,4,5)P(3) binding of NHE3. Two functionally distinct phosphoinositide binding regions (Tyr(501)-Arg(512) and Arg(520)-Arg(552)) are present in the NHE3 F1 domain; both regions are important for serum stimulation, but they display differences in phosphoinositide binding, and the latter but not the former alters NHE3 surface expression.
Collapse
Affiliation(s)
- Sachin Mohan
- Department of Physiology and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wakabayashi S, Nakamura TY, Kobayashi S, Hisamitsu T. Novel phorbol ester-binding motif mediates hormonal activation of Na+/H+ exchanger. J Biol Chem 2010; 285:26652-61. [PMID: 20551318 DOI: 10.1074/jbc.m110.130120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC) is considered crucial for hormonal Na(+)/H(+) exchanger (NHE1) activation because phorbol esters (PEs) strongly activate NHE1. However, here we report that rather than PKC, direct binding of PEs/diacylglycerol to the NHE1 lipid-interacting domain (LID) and the subsequent tighter association of LID with the plasma membrane mainly underlies NHE1 activation. We show that (i) PEs directly interact with the LID of NHE1 in vitro, (ii) like PKC, green fluorescent protein (GFP)-labeled LID translocates to the plasma membrane in response to PEs and receptor agonists, (iii) LID mutations markedly inhibit these interactions and PE/receptor agonist-induced NHE1 activation, and (iv) PKC inhibitors ineffectively block NHE1 activation, except staurosporin, which itself inhibits NHE1 via LID. Thus, we propose a PKC-independent mechanism of NHE1 regulation via a PE-binding motif previously unrecognized.
Collapse
Affiliation(s)
- Shigeo Wakabayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
37
|
Wu J, McNicholas CM, Bevensee MO. Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 2009; 106:14150-5. [PMID: 19667194 PMCID: PMC2729035 DOI: 10.1073/pnas.0906303106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Indexed: 01/20/2023] Open
Abstract
Bicarbonate transporters are regulated by signaling molecules/ions such as protein kinases, ATP, and Ca(2+). While phospholipids such as PIP(2) can stimulate Na-H exchanger activity, little is known about phospholipid regulation of bicarbonate transporters. We used the patch-clamp technique to study the function and regulation of heterologously expressed rat NBCe1-A in excised macropatches from Xenopus laevis oocytes. Exposing the cytosolic side of inside-out macropatches to a 5% CO(2)/33 mM HCO(3)(-) solution elicited a mean inward current of 14 pA in 74% of macropatches attached to pipettes (-V(p) = -60 mV) containing a low-Na(+), nominally HCO(3)(-)-free solution. The current was 80-90% smaller in the absence of Na(+), approximately 75% smaller in the presence of 200 microM DIDS, and absent in macropatches from H(2)O-injected oocytes. NBCe1-A currents exhibited time-dependent rundown that was inhibited by removing Mg(2+) in the presence or absence of vanadate and F(-) to reduce general phosphatase activity. Applying 5 or 10 microM PIP(2) (diC8) in the presence of HCO(3)(-) induced an inward current in 54% of macropatches from NBC-expressing, but not H(2)O-injected oocytes. PIP(2)-induced currents were HCO(3)(-)-dependent and somewhat larger following more NBCe1-A rundown, 62% smaller in the absence of Na(+), and 90% smaller in the presence of 200 microM DIDS. The polycation neomycin (250-500 microM) reduced the PIP(2)-induced inward current by 69%; spermine (100 microM) reduced the current by 97%. Spermine, poly-D-lysine, and neomycin all reduced the baseline HCO(3)(-)-induced inward currents by as much as 85%. In summary, PIP(2) stimulates NBCe1-A activity, and phosphoinositides are regulators of bicarbonate transporters.
Collapse
Affiliation(s)
| | | | - Mark O. Bevensee
- Department of Physiology and Biophysics
- Nephrology Research and Training Center
- Center of Glial Biology in Medicine, and
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
38
|
Alexander RT, Grinstein S. Tethering, recycling and activation of the epithelial sodium–proton exchanger, NHE3. J Exp Biol 2009; 212:1630-7. [DOI: 10.1242/jeb.027375] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
NHE3 is a sodium–proton exchanger expressed predominantly in the apical membrane of renal and intestinal epithelia, where it plays a key role in salt and fluid absorption and pH homeostasis. It performs these functions through the exchange of luminal sodium for cytosolic protons. Acute regulation of NHE3 function is mediated by altering the total number of exchangers in the plasma membrane as well as their individual activity. Traffic between endomembrane and plasmalemmal pools of NHE3 dictates the density of exchangers available at the cell surface. The activity of the plasmalemmal pool, however,is not fixed and can be altered by the association with modifier proteins, by post-translational alterations (such as cAMP-mediated phosphorylation) and possibly also via interaction with specific plasmalemmal phospholipids. Interestingly, association with cytoskeletal components affects both levels of regulation, tethering NHE3 molecules at the surface and altering their intrinsic activity. This paper reviews the role of proteins and lipids in the modulation of NHE3 function.
Collapse
Affiliation(s)
- R. Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,T6G 2R7
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada,M5G 1X8
- Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
39
|
Bobulescu IA, Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch 2009; 458:5-21. [PMID: 18853182 PMCID: PMC2878283 DOI: 10.1007/s00424-008-0595-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
The proximal tubule is critical for whole-organism volume and acid-base homeostasis by reabsorbing filtered water, NaCl, bicarbonate, and citrate, as well as by excreting acid in the form of hydrogen and ammonium ions and producing new bicarbonate in the process. Filtered organic solutes such as amino acids, oligopeptides, and proteins are also retrieved by the proximal tubule. Luminal membrane Na(+)/H(+) exchangers either directly mediate or indirectly contribute to each of these processes. Na(+)/H(+) exchangers are a family of secondary active transporters with diverse tissue and subcellular distributions. Two isoforms, NHE3 and NHE8, are expressed at the luminal membrane of the proximal tubule. NHE3 is the prevalent isoform in adults, is the most extensively studied, and is tightly regulated by a large number of agonists and physiological conditions acting via partially defined molecular mechanisms. Comparatively little is known about NHE8, which is highly expressed at the lumen of the neonatal proximal tubule and is mostly intracellular in adults. This article discusses the physiology of proximal Na(+)/H(+) exchange, the multiple mechanisms of NHE3 regulation, and the reciprocal relationship between NHE3 and NHE8 at the lumen of the proximal tubule.
Collapse
Affiliation(s)
- I. Alexandru Bobulescu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
| | - Orson W. Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA,
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
| |
Collapse
|
40
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1046] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
41
|
Lacroix J, Poët M, Huc L, Morello V, Djerbi N, Ragno M, Rissel M, Tekpli X, Gounon P, Lagadic-Gossmann D, Counillon L. Kinetic analysis of the regulation of the Na+/H+ exchanger NHE-1 by osmotic shocks. Biochemistry 2009; 47:13674-85. [PMID: 19035652 DOI: 10.1021/bi801368n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NHE-1 is a ubiquitous, mitogen-activatable, mammalian Na+/H+ exchanger that maintains cytosolic pH and regulates cell volume. We have previously shown that the kinetics of NHE-1 positive cooperative activation by intracellular acidifications fit best with a Monod-Wyman-Changeux mechanism, in which a dimeric NHE-1 oscillates between a low- and a high-affinity conformation for intracellular protons. The ratio between these two forms, the allosteric equilibrium constant L0, is in favor of the low-affinity form, making the system inactive at physiological pH. Conversely the high-affinity form is stabilized by intracellular protons, resulting in the observed positive cooperativity. The aim of the present study was to investigate the kinetics and mechanism of NHE-1 regulation by osmotic shocks. We show that they modify the L0 parameter (865 +/- 95 and 3757 +/- 328 for 500 and 100 mOsM, respectively, vs 1549 +/- 57 in isotonic conditions).This results in an activation of NHE-1 by hypertonic shocks and, conversely, in an inhibition by hypotonic media. Quantitatively, this modulation of L0 follows an exponential distribution relative to osmolarity, that is, additive to the activation of NHE-1 by intracellular signaling pathways. These effects can be mimicked by the asymmetric insertion of amphiphilic molecules into the lipid bilayer. Finally, site-directed mutagenesis of NHE-1 shows that neither its association with membrane PIP2 nor its interaction with cortical actin are required for mechanosensation. In conclusion, NHE-1 allosteric equilibrium and, thus, its cooperative response to intracellular acidifications is extremely sensitive to modification of its membrane environment.
Collapse
Affiliation(s)
- Jérôme Lacroix
- Université de Nice-Sophia Antipolis, CNRS FRE3093 Transport Ionique aspects normaux et pathologiques, Faculté des Sciences Parc Valrose, 06108 Nice cedex 2, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fuster D, Moe OW, Hilgemann DW. Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. ACTA ACUST UNITED AC 2008; 132:465-80. [PMID: 18824592 PMCID: PMC2553392 DOI: 10.1085/jgp.200810016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the steady-state function of the ubiquitous mammalian Na/H exchanger (NHE)1 isoform in voltage-clamped Chinese hamster ovary cells, as well as other cells, using oscillating pH-sensitive microelectrodes to quantify proton fluxes via extracellular pH gradients. Giant excised patches could not be used as gigaseal formation disrupts NHE activity within the patch. We first analyzed forward transport at an extracellular pH of 8.2 with no cytoplasmic Na (i.e., nearly zero-trans). The extracellular Na concentration dependence is sigmoidal at a cytoplasmic pH of 6.8 with a Hill coefficient of 1.8. In contrast, at a cytoplasmic pH of 6.0, the Hill coefficient is <1, and Na dependence often appears biphasic. Results are similar for mouse skin fibroblasts and for an opossum kidney cell line that expresses the NHE3 isoform, whereas NHE1−/− skin fibroblasts generate no proton fluxes in equivalent experiments. As proton flux is decreased by increasing cytoplasmic pH, the half-maximal concentration (K1/2) of extracellular Na decreases less than expected for simple consecutive ion exchange models. The K1/2 for cytoplasmic protons decreases with increasing extracellular Na, opposite to predictions of consecutive exchange models. For reverse transport, which is robust at a cytoplasmic pH of 7.6, the K1/2 for extracellular protons decreases only a factor of 0.4 when maximal activity is decreased fivefold by reducing cytoplasmic Na. With 140 mM of extracellular Na and no cytoplasmic Na, the K1/2 for cytoplasmic protons is 50 nM (pH 7.3; Hill coefficient, 1.5), and activity decreases only 25% with extracellular acidification from 8.5 to 7.2. Most data can be reconstructed with two very different coupled dimer models. In one model, monomers operate independently at low cytoplasmic pH but couple to translocate two ions in “parallel” at alkaline pH. In the second “serial” model, each monomer transports two ions, and translocation by one monomer allosterically promotes translocation by the paired monomer in opposite direction. We conclude that a large fraction of mammalian Na/H activity may occur with a 2Na/2H stoichiometry.
Collapse
Affiliation(s)
- Daniel Fuster
- Department of Physiology and Department of Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
43
|
Abstract
Cell volume perturbation initiates a wide array of intracellular signalling cascades, leading to protective and adaptive events and, in most cases, activation of volume-regulatory osmolyte transport, water loss, and hence restoration of cell volume and cellular function. Cell volume is challenged not only under physiological conditions, e.g. following accumulation of nutrients, during epithelial absorption/secretion processes, following hormonal/autocrine stimulation, and during induction of apoptosis, but also under pathophysiological conditions, e.g. hypoxia, ischaemia and hyponatremia/hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations are sensed are still far from clear, significant progress has been made with respect to the nature of the sensors, transducers and effectors that convert a change in cell volume into a physiological response. In the present review, we summarize recent major developments in the field, and emphasize the relationship between cell volume regulation and organism physiology/pathophysiology.
Collapse
Affiliation(s)
- I H Lambert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
44
|
Koivusalo M, Kapus A, Grinstein S. Sensors, transducers, and effectors that regulate cell size and shape. J Biol Chem 2008; 284:6595-9. [PMID: 19004817 DOI: 10.1074/jbc.r800049200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell volume and shape are stringently regulated. This homeostasis requires the cells to sense their size and shape and to convey this information to effectors that will counteract deformations induced by osmotic or mechanical challenges. The sensors, transducers, and effectors of volume change are the subject of this review.
Collapse
Affiliation(s)
- Mirkka Koivusalo
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
45
|
De Simoni A, Allen NJ, Attwell D. Charge compensation for NADPH oxidase activity in microglia in rat brain slices does not involve a proton current. Eur J Neurosci 2008; 28:1146-56. [PMID: 18783372 PMCID: PMC2628425 DOI: 10.1111/j.1460-9568.2008.06417.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 07/04/2008] [Accepted: 07/20/2008] [Indexed: 11/28/2022]
Abstract
The membrane properties of isolated cultured microglia have been extensively studied but it is important to understand their properties in situ, where they protect the brain against infection, but also contribute to neurodegenerative diseases. Microglia and macrophages attack bacteria by generating reactive oxygen species, a process which involves NADPH oxidase pumping electrons out across the cell membrane. The resulting inward current evokes a depolarization, which would inhibit the activity of the NADPH oxidase if there were no charge-compensating current which moves positive charge out across the membrane. The mechanism of this charge compensation is controversial. In neutrophils and in cultured microglia a depolarization-activated H(+) conductance has been proposed to provide charge compensation, and also to remove protons generated intracellularly by the NADPH oxidase. Alternatively, a depolarization-activated K(+) conductance has been proposed to mediate charge compensation. Here we show that in microglia, either in the resting state or when activated by the bacterial coat component lipopolysaccharide, both in acute and in cultured hippocampal slices, no significant H(+) current is detectable. This implies that the membrane properties of microglia in their normal cellular environment differ from those of cultured microglia (similarly, microglia generated a current in response to ATP but, unlike in culture, not to glutamate or GABA). Furthermore, the K(+) current (Kv1.3) that is activated by lipopolysaccharide is inactivated by depolarization, making it unsuitable for mediating charge compensation on a long time scale at positive voltages. Instead, charge compensation may be mediated by a previously undescribed non-selective cation current.
Collapse
Affiliation(s)
- Anna De Simoni
- Department of Physiology, University College London, London, UK
| | | | | |
Collapse
|
46
|
Tekpli X, Huc L, Lacroix J, Rissel M, Poët M, Noël J, Dimanche-Boitrel MT, Counillon L, Lagadic-Gossmann D. Regulation of Na+/H+ exchanger 1 allosteric balance by its localization in cholesterol- and caveolin-rich membrane microdomains. J Cell Physiol 2008; 216:207-20. [PMID: 18264982 DOI: 10.1002/jcp.21395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Na+/H+ exchanger 1, which plays an essential role in intracellular pH regulation in most tissues, is also known to be a key actor in both proliferative and apoptotic processes. Its activation by H+ is best described by the Monod-Wyman-Changeux model: the dimeric NHE-1 oscillates between a low and a high affinity conformation, the balance between the two forms being defined by the allosteric constant L(0). In this study, influence of cholesterol- and caveolin-rich microdomains on NHE-1 activity was examined by using cholesterol depleting agents, including methyl-beta-cyclodextrin (MBCD). These agents activated NHE-1 by modulating its L(0) parameter, which was reverted by cholesterol repletion. This activation was associated with NHE-1 relocation outside microdomains, and was distinct from NHE-1 mitogenic and hormonal stimulation; indeed MBCD and serum treatments were additive, and serum alone did not change NHE-1 localization. Besides, MBCD activated a serum-insensitive, constitutively active mutated NHE-1 ((625)KDKEEEIRK(635) into KNKQQQIRK). Finally, the membrane-dependent NHE-1 regulation occurred independently of Mitogen Activated Protein Kinases, especially Extracellular Regulated Kinase activation, although this kinase was activated by MBCD. In conclusion, localization of NHE-1 in membrane cholesterol- and caveolin-rich microdomains constitutes a novel physiological negative regulator of NHE-1 activity.
Collapse
Affiliation(s)
- Xavier Tekpli
- INSERM U620, Equipe Labellisée Ligue contre Le Cancer, Rennes Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fuster DG, Zhang J, Shi M, Bobulescu IA, Andersson S, Moe OW. Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol 2008; 19:1547-56. [PMID: 18508966 DOI: 10.1681/asn.2007111245] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cation/proton exchange has been recognized for decades in mammalian mitochondria, but the exchanger proteins have eluded identification. In this study, a cDNA from a human brain library, previously designated NHA2 in the genome, was cloned and characterized. The NHA2 transcript bears more similarity to prokaryotic than known eukaryotic sodium/proton exchangers, but it was found to be expressed in multiple mammalian organs and cultured cells. A mAb to NHA2 was generated and found to label an approximately 55-kD native protein in multiple tissues and cell lines. The specificity of this antibody was confirmed by demonstrating the loss of the native NHA2 band on immunoblots when cultured cells were treated with NHA2-specific small interfering RNA. Although NHA2 protein was detected in multiple organs, within each, its expression was restricted to specific cell types. In the kidney, co-localization with calbindin 28k and reverse transcription-PCR of microdissected tubules revealed that NHA2 is limited to the distal convoluted tubule. In cell lines, native NHA2 was localized both to the plasma membrane and to the intracellular compartment; immunogold electron microscopy of rat distal convoluted tubule demonstrated NHA2 predominantly but not exclusively on the inner mitochondrial membrane. Furthermore, co-sedimentation of NHA2 antigen and mitochondrial membranes was observed with differential centrifugation, and two mitochondrial markers co-localized with NHA2 in cultured cells. Regarding function, human NHA2 reversed the sodium/hydrogen exchanger-null phenotype when expressed in sodium/hydrogen exchanger-deficient yeast and restored the ability to defend high salinity in the presence of acidic extracellular pH. In summary, NHA2 is a ubiquitous mammalian sodium proton/exchanger that is restricted to the distal convoluted tubule in the kidney.
Collapse
Affiliation(s)
- Daniel G Fuster
- Division of Nephrology and Hypertension and Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
48
|
Schelling JR, Abu Jawdeh BG. Regulation of cell survival by Na+/H+ exchanger-1. Am J Physiol Renal Physiol 2008; 295:F625-32. [PMID: 18480176 DOI: 10.1152/ajprenal.90212.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Na(+)/H(+) exchanger-1 (NHE1) is a ubiquitous plasma membrane Na(+)/H(+) exchanger typically associated with maintenance of intracellular volume and pH. In addition to the NHE1 role in electroneutral Na(+)/H(+) transport, in renal tubular epithelial cells in vitro the polybasic, juxtamembrane NHE1 cytosolic tail domain acts as a scaffold, by binding with ezrin/radixin/moesin (ERM) proteins and phosphatidylinositol 4,5-bisphosphate, which initiates formation of a signaling complex that culminates in Akt activation and opposition to initial apoptotic stress. With robust apoptotic stimuli renal tubular epithelial cell NHE1 is a caspase substrate, and proteolytic cleavage may permit progression to apoptotic cell death. In vivo, genetic or pharmacological NHE1 loss of function causes renal tubule epithelial cell apoptosis and renal dysfunction following streptozotocin-induced diabetes, ureteral obstruction, and adriamycin-induced podocyte toxicity. Taken together, substantial in vivo and in vitro data demonstrate that NHE1 regulates tubular epithelial cell survival. In contrast to connotations of NHE1 as an unimportant "housekeeping" protein, this review highlights that NHE1 activity is critical for countering tubular atrophy and chronic renal disease progression.
Collapse
Affiliation(s)
- Jeffrey R Schelling
- Rammelkamp Center for Education and Research, 2500 MetroHealth Drive, Cleveland, OH 44109-1998, USA.
| | | |
Collapse
|
49
|
Reeves JP, Abdellatif M, Condrescu M. The sodium-calcium exchanger is a mechanosensitive transporter. J Physiol 2008; 586:1549-63. [PMID: 18238815 DOI: 10.1113/jphysiol.2008.151274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This report describes the influence of fluid flow and osmotically induced volume changes on Na(+)-Ca(2+) exchange (NCX) activity in transfected CHO cells. Exchange activity was measured as Na(+)-dependent Ca(2+) or Ba(2+) fluxes using the fluorescent probe fura-2. When exchange activity was initiated by superfusing Ba(2+)-containing solutions over the cells for a 20 s interval, a high rate of Ba(2+) uptake was observed while the solution was being applied but the rate of Ba(2+) uptake declined > 10-fold when the solution flow ceased. Ba(2+) efflux in exchange for extracellular Na(+) or Ca(2+) (Ba(2+)-Ca(2+) exchange) was similarly biphasic. During NCX-mediated Ca(2+) uptake, a rapid increase in cytosolic [Ca(2+)] to a peak value occurred, followed by a decline in [Ca(2+)](i) to a lower steady-state value after solution flow ceased. When NCX activity was initiated by an alternate procedure that minimized the duration of solution flow, the rapid phase of Ba(2+) influx was greatly reduced in magnitude and Ca(2+) uptake became nearly monophasic. Solution superfusion did not produce any obvious changes in cell shape or volume. NCX-mediated Ba(2+) and Ca(2+) influx were also sensitive to osmotically induced changes in cell volume. NCX activity was stimulated in hypotonic media and inhibited in hypertonic media; the osmotically induced changes in activity occurred within seconds and were rapidly reversible. We conclude that NCX activity is modulated by both solution flow and osmotically induced volume changes.
Collapse
Affiliation(s)
- John P Reeves
- Department of Pharmacology & Physiology, University of Medicine and Dentistry of New Jersey, Graduate School of Biomedical Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA.
| | | | | |
Collapse
|
50
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|