1
|
Stonebraker JR, Pace RG, Gallins PJ, Dang H, Aksit M, Faino AV, Gordon WW, MacParland S, Bamshad MJ, Gibson RL, Cutting GR, Durie PR, Wright FA, Zhou YH, Blackman SM, O’Neal WK, Ling SC, Knowles MR. Genetic variation in severe cystic fibrosis liver disease is associated with novel mechanisms for disease pathogenesis. Hepatology 2024; 80:1012-1025. [PMID: 38536042 PMCID: PMC11427593 DOI: 10.1097/hep.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND AIMS It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.
Collapse
Affiliation(s)
- Jaclyn R. Stonebraker
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Paul J. Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - M.A. Aksit
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - William W. Gordon
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Sonya MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Ronald L. Gibson
- Center for Respiratory Biology & Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, 98105, USA
| | - Garry R. Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | | | - Fred A. Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Scott M. Blackman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Simon C. Ling
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael R. Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
2
|
Savis A, Haseler E, Beardsley H, Chowienczyk PJ, Simpson JM, Sinha MD. Aortic Dilatation in Children and Young People With ADPKD. Kidney Int Rep 2024; 9:1210-1219. [PMID: 38707792 PMCID: PMC11068958 DOI: 10.1016/j.ekir.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Aortic root dilatation is a reported cardiovascular sequela seen in children and young people (CYP) with chronic kidney disease (CKD) but has yet to be described in those with autosomal dominant polycystic kidney disease (ADPKD). Methods Single center, cross-sectional study in a dedicated ADPKD clinic. Echocardiograms were evaluated for the presence of dilatation (defined by a z-score ≥2 [≥99th percentile] SDs from the mean) at 4 standardized locations, namely the aortic valve annulus, sinuses of Valsalva (SoV), sinotubular junction (STJ), and the ascending aorta. Measurements were compared with a control group to assess prevalence, severity, and determinants of aortic dilatation. Results Ninety-seven children, median age (interquartile range) of 9.3 (6.1, 13.6) years were compared with 19 controls without ADPKD or other CKD. The prevalence of dilatation ranged from 5.2% to 17% in ADPKD, depending on anatomical location with no aortic dilatation identified in the control group. In multivariable regression, aortic root dilatation was significantly associated with cyst burden at the aortic valve annulus and SoV (β = 0.42 and β = 0.39, both P < 0.001), with age at SoV (β = -0.26, P = 0.02), systolic blood pressure (SBP) z-score at SoV (β = -0.20, P = 0.04) and left ventricular mass index (LVMI) at SoV and STJ (β = 0.24, P = 0.02 and β = 0.25, P = 0.03, respectively) following adjustment for age, sex (male or female), body mass index (BMI) z-score, estimated glomerular filtration rate (eGFR), SBP z-score, and LVMI. Conclusion Our data suggests increased prevalence of aortic root and ascending aortic dilatation in CYP with ADPKD compared with controls. Further studies are needed to understand the pathogenesis and its contribution to the high cardiovascular morbidity in ADPKD.
Collapse
Affiliation(s)
- Alexandra Savis
- Department of Paediatric Cardiology, Evelina London Children’s Hospital, Guys & St Thomas NHS Foundation Trust, London, UK
| | - Emily Haseler
- Department of Paediatric Nephrology, Evelina London Children’s Hospital, Guys & St Thomas NHS Foundation Trust, London, UK
| | - Hayley Beardsley
- Department of Paediatric Cardiology, Evelina London Children’s Hospital, Guys & St Thomas NHS Foundation Trust, London, UK
| | | | - John M. Simpson
- Department of Paediatric Cardiology, Evelina London Children’s Hospital, Guys & St Thomas NHS Foundation Trust, London, UK
| | - Manish D. Sinha
- Department of Paediatric Nephrology, Evelina London Children’s Hospital, Guys & St Thomas NHS Foundation Trust, London, UK
- Department of Clinical Pharmacology, Kings College London, UK
| |
Collapse
|
3
|
Mbiakop UC, Jaggar JH. Vascular polycystin proteins in health and disease. Microcirculation 2024; 31:e12834. [PMID: 37823335 PMCID: PMC11009377 DOI: 10.1111/micc.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
PKD1 (polycystin 1) and PKD2 (polycystin 2) are expressed in a variety of different cell types, including arterial smooth muscle and endothelial cells. PKD1 is a transmembrane domain protein with a large extracellular N-terminus that is proposed to act as a mechanosensor and receptor. PKD2 is a member of the transient receptor potential (TRP) channel superfamily which is also termed TRPP1. Mutations in the genes which encode PKD1 and PKD2 lead to autosomal dominant polycystic kidney disease (ADPKD). ADPKD is one of the most prevalent monogenic disorders in humans and is associated with extrarenal and vascular complications, including hypertension. Recent studies have uncovered mechanisms of activation and physiological functions of PKD1 and PKD2 in arterial smooth muscle and endothelial cells. It has also been found that PKD function is altered in the vasculature during ADPKD and hypertension. We will summarize this work and discuss future possibilities for this area of research.
Collapse
Affiliation(s)
- Ulrich C. Mbiakop
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| |
Collapse
|
4
|
Righini M, Mancini R, Busutti M, Buscaroli A. Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement. Int J Mol Sci 2024; 25:2554. [PMID: 38473800 DOI: 10.3390/ijms25052554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.
Collapse
Affiliation(s)
- Matteo Righini
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Raul Mancini
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Buscaroli
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
5
|
Whitchurch JB, Schneider S, Hilger AC, Köllges R, Stegmann JD, Waffenschmidt L, Dyer L, Thiele H, Dhabhai B, Dakal TC, Müller A, Norris DP, Reutter HM. PKD1L1 Is Involved in Congenital Chylothorax. Cells 2024; 13:149. [PMID: 38247840 PMCID: PMC10814685 DOI: 10.3390/cells13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Besides visceral heterotaxia, Pkd1l1 null mouse embryos exhibit general edema and perinatal lethality. In humans, congenital chylothorax (CCT) is a frequent cause of fetal hydrops. In 2021, Correa and colleagues reported ultrarare compound heterozygous variants in PKD1L1 exhibiting in two consecutive fetuses with severe hydrops, implicating a direct role of PKD1L1 in fetal hydrops formation. Here, we performed an exome survey and identified ultrarare compound heterozygous variants in PKD1L1 in two of the five case-parent trios with CCT. In one family, the affected carried the ultrarare missense variants c.1543G>A(p.Gly515Arg) and c.3845T>A(p.Val1282Glu). In the other family, the affected carried the ultrarare loss-of-function variant (LoF) c.863delA(p.Asn288Thrfs*3) and the ultrarare missense variant c.6549G>T(p.Gln2183His). Investigation of the variants' impact on PKD1L1 protein localization suggests the missense variants cause protein dysfunction and the LoF variant causes protein mislocalization. Further analysis of Pkd1l1 mutant mouse embryos revealed about 20% of Pkd1l1-/- embryos display general edema and pleural effusion at 14.5 dpc. Immunofluorescence staining at 14.5 dpc in Pkd1l1-/- embryos displayed both normal and massively altered lymphatic vessel morphologies. Together, our studies suggest the implication of PKD1L1 in congenital lymphatic anomalies, including CCTs.
Collapse
Affiliation(s)
- Jonathan B. Whitchurch
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (J.B.W.); (L.D.); (D.P.N.)
| | - Sophia Schneider
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, 53127 Bonn, Germany; (S.S.); (R.K.); (J.D.S.); (A.M.)
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany;
| | - Alina C. Hilger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Ricarda Köllges
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, 53127 Bonn, Germany; (S.S.); (R.K.); (J.D.S.); (A.M.)
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany;
| | - Jil D. Stegmann
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, 53127 Bonn, Germany; (S.S.); (R.K.); (J.D.S.); (A.M.)
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany;
| | - Lea Waffenschmidt
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany;
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Laura Dyer
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (J.B.W.); (L.D.); (D.P.N.)
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany;
| | - Bhanupriya Dhabhai
- Genome & Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, India; (B.D.); (T.C.D.)
| | - Tikam Chand Dakal
- Genome & Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, India; (B.D.); (T.C.D.)
| | - Andreas Müller
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, 53127 Bonn, Germany; (S.S.); (R.K.); (J.D.S.); (A.M.)
| | - Dominic P. Norris
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (J.B.W.); (L.D.); (D.P.N.)
| | - Heiko M. Reutter
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany;
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Gulati A, Watnick T. Vascular Complications in Autosomal Dominant Polycystic Kidney Disease: Perspectives, Paradigms, and Current State of Play. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:429-439. [PMID: 38097333 DOI: 10.1053/j.akdh.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/18/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the leading cause of inherited kidney disease with significant contributions to CKD and end-stage kidney disease. The underlying polycystin proteins (PC1 and PC2) have widespread tissue expression and complex functional roles making ADPKD a systemic disease. Vascular complications, particularly intracranial aneurysms (ICA) are the most feared due to their potential for devastating neurological complications and sudden death. Intracranial aneurysms occur in 8-12% of all patients with ADPKD, but the risk is intensified 4-5-fold in those with a positive family history. The basis for this genetic risk is not well understood and could conceivably be due to features of the germline mutation with a significant contribution of other genetic modifiers and/or environmental factors. Here we review what is known about the natural history and genetics of unruptured ICA in ADPKD including the prevalence and risk factors for aneurysm formation and subarachnoid hemorrhage. We discuss two alternative screening strategies and recommend a practical algorithm that targets those at highest risk for ICA with a positive family history for screening.
Collapse
Affiliation(s)
- Ashima Gulati
- Division of Nephrology, Children's National Hospital and Children's National Research Institute, Washington, DC
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
7
|
Emrich IE, Böhm M, Mahfoud F. Radial pseudoaneurysm following coronary angiography in a patient with autosomal dominant polycystic kidney disease. Clin Res Cardiol 2023; 112:1343-1345. [PMID: 36689024 PMCID: PMC10449692 DOI: 10.1007/s00392-023-02159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Affiliation(s)
- Insa E Emrich
- Department of Internal Medicine III, Cardiology, Angiology, Intensive Care Medicine, Saarland University Medical Center, Kirrberger Straße 1, IMED, 66421, Homburg, Germany.
| | - Michael Böhm
- Department of Internal Medicine III, Cardiology, Angiology, Intensive Care Medicine, Saarland University Medical Center, Kirrberger Straße 1, IMED, 66421, Homburg, Germany
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology, Intensive Care Medicine, Saarland University Medical Center, Kirrberger Straße 1, IMED, 66421, Homburg, Germany
| |
Collapse
|
8
|
Daniel EA, Sommer NA, Sharma M. Polycystic kidneys: interaction of notch and renin. Clin Sci (Lond) 2023; 137:1145-1150. [PMID: 37553961 PMCID: PMC11132639 DOI: 10.1042/cs20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Polycystic kidney disease (PKD) is a developmental disorder, which either manifests in early childhood or later in life, depending on the genetic mutation one harbors. The mechanisms of cyst initiation are not well understood. Increasing literature is now suggesting that Notch signaling may play a critical role in PKD. Activation of Notch signaling is important during nephrogenesis and slows down after development. Deletion of various Notch molecules in the cap mesenchyme leads to formation of cysts and early death in mice. A new study by Belyea et al. has now found that cells of renin lineage may link Notch expression and cystic kidney disease. Here, we use our understanding of Notch signaling and PKD to speculate about the significance of these interactions.
Collapse
Affiliation(s)
- Emily A Daniel
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Nicole A Sommer
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| |
Collapse
|
9
|
Dennis MR, Pires PW, Banek CT. Vascular Dysfunction in Polycystic Kidney Disease: A Mini-Review. J Vasc Res 2023; 60:125-136. [PMID: 37536302 PMCID: PMC10947982 DOI: 10.1159/000531647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common hereditary kidney diseases, which is characterized by progressive cyst growth and secondary hypertension. In addition to cystogenesis and renal abnormalities, patients with PKD can develop vascular abnormalities and cardiovascular complications. Progressive cyst growth substantially alters renal structure and culminates into end-stage renal disease. There remains no cure beyond renal transplantation, and treatment options remain largely limited to chronic renal replacement therapy. In addition to end-stage renal disease, patients with PKD also present with hypertension and cardiovascular disease, yet the timing and interactions between the cardiovascular and renal effects of PKD progression are understudied. Here, we review the vascular dysfunction found in clinical and preclinical models of PKD, including the clinical manifestations and relationship to hypertension, stroke, and related cardiovascular diseases. Finally, our discussion also highlights the critical questions and emerging areas in vascular research in PKD.
Collapse
Affiliation(s)
- Melissa R Dennis
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Paulo W Pires
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
10
|
Aitken C, Mehta V, Schwartz MA, Tzima E. Mechanisms of endothelial flow sensing. NATURE CARDIOVASCULAR RESEARCH 2023; 2:517-529. [PMID: 39195881 DOI: 10.1038/s44161-023-00276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 08/29/2024]
Abstract
Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.
Collapse
Affiliation(s)
- Claire Aitken
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vedanta Mehta
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Ellie Tzima
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
Haemmerli J, Morel S, Georges M, Haidar F, Chebib FT, Morita A, Nozaki K, Tominaga T, Bervitskiy AV, Rzaev J, Schaller K, Bijlenga P. Characteristics and Distribution of Intracranial Aneurysms in Patients with Autosomal Dominant Polycystic Kidney Disease Compared with the General Population: A Meta-Analysis. KIDNEY360 2023; 4:e466-e475. [PMID: 36961086 PMCID: PMC10278849 DOI: 10.34067/kid.0000000000000092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/30/2023] [Indexed: 03/25/2023]
Abstract
Key Points IAs location distribution in patients with ADPKD differ from the ones in non-ADPKD patients IAs in patients with ADPKD are more commonly located in the anterior circulation and in large caliber arteries Because of IA multiplicity and singular IA distribution, patients with ADPKD represent a special population who need to be closely followed Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic condition associated with intracranial aneurysms (IAs). The associated pathophysiology remains unknown, but an association with wall shear stress is suspected. Cerebral arterial location is the principal factor influencing IA natural history. This study aims to compare IA location-specific distribution between ADPKD and non-ADPKD patients. Methods The ADPKD group comprised data from a systematic review of the literature (2016–2020, N =7) and three cohorts: integrated biomedical informatics for the management of cerebral aneurysms, Novosibirsk, and Unruptured Cerebral Aneurysms Study. The non-ADPKD group was formed from the integrated biomedical informatics for the management of cerebral aneurysms, Unruptured Cerebral Aneurysms Study, International Stroke Genetics Consortium, and the Finnish cohort from the literature. Patients and IAs characteristics were compared between ADPKD and non-ADPKD groups, and a meta-analysis for IA locations was performed. Results A total of 1184 IAs from patients with ADPKD were compared with 21,040 IAs from non-ADPKD patients. In total, 78.6% of patients with ADPKD had hypertension versus 39.2% of non-ADPKD patients. A total of 32.4% of patients with ADPKD were smokers versus 31.5% of non-ADPKD patients. In total, 30.1% of patients with ADPKD had a positive family history for IA versus 15.8% of the non-ADPKD patients. Patients with ADPKD showed a higher rate of IA multiplicity (33.2% versus 23.1%). IAs from patients with ADPKD showed a significant predominance across the internal carotid and middle cerebral arteries. Posterior communicating IAs were more frequently found in the non-ADPKD group. The meta-analysis confirmed a predominance of IAs in the patients with ADPKD across large caliber arteries (odds ratio [95% confidence interval]: internal carotid artery: 1.90 [1.10 to 3.29]; middle cerebral artery: 1.18 [1.02–1.36]). Small diameter arteries, such as the posterior communicating, were observed more in non-ADPKD patients (0.21 [0.11–0.88]). Conclusion This analysis shows that IAs diagnosed in patients with ADPKD are more often localized in large caliber arteries from the anterior circulation in comparison with IAs in non-ADPKD patients. It shows that primary cilia driven wall shear stress vessel remodeling to be more critical in cerebral anterior circulation large caliber arteries.
Collapse
Affiliation(s)
- Julien Haemmerli
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Georges
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fadi Haidar
- Division of Nephrology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Division of Transplantation, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Akio Morita
- Department of Neurological Surgery, Nippon Medical School, Tokyo, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Anatoliy V. Bervitskiy
- The “Federal Centre of Neurosurgery” of the Ministry of Health of the Russian Federation Novosibirsk, Novosibirsk Region, Novosibirsk, Russia
| | - Jamil Rzaev
- The “Federal Centre of Neurosurgery” of the Ministry of Health of the Russian Federation Novosibirsk, Novosibirsk Region, Novosibirsk, Russia
| | - Karl Schaller
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Bijlenga
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Hypertrophic and fibrotic human PKD hearts are associated with macrophage infiltration and abnormal TGF-β 1 signaling. Cell Tissue Res 2023; 391:189-203. [PMID: 36376769 PMCID: PMC10100231 DOI: 10.1007/s00441-022-03704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Autosomal dominant polycystic kidney disease (PKD) is a hereditary kidney disorder which can affect cardiovascular system. Cardiac hypertrophy and cardiomyopathy in PKD have been reported by echocardiography analyses, but histopathology analyses of human PKD hearts have never been examined. The current studies evaluated human heart tissues from five subjects without PKD (non-PKD) and five subjects with PKD. Our histopathology data of human PKD hearts showed an increased extracellular matrix associated with cardiac hypertrophy and fibrosis. Hypertrophy- and fibrosis-associated pathways involving abnormal cardiac structure were next analyzed. We found that human PKD myocardium was infiltrated by inflammatory macrophage M1 and M2; expression of transforming growth factor (TGF-β1) and its receptor were upregulated with overexpression of pSmad3 and β-catenin. Because patients with PKD have an abnormal kidney function that could potentially affect heart structure, we used a heart-specific PKD mouse model to validate that cardiac hypertrophy and fibrosis were independent from polycystic kidney. In summary, our data show that hearts from human PKD were characterized by hypertrophy, interstitial fibrosis, perivascular fibrosis, and conduction system fibrosis with upregulated TGF-β1 and its receptor. We suggest that such structural abnormalities may predispose to systolic and diastolic cardiac dysfunction in the PKD myocardium.
Collapse
|
13
|
Evidence of retinal arteriolar narrowing in patients with autosomal-dominant polycystic kidney disease. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction
The aim of this study was to examine retinal vessels in autosomal dominant polycystic kidney disease (ADPKD) patients with normal kidney function and without diabetes mellitus.
Materials and Methods
We enrolled 39 adult individuals with ADPKD and 45 gender- and age-matched individuals as controls. A full ophthalmologic examination, including retinal vessel caliber and reactions to flicker stimulation analysis and grading of hypertensive retinopathy according to the Keith-Wagener classification, was performed.
Results
Multivariable analysis of ADPKD patients and controls, adjusted for age, gender, estimated glomerular filtration rate (e-GFR) and the presence of hypertension, revealed that ADPKD was an independent factor associated with lower arteriovenous ratio (AVR) values (by 0.069 on average, β = −0.50, p < 0.0001). The severity of hypertensive retinopathy according to the Keith-Wagener classification appeared to be more advanced in the ADPKD group than in the controls, despite the lack of vascular abnormalities, such as retinal hemorrhages, exudates, cotton wool spots or papilledema, as well as microaneurysms, which are very characteristic signs of ADPKD in other vascular beds.
Conclusions
Lower AVR values could be a specific pathophysiological ocular manifestation of systemic vasculopathy in the course of ADPKD.
Collapse
|
14
|
A Spontaneous Extracranial Internal Carotid Artery Dissection with Autosomal Dominant Polycystic Kidney Disease: A Case Report and Literature Review. Medicina (B Aires) 2022; 58:medicina58050679. [PMID: 35630097 PMCID: PMC9143914 DOI: 10.3390/medicina58050679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Objectives: Non-cystic manifestation of autosomal dominant polycystic kidney disease (ADPKD) is an important risk factor for cerebral aneurysms. In this report, we describe a rare spontaneous internal carotid artery (ICA) dissection in a patient with ADPKD. Observations: A 38-year-old woman with a history of ADPKD and acute myocardial infarction due to coronary artery dissection experienced severe spontaneous pain on the left side of her neck. Magnetic resonance imaging (MRI) revealed a severe left ICA stenosis localized at its origin. Carotid plaque MRI showed that the stenotic lesion was due to a subacute intramural hematoma. Close follow-up by an imaging study was performed under the diagnosis of spontaneous extracranial ICA dissection, and spontaneous regression of the intramural hematoma was observed uneventfully. Conclusions: When patients with a history of ADPKD present with severe neck pain, it is crucial to consider the possibility of a spontaneous ICA dissection. A carotid plaque MRI is beneficial in the differential diagnosis. Conservative management may benefit patients without ischemic symptoms.
Collapse
|
15
|
Evidence of retinal arteriolar narrowing in patients with autosomal-dominant polycystic kidney disease. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
The aim of this study was to examine retinal vessels in autosomal dominant polycystic kidney disease (ADPKD) patients with normal kidney function and without diabetes mellitus.
Materials and Methods
We enrolled 39 adult individuals with ADPKD and 45 gender- and age-matched individuals as controls. A full ophthalmologic examination, including retinal vessel caliber and reactions to flicker stimulation analysis and grading of hypertensive retinopathy according to the Keith-Wagener classification, was performed.
Results
Multivariable analysis of ADPKD patients and controls, adjusted for age, gender, estimated glomerular filtration rate (e-GFR) and the presence of hypertension, revealed that ADPKD was an independent factor associated with lower arteriovenous ratio (AVR) values (by 0.069 on average, β = −0.50, p < 0.0001). The severity of hypertensive retinopathy according to the Keith-Wagener classification appeared to be more advanced in the ADPKD group than in the controls, despite the lack of vascular abnormalities, such as retinal hemorrhages, exudates, cotton wool spots or papilledema, as well as microaneurysms, which are very characteristic signs of ADPKD in other vascular beds.
Conclusions
Lower AVR values could be a specific pathophysiological ocular manifestation of systemic vasculopathy in the course of ADPKD.
Collapse
|
16
|
Lefèvre S, Audrézet MP, Halimi JM, Longuet H, Bridoux F, Ecotière L, Augusto JF, Duveau A, Renaudineau E, Vigneau C, Frouget T, Charasse C, Gueguen L, Perrichot R, Couvrat G, Seret G. Diagnosis and Risk Factors for Intracranial Aneurysms in Autosomal Polycystic Kidney Disease: A cross-sectional study from the Genkyst Cohort. Nephrol Dial Transplant 2022; 37:2223-2233. [PMID: 35108395 DOI: 10.1093/ndt/gfac027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is associated with an increased risk for developing intracranial aneurysms (IAs). We aimed to evaluate the frequency of diagnosis of IAs in the cross-sectional, population-based, Genkyst cohort, to describe ADPKD-associated IAs and to analyze the risk factors associated with the occurrence of IAs in ADPKD patients. METHODS Cross-sectional study performed in 26 nephrology centers from the Western part of France. All patients underwent genetic testing for PKD1/PKD2 and other cystogenes. RESULTS Among the 2449 Genkyst participants, 114 (4.65%) had a previous diagnosis of ruptured or unruptured IAs at inclusion, and ∼47% of them had a positive familial history for IAs. Most aneurysms were small and saccular and located in the anterior circulation; 26.3% of the patients had multiple IAs. The cumulative probabilities of a previous diagnosis of IAs were 3.9, 6.2 and 8.1% at 50, 60 and 70 y, respectively. While this risk appeared to be similar in male and female individuals <50 y, after that age, the risk continued to increase more markedly in female patients, reaching 10.8% vs 5.4% at 70 y. The diagnosis rate of IAs was more than twofold higher in PKD1 compared to PKD2 with no influence of PKD1 mutation type or location. In multivariate analysis, female sex, hypertension <35 y, smoking and PKD1 genotype were associated with an increased risk for diagnosis of IAs. CONCLUSIONS This study presents epidemiological data reflecting real-life clinical practice. The increased risk for IAs in postmenopausal women suggests a possible protective role of estrogen.
Collapse
Affiliation(s)
- Siriane Lefèvre
- Service de Néphrologie, Hémodialyse et Transplantation rénale, CHRU Brest, Brest 29609, France.,Univ Brest, Inserm, UMR 1078, GGB, Brest, France
| | - Marie-Pierre Audrézet
- Univ Brest, Inserm, UMR 1078, GGB, Brest, France.,Service de génétique moléculaire, CHRU Brest, Brest, France
| | - Jean-Michel Halimi
- Service de Néphrologie-HTA, dialyses, transplantation rénale, Centre Hospitalier Universitaire de Tours, Tours, France.,Université de Tours, Tours, France
| | - Hélène Longuet
- Service de Néphrologie-HTA, dialyses, transplantation rénale, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Frank Bridoux
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Laure Ecotière
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-François Augusto
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Angers, Angers, France
| | - Agnès Duveau
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Angers, Angers, France
| | - Eric Renaudineau
- Service de Néphrologie, Centre hospitalier Broussais, Saint-Malo, France
| | - Cécile Vigneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | | - Christophe Charasse
- Service de Néphrologie, Centre Hospitalier Yves Le Foll, Saint Brieuc, France
| | - Lorraine Gueguen
- Service de Néphrologie, Centre Hospitalier de Cornouaille, Quimper, France
| | - Régine Perrichot
- Service de Néphrologie, Centre Hospitalier de Bretagne Atlantique, Vannes, France
| | - Grégoire Couvrat
- Service de Néphrologie, Centre Hospitalier Départemental Vendée, La Roche sur Yon, France
| | | | | |
Collapse
|
17
|
Repeated aortic dissection in a patient with autosomal dominant polycystic kidney disease. Gen Thorac Cardiovasc Surg 2022; 70:390-393. [PMID: 35013986 DOI: 10.1007/s11748-021-01756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
Autosomal dominant polycystic kidney disease is a systemic disorder associated with cardiovascular complications. However, there are few reports on autosomal dominant polycystic kidney disease-associated aortic dissection. Herein, we present a rare case of a 46-year-old man with autosomal dominant polycystic kidney disease who underwent endovascular repair for acute type B aortic dissection three years after his initial open surgery for acute type A aortic dissection. The postoperative course was uneventful, and he is doing well two years after the endovascular repair. Clinicians should be aware of the potential for occurrence of aortic dissection in patients with autosomal dominant polycystic kidney disease, including the possibility of recurrence.
Collapse
|
18
|
Chedid M, Hanna C, Zaatari G, Mkhaimer Y, Reddy P, Rangel L, Zubidat D, Kaidbay DHN, Irazabal MV, Connolly HM, Senum SR, Madsen CD, Hogan MC, Zoghby Z, Harris PC, Torres VE, Johnson JN, Chebib FT. Congenital Heart Disease in Adults with Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol 2022; 53:316-324. [PMID: 35313307 PMCID: PMC9832580 DOI: 10.1159/000522377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/30/2022] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Autosomal dominant polycystic kidney disease (ADPKD) is caused mainly by pathogenic variants in PKD1 or PKD2 encoding the polycystin-1 and -2 proteins. Polycystins have shown to have an essential role in cardiac development and function in animal models. In the current study, we describe the clinical association between ADPKD and congenital heart disease (CHD). METHODS Medical records from Mayo Clinic were queried for all patients with confirmed ADPKD and CHD between 1993 and 2020. CHD was categorized into left-to-right shunt, obstructive, and complex lesions. Patent foramen ovale, mitral valve prolapse, and bicuspid aortic valve anomalies were excluded. RESULTS Twenty-five out of 1,359 (1.84%) ADPKD patients were identified to have CHD. Of these, 84% were Caucasians and 44% were males. The median (Q1-Q3) age (years) at CHD diagnosis was 12.0 (2.0-43.5). Fourteen patients (56%) had left-to-right shunt lesions, 6 (24%) had obstructive lesions and 5 (20%) complex lesions. Seventeen patients (68%) had their defects surgically corrected at a median age (Q1-Q3) of 5.5 (2.0-24.7). Among 13 patients with available genetic testing, 12 (92.3%) had PKD1 pathogenic variants, and none had PKD2. The median (Q1-Q3) age at last follow-up visit was 47.0 (32.0-62.0) and median (Q1-Q3) eGFR was 35.8 (11.4-79.0) mL/min/1.73 m2. Three patients (12%) died; all of them had left-to-right shunt lesions. DISCUSSION/CONCLUSION We observed a higher CHD frequency in ADPKD than the general population (1.84 vs. 0.4%). While only PKD1 pathogenic variants were identified in this cohort, further studies are needed to confirm this novel finding and understand the role of polycystins in the development of the heart and vessels.
Collapse
Affiliation(s)
- Maroun Chedid
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christian Hanna
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA,Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ghaith Zaatari
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yaman Mkhaimer
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Prajwal Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Laureano Rangel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Dalia Zubidat
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Maria V. Irazabal
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Heidi M. Connolly
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah R. Senum
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charles D. Madsen
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marie C. Hogan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ziad Zoghby
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonathan N. Johnson
- Division of Pediatric Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
PKD1-Associated Arachnoid Cysts in Autosomal Dominant Polycystic Kidney Disease. J Stroke Cerebrovasc Dis 2021; 30:105943. [PMID: 34175641 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES the prevalence of intracranial aneurysms and arachnoid cysts is higher in patients with autosomal dominant polycystic kidney disease (ADPKD) than in the general population. A genotype correlation was reported for intracranial aneurysms, but it is unclear for arachnoid cysts. Therefore, the genotype correlation with intracranial aneurysms and arachnoid cysts was investigated in ADPKD. MATERIALS AND METHODS intracranial aneurysms and arachnoid cysts were screened by magnetic resonance imaging (MRI), and PKD genotypes were examined using next-generation sequencing for 169 patients with ADPKD. RESULTS PKD1-, PKD2- and no-mutation were identified in 137, 24 and 8 patients, respectively. Intracranial aneurysms and arachnoid cysts were found in 34 and 25 patients, respectively, with no significant difference in frequency. Genotype, sex, estimated glomerular filtration rate and age at ADPKD diagnosis significantly affected the age at brain MRI. The proportional hazard risk analyzed using the age at brain MRI adjusted by these four variables was 5.0-times higher in the PKD1 group than in the PKD2 group for arachnoid cysts (P = 0.0357), but it was not different for intracranial aneurysms (P = 0.1605). Arachnoid cysts were diagnosed earlier in the PKD1 group than in the PKD2 group (54.8 vs 67.7 years, P = 0.0231), but no difference was found for intracranial aneurysms (P = 0.4738) by Kaplan-Meier analysis. CONCLUSIONS this study demonstrated the correlation between arachnoid cysts and PKD1 mutation. The reported association of arachnoid cysts with advanced renal disease may be due to the common correlation of these factors with PKD1 mutation.
Collapse
|
20
|
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton (Hoboken) 2021; 78:217-231. [PMID: 33543538 DOI: 10.1002/cm.21652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Responses of vascular and lymphatic endothelial cells (ECs) to fluid shear stress (FSS) from blood or lymphatic fluid flow govern the development, physiology, and diseases of these structures. Extensive research has characterized the signaling, gene expression and cytoskeletal pathways that mediate effects on EC phenotype and vascular morphogenesis. But the primary mechanisms by which ECs transduce the weak forces from flow into biochemical signals are less well understood. This review covers recent advances in our understanding of the immediate mechanisms of FSS mechanotransduction, integrating results from different disciplines, addressing their roles in development, physiology and disease, and suggesting important questions for future work.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale University, New Haven, Connecticut, USA.,Department of Biomedical engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Theodorakopoulou M, Raptis V, Loutradis C, Sarafidis P. Hypoxia and Endothelial Dysfunction in Autosomal-Dominant Polycystic Kidney Disease. Semin Nephrol 2020; 39:599-612. [PMID: 31836042 DOI: 10.1016/j.semnephrol.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited kidney disease, characterized by growth of bilateral renal cysts, hypertension, and multiple extrarenal complications that eventually can lead to renal failure. It is caused by mutations in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Over the past few years, studies investigating the role of primary cilia and polycystins, present not only on the surface of renal tubular cells but also on vascular endothelial cells, have advanced our understanding of the pathogenesis of ADPKD and have shown that mechanisms other than cyst formation also contribute to renal functional decline in this disease. Among them, increased oxidative stress, endothelial dysfunction, and hypoxia may play central roles because they occur early in the disease process and precede the onset of hypertension and renal functional decline. Endothelial dysfunction is linked to higher asymmetric dimethylarginine levels and reduced nitric oxide bioavailability, which would cause regional vasoconstriction and impaired renal blood flow. The resulting hypoxia would increase the levels of hypoxia-inducible-transcription factor 1α and other angiogenetic factors, which, in turn, may drive cyst growth. In this review, we summarize the existing evidence for roles of endothelial dysfunction, oxidative stress, and hypoxia in the pathogenesis of ADPKD.
Collapse
Affiliation(s)
- Marieta Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Raptis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece..
| |
Collapse
|
23
|
Ma N, Zhou J. Functions of Endothelial Cilia in the Regulation of Vascular Barriers. Front Cell Dev Biol 2020; 8:626. [PMID: 32733899 PMCID: PMC7363763 DOI: 10.3389/fcell.2020.00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The vascular barrier between blood and tissues is a highly selective structure that is essential to maintain tissue homeostasis. Defects in the vascular barrier lead to a variety of cardiovascular diseases. The maintenance of vascular barriers is largely dependent on endothelial cells, but the precise mechanisms remain elusive. Recent studies reveal that primary cilia, microtubule-based structures that protrude from the surface of endothelial cells, play a critical role in the regulation of vascular barriers. Herein, we discuss recent advances on ciliary functions in the vascular barrier and suggest that ciliary signaling pathways might be targeted to modulate the vascular barrier.
Collapse
Affiliation(s)
- Nan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Molecular pathways involved in injury-repair and ADPKD progression. Cell Signal 2020; 72:109648. [PMID: 32320858 DOI: 10.1016/j.cellsig.2020.109648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
The major hallmark of Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the formation of many fluid-filled cysts in the kidneys, which ultimately impairs the normal renal structure and function, leading to end-stage renal disease (ESRD). A large body of evidence suggests that injury-repair mechanisms are part of ADPKD progression. Once cysts have been formed, proliferation and fluid secretion contribute to the cyst size increase, which eventually causes stress on the surrounding tissue resulting in local injury and fibrosis. In addition, renal injury can cause or accelerate cyst formation. In this review, we will describe the various mechanisms activated during renal injury and tissue repair and show how they largely overlap with the molecular mechanisms activated during PKD progression. In particular, we will discuss molecular mechanisms such as proliferation, inflammation, cell differentiation, cytokines and growth factors secretion, which are activated following the renal injury to allow the remodelling of the tissue and a proper organ repair. We will also underline how, in a context of PKD-related gene mutations, aberrant or chronic activation of these developmental pathways and repair/remodelling mechanisms results in exacerbation of the disease.
Collapse
|
25
|
Etiology and impact on outcomes of polycystic kidney disease in abdominal aortic aneurysm. Surg Today 2020; 50:1213-1222. [PMID: 32253513 DOI: 10.1007/s00595-020-01997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We investigated the etiology and impact on outcomes of polycystic kidney disease in patients with abdominal aortic aneurysm. METHODS Eight-hundred patients who underwent open (n = 603) or endovascular aortic repair (n = 197) were divided into three groups: no cyst (n = 204), non-polycystic kidney (n = 503), and polycystic kidney (≥ 5 cysts in the bilateral kidneys, n = 93). The characteristics and outcomes were compared among the groups. RESULTS In the polycystic kidney group, the age was increased and the proportions of patients with male sex, hypertension, and estimated glomerular filtration rate < 30 mL/min/1.73 m2 were greater. The overall hospital mortality rates were similar. The incidence of acute kidney injury after elective open aortic repair was increased in the polycystic kidney group (12%, 17%, and 29%, P = 0.020). In the polycystic kidney group, 80 patients did not have renal enlargement or a family history of renal disease, while 13 (corresponding to 1.6% [13/800] of the overall patients), had renal enlargement, suggesting the possibility of hereditary polycystic kidney disease. CONCLUSIONS In our cohort, 1.6% of the patients with abdominal aortic aneurysm who underwent surgery were at risk of hereditary polycystic kidney disease. Polycystic kidney disease was associated with acute kidney injury after open aortic repair.
Collapse
|
26
|
Ta CM, Vien TN, Ng LCT, DeCaen PG. Structure and function of polycystin channels in primary cilia. Cell Signal 2020; 72:109626. [PMID: 32251715 DOI: 10.1016/j.cellsig.2020.109626] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Variants in genes which encode for polycystin-1 and polycystin-2 cause most forms of autosomal dominant polycystic disease (ADPKD). Despite our strong understanding of the genetic determinants of ADPKD, we do not understand the structural features which govern the function of polycystins at the molecular level, nor do we understand the impact of most disease-causing variants on the conformational state of these proteins. These questions have remained elusive because polycystins localize to several organelle membranes, including the primary cilia. Primary cilia are microtubule based organelles which function as cellular antennae. Polycystin-2 and related polycystin-2 L1 are members of the transient receptor potential (TRP) ion channel family, and form distinct ion channels in the primary cilia of disparate cell types which can be directly measured. Polycystin-1 has both ion channel and adhesion G-protein coupled receptor (GPCR) features-but its role in forming a channel complex or as a channel subunit chaperone is undetermined. Nonetheless, recent polycystin structural determination by cryo-EM has provided a molecular template to understand their biophysical regulation and the impact of disease-causing variants. We will review these advances and discuss hypotheses regarding the regulation of polycystin channel opening by their structural domains within the context of the primary cilia.
Collapse
Affiliation(s)
- Chau My Ta
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, IL 60611, USA
| | - Thuy N Vien
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, IL 60611, USA
| | - Leo C T Ng
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, IL 60611, USA
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Wilkinson DA, Heung M, Deol A, Chaudhary N, Gemmete JJ, Thompson BG, Pandey AS. Cerebral Aneurysms in Autosomal Dominant Polycystic Kidney Disease: A Comparison of Management Approaches. Neurosurgery 2020; 84:E352-E361. [PMID: 30060240 DOI: 10.1093/neuros/nyy336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/23/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a risk factor for formation of intracranial aneurysms (IAs), though the ideal screening and treatment strategies in this population are unclear. OBJECTIVE To report outcomes of observation, open surgical, or endovascular management of ruptured and unruptured aneurysms in patients with ADPKD. METHODS We performed a retrospective analysis of all patients with ADPKD and IAs at a single center from 2000 to 2016. RESULTS Forty-five patients with ADPKD harboring 71 aneurysms were identified, including 11 patients with subarachnoid hemorrhage (SAH). Of 22 aneurysms managed with observation, none ruptured in 136 yr of clinical follow-up. Thirty-five aneurysms were treated with open surgery and 14 with an endovascular approach. Among treated aneurysms, poor neurologic outcome (modified Rankin scale >2) was seen only in patients presenting with SAH (17% SAH vs 0% elective, P = .06). Acute kidney injury (AKI) was also significantly associated with SAH presentation (22% SAH vs 0% elective, P = .05). Neither procedural complications nor AKI were associated with treatment modality. Among 175 yr of radiographic follow-up in patients with known IAs, 8 de novo aneurysms were found, including 3 that were treated. Of 11 patients with SAH, 7 ruptured in the setting of previously known ADPKD, including 2 with prior angiographic screening and 5 without screening. CONCLUSION Poor outcomes occurred only with ruptured presentation but were equivalent between treatment modalities. Screening is performed only selectively, and 64% (7 of 11) of patients presenting with SAH had previously known ADPKD.
Collapse
Affiliation(s)
| | - Michael Heung
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Amrit Deol
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Joseph J Gemmete
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Perretta-Tejedor N, Jafree DJ, Long DA. Endothelial-epithelial communication in polycystic kidney disease: Role of vascular endothelial growth factor signalling. Cell Signal 2020; 72:109624. [PMID: 32243961 DOI: 10.1016/j.cellsig.2020.109624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Whereas targeting the cyst epithelium and its molecular machinery has been the prevailing clinical strategy for polycystic kidney disease, the endothelium, including blood vasculature and lymphatics, is emerging as an important player in this disorder. In this Review, we provide an overview of the structural and functional alterations to blood vasculature and lymphatic vessels in the polycystic kidney. We also discuss evidence for vascular endothelial growth factor signalling, otherwise critical for endothelial cell development and maintenance, as being a fundamental molecular pathway in polycystic kidney disease and a potential therapeutic target for modulating cyst expansion.
Collapse
Affiliation(s)
- Nuria Perretta-Tejedor
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
29
|
Massa F, Tammaro R, Prado MA, Cesana M, Lee BH, Finley D, Franco B, Morleo M. The deubiquitinating enzyme Usp14 controls ciliogenesis and Hedgehog signaling. Hum Mol Genet 2020; 28:764-777. [PMID: 30388222 DOI: 10.1093/hmg/ddy380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are hair-like organelles that play crucial roles in vertebrate development, organogenesis and when dysfunctional result in pleiotropic human genetic disorders called ciliopathies, characterized by overlapping phenotypes, such as renal and hepatic cysts, skeletal defects, retinal degeneration and central nervous system malformations. Primary cilia act as communication hubs to transfer extracellular signals into intracellular responses and are essential for Hedgehog (Hh) signal transduction in mammals. Despite the renewed interest in this ancient organelle of growing biomedical importance, the molecular mechanisms that trigger cilia formation, extension and ciliary signal transduction are still not fully understood. Here we provide, for the first time, evidence that the deubiquitinase ubiquitin-specific protease-14 (Usp14), a major regulator of the ubiquitin proteasome system (UPS), controls ciliogenesis, cilia elongation and Hh signal transduction. Moreover, we show that pharmacological inhibition of Usp14 positively affects Hh signal transduction in a model of autosomal dominant polycystic kidney disease. These findings provide new insight into the spectrum of action of UPS in cilia biology and may provide novel opportunities for therapeutic intervention in human conditions associated with ciliary dysfunction.
Collapse
Affiliation(s)
- Filomena Massa
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Byung-Hoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy.,Medical Genetics, Department of Translational Medicine, University of Naples Federico II, Via Sergio Pansini 5, Naples, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy.,Medical Genetics, Department of Translational Medicine, University of Naples Federico II, Via Sergio Pansini 5, Naples, Italy
| |
Collapse
|
30
|
Lee TL, Chen CF, Tan AC, Chan CH, Ou SM, Chen FY, Yu KW, Chen YT, Lin CC. Prognosis of Vascular Access in Haemodialysis Patients with Autosomal Dominant Polycystic Kidney Disease. Sci Rep 2020; 10:1985. [PMID: 32029758 PMCID: PMC7004976 DOI: 10.1038/s41598-020-58441-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
Vascular diseases are commonly observed in patients with autosomal dominant polycystic kidney disease (ADPKD). We aim to investigate the differences in the risk for arteriovenous fistula or graft (AVF/AVG) dysfunction in haemodialysis (HD) patients with and without ADPKD. 557 ADPKD and 1671 non-ADPKD patients were enrolled in the study after propensity score matching. The primary outcome measure is the incidence rate of AVF/AVG dysfunction. The incidence rates and risks of AVF/AVG dysfunction (per 100 person-years) for ADPKD and non-ADPKD patients were (1) 38.83 and 48.99 [SHR = 0.79, P = 0.137], respectively, for within 90 days, (2) 45.85 and 51.31 [SHR = 0.90, P = 0.300], respectively, for within 180 days, (3) 44.42 and 41.40 [SHR = 1.08, P = 0.361], respectively, for within the first year, (4) 27.38 and 24.69 [SHR = 1.09, P = 0.168], respectively, for within 5 years, (5) 17.35 and 13.80 [SHR = 1.19, P = 0.045], respectively, for between the 1st and 10th year, and (6) 25.40 and 21.22 [SHR = 1.14, P = 0.031], respectively, for all periods. ADPKD patients had lower incidence rates of AVF/AVG dysfunction within the first 180 days than non-ADPKD patients, but presented a higher incidence rate after 1 year of AVF/AVG creation and onwards.
Collapse
Affiliation(s)
- Tsung-Lun Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nephrology, Fooyin University Hospital, Pingtung, Taiwan
| | - Chun-Fan Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Ann Charis Tan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Hao Chan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuo-Ming Ou
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fan-Yu Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ko-Wen Yu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Tai Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Division of Nephrology, Department of Internal Medicine, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan.
| | - Chih-Ching Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
31
|
Ciliary exclusion of Polycystin-2 promotes kidney cystogenesis in an autosomal dominant polycystic kidney disease model. Nat Commun 2019; 10:4072. [PMID: 31492868 PMCID: PMC6731238 DOI: 10.1038/s41467-019-12067-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
The human PKD2 locus encodes Polycystin-2 (PC2), a TRPP channel that localises to several distinct cellular compartments, including the cilium. PKD2 mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD) and affect many cellular pathways. Data underlining the importance of ciliary PC2 localisation in preventing PKD are limited because PC2 function is ablated throughout the cell in existing model systems. Here, we dissect the ciliary role of PC2 by analysing mice carrying a non-ciliary localising, yet channel-functional, PC2 mutation. Mutants develop embryonic renal cysts that appear indistinguishable from mice completely lacking PC2. Despite not entering the cilium in mutant cells, mutant PC2 accumulates at the ciliary base, forming a ring pattern consistent with distal appendage localisation. This suggests a two-step model of ciliary entry; PC2 first traffics to the cilium base before TOP domain dependent entry. Our results suggest that PC2 localisation to the cilium is necessary to prevent PKD. The molecular role of ciliary Polycystin-2 (PC2) in cyst formation and polycystic kidney disease (ADKPD) is unclear. Here, the authors identify a PC2 mutant lacking ciliary localisation but with active Ca2+ channel function in mice, that is sufficient to generate an ADPKD phenotype.
Collapse
|
32
|
Pkd1-targeted mutation reveals a role for the Wolffian duct in autosomal dominant polycystic kidney disease. J Dev Orig Health Dis 2019; 11:78-85. [PMID: 31412963 DOI: 10.1017/s2040174419000436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several life-threatening diseases of the kidney have their origins in mutational events that occur during embryonic development. In this study, we investigate the role of the Wolffian duct (WD), the earliest embryonic epithelial progenitor of renal tubules, in the etiology of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is associated with a germline mutation of one of the two Pkd1 alleles. For the disease to occur, a second event that disrupts the expression of the other inherited Pkd1 allele must occur. We postulated that this secondary event can occur in the pronephric WD. Using Cre-Lox recombination, mice with WD-specific deletion of one or both Pkd1 alleles were generated. Homozygous Pkd1-targeted deletion in WD-derived tissues resulted in mice with large cystic kidneys and serologic evidence of renal failure. In contrast, heterozygous deletion of Pkd1 in the WD led to kidneys that were phenotypically indistinguishable from control in the early postnatal period. High-throughput sequencing, however, revealed underlying gene and microRNA (miRNA) changes in these heterozygous mutant kidneys that suggest a strong predisposition toward developing ADPKD. Bioinformatic analysis of this data demonstrated an upregulation of several miRNAs that have been previously associated with PKD; pathway analysis further demonstrated that the differentially expressed genes in the heterozygous mutant kidneys were overrepresented in signaling pathways associated with maintenance and function of the renal tubular epithelium. These results suggest that the WD may be an early epithelial target for the genetic or molecular signals that can lead to cyst formation in ADPKD.
Collapse
|
33
|
Sorenson TJ, Brinjikji W, Jagani M, Wald JT, Lanzino G. Aneurysm morphology in patients with autosomal dominant polycystic kidney disease: A case-control study. J Clin Neurosci 2019; 69:220-223. [PMID: 31371190 DOI: 10.1016/j.jocn.2019.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Approximately 8% of patients with autosomal dominant polycystic kidney disease (ADPKD) develop intracranial aneurysms. The reason for development of intracranial aneurysms in ADPKD patients might be related to interactions between the presence of hypertension and the basic mechanism underlying the disease, which leads to weakness of the connective tissue. In this study, we aimed to identify differences in aneurysm morphology between ADPKD patients and a location-matched set of controls. METHODS A total of 42 ADPKD patients and 49 control patients with 122 aneurysms were included. Aneurysm size, location, and morphology were evaluated by two neuroradiologists. Aneurysm morphology was classified into one of three groups: regular saccular, irregular saccular, and fusiform. Continuous variables were compared with chi-squared tests and categorical variables were compared with student's t-test. RESULTS When considering all patients, there was no significant difference in aneurysm morphology or size (4.5 ± 2.6 mm vs 5.4 ± 2.9 mm; p = 0.09) between the ADPKD and control group. In a subgroup analysis of medium and large aneurysms (n = 61), there was a significantly lower incidence of regular saccular aneurysms (28% vs. 56%; p = 0.03) and higher incidence of fusiform aneurysms (12% vs 0%; p = 0.03) in the ADPKD group compared to a control group. CONCLUSION When excluding categorically "small" aneurysms, there is a reduced incidence of regular saccular aneurysms and increased incidence of fusiform aneurysms in ADPKD patients compared to a control group. Further study of this population of patients is warranted to better understand their risks of aneurysm rupture and indications for treatment.
Collapse
Affiliation(s)
- Thomas J Sorenson
- School of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Manoj Jagani
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - John T Wald
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Giuseppe Lanzino
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
34
|
Salah SM, Meisenheimer JD, Rao R, Peda JD, Wallace DP, Foster D, Li X, Li X, Zhou X, Vallejo JA, Wacker MJ, Fields TA, Swenson-Fields KI. MCP-1 promotes detrimental cardiac physiology, pulmonary edema, and death in the cpk model of polycystic kidney disease. Am J Physiol Renal Physiol 2019; 317:F343-F360. [PMID: 31091126 PMCID: PMC6732452 DOI: 10.1152/ajprenal.00240.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023] Open
Abstract
Polycystic kidney disease (PKD) is characterized by slowly expanding renal cysts that damage the kidney, typically resulting in renal failure by the fifth decade. The most common cause of death in these patients, however, is cardiovascular disease. Expanding cysts in PKD induce chronic kidney injury that is accompanied by immune cell infiltration, including macrophages, which we and others have shown can promote disease progression in PKD mouse models. Here, we show that monocyte chemoattractant protein-1 [MCP-1/chemokine (C-C motif) ligand 2 (CCL2)] is responsible for the majority of monocyte chemoattractant activity produced by renal PKD cells from both mice and humans. To test whether the absence of MCP-1 lowers renal macrophage concentration and slows disease progression, we generated genetic knockout (KO) of MCP-1 in a mouse model of PKD [congenital polycystic kidney (cpk) mice]. Cpk mice are born with rapidly expanding renal cysts, accompanied by a decline in kidney function and death by postnatal day 21. Here, we report that KO of MCP-1 in these mice increased survival, with some mice living past 3 mo. Surprisingly, however, there was no significant difference in renal macrophage concentration, nor was there improvement in cystic disease or kidney function. Examination of mice revealed cardiac hypertrophy in cpk mice, and measurement of cardiac electrical activity via ECG revealed repolarization abnormalities. MCP-1 KO did not affect the number of cardiac macrophages, nor did it alleviate the cardiac aberrancies. However, MCP-1 KO did prevent the development of pulmonary edema, which occurred in cpk mice, and promoted decreased resting heart rate and increased heart rate variability in both cpk and noncystic mice. These data suggest that in this mouse model of PKD, MCP-1 altered cardiac/pulmonary function and promoted death outside of its role as a macrophage chemoattractant.
Collapse
Affiliation(s)
- Sally M Salah
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - James D Meisenheimer
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Reena Rao
- Department of Internal Medicine-Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jacqueline D Peda
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Department of Internal Medicine-Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Dawson Foster
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaogang Li
- Department of Internal Medicine-Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaoyan Li
- Department of Internal Medicine-Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Xia Zhou
- Department of Internal Medicine-Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Julian A Vallejo
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Katherine I Swenson-Fields
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
35
|
Tajhya R, Delling M. New insights into ion channel-dependent signalling during left-right patterning. J Physiol 2019; 598:1741-1752. [PMID: 31106399 DOI: 10.1113/jp277835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
The left-right organizer (LRO) in the mouse consists of pit cells within the depression, located at the end of the developing notochord, also known as the embryonic node and crown cells lining the outer periphery of the node. Cilia on pit cells are posteriorly tilted, rotate clockwise and generate leftward fluid flow. Primary cilia on crown cells are required to interpret the directionality of fluid movement and initiate flow-dependent gene transcription. Crown cells express PC1-L1 and PC2, which may form a heteromeric polycystin channel complex on primary cilia. It is still only poorly understood how fluid flow activates the ciliary polycystin complex. Besides polycystin channels voltage gated channels like HCN4 and KCNQ1 have been implicated in establishing asymmetry. How this electrical network of ion channels initiates left-sided signalling cascades and differential gene expression is currently only poorly defined.
Collapse
Affiliation(s)
- Rajeev Tajhya
- Department of Physiology, University of California, 1550 4th Street, San Francisco, CA, 94518, USA
| | - Markus Delling
- Department of Physiology, University of California, 1550 4th Street, San Francisco, CA, 94518, USA
| |
Collapse
|
36
|
Paul P, Ramachandran S, Xia S, Unruh JR, Conkright-Fincham J, Li R. Dopamine receptor antagonists as potential therapeutic agents for ADPKD. PLoS One 2019; 14:e0216220. [PMID: 31059522 PMCID: PMC6502331 DOI: 10.1371/journal.pone.0216220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused mostly by mutations in polycystin-1 or polycystin-2. Fluid flow leads to polycystin-dependent calcium influx and nuclear export of histone deacetylase 5 (HDAC5), which facilitates the maintenance of renal epithelial architecture by de-repression of MEF2C target genes. Here, we screened a small-molecule library to find drugs that promotes nuclear export of HDAC5. We found that dopamine receptor antagonists, domperidone and loxapine succinate, stimulate export of HDAC5, even in Pkd1–/–cells. Domperidone targets Drd3 receptor to modulate the phosphorylation of HDAC5. Domperidone treatment increases HDAC5 phosphorylation likely by reducing protein phosphatase 2A (PP2A) activity, thus shifting the equilibrium towards HDAC5-P and export from the nucleus. Treating Pkd1–/–mice with domperidone showed significantly reduced cystic growth and cell proliferation. Further, treated mice displayed a reduction in glomerular cyst and increased body weight and activity. These results suggest that HDAC5 nucleocytoplasmic shuttling may be modulated to impede disease progression in ADPKD and uncovers an unexpected role for a class of dopamine receptors in renal epithelial morphogenesis.
Collapse
Affiliation(s)
- Parama Paul
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Sreekumar Ramachandran
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheng Xia
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
| | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | | | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- * E-mail:
| |
Collapse
|
37
|
Gargalionis AN, Basdra EK, Papavassiliou AG. Polycystins in disease mechanobiology. J Cell Biochem 2019; 120:6894-6898. [PMID: 30461048 DOI: 10.1002/jcb.28127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Distorted mechanotransduction represents the molecular hallmark of disease mechanobiology and is displayed with common features during the development of various pathophysiologies. Polycystins constitute a family of mechanosensitive proteins that facilitate pathogenic signal transduction mechanisms. The main representatives of the family are polycystin-1 (PC1) and polycystin-2 (PC2), which function as a mechano-induced membrane receptor and a calcium-permeable ion channel, respectively. PC1 and PC2 mediate extracellular mechanical stimulation, induce intracellular molecular signaling and evoke corresponding gene transcription. Recent reports reveal that polycystin-mediated signaling does not occur in polycystic kidney disease only, where it is most prominently studied. It is also present during the development of clinical entities such as endothelial dysfunction and atheromatosis, deregulation of osteoblast differentiation, cancer development, and psoriasis. In this study, we highlight emerging data that support the overall contribution of polycystins to disease mechanobiology and suggest further exploration of this protein family in diseases generated from force-bearing tissue structures.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish. Nat Commun 2019; 10:1839. [PMID: 31015398 PMCID: PMC6478842 DOI: 10.1038/s41467-019-09403-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are capable of producing all mature blood lineages, as well as maintaining the self-renewal ability throughout life. The hairy-like organelle, cilium, is present in most types of vertebrate cells, and plays important roles in various biological processes. However, it is unclear whether and how cilia regulate HSPC development in vertebrates. Here, we show that cilia-specific genes, involved in primary cilia formation and function, are required for HSPC development, especially in hemogenic endothelium (HE) specification in zebrafish embryos. Blocking primary cilia formation or function by genetic or chemical manipulations impairs HSPC development. Mechanistically, we uncover that primary cilia in endothelial cells transduce Notch signal to the earliest HE for proper HSPC specification during embryogenesis. Altogether, our findings reveal a pivotal role of endothelial primary cilia in HSPC development, and may shed lights into in vitro directed differentiation of HSPCs.
Collapse
|
39
|
Bouleti C, Flamant M, Escoubet B, Arnoult F, Milleron O, Vidal-Petiot E, Langeois M, Ou P, Vrtovsnik F, Jondeau G. Risk of Ascending Aortic Aneurysm in Patients With Autosomal Dominant Polycystic Kidney Disease. Am J Cardiol 2019; 123:482-488. [PMID: 30477801 DOI: 10.1016/j.amjcard.2018.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022]
Abstract
In recent years, simple renal cysts have been associated with an increased risk of aortic aneurysms. There is little data regarding aortic dilation in patients with autosomal dominant polycystic kidney disease (ADPKD). The aim of this study was to compare Sinuses of Valsalva (SoV) and tubular ascending aorta diameters in ADPKD patients with matched controls. From 2008 to 2016, 61 consecutive ADPKD patients who had an echocardiogram performed in our institution were matched 1:1 with controls for sex, age, blood pressure, and β-blocker therapy use. SoV and tubular ascending aorta were measured at end-diastole, using the leading-edge to leading-edge convention. Paired t Tests were used for quantitative variables and McNemar-tests for qualitative variables. The mean age of patients was 56 ± 12 years, 54% were men, 38% received β-blockers, and mean systolic and diastolic BP were 137 ± 25 and 78 ± 19 mm Hg. SoV diameters were significantly larger in ADPKD patients than in controls (36.4 ± 4.1 vs 34.0 ± 3.7 mm, p <0.0001). The Z-scores (normalized for sex, age, and body surface area) were significantly higher in ADPKD patients, both for SoV and tubular ascending aorta. Moreover, aortic aneurysms, as defined by a Z score >2 standard deviations, were present in 27 ADPKD patients (44%) versus 9 controls (15%, p <0.001). In conclusion, there is an increased prevalence of aortic aneurysms in ADPKD patients as compared with controls matched for common confounding factors for aortic dilation.
Collapse
Affiliation(s)
- Claire Bouleti
- Department of Cardiology, Centre de Référence pour le syndrome de Marfan et apparentés, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; INSERM U1148 Bichat Hospital, Paris, France.
| | - Martin Flamant
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; INSERM U1149 Bichat Hospital, Paris, France
| | - Brigitte Escoubet
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; INSERM U1138 Bichat Hospital, Paris, France
| | - Florence Arnoult
- DHU Fire, Paris-Diderot University, France; Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Olivier Milleron
- Department of Cardiology, Centre de Référence pour le syndrome de Marfan et apparentés, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; INSERM U1148 Bichat Hospital, Paris, France
| | - Emmanuelle Vidal-Petiot
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; INSERM U1149 Bichat Hospital, Paris, France
| | - Maud Langeois
- Department of Cardiology, Centre de Référence pour le syndrome de Marfan et apparentés, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Phalla Ou
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; Department of Radiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - François Vrtovsnik
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; INSERM U1149 Bichat Hospital, Paris, France; Department of Nephrology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Guillaume Jondeau
- Department of Cardiology, Centre de Référence pour le syndrome de Marfan et apparentés, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; INSERM U1148 Bichat Hospital, Paris, France
| |
Collapse
|
40
|
Abstract
Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced 'dosage' of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Lisa M. Guay-Woodford
- Center for Translational Science, Children’s National Health System, Washington, DC, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
The Roles of Primary Cilia in Cardiovascular Diseases. Cells 2018; 7:cells7120233. [PMID: 30486394 PMCID: PMC6315816 DOI: 10.3390/cells7120233] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are microtubule-based organelles found in most mammalian cell types. Cilia act as sensory organelles that transmit extracellular clues into intracellular signals for molecular and cellular responses. Biochemical and molecular defects in primary cilia are associated with a wide range of diseases, termed ciliopathies, with phenotypes ranging from polycystic kidney disease, liver disorders, mental retardation, and obesity to cardiovascular diseases. Primary cilia in vascular endothelia protrude into the lumen of blood vessels and function as molecular switches for calcium (Ca2+) and nitric oxide (NO) signaling. As mechanosensory organelles, endothelial cilia are involved in blood flow sensing. Dysfunction in endothelial cilia contributes to aberrant fluid-sensing and thus results in vascular disorders, including hypertension, aneurysm, and atherosclerosis. This review focuses on the most recent findings on the roles of endothelial primary cilia within vascular biology and alludes to the possibility of primary cilium as a therapeutic target for cardiovascular disorders.
Collapse
|
42
|
Raptis V, Loutradis C, Sarafidis PA. Renal injury progression in autosomal dominant polycystic kidney disease: a look beyond the cysts. Nephrol Dial Transplant 2018; 33:1887-1895. [DOI: 10.1093/ndt/gfy023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Vasileios Raptis
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Thessaloniki, Greece
| | - Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis A Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
43
|
Lozano-Vilardell P, Lara-Hernández R, Benabarre-Castany N, García-García D. Abdominal Aortic Aneurysm Associated with Polycystic Kidney Disease: Endovascular Aortic Repair and Renal Embolization. Ann Vasc Surg 2018; 56:351.e13-351.e15. [PMID: 30342219 DOI: 10.1016/j.avsg.2018.07.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023]
Abstract
A 79-year old patient with an asymptomatic 63-mm infrarenal abdominal aortic aneurysm, confirmed on computed tomography, was admitted in our unit. The patient had undergone kidney transplantation years before, due to renal failure secondary to polycystic kidney disease. Renal function at admission was normal. The aneurysm had a very short neck, and a standard endovascular aortic repair procedure was not feasible. Therefore, the 2 renal arteries were embolized with coils and endovascular repair of the aneurysm, covering the ostia of the renal arteries, was achieved placing the endoprosthesis up to the level of the superior mesenteric artery. The course of the patient was uneventful and was discharged without complications. Endovascular repair in patients without infrarenal aortic necks and nonfunctional kidneys secondary to polycystic kidney disease can be achieved with safety embolizing and covering the ostia of the renal arteries.
Collapse
Affiliation(s)
| | - Raúl Lara-Hernández
- Angiology and Vascular Surgery Department, Hospital Universitari Son Espases, Palma, Spain
| | - Noé Benabarre-Castany
- Angiology and Vascular Surgery Department, Hospital Universitari Son Espases, Palma, Spain
| | - David García-García
- Angiology and Vascular Surgery Department, Hospital Universitari Son Espases, Palma, Spain
| |
Collapse
|
44
|
Tashiro R, Fujimura M, Endo H, Endo T, Niizuma K, Tominaga T. Biphasic Development of Focal Cerebral Hyperperfusion After Revascularization Surgery for Adult Moyamoya Disease Associated With Autosomal Dominant Polycystic Kidney Disease. J Stroke Cerebrovasc Dis 2018; 27:3256-3260. [PMID: 30093201 DOI: 10.1016/j.jstrokecerebrovasdis.2018.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cerebral hyperperfusion (CHP) syndrome is a potential complication of superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis for moyamoya disease (MMD), but its biphasic and delayed development is extremely rare. CASE REPORT A 47-year-old woman with autosomal dominant kidney disease (ADPKD) presented with transient ischemic attacks due to MMD, and underwent left STA-MCA anastomosis. N-isopropyl-p-[123I] iodoamphetamine single-photon emission computed tomography (123IMP-SPECT) 1 day after surgery revealed asymptomatic CHP at the site of anastomosis. Strict blood pressure control and minocycline hydrochloride relieved CHP at postoperative day 7. However, 2 days later, the patient complained of sensory aphasia, and 123IMP-SPECT demonstrated significant focal CHP at the site of anastomosis accompanying high-intensity signal on magnetic resonance (MR) imaging of fluid attenuated inversion recovery (FLAIR) in her left temporal lobe near the site of anastomosis. We continued strict blood pressure control and additionally administered free radical scavenger (Edaravone) and antiepileptic agents, which gradually improved sensory aphasia. MR imaging and 123IMP-SPECT also confirmed the amelioration of the FLAIR-high lesion and focal CHP in her left temporal lobe. Two months later, the patient underwent right STA-MCA anastomosis without complications. CONCLUSIONS Although the underlying mechanism is unknown, biphasic development of focal CHP after revascularization surgery in an MMD patient with ADPKD is unique. Due to the potential vulnerability of the systemic vessels in ADPKD, it is conceivable that intrinsic vascular wall fragility in MMD could be enhanced by ADPKD and have partly led to this rare complication.
Collapse
Affiliation(s)
- Ryosuke Tashiro
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| | - Miki Fujimura
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.).
| | - Hidenori Endo
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| | - Toshiki Endo
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| | - Teiji Tominaga
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| |
Collapse
|
45
|
De Clercq K, Vriens J. Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1815-1829. [PMID: 30798946 DOI: 10.1016/j.bbamcr.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in many different steps of the reproduction process, from germ cell maturation to placental development. However, the exact function and regulation of calcium throughout subsequent reproductive events remains rather enigmatic. Successful pregnancy requires the establishment of a complex dialogue between the implanting embryo and the endometrium. On the one hand, endometrial cell will undergo massive changes to support an implanting embryo, including stromal cell decidualization. On the other hand, trophoblast cells from the trophectoderm surrounding the inner cell mass will differentiate and acquire new functions such as hormone secretion, invasion and migration. The need for calcium in the different gestational processes implicates the presence of specialized ion channels to regulate calcium homeostasis. The superfamily of transient receptor potential (TRP) channels is a class of calcium permeable ion channels that is involved in the transformation of extracellular stimuli into the influx of calcium, inducing and coordinating underlying signaling pathways. Although the necessity of calcium throughout reproduction cannot be negated, the expression and functionality of TRP channels throughout gestation remains elusive. This review provides an overview of the current evidence regarding the expression and function of TRP channels in reproduction.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Centre for Brain & Disease Research, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium.
| |
Collapse
|
46
|
Luu VZ, Chowdhury B, Al-Omran M, Hess DA, Verma S. Role of endothelial primary cilia as fluid mechanosensors on vascular health. Atherosclerosis 2018; 275:196-204. [PMID: 29945035 DOI: 10.1016/j.atherosclerosis.2018.06.818] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Primary cilia are microtubule-based organelles that protrude from the cell surface of many mammalian cell types, including endothelial and epithelial cells, osteoblasts, and neurons. These antennal-like projections enable cells to detect extracellular stimuli and elicit responses via intracellular signaling mechanisms. Primary cilia on endothelial cells lining blood vessels function as calcium-dependent mechanosensors that sense blood flow. In doing so, they facilitate the regulation of hemodynamic parameters within the vascular system. Defects in endothelial primary cilia result in inappropriate blood flow-induced responses and contribute to the development of vascular dysfunctions, including atherosclerosis, hypertension, and aneurysms. This review examines the current understanding of vascular endothelial cilia structure and function and their role in the vascular system. Future directions for primary cilia research and treatments for ciliary-based pathologies are discussed.
Collapse
Affiliation(s)
- Vincent Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - David A Hess
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Thomas C, Zühlsdorf A, Hörtnagel K, Mulahasanovic L, Grauer OM, Kümpers P, Wiendl H, Meuth SG. A Novel PKD1 Mutation Associated With Autosomal Dominant Kidney Disease and Cerebral Cavernous Malformation. Front Neurol 2018; 9:383. [PMID: 29887830 PMCID: PMC5980969 DOI: 10.3389/fneur.2018.00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by the presence of renal cysts and specific extrarenal abnormalities. ADPKD is caused by mutations in either PKD1 or PKD2 genes that encode for integral membrane proteins Polycystin-1 (PC1) and Polycystin-2 (PC2), respectively. Extrarenal involvement includes noncystic manifestations such as dilatation of the aortic root, artery dissection and intracranial aneurysms. Cerebral cavernous malformation (CCM) is a rare vascular malformation disorder characterized by closely clustered and irregularly dilated capillaries that can be asymptomatic or cause variable neurological manifestations, such as seizures, non-specific headaches, progressive or transient focal neurologic deficits, and cerebral hemorrhages. Familial CCM is typically associated with mutations in KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). The co-occurrence of ADPKD and CCM has been previously described in a single patient, although genetic analysis was not performed in this study. We report here a family with ADPKD associated with CCM in two sisters. Direct sequencing of the index patient revealed a single novel heterozygous frameshift mutation in PKD1, and lack of mutations in genes usually related to CCM. This suggests that CCM represents an additional phenotype of ADPKD.
Collapse
Affiliation(s)
- Christian Thomas
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Andrea Zühlsdorf
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, Münster, Germany
| | | | | | - Oliver M Grauer
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Philipp Kümpers
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
48
|
Gα i-mediated TRPC4 activation by polycystin-1 contributes to endothelial function via STAT1 activation. Sci Rep 2018; 8:3480. [PMID: 29472562 PMCID: PMC5823873 DOI: 10.1038/s41598-018-21873-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 12/02/2022] Open
Abstract
Hypertension and aneurysm are frequently associated with autosomal dominant polycystic kidney disease (ADPKD) caused by polycystin-1 (PC1) mutations, which is closely related to endothelial dysfunction. PC1 is an atypical G-protein-coupled receptor that activates G-proteins by self-cleavage; currently, however, the molecular and cellular mechanisms of the associated intracellular signaling and ion channel activation remain poorly elucidated. Here, we report an activation mechanism of a calcium-permeable canonical transient receptor potential 4 (TRPC4) channel by PC1 and its endothelial function. We found that the inhibitory Gαi3 protein selectively bound to the G-protein-binding domain on the C-terminus of PC1. The dissociation of Gαi3 upon cleavage of PC1 increased TRPC4 activity. Calcium influx through TRPC4 activated the transcription factor STAT1 to regulate cell proliferation and death. The down-regulation of PC1/TRPC4/STAT1 disrupted migration of endothelial cell monolayers, leading to an increase in endothelial permeability. These findings contribute to greater understanding of the high risk of aneurysm in patients with ADPKD.
Collapse
|
49
|
Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 2018; 7:33183. [PMID: 29443690 PMCID: PMC5812715 DOI: 10.7554/elife.33183] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
Mutations in the polycystin genes, PKD1 or PKD2, results in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although a genetic basis of ADPKD is established, we lack a clear understanding of polycystin proteins’ functions as ion channels. This question remains unsolved largely because polycystins localize to the primary cilium – a tiny, antenna-like organelle. Using a new ADPKD mouse model, we observe primary cilia that are abnormally long in cells associated with cysts after conditional ablation of Pkd1 or Pkd2. Using primary cultures of collecting duct cells, we show that polycystin-2, but not polycystin-1, is a required subunit for the ion channel in the primary cilium. The polycystin-2 channel preferentially conducts K+ and Na+; intraciliary Ca2+, enhances its open probability. We introduce a novel method for measuring heterologous polycystin-2 channels in cilia, which will have utility in characterizing PKD2 variants that cause ADPKD.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thuy Vien
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Jingjing Duan
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Shu-Hsien Sheu
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Paul G DeCaen
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
50
|
Zhang W, Han Q, Liu Z, Zhou W, Cao Q, Zhou W. Whole exome sequencing reveals a stop-gain mutation of PKD2 in an autosomal dominant polycystic kidney disease family complicated with aortic dissection. BMC MEDICAL GENETICS 2018; 19:19. [PMID: 29378535 PMCID: PMC5789703 DOI: 10.1186/s12881-018-0536-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder characterized by progressive cyst formation and expansion in the kidneys, which culminates in end-stage renal disease. Aortic dissection is a rare vascular complication of ADPKD and related literature is currently limited. Case presentation In this report, we described a patient with asymptomatic Stanford B aortic dissection. Further investigation revealed a positive family history of ADPKD and normal renal function. Whole exome sequencing identified a stop-gain mutation c.1774C > T, p.Arg592Ter in the PKD2 gene that segregated in the family. To our knowledge, this is the first report of ADPKD complicated with aortic dissection caused by PKD2 mutation. Conclusions The case illustrates the importance of aorta imaging and molecular diagnosis in ADPKD patients in order to achieve early recognition of the deadly vascular complication.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No 1#, Minde Road, Nanchang, Jiangxi, 330006, China.,Key Laboratory of Molecular Medicine of Jiangxi Province, Nanchang, Jiangxi, China
| | - Qian Han
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wei Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No 1#, Minde Road, Nanchang, Jiangxi, 330006, China
| | - Qing Cao
- Key Laboratory of Molecular Medicine of Jiangxi Province, Nanchang, Jiangxi, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No 1#, Minde Road, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|