1
|
Beck LG, Krall JB, Nichols PJ, Vicens Q, Henen MA, Vögeli B. Solution NMR backbone assignment of the N-terminal tandem Zα1-Zα2 domains of Z-DNA binding protein 1. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:245-252. [PMID: 39215796 DOI: 10.1007/s12104-024-10195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The detection of nucleic acids that are present in atypical conformations is a crucial trigger of the innate immune response. Human Z-DNA binding protein 1 (ZBP1) is a pattern recognition receptor that harbors two Zα domains that recognize Z-DNA and Z-RNA. ZBP1 detects this alternate nucleic acid conformation as foreign, and upon stabilization of these substrates, it triggers activation of an immune response. Here, we present the backbone chemical shift assignment of a construct encompassing the Zα1 and Zα2 domains as well as the interconnecting linker of ZBP1. These assignments can be directly transferred to the isolated Zα1 and Zα2 domains, thereby demonstrating that these domains maintain virtually identical structures in the tandem context.
Collapse
Affiliation(s)
- Lily G Beck
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Quentin Vicens
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Fisher AJ, Beal PA. Structural perspectives on adenosine to inosine RNA editing by ADARs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102284. [PMID: 39165563 PMCID: PMC11334849 DOI: 10.1016/j.omtn.2024.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that catalyze the hydrolytic deamination of adenosine to inosine. The editing feature of ADARs has garnered much attention as a therapeutic tool to repurpose ADARs to correct disease-causing mutations at the mRNA level in a technique called site-directed RNA editing (SDRE). Administering a short guide RNA oligonucleotide that hybridizes to a mutant sequence forms the requisite dsRNA substrate, directing ADARs to edit the desired adenosine. However, much is still unknown about ADARs' selectivity and sequence-specific effects on editing. Atomic-resolution structures can help provide additional insight to ADARs' selectivity and lead to novel guide RNA designs. Indeed, recent structures of ADAR domains have expanded our understanding on RNA binding and the base-flipping catalytic mechanism. These efforts have enabled the rational design of improved ADAR guide strands and advanced the therapeutic potential of the SDRE approach. While no full-length structure of any ADAR is known, this review presents an exposition of the structural basis for function of the different ADAR domains, focusing on human ADAR2. Key insights are extrapolated to human ADAR1, which is of substantial interest because of its widespread expression in most human tissues.
Collapse
Affiliation(s)
- Andrew J. Fisher
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
3
|
Chaumont L, Peruzzi M, Huetz F, Raffy C, Le Hir J, Minke J, Boudinot P, Collet B. Salmonid Double-stranded RNA-Dependent Protein Kinase Activates Apoptosis and Inhibits Protein Synthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:700-717. [PMID: 39058317 DOI: 10.4049/jimmunol.2400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
dsRNA-dependent protein kinase R (PKR) is a key factor of innate immunity. It is involved in translation inhibition, apoptosis, and enhancement of the proinflammatory and IFN responses. However, how these antiviral functions are conserved during evolution remains largely unknown. Overexpression and knockout studies in a Chinook salmon (Oncorhynchus tshawytscha) cell line were conducted to assess the role of salmonid PKR in the antiviral response. Three distinct mRNA isoforms from a unique pkr gene, named pkr-fl (full length), pkr-ml (medium length) and pkr-sl (short length), were cloned and a pkr-/- clonal fish cell line was developed using CRISPR/Cas9 genome editing. PKR-FL includes an N-terminal dsRNA-binding domain and a C-terminal kinase domain, whereas PKR-ML and PKR-SL display a truncated or absent kinase domain, respectively. PKR-FL is induced during IFNA2 stimulation but not during viral hemorrhagic septicemia virus (VHSV) infection. Overexpression experiments showed that only PKR-FL possesses antiviral functions, including activation of apoptosis and inhibition of de novo protein synthesis. Knockout experiments confirmed that PKR is involved in apoptosis activation during the late stage of VHSV infection. Endogenous PKR also plays a critical role in translation inhibition upon poly(I:C) transfection after IFNA2 treatment. It is, however, not involved in translational arrest during VHSV infection. Extra- and intracellular titrations showed that endogenous PKR does not directly inhibit viral replication but apparently favors virion release into the supernatant, likely by triggering late apoptosis. Altogether, our data confirm that salmonid PKR has conserved molecular functions that VHSV appears to bypass with subversion strategies.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Mathilde Peruzzi
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, Paris, France
| | | | | | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
4
|
Wu Z, Chu L, Gong Z, Han GZ. The making of a nucleic acid sensor at the dawn of jawed vertebrate evolution. SCIENCE ADVANCES 2024; 10:eado7464. [PMID: 39110805 PMCID: PMC11305385 DOI: 10.1126/sciadv.ado7464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Self and nonself discrimination is fundamental to immunity. However, it remains largely enigmatic how the mechanisms of distinguishing nonself from self originated. As an intracellular nucleic acid sensor, protein kinase R (PKR) recognizes double-stranded RNA (dsRNA) and represents a crucial component of antiviral innate immunity. Here, we combine phylogenomic and functional analyses to show that PKR proteins probably originated from a preexisting kinase protein through acquiring dsRNA binding domains at least before the last common ancestor of jawed vertebrates during or before the Silurian period. The function of PKR appears to be conserved across jawed vertebrates. Moreover, we repurpose a protein closely related to PKR proteins into a putative dsRNA sensor, recapturing the making of PKR. Our study illustrates how a nucleic acid sensor might have originated via molecular tinkering with preexisting proteins and provides insights into the origins of innate immunity.
Collapse
Affiliation(s)
- Zhiwei Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lingyu Chu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Romero MF, Krall JB, Nichols PJ, Vantreeck J, Henen MA, Dejardin E, Schulz F, Vicens Q, Vögeli B, Diallo MA. Novel Z-DNA binding domains in giant viruses. J Biol Chem 2024; 300:107504. [PMID: 38944123 PMCID: PMC11298590 DOI: 10.1016/j.jbc.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
Collapse
Affiliation(s)
- Miguel F Romero
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Jillian Vantreeck
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Emmanuel Dejardin
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Quentin Vicens
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA.
| | - Mamadou Amadou Diallo
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium.
| |
Collapse
|
6
|
Herbert A. The ancient Z-DNA and Z-RNA specific Zα fold has evolved modern roles in immunity and transcription through the natural selection of flipons. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240080. [PMID: 39092141 PMCID: PMC11293857 DOI: 10.1098/rsos.240080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 08/04/2024]
Abstract
The Zα fold specifically binds to both Z-DNA and Z-RNA, left-handed nucleic acid structures that form under physiological conditions and are encoded by flipons. I trace the Zα fold back to unicellular organisms representing all three domains of life and to the realm of giant nucleocytoplasmic DNA viruses (NCVs). The canonical Zα fold is present in the earliest known holozoan unicellular symbiont Capsaspora owczarzaki and persists in vertebrates and some invertebrates, but not in plants or fungi. In metazoans, starting with porifera, Zα is incorporated into the double-stranded RNA editing enzyme ADAR and reflects an early symbiont relationship with NCV. In vertebrates, Zα is also present in ZBP1 and PKZ proteins that recognize host-derived Z-RNAs to defend against modern-day viruses. A related Zα fold, also likely to bind Z-DNA, is present in proteins thought to modulate gene expression, including a subset of prokaryote arsR proteins and the p15 (PC4) family present in algae. Other Zα variants that probably play a more general role in the reinitiation of transcription include the archaeal and human transcription factor E and the human RNA polymerase 3 subunit C proteins. The roles in immunity and transcription underlie the natural selection of flipons.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Charlestown, MA02129, USA
| |
Collapse
|
7
|
de Reuver R, Maelfait J. Novel insights into double-stranded RNA-mediated immunopathology. Nat Rev Immunol 2024; 24:235-249. [PMID: 37752355 DOI: 10.1038/s41577-023-00940-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Recent progress in human and mouse genetics has transformed our understanding of the molecular mechanisms by which recognition of self double-stranded RNA (self-dsRNA) causes immunopathology. Novel mouse models recapitulate loss-of-function mutations in the RNA editing enzyme ADAR1 that are found in patients with Aicardi-Goutières syndrome (AGS) - a monogenic inflammatory disease associated with increased levels of type I interferon. Extensive analyses of the genotype-phenotype relationships in these mice have now firmly established a causal relationship between increased intracellular concentrations of endogenous immunostimulatory dsRNA and type I interferon-driven immunopathology. Activation of the dsRNA-specific immune sensor MDA5 perpetuates the overproduction of type I interferons, and chronic engagement of the interferon-inducible innate immune receptors PKR and ZBP1 by dsRNA drives immunopathology by activating an integrated stress response or by inducing excessive cell death. Biochemical and genetic data support a role for the p150 isoform of ADAR1 in the cytosol in suppressing the spontaneous, pathological response to self-dsRNA.
Collapse
Affiliation(s)
- Richard de Reuver
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Zhang S, Liu Y, Ma Z, Gao S, Chen L, Zhong H, Zhang C, Li T, Chen W, Zhang Y, Lin N. Osteoking promotes bone formation and bone defect repair through ZBP1-STAT1-PKR-MLKL-mediated necroptosis. Chin Med 2024; 19:13. [PMID: 38238785 PMCID: PMC10797925 DOI: 10.1186/s13020-024-00883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Osteoking has been used for fracture therapy with a satisfying clinical efficacy. However, its therapeutic properties and the underlying mechanisms remain elusive. METHOD A bone defect rat model was established to evaluate the pharmacological effects of Osteoking by the dynamic observation of X-ray, micro-CT and histopathologic examination. Transcriptome profiling was performed to identify bone defect-related genes and Osteoking effective targets. Then, a "disease-related gene-drug target" interaction network was constructed and a list of key network targets were screened, which were experimentally verified. RESULTS Osteoking effectively promoted bone defect repair in rats by accelerating the repair of cortical bone and the growth of trabeculae. Histopathologically, the bone defect rats displayed lower histopathologic scores in cortical bone, cancellous bone and bone connection than normal controls. In contrast, Osteoking exerted a favorable effect with a dose-dependent manner. The abnormal serum levels of bone turnover markers, bone growth factors and bone metabolism-related biochemical indexes in bone defect rats were also reversed by Osteoking treatment. Following the transcriptome-based network investigation, we hypothesized that osteoking might attenuate the levels of ZBP1-STAT1-PKR-MLKL-mediated necroptosis involved into bone defect. Experimentally, the expression levels of ZBP1, STAT1, PKR and the hallmark inflammatory cytokines for the end of necroptosis were distinctly elevated in bone defect rats, but were all effectively reversed by Osteoking treatment, which were also suppressed the activities of RIPK1, RIPK3 and MLKL in bone tissue supernatants. CONCLUSIONS Osteoking may promote bone formation and bone defect repair by regulating ZBP1-STAT1-PKR axis, leading to inhibit RIPK1/RIPK3/MLKL activation-mediated necroptosis.
Collapse
Affiliation(s)
- Suya Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Zhaochen Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Honggang Zhong
- BioMechanics Lab, Wang Jing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100010, China
| | - Chu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Weiheng Chen
- Third Affiliated Hospital of Beijing University of Chinese Medicine, No. 51 Anwai Xiaoguanjie, Chaoyang District, Beijing, 100029, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
9
|
Zhong Y, Zhong X, Qiao L, Wu H, Liu C, Zhang T. Zα domain proteins mediate the immune response. Front Immunol 2023; 14:1241694. [PMID: 37771585 PMCID: PMC10523160 DOI: 10.3389/fimmu.2023.1241694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Zα domain has a compact α/β architecture containing a three-helix bundle flanked on one side by a twisted antiparallel β sheet. This domain displays a specific affinity for double-stranded nucleic acids that adopt a left-handed helical conformation. Currently, only three Zα-domain proteins have been identified in eukaryotes, specifically ADAR1, ZBP1, and PKZ. ADAR1 is a double-stranded RNA (dsRNA) binding protein that catalyzes the conversion of adenosine residues to inosine, resulting in changes in RNA structure, function, and expression. In addition to its editing function, ADAR1 has been shown to play a role in antiviral defense, gene regulation, and cellular differentiation. Dysregulation of ADAR1 expression and activity has been associated with various disease states, including cancer, autoimmune disorders, and neurological disorders. As a sensing molecule, ZBP1 exhibits the ability to recognize nucleic acids with a left-handed conformation. ZBP1 harbors a RIP homotypic interaction motif (RHIM), composed of a highly charged surface region and a leucine-rich hydrophobic core, enabling the formation of homotypic interactions between proteins with similar structure. Upon activation, ZBP1 initiates a downstream signaling cascade leading to programmed cell death, a process mediated by RIPK3 via the RHIM motif. PKZ was identified in fish, and contains two Zα domains at the N-terminus. PKZ is essential for normal growth and development and may contribute to the regulation of immune system function in fish. Interestingly, some pathogenic microorganisms also encode Zα domain proteins, such as, Vaccinia virus and Cyprinid Herpesvirus. Zα domain proteins derived from pathogenic microorganisms have been demonstrated to be pivotal contributors in impeding the host immune response and promoting virus replication and spread. This review focuses on the mammalian Zα domain proteins: ADAR1 and ZBP1, and thoroughly elucidates their functions in the immune response.
Collapse
Affiliation(s)
- Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangjun Qiao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Wu
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Division of Liver, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Chaumont L, Collet B, Boudinot P. Protein kinase double-stranded RNA-dependent (PKR) in antiviral defence in fish and mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104732. [PMID: 37172664 DOI: 10.1016/j.dci.2023.104732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms of the innate immune system. Upon binding of viral double stranded RNA, a viral Pattern Associated Molecular Pattern (PAMP), PKR gets activated and phosphorylates the eukaryotic initiation factor 2α (eIF2α) resulting in a protein shut-down that limits viral replication. Since its discovery in the mid-seventies, PKR has been shown to be involved in multiple important cellular processes including apoptosis, proinflammatory and innate immune responses. Viral subversion mechanisms of PKR underline its importance in the antiviral response of the host. PKR activation pathways and its mechanisms of action were previously identified and characterised mostly in mammalian models. However, fish Pkr and fish-specific paralogue Z-DNA-dependent protein kinase (Pkz) also play key role in antiviral defence. This review gives an update on the current knowledge on fish Pkr/Pkz, their conditions of activation and their implication in the immune responses to viruses, in comparison to their mammalian counterparts.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
11
|
Wang G, Vasquez KM. Dynamic alternative DNA structures in biology and disease. Nat Rev Genet 2023; 24:211-234. [PMID: 36316397 DOI: 10.1038/s41576-022-00539-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
12
|
Gan Z, Xu X, Tang S, Wen Q, Jin Y, Lu Y. Identification and functional characterization of protein kinase R (PKR) in amphibian Xenopus tropicalis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104648. [PMID: 36708793 DOI: 10.1016/j.dci.2023.104648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As one of interferon-induced serine/threonine kinases, the protein kinase R (PKR) plays vital roles in antiviral defense, and functional features of PKR remain largely unknown in amphibians, which suffer from ranaviral diseases in the last few decades. In this study, a PKR gene named Xt-PKR was characterized in the Western clawed frog (Xenopus tropicalis). Xt-PKR gene was widely expressed in different organs/tissues, and was rapidly induced by poly(I:C) in spleen, kidney, and liver. Intriguingly, Xt-PKR could be up-rugulated by the treatment of type I and type III interferons, and the transcript level of Xt-PKR induced by type I interferon was much higher than that of type III interferon. Moreover, overexpression of Xt-PKR can suppress the protein synthesis and ranavirus replication in vitro, and the residue lysine required for the translation inhibition activity in mammalian PKR is conserved in Xt-PKR. The present study represents the first characterization on the functions of amphibian PKR, and reveals considerable functional conservation of PKR in early tetrapods.
Collapse
Affiliation(s)
- Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xinlan Xu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shaoshuai Tang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Qingqing Wen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yong Jin
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
13
|
Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses 2023; 15:v15030768. [PMID: 36992477 PMCID: PMC10051318 DOI: 10.3390/v15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
The zebrafish (Danio rerio) represents an increasingly important model organism in virology. We evaluated its utility in the study of economically important viruses from the genus Cyprinivirus (anguillid herpesvirus 1, cyprinid herpesvirus 2 and cyprinid herpesvirus 3 (CyHV-3)). This revealed that zebrafish larvae were not susceptible to these viruses after immersion in contaminated water, but that infections could be established using artificial infection models in vitro (zebrafish cell lines) and in vivo (microinjection of larvae). However, infections were transient, with rapid viral clearance associated with apoptosis-like death of infected cells. Transcriptomic analysis of CyHV-3-infected larvae revealed upregulation of interferon-stimulated genes, in particular those encoding nucleic acid sensors, mediators of programmed cell death and related genes. It was notable that uncharacterized non-coding RNA genes and retrotransposons were also among those most upregulated. CRISPR/Cas9 knockout of the zebrafish gene encoding protein kinase R (PKR) and a related gene encoding a protein kinase containing Z-DNA binding domains (PKZ) had no impact on CyHV-3 clearance in larvae. Our study strongly supports the importance of innate immunity-virus interactions in the adaptation of cypriniviruses to their natural hosts. It also highlights the potential of the CyHV-3-zebrafish model, versus the CyHV-3-carp model, for study of these interactions.
Collapse
|
14
|
Nichols PJ, Krall JB, Henen MA, Vögeli B, Vicens Q. Z-RNA biology: a central role in the innate immune response? RNA (NEW YORK, N.Y.) 2023; 29:273-281. [PMID: 36596670 PMCID: PMC9945438 DOI: 10.1261/rna.079429.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Z-RNA is a higher-energy, left-handed conformation of RNA, whose function has remained elusive. A growing body of work alludes to regulatory roles for Z-RNA in the immune response. Here, we review how Z-RNA features present in cellular RNAs-especially containing retroelements-could be recognized by a family of winged helix proteins, with an impact on host defense. We also discuss how mutations to specific Z-contacting amino acids disrupt their ability to stabilize Z-RNA, resulting in functional losses. We end by highlighting knowledge gaps in the field, which, if addressed, would significantly advance this active area of research.
Collapse
Affiliation(s)
- Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
15
|
Abstract
Poxviruses have been long regarded as potent inhibitors of apoptotic cell death. More recently, they have been shown to inhibit necroptotic cell death through two distinct strategies. These strategies involve either blocking virus sensing by the host pattern recognition receptor, ZBP1 (also called DAI) or by influencing receptor interacting protein kinase (RIPK)3 signal transduction by inhibition of activation of the executioner of necroptosis, mixed lineage kinase-like protein (MLKL). Vaccinia virus E3 specifically blocks ZBP1 → RIPK3 → MLKL necroptosis, leaving virus-infected cells susceptible to the TNF death-receptor signaling (e.g., TNFR1 → FADD → RIPK1 → RIPK3 → MLKL), and, potentially, TLR3 → TRIF → RIPK3 → MLKL necroptosis. While E3 restriction of necroptosis appears to be common to many poxviruses that infect vertebrate hosts, another modulatory strategy not observed in vaccinia or variola virus manifests through subversion of MLKL activation. Recently described viral mimics of MLKL in other chordopoxviruses inhibit all three modes of necroptotic cell death. As with inhibition of apoptosis, the evolution of potentially redundant viral mechanisms to inhibit programmed necroptotic cell death emphasizes the importance of this pathway in the arms race between pathogens and their hosts.
Collapse
Affiliation(s)
- Heather S Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Vaccine Center, Atlanta, GA, 30322, USA
| | - Bertram L Jacobs
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ, 85287, USA.
| |
Collapse
|
16
|
Z-DNA and Z-RNA: Methods-Past and Future. Methods Mol Biol 2023; 2651:295-329. [PMID: 36892776 DOI: 10.1007/978-1-0716-3084-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A quote attributed to Yogi Berra makes the observation that "It's tough to make predictions, especially about the future," highlighting the difficulties posed to an author writing a manuscript like the present. The history of Z-DNA shows that earlier postulates about its biology have failed the test of time, both those from proponents who were wildly enthusiastic in enunciating roles that till this day still remain elusive to experimental validation and those from skeptics within the larger community who considered the field a folly, presumably because of the limitations in the methods available at that time. If anything, the biological roles we now know for Z-DNA and Z-RNA were not anticipated by anyone, even when those early predictions are interpreted in the most favorable way possible. The breakthroughs in the field were made using a combination of methods, especially those based on human and mouse genetic approaches informed by the biochemical and biophysical characterization of the Zα family of proteins. The first success was with the p150 Zα isoform of ADAR1 (adenosine deaminase RNA specific), with insights into the functions of ZBP1 (Z-DNA-binding protein 1) following soon after from the cell death community. Just as the replacement of mechanical clocks by more accurate designs changed expectations about navigation, the discovery of the roles assigned by nature to alternative conformations like Z-DNA has forever altered our view of how the genome operates. These recent advances have been driven by better methodology and by better analytical approaches. This article will briefly describe the methods that were key to these discoveries and highlight areas where new method development is likely to further advance our knowledge.
Collapse
|
17
|
NMR Titration Studies in Z-DNA Dynamics. Methods Mol Biol 2023; 2651:69-83. [PMID: 36892760 DOI: 10.1007/978-1-0716-3084-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Chemical shift perturbation (CSP) is a simple NMR technique for studying the DNA binding of proteins. Titration of the unlabeled DNA into the 15N-labeled protein is monitored by acquiring a two-dimensional (2D) heteronuclear single-quantum correlation (HSQC) spectrum at each step of the titration. CSP can also provide information on the DNA-binding dynamics of proteins, as well as protein-induced conformational changes in DNA. Here, we describe the titration of DNA for the 15N-labeled Z-DNA-binding protein, monitored via 2D HSQC spectra. NMR titration data can be analyzed with the active B-Z transition model to provide the protein-induced B-Z transition dynamics of DNA.
Collapse
|
18
|
Tang Q. Z-nucleic acids: Uncovering the functions from past to present. Eur J Immunol 2022; 52:1700-1711. [PMID: 36165274 PMCID: PMC9827954 DOI: 10.1002/eji.202249968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Since Z-nucleic acid was identified in the 1970s, much is still unknown about its biological functions and nature in vivo. Recent studies on adenosine deaminase acting on RNA 1 (ADAR1) and Z-DNA-binding protein 1 (ZBP1) have highlighted its function in immune responses. Specifically, Z-RNAs, either endogenous or induced by viral infection, are sensed by ZBP1 and activate necroptosis. Z-RNAs act as the stimuli that induce innate immune responses through various pathways, including melanoma differentiation-associated protein 5 (MAD5)-mitochondrial antiviral-signaling protein (MAVS)-mediated type I IFN activation and proteinase kinase R (PKR)-dependent integrated stress response, and their immunostimulatory potential is curtailed by RNA editing conducted by ADAR1. Aberrant immune responses induced by Z-RNAs are associated with human diseases. They also induce pathogenesis in mice. Unlike Z-RNAs, the biological functions of Z-DNAs were barely studied, especially in mammals. Moreover, the origin or sequence preference of Z-nucleic acids requires further investigation. Such knowledge will expand our understanding of Z-nucleic acids, including from which genomic loci and under which circumstances they form, and the mechanisms by which they participate in the physiological activities. In this review, we provide insights in Z-nucleic acid research and highlight the unsolved puzzles.
Collapse
Affiliation(s)
- Qiannan Tang
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina,Centre for Immune‐Related Diseases at Shanghai Institute of ImmunologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Hubbard NW, Ames JM, Maurano M, Chu LH, Somfleth KY, Gokhale NS, Werner M, Snyder JM, Lichauco K, Savan R, Stetson DB, Oberst A. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature 2022; 607:769-775. [PMID: 35859177 PMCID: PMC9339495 DOI: 10.1038/s41586-022-04896-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/23/2022] [Indexed: 01/22/2023]
Abstract
The RNA-editing enzyme ADAR1 is essential for the suppression of innate immune activation and pathology caused by aberrant recognition of self-RNA, a role it carries out by disrupting the duplex structure of endogenous double-stranded RNA species1,2. A point mutation in the sequence encoding the Z-DNA-binding domain (ZBD) of ADAR1 is associated with severe autoinflammatory disease3-5. ZBP1 is the only other ZBD-containing mammalian protein6, and its activation can trigger both cell death and transcriptional responses through the kinases RIPK1 and RIPK3, and the protease caspase 8 (refs. 7-9). Here we show that the pathology caused by alteration of the ZBD of ADAR1 is driven by activation of ZBP1. We found that ablation of ZBP1 fully rescued the overt pathology caused by ADAR1 alteration, without fully reversing the underlying inflammatory program caused by this alteration. Whereas loss of RIPK3 partially phenocopied the protective effects of ZBP1 ablation, combined deletion of caspase 8 and RIPK3, or of caspase 8 and MLKL, unexpectedly exacerbated the pathogenic effects of ADAR1 alteration. These findings indicate that ADAR1 is a negative regulator of sterile ZBP1 activation, and that ZBP1-dependent signalling underlies the autoinflammatory pathology caused by alteration of ADAR1.
Collapse
Affiliation(s)
| | - Joshua M Ames
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Megan Maurano
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Lan H Chu
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kim Y Somfleth
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Nandan S Gokhale
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Margo Werner
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Katrina Lichauco
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
eIF2α Phosphorylation in Response to Nutritional Deficiency and Stressors in the Aquaculture Fish, Rachycentron canadum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigates the response of the marine fish cobia, Rachycentron canadum, to stressors as measured by phosphorylation of the α-subunit of the translational initiation factor, eIF2. eIF2α is the target of phosphorylation by a family of kinases that respond to a range of physiological stressors. Phosphorylation of eIF2α inhibits overall protein synthesis, but also facilitates the reprogramming of gene expression to adapt to, and recover from, stress. The deduced coding sequence of cobia eIF2α has 94% identity to both zebrafish (Danio rerio) and human eIF2α sequences with identical phosphorylation and kinase docking sites. Here we use cobia larvae and a cobia cell line derived from muscle (Cm cells) to investigate the response of cobia eIF2α to various stressors. In Cm cells, phosphorylation of eIF2α is increased by nutrient deficiency and endoplasmic reticulum stress (ER stress), consistent with the activation of the eIF2 kinases, GCN2, and PERK. In cobia juveniles, diet and water temperature affect the phosphorylation state of eIF2α. We conclude that evaluation of eIF2α phosphorylation could function as an early marker to evaluate diet, environmental stressors, and disease in cobia and may be of particular use in optimizing conditions for rearing cobia larvae and juveniles.
Collapse
|
21
|
Sun L, Miao Y, Wang Z, Chen H, Dong P, Zhang H, Wu L, Jiang M, Chen L, Yang W, Lin P, Jing D, Luo Z, Zhang Y, Jung Y, Wu X, Qian Y, Wu Y. Structural insight into African Swine Fever Virus I73R protein reveals it as a Z‐DNA binding protein. Transbound Emerg Dis 2022; 69:e1923-e1935. [DOI: 10.1111/tbed.14527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Yurun Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
| | - Zhenzhong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
- China Animal Health and Epidemiology Center Qingdao China
| | - Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
| | - Panpan Dong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Hong Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Linjiao Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Meiqin Jiang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Pingdong Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Dingding Jing
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| | - Zhipu Luo
- Institute of Molecular Enzymology School of Biology and Basic Medical Sciences Soochow University Suzhou Jiangsu China
| | | | - Yong‐Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
| | - Xiaodong Wu
- China Animal Health and Epidemiology Center Qingdao China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine, Nanjing Agricultural University Nanjing Jiangsu China
- Jiangsu Agri‐animal Husbandry Vocational College Veterinary Bio‐pharmaceutical Jiangsu Key Laboratory for High‐Tech Research and Development of Veterinary Biopharmaceuticals Taizhou Jiangsu China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Science Fujian Normal University Fuzhou 350117 China
| |
Collapse
|
22
|
Xu X, Li M, Deng Z, Jiang Z, Li D, Wang S, Hu C. cGASa and cGASb from grass carp (Ctenopharyngodon idellus) play opposite roles in mediating type I interferon response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104233. [PMID: 34403683 DOI: 10.1016/j.dci.2021.104233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) is known as a DNA sensor for the initiation of innate immune responses in human and other mammals. However, the knowledge about fish cGAS is limited. In this study, we identified two paralogs of cGAS genes from grass carp (Ctenopharyngodon idellus), namely, CicGASa and CicGASb. Grass carp cGASa and cGASb share some conservative domains with mammalian cGASs; however, cGASb contains a unique transmembrane domain. Grass carp cGASa and cGASb responded to GCRV and poly (dA:dT) infection, but they played opposite roles in the regulation of type I IFN response, i.e. cGASa served as an activator for ISGs and NF-κB in a dose-dependent manner, while cGASb acted as an inhibitor. We found that cGASa and cGASb interacted with STING. Similarly, cGASa is an activator for IRF7, but cGASb inhibited IRF7 expression. Both cGASa and STING can protect cells from GCRV infection. Grass carp cGASb inhibited cGASa-induced type I IFN response by the competitive interaction with STING, suggesting that cGASb may be a negative regulator of cGASa-STING-IRF7 axis.
Collapse
Affiliation(s)
- Xiaowen Xu
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China.
| | - Meifeng Li
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Shanghong Wang
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
23
|
Go Y, Ahn HB, Kim BS, Lee AR, Oh KI, Lee JH. Conformational exchange of the Zα domain of human RNA editing enzyme ADAR1 studied by NMR spectroscopy. Biochem Biophys Res Commun 2021; 580:63-66. [PMID: 34624571 DOI: 10.1016/j.bbrc.2021.09.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Z-DNA binding proteins (ZBPs) play important roles in RNA editing, innate immune responses, and viral infections. Numerous studies have implicated a role for conformational motions during ZBPs binding upon DNA, but the quantitative intrinsic conformational exchanges of ZBP have not been elucidated. To understand the correlation between the biological function and dynamic feature of the Zα domains of human ADAR1 (hZαADAR1), we have performed the 15N backbone amide Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments on the free hZαADAR1 at two different magnetic fields at 35 °C. The robust inter-dependence of parameters in the global fitting process using multi-magnetic field CPMG profiles allows us characterizing the dynamic properties of conformational changes in hZαADAR1. This study found that free hZαADAR1 exhibited the conformational exchange with a kex of 5784 s-1 between the states "A" (89% population) and "B" (11% population). The different hydrophobic interactions among helices α1, α2, and α3 between these two states might correlate with efficient Z-DNA binding achieved by the hydrogen bonding interactions between its side-chains and the phosphate backbone of Z-DNA.
Collapse
Affiliation(s)
- Youyeon Go
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea
| | - Hye-Bin Ahn
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea
| | - Byeong-Seon Kim
- Department of Chemistry Education and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea
| | - Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea
| | - Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea.
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea.
| |
Collapse
|
24
|
Gabriel L, Srinivasan B, Kuś K, Mata JF, João Amorim M, Jansen LET, Athanasiadis A. Enrichment of Zα domains at cytoplasmic stress granules is due to their innate ability to bind to nucleic acids. J Cell Sci 2021; 134:268376. [PMID: 34037233 DOI: 10.1242/jcs.258446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Zα domains recognize the left-handed helical Z conformation of double-stranded nucleic acids. They are found in proteins involved in the nucleic acid sensory pathway of the vertebrate innate immune system and host evasion by viral pathogens. Previously, it has been demonstrated that ADAR1 (encoded by ADAR in humans) and DAI (also known as ZBP1) localize to cytoplasmic stress granules (SGs), and this localization is mediated by their Zα domains. To investigate the mechanism, we determined the interactions and localization pattern for the N-terminal region of human DAI (ZαβDAI), which harbours two Zα domains, and for a ZαβDAI mutant deficient in nucleic acid binding. Electrophoretic mobility shift assays demonstrated the ability of ZαβDAI to bind to hyperedited nucleic acids, which are enriched in SGs. Furthermore, using immunofluorescence and immunoprecipitation coupled with mass spectrometry, we identified several interacting partners of the ZαβDAI-RNA complex in vivo under conditions of arsenite-induced stress. These interactions are lost upon loss of nucleic acid-binding ability or upon RNase treatment. Thus, we posit that the mechanism for the translocation of Zα domain-containing proteins to SGs is mainly mediated by the nucleic acid-binding ability of their Zα domains. This article has an associated First Person interview with Bharath Srinivasan, joint first author of the paper.
Collapse
Affiliation(s)
- Luisa Gabriel
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Bharath Srinivasan
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Krzysztof Kuś
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - João F Mata
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Lars E T Jansen
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Alekos Athanasiadis
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| |
Collapse
|
25
|
Gan Z, Cheng J, Hou J, Chen S, Xia H, Xia L, Kwok KWH, Lu Y, Nie P. Tilapia dsRNA-activated protein kinase R (PKR): An interferon-induced antiviral effector with translation inhibition activity. FISH & SHELLFISH IMMUNOLOGY 2021; 112:74-80. [PMID: 33667675 DOI: 10.1016/j.fsi.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The dsRNA-activated protein kinase R (PKR) is one of key antiviral effectors induced by interferons (IFNs), and its functions are largely unknown in tilapia, an important commercial fish species suffering from several viral infectious diseases. In the present study, a PKR gene named On-PKR was identified and cloned from Nile tilapia, Oreochromis niloticus. On-PKR gene was constitutively expressed in all tissues examined, with the highest expression level observed in head kidney and liver, and was rapidly induced in all organs/tissues tested following the stimulation of poly(I:C). Importantly, the expression of On-PKR is induced by group I and group II IFNs with distinct induction kinetics in vivo: group I IFN elicits a relative delayed but sustained induction of On-PKR, whereas group II IFN triggers a rapid and transient expression of On-PKR. Moreover, the overexpression of On-PKR has been proven to inhibit the protein translation and virus replication in fish cells. The present study thus contributes to a better understanding of the functions of antiviral effectors in tilapia, and may provide clues for the prevention and therapy of viral diseases in fish.
Collapse
Affiliation(s)
- Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Jing Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Kevin W H Kwok
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
26
|
Oh KI, Lee AR, Choi SR, Go Y, Ryu KS, Kim EH, Lee JH. Systematic Approach to Find the Global Minimum of Relaxation Dispersion Data for Protein-Induced B-Z Transition of DNA. Int J Mol Sci 2021; 22:3517. [PMID: 33805331 PMCID: PMC8037647 DOI: 10.3390/ijms22073517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion spectroscopy is commonly used for quantifying conformational changes of protein in μs-to-ms timescale transitions. To elucidate the dynamics and mechanism of protein binding, parameters implementing CPMG relaxation dispersion results must be appropriately determined. Building an analytical model for multi-state transitions is particularly complex. In this study, we developed a new global search algorithm that incorporates a random search approach combined with a field-dependent global parameterization method. The robust inter-dependence of the parameters carrying out the global search for individual residues (GSIR) or the global search for total residues (GSTR) provides information on the global minimum of the conformational transition process of the Zα domain of human ADAR1 (hZαADAR1)-DNA complex. The global search results indicated that a α-helical segment of hZαADAR1 provided the main contribution to the three-state conformational changes of a hZαADAR1-DNA complex with a slow B-Z exchange process. The two global exchange rate constants, kex and kZB, were found to be 844 and 9.8 s-1, respectively, in agreement with two regimes of residue-dependent chemical shift differences-the "dominant oscillatory regime" and "semi-oscillatory regime". We anticipate that our global search approach will lead to the development of quantification methods for conformational changes not only in Z-DNA binding protein (ZBP) binding interactions but also in various protein binding processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Seo-Ree Choi
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Youyeon Go
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Kyoung-Seok Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk 28119, Korea;
| | - Eun-Hee Kim
- Center for Research Equipment, Korea Basic Science Institute, Ochang, Chungbuk 28119, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| |
Collapse
|
27
|
Chiang DC, Li Y, Ng SK. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front Immunol 2021; 11:625504. [PMID: 33613567 PMCID: PMC7886975 DOI: 10.3389/fimmu.2020.625504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Both DNA and RNA can maintain left-handed double helical Z-conformation under physiological condition, but only when stabilized by Z-DNA binding domain (ZDBD). After initial discovery in RNA editing enzyme ADAR1, ZDBD has also been described in pathogen-sensing proteins ZBP1 and PKZ in host, as well as virulence proteins E3L and ORF112 in viruses. The host-virus antagonism immediately highlights the importance of ZDBD in antiviral innate immunity. Furthermore, Z-RNA binding has been shown to be responsible for the localization of these ZDBD-containing proteins to cytoplasmic stress granules that play central role in coordinating cellular response to stresses. This review sought to consolidate current understanding of Z-RNA sensing in innate immunity and implore possible roles of Z-RNA binding within cytoplasmic stress granules.
Collapse
Affiliation(s)
- De Chen Chiang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Siew Kit Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
28
|
Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. Int J Mol Sci 2020; 21:ijms21197289. [PMID: 33023222 PMCID: PMC7582293 DOI: 10.3390/ijms21197289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts.
Collapse
|
29
|
Wei J, Zang S, Li C, Zhang X, Gao P, Qin Q. Grouper PKR activation inhibits red-spotted grouper nervous necrosis virus (RGNNV) replication in infected cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103744. [PMID: 32442443 DOI: 10.1016/j.dci.2020.103744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The double-stranded RNA-activated protein kinase (PKR) is a Type I interferon (IFN) stimulated gene that has important biological and immunological functions. In viral infections, PKR inhibits or promotes viral replication. In the present study, PKR homologues of orange-spotted grouper (Epinephelus coioides) (EcPKR) were cloned and the involvement of EcPKR during Red-spotted grouper nervous necrosis virus (RGNNV) infection was investigated. EcPKR encodes a 621-amino acid polypeptide that is closely related to the equivalent protein in Larimichthys crocea. EcPKR encoded two dsRNA binding domains and a Serine/Threonine protein kinase domain. Quantitative real-time PCR (qRT-PCR) analysis indicated that EcPKR was present in all examined tissues, with higher expression in spleen, intestine and gill. When stimulated with poly(I:C), the expression of EcPKR in the grouper spleen was increased, with highest expression 12 h post stimulation. EcPKR concentration was significantly increased in RGNNV-infected cells, with highest expression at 36 h post stimulation. EcPKR is mainly present in the cytoplasm. Overexpression of EcPKR in grouper spleen (GS) cells inhibits the transcription of the RGNNV genes. Furthermore, our results show that EcPKR overexpression significantly enhances the immune response of interferon and the activation of interferon-beta (IFN-β), interferon stimulated response element (ISRE) and nuclear factor-kappa B (NF-κB). Taken together, these results are important for better understanding of the function of PKR in fish and reveal its involvement in host response to immune challenges in RGNNV.
Collapse
Affiliation(s)
- Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaoqing Zang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266000, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pin Gao
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
30
|
Affiliation(s)
- Chun Kim
- Department of Molecular and Life Science, Hanyang University [ERICA Campus], Ansan 15588, Korea
| |
Collapse
|
31
|
Jin HS, Kim NH, Choi SR, Oh KI, Lee JH. Protein-induced B-Z transition of DNA duplex containing a 2'-OMe guanosine. Biochem Biophys Res Commun 2020; 533:417-423. [PMID: 32972754 DOI: 10.1016/j.bbrc.2020.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Structural transformation of the canonical right-handed helix, B-DNA, to the non-canonical left-handed helix, Z-DNA, can be induced by the Zα domain of the human RNA editing enzyme ADAR1 (hZαADAR1). To characterize the site-specific preferences of binding and structural changes in DNA containing the 2'-O-methyl guanosine derivative (mG), titration of the imino proton spectra and chemical shift perturbations were performed on hZαADAR1 upon binding to Z-DNA. The structural transition between B-Z conformation as the changing ratio between DNA and protein showed a binding affinity of the modified DNA onto the Z-DNA binding protein similar to wild-type DNA or RNA. The chemical shift perturbation results showed that the overall structure and environment of the modified DNA revealed DNA-like properties rather than RNA-like characteristics. Moreover, we found evidence for two distinct regimes, "Z-DNA Sensing" and "Modification Sensing", based on the site-specific chemical shift perturbation between the DNA (or RNA) binding complex and the modified DNA-hZαADAR1 complex. Thus, we propose that modification of the sugar backbone of DNA with 2'-O-methyl guanosine promotes the changes in the surrounding α3 helical structural segment as well as the non-perturbed feature of the β-hairpin region.
Collapse
Affiliation(s)
- Ho-Seong Jin
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea
| | - Na-Hyun Kim
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea
| | - Seo-Ree Choi
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea
| | - Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea.
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam, 52828, South Korea.
| |
Collapse
|
32
|
Chang CJ. Immune sensing of DNA and strategies for fish DNA vaccine development. FISH & SHELLFISH IMMUNOLOGY 2020; 101:252-260. [PMID: 32247047 DOI: 10.1016/j.fsi.2020.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/21/2023]
Abstract
Studies of DNA vaccines have shown that understanding the mechanism of DNA vaccine-mediated action is the key for vaccine development. Current knowledge has shown the presence of antigen presenting cells (APCs) involving in B and T cells at the muscle injection site and the upregulation of type I interferon (IFN-I) that initiates antiviral response and benefits adaptive immunity in fish DNA vaccines. IFN-I may be triggered by expressed antigen such as the rhabdovirus G protein encoded DNA vaccine or by plasmid DNA itself through cytosolic DNA sensing. The investigating of Toll-like receptor 9, and 21 are the CpG-motif sensors in many fish species, and the cytosolic DNA receptors DDX41 and downstream STING signaling revealed the mechanisms for IFN-I production. This review article describes the recent finding of receptors for cytosolic DNA, the STING-TBK1-IRF signaling, and the possibility of turning these findings into strategies for the future development of DNA vaccines.
Collapse
Affiliation(s)
- Chia-Jung Chang
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
33
|
Dynamic regulation of Z-DNA in the mouse prefrontal cortex by the RNA-editing enzyme Adar1 is required for fear extinction. Nat Neurosci 2020; 23:718-729. [PMID: 32367065 PMCID: PMC7269834 DOI: 10.1038/s41593-020-0627-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/19/2020] [Indexed: 01/06/2023]
Abstract
DNA forms conformational states beyond the right-handed double-helix; however, the functional relevance of these non-canonical structures in the brain remains unknown. We show that, in the prefrontal cortex of mice, the formation of one such structure, Z-DNA, is involved in the regulation of extinction memory. Z-DNA is formed during fear learning, and reduced during extinction learning, which is mediated, in part, by a direct interaction between Z-DNA and the RNA editing enzyme Adar1. Adar1 binds to Z-DNA during fear extinction learning which leads to a reduction in Z-DNA at sites where Adar1 is recruited. Knockdown of Adar1 leads to an inability to modify a previously acquired fear memory and blocks activity-dependent changes in DNA structure and RNA state; effects that are fully rescued by the introduction of full-length Adar1. These findings suggest a novel mechanism of learning-induced gene regulation dependent on both proteins which recognize DNA structure, and the state.
Collapse
|
34
|
Oh KI, Kim J, Park CJ, Lee JH. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. Int J Mol Sci 2020; 21:E2673. [PMID: 32290457 PMCID: PMC7216225 DOI: 10.3390/ijms21082673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
The non-canonical structures of nucleic acids are essential for their diverse functions during various biological processes. These non-canonical structures can undergo conformational exchange among multiple structural states. Data on their dynamics can illustrate conformational transitions that play important roles in folding, stability, and biological function. Here, we discuss several examples of the non-canonical structures of DNA focusing on their dynamic characterization by NMR spectroscopy: (1) G-quadruplex structures and their complexes with target proteins; (2) i-motif structures and their complexes with proteins; (3) triplex structures; (4) left-handed Z-DNAs and their complexes with various Z-DNA binding proteins. This review provides insight into how the dynamic features of non-canonical DNA structures contribute to essential biological processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| | - Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| |
Collapse
|
35
|
Wu C, Zhang Y, Hu C. PKZ, a Fish-Unique eIF2α Kinase Involved in Innate Immune Response. Front Immunol 2020; 11:585. [PMID: 32296447 PMCID: PMC7137213 DOI: 10.3389/fimmu.2020.00585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
PKZ is a novel and unique eIF2α protein kinase identified in fish. Although PKZ is most homologous to PKR, particularly in the C-terminal catalytic domain, it contains two N-terminal Z-DNA-binding domains (Zα1 and Zα2) instead of the dsRNA binding domains (dsRBDs) in PKR. As a novel member of eIF2α kinase family, the available data suggest that PKZ has some distinct mechanisms for recognition, binding, and B-Z DNA transition. Functionally, PKZ seems to be activated by the binding of Zα to Z-DNA and participates in innate immune responses. In this review, we summarize the recent progress on fish PKZ.
Collapse
Affiliation(s)
- Chuxin Wu
- Department of Natural Sciences, Yuzhang Normal University, Nanchang, China
| | - Yibing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Levraud JP, Jouneau L, Briolat V, Laghi V, Boudinot P. IFN-Stimulated Genes in Zebrafish and Humans Define an Ancient Arsenal of Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:3361-3373. [DOI: 10.4049/jimmunol.1900804] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
|
37
|
Nakamura M, Takada T, Yamana K. Controlling Pyrene Association in DNA Duplexes by B‐ to Z‐DNA Transitions. Chembiochem 2019; 20:2949-2954. [DOI: 10.1002/cbic.201900350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Tadao Takada
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Kazushige Yamana
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| |
Collapse
|
38
|
Winnerdy FR, Bakalar B, Maity A, Vandana JJ, Mechulam Y, Schmitt E, Phan AT. NMR solution and X-ray crystal structures of a DNA molecule containing both right- and left-handed parallel-stranded G-quadruplexes. Nucleic Acids Res 2019; 47:8272-8281. [PMID: 31216034 PMCID: PMC6735952 DOI: 10.1093/nar/gkz349] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/16/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
Analogous to the B- and Z-DNA structures in double-helix DNA, there exist both right- and left-handed quadruple-helix (G-quadruplex) DNA. Numerous conformations of right-handed and a few left-handed G-quadruplexes were previously observed, yet they were always identified separately. Here, we present the NMR solution and X-ray crystal structures of a right- and left-handed hybrid G-quadruplex. The structure reveals a stacking interaction between two G-quadruplex blocks with different helical orientations and displays features of both right- and left-handed G-quadruplexes. An analysis of loop mutations suggests that single-nucleotide loops are preferred or even required for the left-handed G-quadruplex formation. The discovery of a right- and left-handed hybrid G-quadruplex further expands the polymorphism of G-quadruplexes and is potentially useful in designing a left-to-right junction in G-quadruplex engineering.
Collapse
Affiliation(s)
- Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - J Jeya Vandana
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yves Mechulam
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, Palaiseau 91128, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
39
|
Lee CH, Shih YP, Ho MR, Wang AHJ. The C-terminal D/E-rich domain of MBD3 is a putative Z-DNA mimic that competes for Zα DNA-binding activity. Nucleic Acids Res 2019; 46:11806-11821. [PMID: 30304469 PMCID: PMC6294567 DOI: 10.1093/nar/gky933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The Z-DNA binding domain (Zα), derived from the human RNA editing enzyme ADAR1, can induce and stabilize the Z-DNA conformation. However, the biological function of Zα/Z-DNA remains elusive. Herein, we sought to identify proteins associated with Zα to gain insight into the functional network of Zα/Z-DNA. By pull-down, biophysical and biochemical analyses, we identified a novel Zα-interacting protein, MBD3, and revealed that Zα interacted with its C-terminal acidic region, an aspartate (D)/glutamate (E)-rich domain, with high affinity. The D/E-rich domain of MBD3 may act as a DNA mimic to compete with Z-DNA for binding to Zα. Dimerization of MBD3 via intermolecular interaction of the D/E-rich domain and its N-terminal DNA binding domain, a methyl-CpG-binding domain (MBD), attenuated the high affinity interaction of Zα and the D/E-rich domain. By monitoring the conformation transition of DNA, we found that Zα could compete with the MBD domain for binding to the Z-DNA forming sequence, but not vice versa. Furthermore, co-immunoprecipitation experiments confirmed the interaction of MBD3 and ADAR1 in vivo. Our findings suggest that the interplay of Zα and MBD3 may regulate the transition of the DNA conformation between B- and Z-DNA and thereby modulate chromatin accessibility, resulting in alterations in gene expression.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Ping Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
40
|
Kim D, Hur J, Han JH, Ha SC, Shin D, Lee S, Park S, Sugiyama H, Kim KK. Sequence preference and structural heterogeneity of BZ junctions. Nucleic Acids Res 2019; 46:10504-10513. [PMID: 30184200 PMCID: PMC6212838 DOI: 10.1093/nar/gky784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
BZ junctions, which connect B-DNA to Z-DNA, are necessary for local transformation of B-DNA to Z-DNA in the genome. However, the limited information on the junction-forming sequences and junction structures has led to a lack of understanding of the structural diversity and sequence preferences of BZ junctions. We determined three crystal structures of BZ junctions with diverse sequences followed by spectroscopic validation of DNA conformation. The structural features of the BZ junctions were well conserved regardless of sequences via the continuous base stacking through B-to-Z DNA with A-T base extrusion. However, the sequence-dependent structural heterogeneity of the junctions was also observed in base step parameters that are correlated with steric constraints imposed during Z-DNA formation. Further, circular dichroism and fluorescence-based analysis of BZ junctions revealed that a base extrusion was only found at the A-T base pair present next to a stable dinucleotide Z-DNA unit. Our findings suggest that Z-DNA formation in the genome is influenced by the sequence preference for BZ junctions.
Collapse
Affiliation(s)
- Doyoun Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jeonghwan Hur
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ji Hoon Han
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sung Chul Ha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Samsung Biomedical Research Institute, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| |
Collapse
|
41
|
Zhang Y, Cui Y, An R, Liang X, Li Q, Wang H, Wang H, Fan Y, Dong P, Li J, Cheng K, Wang W, Wang S, Wang G, Xue C, Komiyama M. Topologically Constrained Formation of Stable Z-DNA from Normal Sequence under Physiological Conditions. J Am Chem Soc 2019; 141:7758-7764. [PMID: 30844265 DOI: 10.1021/jacs.8b13855] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Z-DNA, a left-handed duplex, has been shown to form in vivo and regulate expression of the corresponding gene. However, its biological roles have not been satisfactorily understood, mainly because Z-DNA is easily converted to the thermodynamically favorable B-DNA. Here we present a new idea to form stable Z-DNA under normal physiological conditions and achieve detailed analysis on its fundamental features. Simply by mixing two complementary minicircles of single-stranded DNA with no chemical modification, the hybridization spontaneously induces topological constraint which twines one-half of the double-stranded DNA into stable Z-DNA. The formation of Z-conformation with high stability has been proved by using circular dichroism spectroscopy, Z-DNA-specific antibody binding assay, nuclease digestion, etc. Even at a concentration of MgCl2 as low as 0.5 mM, Z-DNA was successfully obtained, avoiding the use of high salt conditions, limited sequences, ancillary additives, or chemical modifications, criteria which have hampered Z-DNA research. The resultant Z-DNA has the potential to be used as a canonical standard sample in Z-DNA research. By using this approach, further developments of Z-DNA science and its applications become highly promising.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Yixiao Cui
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Ran An
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Xingguo Liang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Qi Li
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Haiting Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Hao Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Yiqiao Fan
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Ping Dong
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Jing Li
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Kai Cheng
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Weinan Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Sai Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Guoqing Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Makoto Komiyama
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| |
Collapse
|
42
|
Nikpour N, Salavati R. The RNA binding activity of the first identified trypanosome protein with Z-DNA-binding domains. Sci Rep 2019; 9:5904. [PMID: 30976048 PMCID: PMC6459835 DOI: 10.1038/s41598-019-42409-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
RNA-binding proteins play a particularly important role in regulating gene expression in trypanosomes. A map of the network of protein complexes in Trypanosoma brucei uncovered an essential protein (Tb927.10.7910) that is postulated to be an RNA-binding protein implicated in the regulation of the mitochondrial post-transcriptional gene regulatory network by its association with proteins that participate in a multi-protein RNA editing complex. However, the mechanism by which this protein interacts with its multiple target transcripts remained unknown. Using sensitive database searches and experimental data, we identify Z-DNA-binding domains in T. brucei in the N- and C-terminal regions of Tb927.10.7910. RNA-binding studies of the wild-type protein, now referred to as RBP7910 (RNA binding protein 7910), and site-directed mutagenesis of residues important for the Z-DNA binding domains show that it preferentially interacts with RNA molecules containing poly(U) and poly(AU)-rich sequences. The interaction of RBP7910 with these regions may be involved in regulation of RNA editing of mitochondrial transcripts.
Collapse
Affiliation(s)
- Najmeh Nikpour
- Institute of Parasitology, McGill University, Quebec, H9X3V9, Canada
| | - Reza Salavati
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.
| |
Collapse
|
43
|
Xu X, Li M, Wu C, Li D, Jiang Z, Liu C, Cheng B, Mao H, Hu C. The Fish-Specific Protein Kinase (PKZ) Initiates Innate Immune Responses via IRF3- and ISGF3-Like Mediated Pathways. Front Immunol 2019; 10:582. [PMID: 30984174 PMCID: PMC6447671 DOI: 10.3389/fimmu.2019.00582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
PKZ is a fish-specific protein kinase containing Zα domains. PKZ is known to induce apoptosis through phosphorylating eukaryotic initiation factor 2α kinase (eIF2α) in the same way as double-stranded RNA-dependent protein kinase (PKR), but its exact role in detecting pathogens remains to be fully elucidated. Herein, we have found that PKZ acts as a fish-specific DNA sensor by initiating IFN expression through IRF3- or ISGF3-like mediated pathways. The expression pattern of PKZ is similar to those of innate immunity mediators stimulated by poly (dA:dT) and poly (dG:dC). DNA-PKZ interaction can enhance PKZ phosphorylation and dimerization in vitro. These findings indicate that PKZ participates in cytoplasmic DNA-mediated signaling. Subcellular localization assays have also shown that PKZ is located in the cytoplasm, which suggests that PKZ acts as a cytoplasmic PRR. Meanwhile, co-IP assays have shown that PKZ can separately interact with IRF3, STING, ZDHHC1, eIF2α, IRF9, and STAT2. Further investigations have revealed that PKZ can activate IRF3 and STAT2; and that IRF3-dependent and ISGF3-like dependent mediators are critical for PKZ-induced IFN expression. These results demonstrate that PKZ acts as a special DNA pattern-recognition receptor, and that PKZ can trigger immune responses through IRF3-mediated or ISGF3-like mediated pathways in fish.
Collapse
Affiliation(s)
- Xiaowen Xu
- College of Life Science, Nanchang University, Nanchang, China
| | - Meifeng Li
- College of Life Science, Nanchang University, Nanchang, China
| | - Chuxin Wu
- College of Life Science, Nanchang University, Nanchang, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University, Nanchang, China
| | - Changxin Liu
- College of Life Science, Nanchang University, Nanchang, China
| | - Bo Cheng
- College of Life Science, Nanchang University, Nanchang, China
| | - Huiling Mao
- College of Life Science, Nanchang University, Nanchang, China
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Lee AR, Hwang J, Hur JH, Ryu KS, Kim KK, Choi BS, Kim NK, Lee JH. NMR Dynamics Study Reveals the Zα Domain of Human ADAR1 Associates with and Dissociates from Z-RNA More Slowly than Z-DNA. ACS Chem Biol 2019; 14:245-255. [PMID: 30592616 DOI: 10.1021/acschembio.8b00914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human RNA editing enzyme ADAR1 deaminates adenosine in pre-mRNA to yield inosine. The Zα domain of human ADAR1 (hZαADAR1) binds specifically to left-handed Z-RNA as well as Z-DNA and stabilizes the Z-conformation. To answer the question of how hZαADAR1 can induce both the B-Z transition of DNA and the A-Z transition of RNA, we investigated the structure and dynamics of hZαADAR1 in complex with 6-base-pair Z-DNA or Z-RNA. We performed chemical shift perturbation and relaxation dispersion experiments on hZαADAR1 upon binding to Z-DNA as well as Z-RNA. Our study demonstrates the unique dynamics of hZαADAR1 during the A-Z transition of RNA, in which the hZαADAR1 protein forms a thermodynamically stable complex with Z-RNA, similar to Z-DNA, but kinetically converts RNA to the Z-form more slowly than DNA. We also discovered some distinct structural features of hZαADAR1 in the Z-RNA binding conformation. Our results suggest that the A-Z transition of RNA facilitated by hZαADAR1 displays unique structural and dynamic features that may be involved in targeting ADAR1 for a role in recognition of RNA substrates.
Collapse
Affiliation(s)
- Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, South Korea
| | - Jihyun Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jeong Hwan Hur
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Gyeonggi 16419, South Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Team, Korea Basic Science Institute, Chungbuk 28119, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Gyeonggi 16419, South Korea
| | - Byong-Seok Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, South Korea
| |
Collapse
|
45
|
Huang B, Wang ZX, Liang Y, Zhai SW, Huang WS, Nie P. Identification of four type I IFNs from Japanese eel with differential expression properties and Mx promoter inducibility. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:62-71. [PMID: 30240715 DOI: 10.1016/j.dci.2018.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Type I IFNs are a family of cytokines with antiviral, anti-proliferative and immune-modulatory functions. In this study, four type I IFNs (termed AjIFN1-4) have been cloned from the Japanese eel, Anguilla japonica. The open reading frames of AjIFN1-4 are 552, 534, 546 and 561 bp in length, encoding 183, 177, 181, and 186 amino acids (aa), respectively. Sequence comparison and phylogenetic analysis results revealed that AjIFN1 and AjIFN2 belong to group one (2C-containing) IFNs, while AjIFN3 and AjIFN4 belong to group two (4C-containing) IFNs. Syntenic comparison showed that chromosome block duplication and rearrangement events might have occurred at IFN loci in different teleost lineages. Expression analysis revealed the rapid induction of AjIFNl and AjIFN2 in response to poly I:C stimulation, while AjIFN3 and AjIFN4 were predominantly expressed at later time points. Two Mx promoter reporter assays were conducted to assess the Mx-inducing capability of AjIFN1-4. It is shown that the overexpression of AjIFN1-4 all promoted the luciferase activity of MxB reporter, but the activity of MxC reporter increased only in cells transfected with AjIFN1. Collectively, it is suggested that teleost IFNs were evolved independently in different lineages of fish and may function differently in teleost antiviral immunity.
Collapse
Affiliation(s)
- B Huang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Z X Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Y Liang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - S W Zhai
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - W S Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen, 361005, China.
| | - P Nie
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
46
|
Thermodynamic Model for B-Z Transition of DNA Induced by Z-DNA Binding Proteins. Molecules 2018; 23:molecules23112748. [PMID: 30355979 PMCID: PMC6278649 DOI: 10.3390/molecules23112748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023] Open
Abstract
Z-DNA is stabilized by various Z-DNA binding proteins (ZBPs) that play important roles in RNA editing, innate immune response, and viral infection. In this review, the structural and dynamics of various ZBPs complexed with Z-DNA are summarized to better understand the mechanisms by which ZBPs selectively recognize d(CG)-repeat DNA sequences in genomic DNA and efficiently convert them to left-handed Z-DNA to achieve their biological function. The intermolecular interaction of ZBPs with Z-DNA strands is mediated through a single continuous recognition surface which consists of an α3 helix and a β-hairpin. In the ZBP-Z-DNA complexes, three identical, conserved residues (N173, Y177, and W195 in the Zα domain of human ADAR1) play central roles in the interaction with Z-DNA. ZBPs convert a 6-base DNA pair to a Z-form helix via the B-Z transition mechanism in which the ZBP first binds to B-DNA and then shifts the equilibrium from B-DNA to Z-DNA, a conformation that is then selectively stabilized by the additional binding of a second ZBP molecule. During B-Z transition, ZBPs selectively recognize the alternating d(CG)n sequence and convert it to a Z-form helix in long genomic DNA through multiple sequence discrimination steps. In addition, the intermediate complex formed by ZBPs and B-DNA, which is modulated by varying conditions, determines the degree of B-Z transition.
Collapse
|
47
|
2'- O-Methyl-8-methylguanosine as a Z-Form RNA Stabilizer for Structural and Functional Study of Z-RNA. Molecules 2018; 23:molecules23102572. [PMID: 30304782 PMCID: PMC6222775 DOI: 10.3390/molecules23102572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 11/16/2022] Open
Abstract
In contrast to Z-DNA that was stabilized and well-studied for its structure by chemical approaches, the stabilization and structural study of Z-RNA remains a challenge. In this study, we developed a Z-form RNA stabilizer m⁸Gm, and demonstrated that incorporation of m⁸Gm into RNA can markedly stabilize the Z-RNA at low salt conditions. Using the m⁸Gm-contained Z-RNA, we determined the structure of Z-RNA and investigated the interaction of protein and Z-RNA.
Collapse
|
48
|
Robertsen B. The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:41-52. [PMID: 28196779 DOI: 10.1016/j.dci.2017.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Type I IFNs (IFN-I) are cytokines, which play a crucial role in innate and adaptive immunity against viruses of vertebrates. In essence, IFN-I are induced and secreted upon host cell recognition of viral nucleic acids and protect other cells against infection by inducing antiviral proteins. Atlantic salmon possesses an extraordinary repertoire of IFN-I genes encompassing at least six different classes (IFNa, IFNb, IFNc, IFNd, IFNe and IFNf) most of which are encoded by several genes. This review describes recent research on the functions of salmon IFNa, IFNb, IFNc and IFNd. As in mammals, expression of different salmon IFN-I in response to virus infection is dependent on their promoters, properties of the virus and the cell's expression of nucleic acid receptors and interferon regulatory factors (IRFs). While IFNa mainly display local antiviral activity, IFNb and IFNc show systemic antiviral activity. In addition, salmon appears to possess several IFN-I receptors, which show selectivity in binding different IFN-I. This complexity in IFN-I and receptors allows for a large variation in functions of the salmon IFN-I. Studies with intramuscular injection of IFN expression plasmids have recently provided surprising results, which may be of relevance for application of IFN-I in prophylaxis against virus infection. Firstly, injection of IFNc plasmid protected salmon presmolts against virus infection for at least 10 weeks. Secondly, IFN plasmids showed potent adjuvant activity when injected together with a DNA vaccine against infectious salmon anemia virus (ISAV).
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
49
|
Vongsutilers V, Gannett PM. C8-Guanine modifications: effect on Z-DNA formation and its role in cancer. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00030a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Participation of Z DNA in normal and disease related biological processes.
Collapse
Affiliation(s)
- V. Vongsutilers
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Thailand
| | - P. M. Gannett
- College of Pharmacy
- Nova Southeastern University
- Ft. Lauderdale
- USA
| |
Collapse
|
50
|
Huynh TP, Jancovich JK, Tripuraneni L, Heck MC, Langland JO, Jacobs BL. Characterization of a PKR inhibitor from the pathogenic ranavirus, Ambystoma tigrinum virus, using a heterologous vaccinia virus system. Virology 2017; 511:290-299. [PMID: 28919326 PMCID: PMC6192022 DOI: 10.1016/j.virol.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
Ambystoma tigrinum virus (ATV) (family Iridoviridae, genus Ranavirus) was isolated from diseased tiger salamanders (Ambystoma tigrinum stebbinsi) from the San Rafael Valley in southern Arizona, USA in 1996. Genomic sequencing of ATV, as well as other members of the genus, identified an open reading frame that has homology to the eukaryotic translation initiation factor, eIF2α (ATV eIF2α homologue, vIF2αH). Therefore, we asked if the ATV vIF2αH could also inhibit PKR. To test this hypothesis, the ATV vIF2αH was cloned into vaccinia virus (VACV) in place of the well-characterized VACV PKR inhibitor, E3L. Recombinant VACV expressing ATV vIF2αH partially rescued deletion of the VACV E3L gene. Rescue coincided with rapid degradation of PKR in infected cells. These data suggest that the salamander virus, ATV, contains a novel gene that may counteract host defenses, and this gene product may be involved in the presentation of disease caused by this environmentally important pathogen.
Collapse
Affiliation(s)
- Trung P Huynh
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA
| | - James K Jancovich
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA
| | - Latha Tripuraneni
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA
| | - Michael C Heck
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA
| | - Jeffrey O Langland
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA; Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
| | - Bertram L Jacobs
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA.
| |
Collapse
|