1
|
Dvorscek AR, McKenzie CI, Robinson MJ, Ding Z, Pitt C, O'Donnell K, Zotos D, Brink R, Tarlinton DM, Quast I. IL-21 has a critical role in establishing germinal centers by amplifying early B cell proliferation. EMBO Rep 2022; 23:e54677. [PMID: 35801309 PMCID: PMC9442303 DOI: 10.15252/embr.202254677] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Abstract
The proliferation and differentiation of antigen‐specific B cells, including the generation of germinal centers (GC), are prerequisites for long‐lasting, antibody‐mediated immune protection. Affinity for antigen determines B cell recruitment, proliferation, differentiation, and competitiveness in the response, largely through determining access to T cell help. However, how T cell‐derived signals contribute to these outcomes is incompletely understood. Here, we report how the signature cytokine of follicular helper T cells, IL‐21, acts as a key regulator of the initial B cell response by accelerating cell cycle progression and the rate of cycle entry, increasing their contribution to the ensuing GC. This effect occurs over a wide range of initial B cell receptor affinities and correlates with elevated AKT and S6 phosphorylation. Moreover, the resultant increased proliferation can explain the IL‐21‐mediated promotion of plasma cell differentiation. Collectively, our data establish that IL‐21 acts from the outset of a T cell‐dependent immune response to increase cell cycle progression and fuel cyclic re‐entry of B cells, thereby regulating the initial GC size and early plasma cell output.
Collapse
Affiliation(s)
- Alexandra R Dvorscek
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Craig I McKenzie
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Zhoujie Ding
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Kristy O'Donnell
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Dimitra Zotos
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
2
|
Liu YW, Fu SH, Chien MW, Hsu CY, Lin MH, Dong JL, Lu RJH, Lee YJ, Chen PY, Wang CH, Sytwu HK. Blimp-1 moulds the epigenetic architecture of IL-21-mediated autoimmune diseases through an autoregulatory circuit. JCI Insight 2022; 7:151614. [PMID: 35503415 PMCID: PMC9220827 DOI: 10.1172/jci.insight.151614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Positive regulatory domain 1 (PRDM1) encodes B lymphocyte–induced maturation protein 1 (BLIMP1), also known as a master regulator of T cell homeostasis. We observed a negative relationship between Blimp-1 and IL-21 based on our previous data that Blimp-1 overexpression in T cells suppresses autoimmune diabetes while Blimp-1–deficient T cells contribute to colitis in NOD mice. Reanalysis of published data sets also revealed an inverse correlation between PRDM1 and IL21 in Crohn’s disease. Here, we illustrate that Blimp-1 repressed IL-21 by reducing chromatin accessibility and evicting an IL-21 activator, c-Maf, from the Il21 promoter. Moreover, Blimp-1 overexpression–mediated reduction in permissive chromatin structures at the Il21 promoter could override IL-21–accelerated autoimmune diabetogenesis in small ubiquitin-like modifier–defective c-Maf–transgenic mice. An autoregulatory feedback loop to harness IL-21 expression was unveiled by the evidence that IL-21 addition induced time-dependent Blimp-1 expression and subsequently enriched its binding to the Il21 promoter to suppress IL-21 overproduction. Furthermore, intervention of this feedback loop by IL-21 blockade, with IL-21R.Fc administration or IL-21 receptor deletion, attenuated Blimp-1 deficiency–mediated colitis and reinforced the circuit between Blimp-1 and IL-21 in the regulation of autoimmunity. We highlight the translation of Blimp-1–based epigenetic and transcriptomic profiles applicable to a personalized medicine approach in autoimmune diseases.
Collapse
Affiliation(s)
- Yu-Wen Liu
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Shin-Huei Fu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Wei Chien
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chao-Yuan Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Ling Dong
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Rita Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Jing Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
3
|
Wang P, Zhang Z, Yin B, Li J, Xialin C, Lian W, Su Y, Jia C. Identifying changes in immune cells and constructing prognostic models using immune-related genes in post-burn immunosuppression. PeerJ 2022; 10:e12680. [PMID: 35070500 PMCID: PMC8761370 DOI: 10.7717/peerj.12680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Burn patients are prone to infection as well as immunosuppression, which is a significant cause of death. Currently, there is a lack of prognostic biomarkers for immunosuppression in burn patients. This study was conducted to identify immune-related genes that are prognosis biomarkers in post-burn immunosuppression and potential targets for immunotherapy. METHODS We downloaded the gene expression profiles and clinical data of 213 burn patients and 79 healthy samples from the Gene Expression Omnibus (GEO) database. Immune infiltration analysis was used to identify the proportion of circulating immune cells. Functional enrichment analyses were carried out to identify immune-related genes that were used to build miRNA-mRNA networks to screen key genes. Next, we carried out correlation analysis between immune cells and key genes that were then used to construct logistic regression models in GSE77791 and were validated in GSE19743. Finally, we determined the expression of key genes in burn patients using quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS A total of 745 differently expressed genes were screened out: 299 were up-regulated and 446 were down-regulated. The number of Th-cells (CD4+) decreased while neutrophils increased in burn patients. The enrichment analysis showed that down-regulated genes were enriched in the T-cell activation pathway, while up-regulated genes were enriched in neutrophil activation response in burn patients. We screened out key genes (NFATC2, RORA, and CAMK4) that could be regulated by miRNA. The expression of key genes was related to the proportion of Th-cells (CD4+) and survival, and was an excellent predictor of prognosis in burns with an area under the curve (AUC) value of 0.945. Finally, we determined that NFATC2, RORA, and CAMK4 were down-regulated in burn patients. CONCLUSION We found that NFATC2, RORA, and CAMK4 were likely prognostic biomarkers in post-burn immunosuppression and potential immunotherapeutic targets to convert Th-cell dysfunction.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zexin Zhang
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Yin
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayuan Li
- Department of Anesthesia Operation, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Cheng Xialin
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenqin Lian
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yingjun Su
- Department of Burns and Plastic Surgery, Plastic Surgery Hospital, Xi’an International Medical Center, Xi’an, Shaanxi, China
| | - Chiyu Jia
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Duan X, Shen C, Zhang X, Wu L, Chen J, Ma B, Wang Q, Sun P, Lan Y, Su C. Toll-like receptor 7 agonist imiquimod prevents the progression of SLE in MRL/lpr mice via inhibiting the differentiation of T follicular helper cells. Int Immunopharmacol 2020; 80:106239. [PMID: 32007709 DOI: 10.1016/j.intimp.2020.106239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Previous research has recently indicated that TLR7 is able to induce CD4+T cell anergy, which is the opposite of the role it plays in innate immune cells. Therefore, TLR7 ligands may be used as a manner in which to induce CD4+T cells "tolerance" in autoimmune diseases. T follicular helper (Tfh) cells were demonstrated to be a subset of CD4+T cells that help B cells produce antibodies. The abnormal activity of Tfh cells, though, is their function as a primary pathogenic factor in systemic lupus erythematosus (SLE). However, the role of TLR7 in Tfh cells is not clear. Our study was aimed at determining the influence of TLR7 on Tfh cells in a murine model of SLE (MRL/lpr mice). We were surprised to find that the frequency of Tfh cells and germinal center (GC) B cells was significantly reduced after treatment with the TLR7 agonist imiquimod. Imiquimod also significantly reduced the expression of inducible costimulatory molecule (ICOS) and programmed death 1(PD-1) in Tfh cells and decreased IL-21 secretion. Moreover, imiquimod significantly reduced the mRNA expression of several transcription factors, including Bcl-6, c-Maf, Batf3, Nfatc2 and Stat3, and enhanced the expression of Prdm1 and Stat5b in CD4+T cells. Imiquimod also ameliorated the progression of SLE in MRL/lpr mice by inhibiting anti-dsDNA antibodies and antinuclear antibody (ANA) secretion in the serum. Our findings indicated that TLR7 inhibited the development of Tfh cells both in vivo and ex vivo, which depended on many transcription factors aside from Bcl-6. Our results demonstrated that a TLR7 agonist has the potential to be used to inhibit Tfh cell responses during SLE.
Collapse
Affiliation(s)
- Xiangguo Duan
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, 750004 Yinchuan, PR China; Department of Laboratory Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, PR China
| | - Chunxiu Shen
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Xiaoyu Zhang
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Lihua Wu
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, 750004 Yinchuan, PR China
| | - Jian Chen
- Guolong Hospital, 750004 Yinchuan, PR China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, 750001 Yinchuan, PR China
| | - Qi Wang
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Peng Sun
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Yaru Lan
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China
| | - Chunxia Su
- School of Basic Medical Sciences , Ningxia Medical University, 750004 Yinchuan, PR China.
| |
Collapse
|
5
|
Ma F, Zhao M, Song Z, Wang Z. T‐bet interferes with PD‐1/PD‐L1‐mediated suppression of CD4
+
T cell inflammation and survival in Crohn's disease. Clin Exp Pharmacol Physiol 2019; 46:798-805. [PMID: 31210370 DOI: 10.1111/1440-1681.13127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 05/11/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Fei Ma
- Department of Oncology Xinhua Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Mingning Zhao
- Department of General Surgery Xinhua Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Zhenyu Song
- DICAT Biomedical Computation Centre Vancouver British Columbia Canada
| | - Zhongchuan Wang
- Department of Colorectal Surgery Xinhua Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
6
|
El-Said H, Fayyad-Kazan M, Aoun R, Borghol N, Skafi N, Rouas R, Vanhamme L, Mourtada M, Ezzeddine M, Burny A, Fayyad-Kazan H, Badran B. MiR302c, Sp1, and NFATc2 regulate interleukin-21 expression in human CD4+CD45RO+ T lymphocytes. J Cell Physiol 2019; 234:5998-6011. [PMID: 30343493 DOI: 10.1002/jcp.27151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
Interleukin-21 (IL-21) is a cytokine with potent regulatory effects on different immune cells. Recently, IL-21 has been contemplated for use in the treatment of cancers. However, the molecular mechanisms regulating human IL-21 gene expression has not yet been described. In this study, we initially studied the promoter region and identified the transcription start site. We thereafter described the essential region upstream of the transcription start site and showed the in vivo binding of NFATc2 and SP1 transcription factors to this region, in addition to their positive role in IL-21 expression. We also studied the role of microRNAs (miRNAs) in regulating IL-21 expression. We, thus, established the miRNA profile of CD4+CD45RO+ versus CD4+CD45RA+ isolated from healthy volunteers and identified a signature composed of 12 differentially expressed miRNAs. We showed that miR-302c is able to negatively regulate IL-21 expression by binding directly to its target site in the 3'-untranslated region. Moreover, after using fresh human CD4-positive T cells, we observed the high acetylation level of histone H4, an observation well in line with the already described high expression of IL-21 in CD4+CD45RO+ versus CD4+CD45RA+ T cells. Altogether, our data identified different molecular mechanisms regulating IL-21 expression.
Collapse
Affiliation(s)
- Hassan El-Said
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Rabab Aoun
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nada Borghol
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Najwa Skafi
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Redouane Rouas
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Mohamad Mourtada
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mohamad Ezzeddine
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Arsène Burny
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Bassam Badran
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
7
|
MyD88 Signaling in T Cells Is Critical for Effector CD4 T Cell Differentiation following a Transitional T Follicular Helper Cell Stage. Infect Immun 2018; 86:IAI.00791-17. [PMID: 29507085 DOI: 10.1128/iai.00791-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/28/2018] [Indexed: 12/24/2022] Open
Abstract
Activation of CD4 T cells by dendritic cells leads to their differentiation into various effector lineages. The nature of the effector lineage is determined by the innate cues provided by dendritic cells to newly primed T cells. Although the cytokines necessary for several effector lineages have been identified, the innate cues that drive T follicular helper (Tfh) lineage cell development remain unclear. Here we found that following priming, CD4 T cells undergoing clonal expansion acquire a transient Tfh-like phenotype before differentiating into other effector lineages. In addition, we found that T cell-intrinsic myeloid differentiation antigen 88 (MyD88) signaling, which occurs downstream of interleukin-1 (IL-1) and IL-18 receptors, is critical for the primed CD4 T cells to transition out of the temporary Tfh lineage. Mice with T cell-specific deletion of MyD88 have a higher proportion of Tfh cells and germinal center (GC) B cells. These exaggerated Tfh cell and GC B cell responses, however, do not lead to protective immunity against infections. We demonstrate that T cell-intrinsic MyD88 is critical for effector lineage differentiation as well as production of the cytokines that are necessary for class switching. Overall, our study establishes that following priming and clonal expansion, CD4 T cells undergo a transitional Tfh-like phase and that further differentiation into effector lineages is dictated by T cell-intrinsic MyD88-dependent cues.
Collapse
|
8
|
Lebre MC, Vieira PL, Tang MW, Aarrass S, Helder B, Newsom-Davis T, Tak PP, Screaton GR. Synovial IL-21/TNF-producing CD4 + T cells induce joint destruction in rheumatoid arthritis by inducing matrix metalloproteinase production by fibroblast-like synoviocytes. J Leukoc Biol 2017; 101:775-783. [PMID: 27733582 DOI: 10.1189/jlb.5a0516-217rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2023] Open
Abstract
Bone and cartilage destruction is one of the key manifestations of rheumatoid arthritis (RA). Although the role of T helper (Th)17 cells in these processes is clear, the role of IL-21-producing cells T cells has been neglected. We sought to investigate the role of IL-21 in RA by focusing on the functional characteristics of the main producers of this cytokine, synovial CD4+IL-21+ T cells. We show that the frequency of both synovial fluid (SF) CD4+IL-21+ or CD4+IL-21+TNF+ T cells in patients with RA was significantly higher compared with patients with psoriatic arthritis (PsA). The frequency of peripheral blood (PB) IL-21+CD4+ T cells in patients with RA positively correlated with disease activity score 28 (DAS28), serum anticyclic citrullinated peptide (anti-CCP) antibodies and IgM-rheumatoid factor (IgM-RF). IL-21 levels in RA SF were associated with matrix metalloproteinase (MMP)-1 and MMP-3. Related to this, IL-21 induced significantly the secretion of MMP-1 and MMP-3 in RA synovial biopsies. Sorted SF CD4+IL-21+ T cells significantly induced the release of MMP-1 and MMP-3 by fibroblast-like synoviocytes (FLS) compared with medium or CD4+IL-21- T cells in a coculture system. Neutralization of both IL-21 and TNF resulted in significantly less production of MMP by FLS. The results of this study indicate a new role for synovial CD4+IL-21+TNF+ T cells in promoting synovial inflammation/joint destruction in patients with RA. Importantly, IL-21 blockade in combination with anti-TNF might be an effective therapy in patients with RA by inhibiting MMP-induced inflammation/joint destruction.
Collapse
Affiliation(s)
- Maria C Lebre
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Pedro L Vieira
- Department of Immunology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Man Wai Tang
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Saïda Aarrass
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Boy Helder
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Thomas Newsom-Davis
- Department of Immunology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Paul P Tak
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
| | - Gavin R Screaton
- Department of Immunology, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
9
|
Moukambi F, Rodrigues V, Fortier Y, Rabezanahary H, Borde C, Krust B, Andreani G, Silvestre R, Petrovas C, Laforge M, Estaquier J. CD4 T Follicular Helper Cells and HIV Infection: Friends or Enemies? Front Immunol 2017; 8:135. [PMID: 28265271 PMCID: PMC5316554 DOI: 10.3389/fimmu.2017.00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
Follicular T helper (Tfh) cells, a subset of CD4 T lymphocytes, are essential for memory B cell activation, survival, and differentiation and assist B cells in the production of antigen-specific antibodies. Work performed in recent years pointed out the importance of Tfh cells in the context of HIV and SIV infections. The importance of tissue distribution of Tfh is also an important point since their frequency differs between peripheral blood and lymph nodes compared to the spleen, the primary organ for B cell activation, and differentiation. Our recent observations indicated an early and profound loss of splenic Tfh cells. The role of transcriptional activator and repressor factors that control Tfh differentiation is also discussed in the context of HIV/SIV infection. Because Tfh cells are important for B cell differentiation and antibody production, accelerating the Tfh responses early during HIV/SIV infection could be promising as novel immunotherapeutic approach or alternative vaccine strategies. However, because Tfh cells are infected during the HIV/SIV infection and represent a reservoir, this may interfere with HIV vaccine strategy. Thus, Tfh represent the good and bad guys during HIV infection.
Collapse
Affiliation(s)
- Félicien Moukambi
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Vasco Rodrigues
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Yasmina Fortier
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Chloé Borde
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Bernard Krust
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Guadalupe Andreani
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Ricardo Silvestre
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mireille Laforge
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| |
Collapse
|
10
|
Ohl K, Wiener A, Lippe R, Schippers A, Zorn C, Roth J, Wagner N, Tenbrock K. CREM Alpha Enhances IL-21 Production in T Cells In Vivo and In Vitro. Front Immunol 2016; 7:618. [PMID: 28066428 PMCID: PMC5165720 DOI: 10.3389/fimmu.2016.00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022] Open
Abstract
The cAMP-responsive element modulator alpha (CREMα) plays a role in autoimmunity and, in particular, in systemic lupus erythematosus. CREMα negatively regulates IL-2 transcription and activates IL-17 expression by direct transcriptional mechanisms. To understand the role of CREM in autoimmunity, we recently generated a mouse with a transgenic overexpression of CREMα selectively in T cells. This mouse is characterized by enhanced IL-17 and IL-21 expression. We, herein, dissect the transcriptional mechanisms of enhanced IL-21 transcription in these mice. T cells of CREMα transgenic mice display an enhanced binding of CREMα to the CD3ζ chain promoter resulting in decreased CD3ζ chain expression. This is accompanied by a decreased excitation threshold and enhanced Ca2+ influx, which is known to induce IL-21 expression via NFATc2 activation. However, CREMα directly binds to cAMP-response element (CRE) half-site within the Il-21 promoter, which results in enhanced promoter activity shown by promoter reporter assays. CREMα-induced IL-21 transcription is not abrogated in the presence of cyclosporine A but depends on an intact CRE site within the IL-21 promoter, which suggests that CREM largely enhances IL-21 expression by direct transcriptional regulation. IL-21 transcription is critical for IL-17 generation in these mice, since IL-21 receptor blockade downregulates IL-17 transcription to wild-type levels. Finally, this is of functional relevance since CREMα transgenic mice display enhanced disease activity in dextran sodium sulfate-induced colitis accompanied by higher local IL-21 expression. Thus, we describe two novel mechanisms of CREMα-dependent IL-21 transcription. Since T cells of systemic lupus erythematosus patients are characterized by enhanced IL-21 transcription, this might also be of functional relevance in humans.
Collapse
Affiliation(s)
- Kim Ohl
- Pediatric Immunology, Department of Pediatrics, RWTH Aachen University , Aachen , Germany
| | - Anastasia Wiener
- Pediatric Immunology, Department of Pediatrics, RWTH Aachen University , Aachen , Germany
| | - Ralph Lippe
- Institute of Immunology, University of Münster , Münster , Germany
| | - Angela Schippers
- Pediatric Immunology, Department of Pediatrics, RWTH Aachen University , Aachen , Germany
| | - Carolin Zorn
- Institute of Biochemistry and Molecular Immunology, RWTH Aachen University , Aachen , Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster , Münster , Germany
| | - Norbert Wagner
- Pediatric Immunology, Department of Pediatrics, RWTH Aachen University , Aachen , Germany
| | - Klaus Tenbrock
- Pediatric Immunology, Department of Pediatrics, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
11
|
Pachulec E, Neitzke-Montinelli V, Viola JPB. NFAT2 Regulates Generation of Innate-Like CD8 + T Lymphocytes and CD8 + T Lymphocytes Responses. Front Immunol 2016; 7:411. [PMID: 27766099 PMCID: PMC5052263 DOI: 10.3389/fimmu.2016.00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) 2 null mutant mice die in utero of cardiac failure, precluding analysis of the role of NFAT2 in lymphocyte responses. Only the NFAT2-/-/Rag-1-/- chimeric mice model gave insight into the role of NFAT2 transcription factor in T lymphocyte development, activation, and differentiation. As reports are mainly focused on the role of NFAT2 in CD4+ T lymphocytes activation and differentiation, we decided to investigate NFAT2's impact on CD8+ T lymphocyte responses. We report that NFAT2 is phosphorylated and inactive in the cytoplasm of naive CD8+ T cells, and upon TCR stimulation, it is dephosphorylated and translocated into the nucleus. To study the role of NFAT2 in CD8+ T responses, we employed NFAT2fl/flCD4-Cre mice with NFAT2 deletion specifically in T cells. Interestingly, the absence of NFAT2 in T cells resulted in increased percentage of non-conventional innate-like CD8+ T cells. These cells were CD122+, rapid producer of interferon gamma (IFN-γ) and had characteristics of conventional memory CD8+ T cells. We also observed an expansion of PLZF+ expressing CD3+ thymocyte population in the absence of NFAT2 and increased IL-4 production. Furthermore, we found that CD8+ T lymphocytes deficient in NFAT2 had reduced activation, proliferation, and IFN-γ and IL-2 production at suboptimal TCR strength. NFAT2 absence did not significantly influence differentiation of CD8+ T cells into cytotoxic effector cells but reduced their IFN-γ production. This work documents NFAT2 as a negative regulator of innate-like CD8+ T cells development. NFAT2 is required for complete CD8+ T cell responses at suboptimal TCR stimulation and regulates IFN-γ production by cytotoxic CD8+ T cells in vitro.
Collapse
Affiliation(s)
- Emilia Pachulec
- Program of Cellular Biology, Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | | | - João P B Viola
- Program of Cellular Biology, Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| |
Collapse
|
12
|
Suthers AN, Old JM, Young LJ. The common gamma chain cytokine interleukin-21 is expressed by activated lymphocytes from two macropod marsupials, Macropus eugenii and Onychogalea fraenata. Int J Immunogenet 2016; 43:209-17. [PMID: 27306193 DOI: 10.1111/iji.12272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/05/2016] [Indexed: 12/01/2022]
Abstract
In mammals, interleukin-21 is a member of the common gamma chain cytokine family that also includes IL-2, IL-4, IL-7, IL-9 and IL-15. IL-21 has pleiotropic effects on both myeloid and lymphoid immune cells and as a consequence, the biological actions of IL-21 are broad: regulating both innate and adaptive immune responses and playing a pivotal role in antiviral, inflammatory and antitumour cellular responses. While IL-21 genes have been characterized in mammals, birds, fish and amphibians, there are no reports for any marsupial species to date. We characterized the expressed IL-21 gene from immune tissues of two macropod species, the tammar wallaby (Macropus eugenii), a model macropod, and the closely related endangered bridled nailtail wallaby (Onychogalea fraenata). The open reading frame of macropod IL-21 is 462 nucleotides in length and encodes a 153-mer putative protein that has 46% identity with human IL-21. Despite the somewhat low amino acid conservation with other mammals, structural elements and residues essential for IL-21 conformation and receptor association were conserved in the macropod IL-21 predicted peptides. The detection of IL-21 gene expression in T-cell-enriched tissues, combined with analysis of the promotor region of the tammar wallaby gene, suggests that macropod IL-21 is expressed in stimulated T cells but is not readily detected in other cells and tissues. The similarity of gene expression profile and functionally important amino acid residues to eutherian IL-21 makes it unlikely that the differences in B- and T-cell responses that are reported for some marsupial species are due to a lack of important functional residues or IL-21 gene expression in this group of mammals.
Collapse
Affiliation(s)
- A N Suthers
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld, Australia
| | - J M Old
- School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| | - L J Young
- School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| |
Collapse
|
13
|
Al-Chami E, Tormo A, Khodayarian F, Rafei M. Therapeutic utility of the newly discovered properties of interleukin-21. Cytokine 2015; 82:33-7. [PMID: 26748727 DOI: 10.1016/j.cyto.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 02/06/2023]
Abstract
Since its discovery in 2000, interleukin-21 (IL-21) has been shown to display a broad spectrum of pleiotropic actions including the regulation of development, differentiation and function of lymphoid-myeloid cells. More specifically, IL-21 modulates the effector functions of T, B and NK cells, which not only have key roles in antitumoral and antiviral immunity but also in exerting major effects on inflammatory responses promoting the development of autoimmune diseases. Recent studies have unveiled an unexpected role for IL-21 in immune regulation and de novo T-cell development. While highlighting its critical role in immunity, this review will mainly focus on recent advances in IL-21 biology and how such newly discovered properties could potentially be exploited therapeutically in the establishment of future clinical trials.
Collapse
Affiliation(s)
- E Al-Chami
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - A Tormo
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - F Khodayarian
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - M Rafei
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
14
|
Lin PY, Jen HY, Chiang BL, Sheu F, Chuang YH. Interleukin-21 suppresses the differentiation and functions of T helper 2 cells. Immunology 2015; 144:668-76. [PMID: 25351608 DOI: 10.1111/imm.12419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/03/2014] [Accepted: 10/24/2014] [Indexed: 12/19/2022] Open
Abstract
T helper type 2 (Th2) cells, which produce interleukin-4 (IL-4), IL-5 and IL-13, control immunity to all forms of allergic inflammatory responses. Interleukin-21 (IL-21) reduces allergic symptoms in murine models and inhibits IL-4-induced IgE secretion by B cells. However, whether or not IL-21 directly affects Th2 cells, which leads to reduced allergic symptoms, is unclear. In this study, we investigated the effects of IL-21 on the differentiation and effector functions of Th2 cells. We found that IL-21 reduced the number of differentiated Th2 cells and these Th2 cells showed a diminished Th2 cytokine production. Interleukin-21 suppressed Th2 cytokine production of already polarized Th2 cells by down-regulation of transcription factor GATA-3. It also induced apoptosis of Th2 cells with decreased anti-apoptotic factor Bcl-2. Intranasal administration of IL-21 at the beginning of ovalbumin (OVA) sensitization or before OVA challenge decreased Th2 cytokines in the bronchoalveolar lavage fluid of OVA/alum-immunized allergic mice. In addition, the inhibitory effects of IL-21 on Th2 effector functions can also be found in allergic patients. Our results demonstrate that IL-21 suppresses the development of Th2 cells and functions of polarized Th2 cells. Hence, the administration of IL-21 may be considered for use as a preventive and therapeutic approach when dealing with Th2-mediated allergic diseases.
Collapse
Affiliation(s)
- Pin-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Reppert S, Zinser E, Holzinger C, Sandrock L, Koch S, Finotto S. NFATc1 deficiency in T cells protects mice from experimental autoimmune encephalomyelitis. Eur J Immunol 2015; 45:1426-40. [PMID: 25689841 PMCID: PMC6681150 DOI: 10.1002/eji.201445150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
NFATc1 is a member of the nuclear factor of activated T cells (NFAT) family of transcription factors. NFAT is activated upon T-cell receptor activation followed by intracytoplasmatic calcium influx where calmodulin, a calcium sensor protein, activates the phosphatase calcineurin that dephosphorylates NFAT proteins and results in NFAT nuclear import. Here, we show the analysis of conditional NFATc1-deficient mice bearing a deletion of NFATc1 in CD4(+) and CD8(+) T cells. NFATc1-deficient CD4(+) T cells polarized under Th17 conditions express reduced levels of the Th17-associated transcription factor RORγT (where ROR is RAR-related orphan receptor) as well as the Th17-associated cytokines IL-17A, IL-17F, IL-21, and IL-10. In the murine model of experimental EAE, we found a strong reduction of the disease outcome in conditional NFATc1-deficient mice, as compared with control littermates. This was accompanied by a diminished inflammation in the brain and spinal cord and reduced IL-17A and IFN-γ expression by antigen-specific spleen, spinal cord, and brain cells. Altogether, these results reveal an important role of NFATc1 in inducing Th17-cell responses and IFN-γ, both being relevant for the EAE development.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cytokines/metabolism
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukin-10/metabolism
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NFATC Transcription Factors/deficiency
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin/metabolism
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Sarah Reppert
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Elisabeth Zinser
- Department of Immune ModulationFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Corinna Holzinger
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Lena Sandrock
- Department of Immune ModulationFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Sonja Koch
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Susetta Finotto
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| |
Collapse
|
16
|
Di Fusco D, Izzo R, Figliuzzi MM, Pallone F, Monteleone G. IL-21 as a therapeutic target in inflammatory disorders. Expert Opin Ther Targets 2014; 18:1329-38. [DOI: 10.1517/14728222.2014.945426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Daniel C, Gerlach K, Väth M, Neurath MF, Weigmann B. Nuclear factor of activated T cells - a transcription factor family as critical regulator in lung and colon cancer. Int J Cancer 2013; 134:1767-75. [PMID: 23775822 DOI: 10.1002/ijc.28329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
Nuclear factor of activated T cells (NFAT) was first identified as a transcription factor which is activated upon T cell stimulation. Subsequent studies uncovered that a whole family of individual NFAT proteins exists with pleiotropic functions not only in immune but also in nonimmune cells. However, dysregulation of NFAT thereby favors malignant growth and cancer. Summarizing the recent advances in understanding how individual NFAT factors regulate the immune system, this review gives new insights into the critical role of NFAT in cancer development with special focus on inflammation-associated colorectal cancer.
Collapse
Affiliation(s)
- Carolin Daniel
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen,German Research Center for Environmental Health (GmbH), Munich, Germany
| | | | | | | | | |
Collapse
|
18
|
Mainardi-Novo DTO, Santos AS, Fukui RT, Gamberini M, Correia MRS, Ruiz MO, Mangueira CLP, Matioli SR, Vasconcelos DM, Silva MER. The PTPN22 1858T allele but not variants in the proximal promoter region of IL-21 gene is associated with the susceptibility to type 1 diabetes and the presence of autoantibodies in a Brazilian cohort. Clin Exp Immunol 2013; 172:16-22. [PMID: 23480181 DOI: 10.1111/cei.12030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 01/09/2023] Open
Abstract
Interleukin (IL)-21 and protein tyrosine phosphatase non-receptor 22 (PTPN22) regulate lymphocyte function and have been implicated in the pathogenesis of autoimmune diabetes. We sequenced the proximal promoter of the IL-21 gene for the first time and analysed the PTPN22 1858T polymorphism in type 1A diabetes (T1AD) patients and healthy controls (HC). We correlated the frequencies of islet and extra-pancreatic autoantibodies with genotypes from both loci. The case series comprised 612 T1AD patients and 792 HC. Genotyping of PTPN22 C1858T was performed on 434 T1AD patients and 689 HC. The -448 to +83 base pairs (bp) region of the IL-21 gene was sequenced in 309 Brazilian T1AD and 189 HC subjects. We also evaluated human leucocyte antigen (HLA) DR3/DR4 alleles. The frequencies of glutamic acid decarboxylase (GAD65), tyrosine phosphatase-like protein (IA)-2, anti-nuclear antibody (ANA), thyroid peroxidase (TPO), thyroglobulin (TG), thyrotrophin receptor autoantibody (TRAb), anti-smooth muscle (ASM) and 21-hydroxylase (21-OH) autoantibodies were higher in T1AD patients than in HC. The PTPN22 1858T allele was associated with an increased risk for developing T1AD [odds ratio (OR) = 1·94; P < 0·001], particularly in patients of European ancestry, and with a higher frequency of GAD65 and TG autoantibodies. HLA-DR3/DR4 alleles predominated in T1AD patients. A heterozygous allelic IL-21 gene variant (g.-241 T > A) was found in only one patient. In conclusion, only PTPN22 C1858T polymorphism and HLA-DR3 and/or DR4 alleles, but not allelic variants in the 5'-proximal region of the IL-21 gene were associated with T1AD risk. Patients with T1AD had increased frequencies of anti-islet-cell, anti-thyroid, anti-nuclear, anti-smooth muscle and anti-21-OH autoantibodies. The C1858T PTPN22 polymorphism was also associated with a higher frequency of GAD65 and TG autoantibodies.
Collapse
Affiliation(s)
- D T O Mainardi-Novo
- Laboratório de Investigação Médica 18 (LIM-18), Hospital das Clínicas-Faculdade de Medicina da Universidade de São Paulo, Unidade de Diabetes, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jang EJ, Park HR, Hong JH, Hwang ES. Lysine 313 of T-box is crucial for modulation of protein stability, DNA binding, and threonine phosphorylation of T-bet. THE JOURNAL OF IMMUNOLOGY 2013; 190:5764-70. [PMID: 23616576 DOI: 10.4049/jimmunol.1203403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A T-box-containing protein expressed in T cells (T-bet) is a key transcription factor involved in the regulation of Th cell differentiation. Although T-bet-deficient CD4(+) T cells fail to produce IFN-γ and typically differentiate into Th2 cells in vitro, ectopic overexpression of T-bet elevates IFN-γ and suppresses production of IL-2 and Th2 cytokines through different mechanisms. Despite the importance of the T-bet protein level, the regulatory mechanisms that control T-bet protein stability are largely unknown. In this study, we found that T-bet underwent proteasomal degradation via ubiquitination at Lys-313. Despite its robust accumulation following lysine mutation, T-bet(K313R) failed to increase IFN-γ production because of diminished DNA binding activity, as demonstrated in the crystal structure of T-bet-DNA complex. Strikingly, T-bet(K313R) entirely lost the ability to suppress IL-2 production and Th2 cell development; this was due to loss of its interaction with NFAT1. We further identified that the T-bet(K313R) reduced the phosphorylation of T-bet at Thr-302, and that threonine phosphorylation was essential for T-bet interaction with NFAT1 and suppression of NFAT1 activity. Retroviral transduction of T-bet(T302A) into T-bet-deficient cells restored IFN-γ levels compared with those induced by wild-type T-bet, but this mutant failed to inhibit IL-2 and Th2 cytokine production. Collectively, these data show that Lys-313 in the T-box domain is essential for controlling T-bet protein stability via ubiquitin-dependent degradation, T-bet binding to the IFN-γ promoter, and for the interaction with and suppression of NFAT1. Thus, multiple posttranslational modifications of T-bet are involved in fine-tuning cytokine production during Th cell development.
Collapse
Affiliation(s)
- Eun Jung Jang
- College of Pharmacy and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, South Korea
| | | | | | | |
Collapse
|
20
|
Hermann-Kleiter N, Meisel M, Fresser F, Thuille N, Müller M, Roth L, Katopodis A, Baier G. Nuclear orphan receptor NR2F6 directly antagonizes NFAT and RORγt binding to the Il17a promoter. J Autoimmun 2012; 39:428-40. [PMID: 22921335 PMCID: PMC3516707 DOI: 10.1016/j.jaut.2012.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022]
Abstract
Interleukin-17A (IL-17A) is the signature cytokine produced by Th17 CD4(+) T cells and has been tightly linked to autoimmune pathogenesis. In particular, the transcription factors NFAT and RORγt are known to activate Il17a transcription, although the detailed mechanism of action remains incompletely understood. Here, we show that the nuclear orphan receptor NR2F6 can attenuate the capacity of NFAT to bind to critical regions of the Il17a gene promoter. In addition, because NR2F6 binds to defined hormone response elements (HREs) within the Il17a locus, it interferes with the ability of RORγt to access the DNA. Consistently, NFAT and RORγt binding within the Il17a locus were enhanced in Nr2f6-deficient CD4(+) Th17 cells but decreased in Nr2f6-overexpressing transgenic CD4(+) Th17 cells. Taken together, our findings uncover an example of antagonistic regulation of Il17a transcription through the direct reciprocal actions of NR2F6 versus NFAT and RORγt.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wong WF, Kohu K, Nakamura A, Ebina M, Kikuchi T, Tazawa R, Tanaka K, Kon S, Funaki T, Sugahara-Tobinai A, Looi CY, Endo S, Funayama R, Kurokawa M, Habu S, Ishii N, Fukumoto M, Nakata K, Takai T, Satake M. Runx1 deficiency in CD4+ T cells causes fatal autoimmune inflammatory lung disease due to spontaneous hyperactivation of cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5408-20. [PMID: 22551552 DOI: 10.4049/jimmunol.1102991] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Runx1 transcription factor is abundantly expressed in naive T cells but rapidly downregulated in activated T cells, suggesting that it plays an important role in a naive stage. In the current study, Runx1(-/-)Bcl2(tg) mice harboring Runx1-deleted CD4(+) T cells developed a fatal autoimmune lung disease. CD4(+) T cells from these mice were spontaneously activated, preferentially homed to the lung, and expressed various cytokines, including IL-17 and IL-21. Among these, the deregulation of IL-21 transcription was likely to be associated with Runx binding sites located in an IL-21 intron. IL-17 produced in Runx1-deleted cells mobilized innate immune responses, such as those promoted by neutrophils and monocytes, whereas IL-21 triggered humoral responses, such as plasma cells. Thus, at an initial stage, peribronchovascular regions in the lung were infiltrated by CD4(+) lymphocytes, whereas at a terminal stage, interstitial regions were massively occupied by immune cells, and alveolar spaces were filled with granular exudates that resembled pulmonary alveolar proteinosis in humans. Mice suffered from respiratory failure, as well as systemic inflammatory responses. Our data indicate that Runx1 plays an essential role in repressing the transcription of cytokine genes in naive CD4(+) T cells and, thereby, maintains cell quiescence.
Collapse
Affiliation(s)
- Won Fen Wong
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jash A, Sahoo A, Kim GC, Chae CS, Hwang JS, Kim JE, Im SH. Nuclear factor of activated T cells 1 (NFAT1)-induced permissive chromatin modification facilitates nuclear factor-κB (NF-κB)-mediated interleukin-9 (IL-9) transactivation. J Biol Chem 2012; 287:15445-57. [PMID: 22427656 DOI: 10.1074/jbc.m112.340356] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IL-9 regulates diverse inflammatory immune responses. Although the functional importance of IL-9 has been investigated in various pathophysiological conditions, molecular mechanisms by which TCR stimulation induced IL-9 gene expression are still unclear. In this study, we investigated the functional importance of the NFAT1 and NF-κB (p65) in IL-9 gene transcription in CD4(+) T cells. In vivo binding of NFAT1 and NF-κB (p65) to the IL-9 promoter was observed. NFAT1 binding induced a transcriptionally active chromatin configuration at the IL-9 promoter locus, whereas NF-κB (p65) binding transactivated the IL-9 promoter. Mouse deficient in NFAT1 shows a significant down-regulation of IL-9 expression that resulted from an inaccessible chromatin configuration at the IL-9 promoter. In parallel, knockdown of NF-κB (p65) also resulted in reduced IL-9 expression. In this process, NFAT1 plays a pivotal role as a core protein that creates an accessible platform for the assembly of transcription activators. The presence of NFAT1 correlates with recruitment of NF-κB (p65), p300, and active histone markers on the IL-9 promoter, resulting in a transcriptionally competent promoter. NFAT1 deficiency significantly reduced the recruitment of the above activation complex to the IL-9 promoter. In summary, our data suggest that functional cooperation of NFAT1 and NF-κB synergistically enhances IL-9 transcription in CD4(+) T cells.
Collapse
Affiliation(s)
- Arijita Jash
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat Immunol 2012; 13:405-11. [PMID: 22406686 PMCID: PMC3561768 DOI: 10.1038/ni.2242] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/20/2012] [Indexed: 12/12/2022]
Abstract
The transcription factors T-bet and Bcl-6 are required for the establishment of a T helper type 1 cell (T(H)1 cell) and follicular helper T cell (T(FH) cell) gene-expression profile, respectively. Here we found that high concentrations of interleukin 2 (IL-2) inhibited Bcl-6 expression in polarized T(H)1 cells. Mechanistically, the low concentrations of Bcl-6 normally found in effector T(H)1 cells did not repress its target genes because a T-bet-Bcl-6 complex masked the Bcl-6 DNA-binding domain. T(H)1 cells increased their Bcl-6/T-bet ratio in response to limiting IL-2 conditions, which allowed excess Bcl-6 to repress its direct target Prdm1 (which encodes the transcriptional repressor Blimp-1). The Bcl-6-dependent repression of Blimp-1 effectively induced a partial T(FH) profile because Blimp-1 directly repressed a subset of T(FH) signature genes, including Cxcr5. Thus, IL-2-signaling regulates the Bcl-6-Blimp-1 axis in T(H)1 cells to maintain flexibility with a T(FH) cell-like gene profile.
Collapse
|
24
|
Nakayamada S, Kanno Y, Takahashi H, Jankovic D, Lu KT, Johnson TA, Sun HW, Vahedi G, Hakim O, Handon R, Schwartzberg PL, Hager GL, O'Shea JJ. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 2011; 35:919-31. [PMID: 22195747 PMCID: PMC3244883 DOI: 10.1016/j.immuni.2011.11.012] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/12/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Follicular helper T (Tfh) cells comprise an important subset of helper T cells; however, their relationship with other helper lineages is incompletely understood. Herein, we showed interleukin-12 acting via the transcription factor STAT4 induced both Il21 and Bcl6 genes, generating cells with features of both Tfh and Th1 cells. However, STAT4 also induced the transcription factor T-bet. With ChIP-seq, we defined the genome-wide targets of T-bet and found that it repressed Bcl6 and other markers of Tfh cells, thereby attenuating the nascent Tfh cell-like phenotype in the late phase of Th1 cell specification. Tfh-like cells were rapidly generated after Toxoplasma gondii infection in mice, but T-bet constrained Tfh cell expansion and consequent germinal center formation and antibody production. Our data argue that Tfh and Th1 cells share a transitional stage through the signal mediated by STAT4, which promotes both phenotypes. However, T-bet represses Tfh cell functionalities, promoting full Th1 cell differentiation.
Collapse
Affiliation(s)
- Shingo Nakayamada
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Oestreich KJ, Weinmann AS. T-bet employs diverse regulatory mechanisms to repress transcription. Trends Immunol 2011; 33:78-83. [PMID: 22133865 DOI: 10.1016/j.it.2011.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/18/2011] [Accepted: 10/25/2011] [Indexed: 12/13/2022]
Abstract
Lineage-defining transcription factors are responsible for activating the signature genes required for a given cell fate. They are also needed to repress the genetic programs associated with alternative lineage decisions. The T-box transcription factor T-bet is required for CD4(+) T helper 1 (Th1) cell differentiation. Numerous studies have explored the mechanisms by which T-bet activates the Th1 gene profile, but until recently not much was known about the mechanisms that T-bet utilizes to negatively regulate alternative T helper cell differentiation pathways such as the Th2 and Th17 fates. Here, we discuss new advances in the field that highlight the diverse mechanisms that T-bet employs to antagonize the gene programs for alternative T helper cell fates.
Collapse
|
26
|
Abstract
T cell help to B cells is a fundamental aspect of adaptive immunity and the generation of immunological memory. Follicular helper CD4 T (T(FH)) cells are the specialized providers of B cell help. T(FH) cells depend on expression of the master regulator transcription factor Bcl6. Distinguishing features of T(FH) cells are the expression of CXCR5, PD-1, SAP (SH2D1A), IL-21, and ICOS, among other molecules, and the absence of Blimp-1 (prdm1). T(FH) cells are important for the formation of germinal centers. Once germinal centers are formed, T(FH) cells are needed to maintain them and to regulate germinal center B cell differentiation into plasma cells and memory B cells. This review covers T(FH) differentiation, T(FH) functions, and human T(FH) cells, discussing recent progress and areas of uncertainty or disagreement in the literature, and it debates the developmental relationship between T(FH) cells and other CD4 T cell subsets (Th1, Th2, Th17, iTreg).
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
27
|
Abstract
T cell exhaustion is a state of T cell dysfunction that arises during many chronic infections and cancer. It is defined by poor effector function, sustained expression of inhibitory receptors and a transcriptional state distinct from that of functional effector or memory T cells. Exhaustion prevents optimal control of infection and tumors. Recently, a clearer picture of the functional and phenotypic profile of exhausted T cells has emerged and T cell exhaustion has been defined in many experimental and clinical settings. Although the pathways involved remain to be fully defined, advances in the molecular delineation of T cell exhaustion are clarifying the underlying causes of this state of differentiation and also suggest promising therapeutic opportunities.
Collapse
Affiliation(s)
- E John Wherry
- Department of Microbiology, Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
28
|
Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MAA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS, Wherry EJ. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 2011; 12:663-71. [PMID: 21623380 PMCID: PMC3306165 DOI: 10.1038/ni.2046] [Citation(s) in RCA: 382] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 05/02/2011] [Indexed: 01/09/2023]
Abstract
T cell exhaustion plays a major role in failure to control chronic infections. High expression of inhibitory receptors, including PD-1, and the inability to sustain functional T cell responses contribute to exhaustion. However, the transcriptional control of these processes remains unclear. Here we demonstrate that the transcription factor T-bet regulates CD8+ T cell exhaustion and inhibitory receptor expression. T-bet directly repressed Pdcd1 transcription and decreased the expression of other inhibitory receptors. While elevated T-bet promoted terminal differentiation following acute infection, high T-bet expression sustained exhausted CD8+ T cells and repressed inhibitory receptor expression during chronic viral infection. Persisting antigenic stimulation caused T-bet downregulation, which resulted in more severe exhaustion of CD8+ T cells. These observations suggest therapeutic opportunities involving increasing T-bet expression during chronic infection.
Collapse
Affiliation(s)
- Charlly Kao
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sarra M, Franzè E, Pallone F, Monteleone G. Targeting interleukin-21 in inflammatory diseases. Expert Opin Ther Targets 2011; 15:695-702. [PMID: 21391901 DOI: 10.1517/14728222.2011.561319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION IL-21, a new member of the type 1 cytokine superfamily, is produced by various subsets of CD4(+) T cells and binds to a composite receptor that consists of a specific receptor, termed IL-21 receptor and the common γ-chain subunit. Initially considered to be a critical regulator of T and B cell function, IL-21 is now known to regulate the activity of many other cell types, including both immune and non-immune cells. AREAS COVERED In this review, we discuss the biological features of IL-21 and summarize recent advances in the pathogenic role of IL-21 in chronic inflammatory diseases. Moreover, we discuss why IL-21 blockers can have a place in the therapeutic armamentarium for patients with immune-mediated diseases and the potential risks of such treatments. EXPERT OPINION Data emerging from studies in human and experimental models of autoimmunity suggest that IL-21 is critically involved in the initiation and/or progression of inflammatory reactions where self-reactive immune cells or antibodies cause damage in tissue. Thus, theoretically, targeting IL-21 could help attenuate the activation of inflammatory pathways and facilitate the resolution of tissue damaging immune responses. However, one should also take into consideration some potential risks that could derive from the blockade of IL-21.
Collapse
Affiliation(s)
- Massimiliano Sarra
- Dipartimento di Medicina Interna, Università Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | | | | | | |
Collapse
|
30
|
T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat Immunol 2010; 12:96-104. [PMID: 21151104 PMCID: PMC3077962 DOI: 10.1038/ni.1969] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/12/2010] [Indexed: 12/12/2022]
Abstract
Overactive TH17 responses are tightly linked to the development of autoimmunity, yet the factors that negatively regulate differentiation of this lineage remain unknown. Here, we report that T-bet suppresses the development of the TH17 cell lineage by inhibiting the transcription of Rorc. T-bet interacts with the transcription factor Runx1 and this interaction blocks Runx1-mediated transactivation of Rorc. T-bet residue Tyr304 is required for T-bet-Runx1 complex formation, for blocking Runx1 activity and for inhibiting the TH17 differentiation program. These data reinforce the concept of master regulators that shape immune responses by simultaneously activating one genetic program while silencing the activity of competing regulators in a common progenitor cell.
Collapse
|
31
|
Pallone F, Fina D, Caruso R, Monteleone G. Role of IL-21 in inflammatory bowel disease. Expert Rev Clin Immunol 2010; 6:537-41. [PMID: 20594126 DOI: 10.1586/eci.10.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IL-21 was first described as a critical regulator of T- and B-cell functions. More recently, it has become apparent that IL-21 controls the activity of both immune and nonimmune cells and, depending on the timing and context analyzed, it can promote either inflammatory or counter-regulatory effects. IL-21 participates in the immune responses against tumor cells and chronic viral infections, but excessive production of IL-21 has been associated with the development of immune-inflammatory diseases in various organs. In this article, we focus on data supporting the pathogenic role of IL-21 in human inflammatory bowel diseases and discuss preclinical studies that suggest that neutralization of IL-21 in vivo could be a new strategy to counteract the inflammatory bowel disease-related, tissue damaging immune response.
Collapse
Affiliation(s)
- Francesco Pallone
- Department of Internal Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | | | | | | |
Collapse
|
32
|
Kashiwakuma D, Suto A, Hiramatsu Y, Ikeda K, Takatori H, Suzuki K, Kagami SI, Hirose K, Watanabe N, Iwamoto I, Nakajima H. B and T lymphocyte attenuator suppresses IL-21 production from follicular Th cells and subsequent humoral immune responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:2730-6. [PMID: 20660710 DOI: 10.4049/jimmunol.0903839] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We recently showed that mice lacking B and T lymphocyte attenuator (BTLA), a third inhibitory coreceptor expressed on B cells and T cells, exhibit an increased Ag-specific IgG response and gradually develop hyper-gamma-globulinemia and autoantibody production. Recent studies revealed that follicular Th (Tfh) cells, which are non-Th1, non-Th2 effector T cells that express CXCR5 and provide help for B cells to produce Ig, also express BTLA. However, the role of BTLA in Tfh cell function remains unknown. In this study, we examined the regulatory role of BTLA in the development and function of Tfh cells. We found that CXCR5(+) Tfh cells expressed higher levels of BTLA than did CXCR5(-) conventional CD4(+) T cells. We also found that adoptive transfer of BTLA(-/-) CD4(+) T cells, stimulated under Tfh cell-inducing conditions (Tfh-like cells), to wild-type (WT) mice induced more Ag-specific IgG2a and IgG2b production compared with that of WT Tfh-like cells. By contrast, another adoptive-transfer experiment using BTLA(-/-) mice as recipients showed that the expression of BTLA on B cells was not involved in the regulation of Tfh-like cell-mediated Ag-specific IgG responses. Moreover, the development of IL-21-producing CXCR5(+) Tfh-like cells was significantly increased in BTLA(-/-) CD4(+) T cells compared with WT CD4(+) T cells. Furthermore, Tfh-like cell-mediated IgG responses were abolished when IL-21R(-/-) mice were used as recipients. These results suggest that BTLA signaling suppresses IL-21 production from Tfh cells and subsequent Tfh cell-mediated IgG responses.
Collapse
Affiliation(s)
- Daisuke Kashiwakuma
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen G, Hardy K, Bunting K, Daley S, Ma L, Shannon MF. Regulation of the IL-21 gene by the NF-κB transcription factor c-Rel. THE JOURNAL OF IMMUNOLOGY 2010; 185:2350-9. [PMID: 20639489 DOI: 10.4049/jimmunol.1000317] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-21 is a member of the common gamma-chain-dependent cytokine family and is a key modulator of lymphocyte development, proliferation, and differentiation. IL-21 is highly expressed in activated CD4(+) T cells and plays a critical role in the expansion and differentiation of the Th cell subsets, Th17 and follicular helper T (T(FH)) cells. Because of its potent activity in both myeloid and lymphoid cell immune responses, it has been implicated in a number of autoimmune diseases and has also been used as a therapeutic agent in the treatment of some cancers. In this study, we demonstrate that c-Rel, a member of the NF-kappaB family of transcription factors, is required for IL-21 gene expression in T lymphocytes. IL-21 mRNA and protein levels are reduced in the CD4(+) cells of rel(-/-) mice when compared with rel(+/+) mice in both in vitro and in vivo models. A c-Rel binding site identified in the proximal promoter of il21 is confirmed to bind c-Rel in vitro and in vivo and to regulate expression from the il21 promoter in T cells. Downstream of IL-21 expression, Th17, T(FH), and germinal center B cell development are also impaired in rel(-/-) mice. The administration of IL-21 protein rescued the development of T(FH) cells but not germinal center B cells. Taken together, c-Rel plays an important role in the expression of IL-21 in T cells and subsequently in IL-21-dependent T(FH) cell development.
Collapse
Affiliation(s)
- Guobing Chen
- Gene Expression and Epigenomics Group, Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The Ca(2+) dependent transcription factor family known as nuclear factor of activated T cells (NFAT) has been shown to be important in T-cell immune responses. Because NFAT proteins have a weak DNA-binding capacity, they cooperate with other transcription factors at composite sites within the promoters of target genes. Recently, NFAT was shown to also be important for the induction of specific genetic programs that guide the differentiation and effector or regulatory activities of CD4(+) T helper subsets via the transcriptional regulation of their lineage-specific transcription factors, specifically T-bet (Th1), Gata3 (Th2), RORgammat (Th17), and Foxp3 (iTregs). In addition, the NFAT family governs the transcription of several signature cytokines, including their cytokine receptors. Subsequently, the integration of these complex intracellular signal transduction cascades is considered to critically determine the crosstalk between the T-cell receptor and receptors that are activated by both the adaptive and innate immune systems to determine pathways of T helper cell differentiation and function. Here, we carefully review the critical role of the established transcriptional partners and functional outcomes of these NFAT interactions in regard to the effector responses of these clinically relevant CD4(+) T helper subsets.
Collapse
|
35
|
Biswas PS, Bhagat G, Pernis AB. IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol Rev 2010; 233:79-96. [PMID: 20192994 PMCID: PMC2920730 DOI: 10.1111/j.0105-2896.2009.00864.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence from murine and human studies supports a key role for interleukin-17 (IL-17) and IL-21 in the pathogenesis of inflammatory arthritis. The pathways and molecular mechanisms that underlie the production of IL-17 and IL-21 are being rapidly elucidated. This review focuses on interferon regulatory factor 4 (IRF4), a member of the IRF family of transcription factors, which has emerged as a crucial controller of both IL-17 and IL-21 production. We first outline the complex role of IRF4 in the function of CD4(+) T cells and then discuss recent studies from our laboratory that have revealed a surprising role for components of Rho GTPase-mediated pathways in controlling the activity of IRF4. A better understanding of these novel pathways will hopefully provide new insights into mechanisms responsible for the development of inflammatory arthritis and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Govind Bhagat
- Department of Pathology, Columbia University, New York, NY, USA
| | | |
Collapse
|
36
|
Hiramatsu Y, Suto A, Kashiwakuma D, Kanari H, Kagami SI, Ikeda K, Hirose K, Watanabe N, Grusby MJ, Iwamoto I, Nakajima H. c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-beta inhibits c-Maf-induced IL-21 production in CD4+ T cells. J Leukoc Biol 2009; 87:703-12. [PMID: 20042469 DOI: 10.1189/jlb.0909639] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that IL-6 potently induces IL-21 production in CD4(+) T cells, whereas TGF-beta inhibits IL-6-induced IL-21 production in CD4(+) T cells. In this study, we addressed the mechanisms underlying the transcriptional regulation of IL-21 production in CD4(+) T cells. We found that IL-6 induced c-Maf expression in CD4(+) T cells and that the enforced expression of c-Maf induced IL-21 production in CD4(+) T cells without IL-6, IL-4/STAT6 signaling, or an autocrine effect of IL-21. Moreover, we found that c-Maf directly bound to and activated IL-21P and the CNS-2 enhancer through MARE sites. On the other hand, we also found that although TGF-beta up-regulated IL-6-induced c-Maf expression in CD4(+) T cells, TGF-beta inhibited c-Maf-induced IL-21 production in CD4(+) T cells. Finally, we found that Foxp3 bound to IL-21P and the CNS-2 enhancer and inhibited c-Maf-induced IL-21 production modestly but significantly in CD4(+) T cells. Taken together, these results suggest that c-Maf induces IL-21 production directly in CD4(+) T cells by activating IL-21P and the CNS-2 enhancer and that TGF-beta suppresses c-Maf-induced IL-21 production in CD4(+) T cells.
Collapse
Affiliation(s)
- Yukiko Hiramatsu
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
IL-2 and IL-21 are two cytokines with great potential to affect autoimmune infiltration of nonlymphoid tissue, and are contained within the strongest non-MHC-linked locus for type 1 diabetes (T1D) susceptibility on the nonobese diabetic (NOD) mouse (Idd3). IL-21 is necessary for the development of diabetes in the NOD mouse, but a number of important studies argue that decreased expression of IL-2 explains Idd3. In this study, we demonstrate that the amount of IL-21, but not IL-2, correlated with T1D incidence. During our analyses of the IL-2/IL-21 interval, we found that mice segregate into one of two distinct expression profiles. In the first group, which includes the C57BL/6 strain, both Il2 and Il21 were expressed at low levels. In the other group, which includes the NOD strain, Il2 and Il21 were both highly expressed. However, because NOD IL-2 mRNA was relatively unstable, IL-2 production was remarkably similar between strains. The increased production of IL-21 in NOD mice was found to result from two single nucleotide polymorphisms within the distal promoter region that conferred increased binding affinity for the transcription factor Sp1. Our findings indicate that a loss of locus parity after decreased IL-2 mRNA stability ensures that the high-expressing IL-21 allele persists in nature and provides a basis for autoimmunity.
Collapse
|
38
|
Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ, Pereira JP, Xu Y, Roots CM, Beilke JN, Banerjee A, Reiner SL, Miller SA, Weinmann AS, Goodnow CC, Lanier LL, Cyster JG, Chun J. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. ACTA ACUST UNITED AC 2009; 206:2469-81. [PMID: 19808259 PMCID: PMC2768857 DOI: 10.1084/jem.20090525] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During a screen for ethylnitrosourea-induced mutations in mice affecting blood natural killer (NK) cells, we identified a strain, designated Duane, in which NK cells were reduced in blood and spleen but increased in lymph nodes (LNs) and bone marrow (BM). The accumulation of NK cells in LNs reflected a decreased ability to exit into lymph. This strain carries a point mutation within Tbx21 (T-bet), which generates a defective protein. Duane NK cells have a 30-fold deficiency in sphingosine-1-phosphate receptor 5 (S1P5) transcript levels, and S1P5-deficient mice exhibit an egress defect similar to Duane. Chromatin immunoprecipitation confirms binding of T-bet to the S1pr5 locus. S1P-deficient mice exhibit a more severe NK cell egress block, and the FTY720-sensitive S1P1 also plays a role in NK cell egress from LNs. S1P5 is not inhibited by CD69, a property that may facilitate trafficking of activated NK cells to effector sites. Finally, the accumulation of NK cells within BM of S1P-deficient mice was associated with reduced numbers in BM sinusoids, suggesting a role for S1P in BM egress. In summary, these findings identify S1P5 as a T-bet–induced gene that is required for NK cell egress from LNs and BM.
Collapse
Affiliation(s)
- Craig N Jenne
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Capitini CM, Fry TJ, Mackall CL. Cytokines as Adjuvants for Vaccine and Cellular Therapies for Cancer. AMERICAN JOURNAL OF IMMUNOLOGY 2009; 5:65-83. [PMID: 20182648 PMCID: PMC2826803 DOI: 10.3844/ajisp.2009.65.83] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PROBLEM STATEMENT: The development of a potent vaccine that can help treat tumors resistant to conventional cytotoxic therapies remains elusive. While part of the problem may be that trials have focused on patients with bulky residual disease, the desire to maximize responses to the vaccine remains. APPROACH: The gamma(c) family of cytokines offer a unique opportunity to support the expansion and effector potential of vaccine-responding T-cells, as well as stimulate other effectors, such as natural killer (NK) cells, to become activated. RESULTS: Combining vaccines with cytokines seems logical but can bring unwanted toxicity, as has been observed with interleukin (IL)-2. In addition, the nonspecific activation or expansion of unwanted cell subsets, such as regulatory T-cells, can contribute to global immunosuppression and limit vaccine responses. The development of IL-7 and IL-21 for the clinic offers the promise of enhancing anti-tumor responses but with far less systemic toxicity and no expansion of regulatory T cells. Preclinical studies demonstrate that IL-15 could also improve T-cell, and especially NK-cell, responses as well. CONCLUSIONS/RECOMMENDATIONS: Future work should expand the use of vaccines with IL-7, IL-21 and hopefully IL-15 in high-risk patients, and consider treatment while in a state of minimal residual disease to maximize benefit. Identifying tumors that can signal through gamma(c) cytokines will also be essential so that induction of relapse will be avoided.
Collapse
Affiliation(s)
- Christian M. Capitini
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Terry J. Fry
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington, DC 20010
| | - Crystal L. Mackall
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
40
|
Huber M, Brüstle A, Reinhard K, Guralnik A, Walter G, Mahiny A, von Löw E, Lohoff M. IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc Natl Acad Sci U S A 2008; 105:20846-51. [PMID: 19088203 PMCID: PMC2634912 DOI: 10.1073/pnas.0809077106] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Indexed: 01/12/2023] Open
Abstract
Differentiation of murine T-helper (Th) 17 cells is induced by antigenic stimulation and the sequential action of the cytokines IL-6, IL-21, and IL-23, along with TGFbeta. Current dogma proposes that IL-6 induces IL-21, which, in a STAT3-dependent manner, amplifies its own transcription, contributes to IL-17 production, and, moreover, promotes the expression of the IL-23 receptor. This, in turn, prepares cells for IL-23-mediated stabilization of the Th17 phenotype. Here we demonstrate that these effects of IL-21 on Th17 differentiation are completely dependent on IFN regulatory factor 4 (IRF4). After culturing in the presence of IL-21 plus TGFbeta, IRF4-deficient (Irf4(-/-)) Th cells showed a profound intrinsic defect in IL-17 production and in the autocrine IL-21 loop. Likewise, the levels of IL-23 receptor and the lineage-specific orphan nuclear receptors RORalpha and RORgammat were diminished, whereas the T regulatory (Treg) transcription factor forkhead box P3 (Foxp3) was strongly up-regulated, consistent with the reciprocal relationship between Th17 and Treg development. Despite this loss of IL-21 functions, IL-21-induced STAT3 activation was unimpaired and induced normal Socs3 expression. Forced expression of Foxp3 in WT cells inhibited IL-21-mediated IL-17 production, suggesting that the increase in Foxp3 contributes to the Irf4(-/-) phenotype. Additionally, the low levels of RORalpha and RORgammat are also partially responsible, because simultaneous overexpression of both proteins restored IL-17 production in Irf4(-/-) cells to some extent. These data highlight IRF4 as a decisive factor during the IL-21-mediated steps of Th17 development by influencing the balance of Foxp3, RORalpha, and RORgammat.
Collapse
MESH Headings
- Animals
- Autocrine Communication/immunology
- Cells, Cultured
- Cytokines/genetics
- Cytokines/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Interleukins/genetics
- Interleukins/immunology
- Mice
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Phenotype
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/immunology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/immunology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/immunology
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Trans-Activators/genetics
- Trans-Activators/immunology
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Magdalena Huber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Marburg, 35043 Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen Q, Yang W, Gupta S, Biswas P, Smith P, Bhagat G, Pernis AB. IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 2008; 29:899-911. [PMID: 19062315 DOI: 10.1016/j.immuni.2008.10.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 09/04/2008] [Accepted: 10/07/2008] [Indexed: 01/09/2023]
Abstract
The T helper 17 (Th17) cell lineage is important in inflammatory and autoimmune responses, via its ability to produce interleukin-17 (IL-17) and IL-21. Given the potentially deleterious effects of Th17 cells, their generation needs to be strictly controlled. IRF-4 is a transcription factor that has recently emerged as a key regulator of Th17 cell differentiation. Here, we showed that mice deficient in a previously isolated protein, IBP (IRF-4-binding protein), rapidly developed rheumatoid arthritis-like joint disease and large-vessel vasculitis. The pathology was associated with an enhanced responsiveness of T cells to low levels of stimulation and with the inappropriate synthesis of IL-17 and IL-21. IBP sequestered IRF-4 and prevented it from targeting the transcriptional regulatory regions of the genes that encode IL-17 and IL-21. Thus, IBP appears to be important in preventing T cell-mediated autoimmunity by ensuring that the production of IL-17 and IL-21 does not occur in response to self-antigens.
Collapse
Affiliation(s)
- Qinzhong Chen
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Burrell BE, Csencsits K, Lu G, Grabauskiene S, Bishop DK. CD8+ Th17 mediate costimulation blockade-resistant allograft rejection in T-bet-deficient mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:3906-14. [PMID: 18768845 DOI: 10.4049/jimmunol.181.6.3906] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
While studying Th responses induced by cardiac transplantation, we observed that mice deficient in the Th1 transcription factor T-bet (T-bet(-/-)) mount both Th1 and Th17 responses, whereas wild-type recipients mount only Th1 responses. Cells producing both IFN-gamma and IL-17 were readily detectable within the rejecting graft of T-bet(-/-) recipients, but were absent from the spleen, indicating that the in vivo microenvironment influences Th function. In addition, disrupting CD40-CD40L costimulatory interactions was highly effective at prolonging allograft survival in WT mice, but ineffective in T-bet(-/-) recipients. In this study, we report that CD8(+) Th17 mediate costimulation blockade-resistant rejection in T-bet(-/-) allograft recipients. Depleting CD8(+) cells or neutralizing IL-17 or the Th17-inducing cytokine IL-6 ablated the Th17 response and reversed costimulation blockade-resistant graft rejection. Neutralizing IL-4 in IFN-gamma(-/-) allograft recipients did not induce Th17, suggesting that T-bet, rather than IL-4 and IFN-gamma (known inhibitors of Th17), plays a critical role in negatively regulating Th17 in the transplant setting.
Collapse
Affiliation(s)
- Bryna E Burrell
- Section of General Surgery, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
43
|
van Hamburg JP, de Bruijn MJW, Ribeiro de Almeida C, van Zwam M, van Meurs M, de Haas E, Boon L, Samsom JN, Hendriks RW. Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology. Eur J Immunol 2008; 38:2573-86. [PMID: 18792410 DOI: 10.1002/eji.200737840] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The zinc-finger transcription factor GATA3 serves as a master regulator of T-helper-2 (Th2) differentiation by inducing expression of the Th2 cytokines IL-4, IL-5 and IL-13 and by suppressing Th1 development. Here, we investigated how GATA3 affects Th17 differentiation, using transgenic mice with enforced GATA3 expression. We activated naïve primary T cells in vitro in the presence of transforming growth factor-beta and IL-6, and found that enforced GATA3 expression induced co-expression of Th2 cytokines in IL-17-producing T cells. Although the presence of IL-4 hampered Th17 differentiation, transforming growth factor-beta/IL-6 cultures from GATA3 transgenic mice contained substantial numbers of IL-17(+) cells, partially because GATA3 supported Th17 differentiation by limiting IL-2 and IFN-gamma production. GATA3 additionally constrained Th17 differentiation in vitro through IL-4-independent mechanisms, involving downregulating transcription of STAT3, STAT4, NFATc2 and the nuclear factor RORgammat, which is crucial for Th17 differentiation. Remarkably, upon myelin oligodendrocyte glycoprotein immunization in vivo, GATA3 transgenic mice contained similar numbers of IL-17-producing T cells in their lymph nodes as wild-type mice, but were not susceptible to autoimmune encephalomyelitis, possibly due to concomitant production of IL-4 and IL-10 induction. We therefore conclude that although GATA3 allows Th17 differentiation, it acts as an inhibitor of Th17-mediated pathology, through IL-4-dependent and IL-4-independent pathways.
Collapse
|
44
|
Weigmann B, Lehr HA, Yancopoulos G, Valenzuela D, Murphy A, Stevens S, Schmidt J, Galle PR, Rose-John S, Neurath MF. The transcription factor NFATc2 controls IL-6-dependent T cell activation in experimental colitis. ACTA ACUST UNITED AC 2008; 205:2099-110. [PMID: 18710929 PMCID: PMC2526204 DOI: 10.1084/jem.20072484] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell–dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6–dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Benno Weigmann
- Institute of Molecular Medicine, Johanes Gutenberg Univeristy, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3alpha. Blood 2008; 112:3339-47. [PMID: 18684866 DOI: 10.1182/blood-2008-01-134783] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The malignant Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (HL) are derived from mature B cells, but have lost a considerable part of the B cell-specific gene expression pattern. Consequences of such a lineage infidelity for lymphoma pathogenesis are currently not defined. Here, we report that HRS cells aberrantly express the common cytokine-receptor gamma-chain (gamma(c)) cytokine IL-21, which is usually restricted to a subset of CD4(+) T cells, and the corresponding IL-21 receptor. We demonstrate that IL-21 activates STAT3 in HRS cells, up-regulates STAT3 target genes, and protects HRS cells from CD95 death receptor-induced apoptosis. Furthermore, IL-21 is involved in up-regulation of the CC chemokine macrophage-inflammatory protein-3alpha (MIP-3alpha) in HRS cells. MIP-3alpha in turn attracts CCR6(+)CD4(+)CD25(+)FoxP3(+)CD127(lo) regulatory T cells toward HRS cells, which might favor their immune escape. Together, these data support the concept that aberrant expression of B lineage-inappropriate genes plays an important role for the biology of HL tumor cells.
Collapse
|
46
|
Xu W, Celeridad M, Sankar S, Webb DR, Bennett BL. CC-4047 promotes Th1 cell differentiation and reprograms polarized human Th2 cells by enhancing transcription factor T-bet. Clin Immunol 2008; 128:392-9. [PMID: 18565795 DOI: 10.1016/j.clim.2008.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/29/2008] [Accepted: 04/23/2008] [Indexed: 01/25/2023]
Abstract
The IMiDs immunomodulatory drugs are an expanding family of compounds under investigation in a broad range of diseases because they exhibit immunomodulatory and anti-tumorigenic properties. Although the molecular targets remain unidentified, the broad activity of select IMiDs immunomodulatory drugs on cell signaling pathways and transcription regulation has been partly described. One characteristic of these compounds is their ability to act as a co-stimulus of TCR ligation leading to increased IL-2, TNF-alpha and IFN-gamma expression indicative of a Th1 phenotype. Because clinical evidence for this response has been observed in thalidomide and lenalidomide treated patients, we investigated the effect of CC-4047 on T cell activation and differentiation at the molecular level. We used primary human CD4(+) T cells as a model and found that CC-4047 enhances the expression of transcription factor T-bet in both naive and pre-polarized Th2 cells. This modulation leads to upregulation of Th1 markers and cytokine production. By increasing the expression of T-bet, CC-4047 promotes the differentiation of naive T-cells to Th1 as well as effectively reverting Th2 cells into Th1-like effector cells in vitro. These findings elucidate a novel mechanism of action of CC-4047 on T cell differentiation, suggesting that certain IMiDs immunomodulatory drugs may have expanded clinical application in treating both allergic diseases and certain T cell lymphomas where a predominant Th2 phenotype is displayed.
Collapse
Affiliation(s)
- Weiming Xu
- Celgene Corporation, 4550 Towne Centre Court, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Interleukin-21 (IL-21), a potent immunomodulatory four-alpha-helical-bundle type I cytokine, is produced by NKT and CD4(+) T cells and has pleiotropic effects on both innate and adaptive immune responses. These actions include positive effects such as enhanced proliferation of lymphoid cells, increased cytotoxicity of CD8(+) T cells and natural killer (NK) cells, and differentiation of B cells into plasma cells. Conversely, IL-21 also has direct inhibitory effects on the antigen-presenting function of dendritic cells and can be proapoptotic for B cells and NK cells. IL-21 is also produced by Th17 cells and is a critical regulator of Th17 development. The regulatory activity of IL-21 is modulated by the differentiation state of its target cells as well as by other cytokines or costimulatory molecules. IL-21 has potent antitumor activity but is also associated with the development of autoimmune disease. IL-21 transcription is dependent on a calcium signal and NFAT sites, and IL-21 requires Stat3 for its signaling. The key to harnessing the power of IL-21 will depend on better understanding its range of biological actions, its mechanism of action, and the molecular basis of regulation of expression of IL-21 and its receptor.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-1674, USA.
| | | |
Collapse
|
48
|
Suto A, Kashiwakuma D, Kagami SI, Hirose K, Watanabe N, Yokote K, Saito Y, Nakayama T, Grusby MJ, Iwamoto I, Nakajima H. Development and characterization of IL-21-producing CD4+ T cells. ACTA ACUST UNITED AC 2008; 205:1369-79. [PMID: 18474630 PMCID: PMC2413034 DOI: 10.1084/jem.20072057] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It has recently been shown that interleukin (IL)-21 is produced by Th17 cells, functions as an autocrine growth factor for Th17 cells, and plays critical roles in autoimmune diseases. In this study, we investigated the differentiation and characteristics of IL-21–producing CD4+ T cells by intracellular staining. Unexpectedly, we found that under Th17-polarizing conditions, the majority of IL-21–producing CD4+ T cells did not produce IL-17A and -17F. We also found that IL-6 and -21 potently induced the development of IL-21–producing CD4+ T cells without the induction of IL-4, IFN-γ, IL-17A, or IL-17F production. On the other hand, TGF-β inhibited IL-6– and IL-21–induced development of IL-21–producing CD4+ T cells. IL-2 enhanced the development of IL-21–producing CD4+ T cells under Th17-polarizing conditions. Finally, IL-21–producing CD4+ T cells exhibited a stable phenotype of IL-21 production in the presence of IL-6, but retained the potential to produce IL-4 under Th2-polarizing conditions and IL-17A under Th17-polarizing conditions. These results suggest that IL-21–producing CD4+ T cells exhibit distinct characteristics from Th17 cells and develop preferentially in an IL-6–rich environment devoid of TGF-β, and that IL-21 functions as an autocrine growth factor for IL-21–producing CD4+ T cells.
Collapse
Affiliation(s)
- Akira Suto
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Leonard WJ, Zeng R, Spolski R. Interleukin 21: a cytokine/cytokine receptor system that has come of age. J Leukoc Biol 2008; 84:348-56. [PMID: 18467657 DOI: 10.1189/jlb.0308149] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin-21 (IL-21) and its receptor represent the sixth cytokine system whose actions were recognized to require the common cytokine receptor gamma chain. IL-21 is produced by activated CD4+ T cells, natural killer T cells, and follicular T helper cells and has actions on a range of lymphohematopoietic lineages. Among its many effects, IL-21 serves a critical role for immunoglobulin production and terminal B cell differentiation, acts as a T cell comitogen and can drive the expansion of CD8+ T cells, can negatively regulate dendritic cell function and plays an essential role in the differentiation of Th17 cells. Importantly, IL-21 is implicated in the pathogenesis of autoimmunity and exhibits potent actions as an antitumor agent. The ability to regulate and manipulate the actions of IL-21, therefore, has important implications for immunoregulation and the therapy of human disease.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, Bldg. 10, Rm. 7B05, Bethesda, MD 20892-1674, USA.
| | | | | |
Collapse
|
50
|
Interleukin-21 regulates expression of key Epstein-Barr virus oncoproteins, EBNA2 and LMP1, in infected human B cells. Virology 2008; 374:100-13. [PMID: 18222514 DOI: 10.1016/j.virol.2007.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/27/2007] [Accepted: 12/11/2007] [Indexed: 12/28/2022]
Abstract
Epstein-Barr virus (EBV) persists for the life of the host by accessing the long-lived memory B cell pool. It has been proposed that EBV uses different combinations of viral proteins, known as latency types, to drive infected B cells to make the transition from resting B cells to memory cells. This process is normally antigen-driven. A major unresolved question is what factors coordinate expression of EBV latency proteins. We have recently described novel type III latency EBV+ B cell lines (OCI-BCLs) that were induced to differentiate into late plasmablasts/early plasma cells in culture with interleukin-21 (IL-21), mimicking normal B cell development. The objective of this study was to determine whether IL-21-mediated signals also regulate the expression of key EBV latent proteins during this window of development. Here we show that IL-21-reduced gene and protein expression of growth-transforming EBV nuclear antigen 2 (EBNA2) in OCI-BCLs. By contrast, the expression of CD40-like, latent membrane protein 1 (LMP1) strongly increased in these cells suggesting an EBNA2-independent mode of regulation. Same results were also observed in Burkitt's lymphoma line Jijoye and B95-8 transformed lymphoblastoid cell lines. The effect of IL-21 on EBNA2 and LMP1 expression was attenuated by a pharmacological JAK inhibitor indicating involvement of JAK/STAT signalling in this process. Our study also shows that IL-21 induced transcription of ebna1 from the viral Q promoter (Qp).
Collapse
|