1
|
Gad AAM, Sirko A. L-gulono-γ-lactone Oxidase, the Key Enzyme for L-Ascorbic Acid Biosynthesis. Curr Issues Mol Biol 2024; 46:11057-11074. [PMID: 39451537 PMCID: PMC11505616 DOI: 10.3390/cimb46100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
L-ascorbic acid (AsA, vitamin C) plays a vital role in preventing various diseases, particularly scurvy. AsA is known for its antioxidant properties, which help protect against reactive oxygen species generated from metabolic activities; however, at high doses, it may exhibit pro-oxidative effects. The final step in AsA biosynthesis is catalyzed by L-gulono-γ-lactone oxidase (GULO). This enzyme is present in many organisms, but some animals, including humans, guinea pigs, bats, and other primates, are unable to synthesize AsA due to the absence of a functional GULO gene. The GULO enzyme belongs to the family of aldonolactone oxidoreductases (AlORs) and contains two conserved domains, an N-terminal FAD-binding region and a C-terminal HWXK motif capable of binding the flavin cofactor. In this review, we explore AsA production, the biosynthetic pathways of AsA, and the localization of GULO-like enzymes in both animal and plant cells. Additionally, we compare the amino acid sequences of AlORs across different species and summarize the findings related to their enzymatic activity. Interestingly, a recombinant C-terminal rat GULO (the cytoplasmic domain of the rat GULO expressed in Escherichia coli) demonstrated enzymatic activity. This suggests that the binding of the flavin cofactor to the HWXK motif at the C-terminus is sufficient for the formation of the enzyme's active site. Another enzyme, GULLO7 from Arabidopsis thaliana, also lacks the N-terminal FAD-binding domain and is strongly expressed in mature pollen, although its activity has not been specifically measured.
Collapse
Affiliation(s)
- Abdul Aziz M. Gad
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland;
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland;
| |
Collapse
|
2
|
Iljazi E, Nagar R, Kuettel S, Lucas K, Crossman A, Badet-Denisot MA, Woodard RW, Ferguson MAJ. A proposed pathway from D-glucose to D-arabinose in eukaryotes. J Biol Chem 2024; 300:107500. [PMID: 38944124 PMCID: PMC11301363 DOI: 10.1016/j.jbc.2024.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
In eukaryotes, the D-enantiomer of arabinose (D-Ara) is an intermediate in the biosynthesis of D-erythroascorbate in yeast and fungi and in the biosynthesis of the nucleotide sugar GDP-α-D-arabinopyranose (GDP-D-Arap) and complex α-D-Arap-containing surface glycoconjugates in certain trypanosomatid parasites. Whereas the biosynthesis of D-Ara in prokaryotes is well understood, the route from D-glucose (D-Glc) to D-Ara in eukaryotes is unknown. In this paper, we study the conversion of D-Glc to D-Ara in the trypanosomatid Crithidia fasciculata using positionally labeled [13C]-D-Glc and [13C]-D-ribose ([13C]-D-Rib) precursors and a novel derivatization and gas chromatography-mass spectrometry procedure applied to a terminal metabolite, lipoarabinogalactan. These data implicate the both arms of pentose phosphate pathway and a likely role for D-ribulose-5-phosphate (D-Ru-5P) isomerization to D-Ara-5P. We tested all C. fasciculata putative sugar and polyol phosphate isomerase genes for their ability to complement a D-Ara-5P isomerase-deficient mutant of Escherichia coli and found that one, the glutamine fructose-6-phosphate aminotransferase (GFAT) of glucosamine biosynthesis, was able to rescue the E. coli mutant. We also found that GFAT genes of other trypanosomatid parasites, and those of yeast and human origin, could complement the E. coli mutant. Finally, we demonstrated biochemically that recombinant human GFAT can isomerize D-Ru-5P to D-Ara5P. From these data, we postulate a general eukaryotic pathway from D-Glc to D-Ara and discuss its possible significance. With respect to C. fasciculata, we propose that D-Ara is used not only for the synthesis of GDP-D-Arap and complex surface glycoconjugates but also in the synthesis of D-erythroascorbate.
Collapse
Affiliation(s)
- Elda Iljazi
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Sabine Kuettel
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Kieron Lucas
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Arthur Crossman
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marie-Ange Badet-Denisot
- Université Paris-Saclay, CNRS, UPR 2301, Institut de Chimie des Substances Naturelles, Dpt Chemobiologie, Gif-sur-Yvette, France
| | - Ronald W Woodard
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
3
|
Opperdoes FR, Záhonová K, Škodová-Sveráková I, Bučková B, Chmelová Ľ, Lukeš J, Yurchenko V. In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non-canonical genetic code. BMC Genomics 2024; 25:184. [PMID: 38365628 PMCID: PMC10874023 DOI: 10.1186/s12864-024-10094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.
Collapse
Affiliation(s)
- Fred R Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbora Bučková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
4
|
Chudin AA, Kudryashova EV. Impact of Lipid Matrix Composition on Activity of Membranotropic Enzymes Galactonolactone Oxidase from Trypanosoma cruzi and L-Galactono-1,4-Lactone Dehydrogenase from Arabidopsis thaliana in the System of Reverse Micelles. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2073-2083. [PMID: 38462451 DOI: 10.1134/s0006297923120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 03/12/2024]
Abstract
The study of many membrane enzymes in an aqueous medium is difficult due to the loss of their catalytic activity, which makes it necessary to use membrane-like systems, such as reverse micelles of surfactants in nonpolar organic solvents. However, it should be taken into account that the micelles are a simplified model of natural membranes, since membranes contain many different components, a significant part of which are phospholipids. In this work, we studied impact of the main phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), on activity of the membrane enzymes using galactonolactone oxidase from Trypanosoma cruzi (TcGAL) and L-galactono-1,4-lactone dehydrogenase from Arabidopsis thaliana (AtGALDH) as examples. Effect of the structure (and charge) of the micelle-forming surfactant itself on the activity of both enzymes has been studied using an anionic surfactant (AOT), a neutral surfactant (Brij-96), and a mixture of cationic and anionic surfactants (CTAB and AOT) as examples. The pronounced effect of addition of PC and PE lipids on the activity of AtGALDH and TcGAL has been detected, which manifests as increase in catalytic activity and significant change in the activity profile. This can be explained by formation of the tetrameric form of enzymes and/or protein-lipid complexes. By varying composition and structure of the micelle-forming surfactants (AOT, CTAB, and Brij-96) it has been possible to change catalytic properties of the enzyme due to effect of the surfactant on the micelle size, lipid mobility, charge, and rigidity of the matrix itself.
Collapse
Affiliation(s)
- Andrey A Chudin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Nascimento JF, Souza ROO, Alencar MB, Marsiccobetre S, Murillo AM, Damasceno FS, Girard RBMM, Marchese L, Luévano-Martinez LA, Achjian RW, Haanstra JR, Michels PAM, Silber AM. How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell. PLoS Pathog 2023; 19:e1011522. [PMID: 37498954 PMCID: PMC10409291 DOI: 10.1371/journal.ppat.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/08/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.
Collapse
Affiliation(s)
- Janaina F. Nascimento
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Rodolpho O. O. Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Mayke B. Alencar
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Ana M. Murillo
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Richard B. M. M. Girard
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Luis A. Luévano-Martinez
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Renan W. Achjian
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Jurgen R. Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| |
Collapse
|
6
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
7
|
Andrade-Alviárez D, Bonive-Boscan AD, Cáceres AJ, Quiñones W, Gualdrón-López M, Ginger ML, Michels PAM. Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists. Front Cell Dev Biol 2022; 10:979269. [PMID: 36172271 PMCID: PMC9512073 DOI: 10.3389/fcell.2022.979269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the ‘TriTryps’ parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.
Collapse
Affiliation(s)
- Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Alejandro D. Bonive-Boscan
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ana J. Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Paul A. M. Michels,
| |
Collapse
|
8
|
Freeman SL, Skafar V, Kwon H, Fielding AJ, Moody PCE, Martínez A, Issoglio FM, Inchausti L, Smircich P, Zeida A, Piacenza L, Radi R, Raven EL. Crystal structure of Trypanosoma cruzi heme peroxidase and characterization of its substrate specificity and compound I intermediate. J Biol Chem 2022; 298:102204. [PMID: 35772495 PMCID: PMC9358470 DOI: 10.1016/j.jbc.2022.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of American trypanosomiasis, otherwise known as Chagas disease. To survive in the host, the T. cruzi parasite needs antioxidant defense systems. One of these is a hybrid heme peroxidase, the T. cruzi ascorbate peroxidase-cytochrome c peroxidase enzyme (TcAPx-CcP). TcAPx-CcP has high sequence identity to members of the class I peroxidase family, notably ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP), as well as a mitochondrial peroxidase from Leishmania major (LmP). The aim of this work was to solve the structure and examine the reactivity of the TcAPx-CcP enzyme. Low temperature electron paramagnetic resonance spectra support the formation of an exchange-coupled [Fe(IV)=O Trp233•+] compound I radical species, analogous to that used in CcP and LmP. We demonstrate that TcAPx-CcP is similar in overall structure to APX and CcP, but there are differences in the substrate-binding regions. Furthermore, the electron transfer pathway from cytochrome c to the heme in CcP and LmP is preserved in the TcAPx-CcP structure. Integration of steady state kinetic experiments, molecular dynamic simulations, and bioinformatic analyses indicates that TcAPx-CcP preferentially oxidizes cytochrome c but is still competent for oxidization of ascorbate. The results reveal that TcAPx-CcP is a credible cytochrome c peroxidase, which can also bind and use ascorbate in host cells, where concentrations are in the millimolar range. Thus, kinetically and functionally TcAPx-CcP can be considered a hybrid peroxidase.
Collapse
Affiliation(s)
- Samuel L Freeman
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Vera Skafar
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hanna Kwon
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Alistair J Fielding
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moore University, Liverpool, United Kingdom
| | - Peter C E Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Alejandra Martínez
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Federico M Issoglio
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucas Inchausti
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Smircich
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
9
|
Wu MH, Huang LY, Sun LX, Qian H, Wei YY, Liang S, Zhu XM, Li L, Lu JP, Lin FC, Liu XH. A Putative D-Arabinono-1,4-lactone Oxidase, MoAlo1, Is Required for Fungal Growth, Conidiogenesis, and Pathogenicity in Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8010072. [PMID: 35050012 PMCID: PMC8782026 DOI: 10.3390/jof8010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Magnaporthe oryzae is the causal agent of rice blast outbreaks. L-ascorbic acid (ASC) is a famous antioxidant found in nature. However, while ASC is rare or absent in fungi, a five-carbon analog, D-erythroascorbic acid (EASC), seems to appear to be a substitute for ASC. Although the antioxidant function of ASC has been widely described, the specific properties and physiological functions of EASC remain poorly understood. In this study, we identified a D-arabinono-1,4-lactone oxidase (ALO) domain-containing protein, MoAlo1, and found that MoAlo1 was localized to mitochondria. Disruption of MoALO1 (ΔMoalo1) exhibited defects in vegetative growth as well as conidiogenesis. The ΔMoalo1 mutant was found to be more sensitive to exogenous H2O2. Additionally, the pathogenicity of conidia in the ΔMoalo1 null mutant was reduced deeply in rice, and defective penetration of appressorium-like structures (ALS) formed by the hyphal tips was also observed in the ΔMoalo1 null mutant. When exogenous EASC was added to the conidial suspension, the defective pathogenicity of the ΔMoalo1 mutant was restored. Collectively, MoAlo1 is essential for growth, conidiogenesis, and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Ming-Hua Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.-H.W.); (L.-Y.H.); (L.-X.S.); (H.Q.); (Y.-Y.W.); (F.-C.L.)
| | - Lu-Yao Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.-H.W.); (L.-Y.H.); (L.-X.S.); (H.Q.); (Y.-Y.W.); (F.-C.L.)
- Biocenter, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Li-Xiao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.-H.W.); (L.-Y.H.); (L.-X.S.); (H.Q.); (Y.-Y.W.); (F.-C.L.)
| | - Hui Qian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.-H.W.); (L.-Y.H.); (L.-X.S.); (H.Q.); (Y.-Y.W.); (F.-C.L.)
| | - Yun-Yun Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.-H.W.); (L.-Y.H.); (L.-X.S.); (H.Q.); (Y.-Y.W.); (F.-C.L.)
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-M.Z.); (L.L.)
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-M.Z.); (L.L.)
| | - Jian-Ping Lu
- College of Life Science, Zhejiang University, Hangzhou 310058, China;
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.-H.W.); (L.-Y.H.); (L.-X.S.); (H.Q.); (Y.-Y.W.); (F.-C.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-M.Z.); (L.L.)
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.-H.W.); (L.-Y.H.); (L.-X.S.); (H.Q.); (Y.-Y.W.); (F.-C.L.)
- Correspondence:
| |
Collapse
|
10
|
Adinehbeigi K, Shaddel M, Khalili S, Zakeri A. Suramin could block the activity of Arabinono-1, 4-lactone oxidase enzyme from Leishmania donovani: structure-based screening and molecular dynamics analyses. Trans R Soc Trop Med Hyg 2020; 114:162-172. [PMID: 31667504 DOI: 10.1093/trstmh/trz091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/07/2019] [Accepted: 08/02/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Leishmania donovani, a parasitic protozoan causing visceral leishmaniasis, can lead to a dangerous and often fatal disease in humans. Current treatment for leishmaniasis may have severe side effects, low efficacy and high cost, hence an immediate need for new efficient drugs is essential. Arabinono-1, 4-lactone oxidase enzyme from Leishmania donovani (LdALO), which catalyzes the last step of the ascorbate biosynthesis pathway, has been considered as a potential target for antileishmanial drugs design. METHODS The current study was performed with an in silico approach to predict novel inhibitory molecules against the LdALO enzyme. Various modeling and refinement processes were employed to obtain a reliable 3D structure. RESULTS The best LdALO model with the highest qualitative model energy analysis score was predicted by the Robetta server and subsequently refined by 3D refine and ModLoop servers. The high quality of the final LdALO model was confirmed using model assessment software. Based on docking analysis results, we predicted 10 inhibitory molecules of a US Food and Drug Administration-approved library, with appropriate criteria regarding energy binding and interaction with the main functionally active sites of LdALO, indicating that they could be significant targets for further drug design investigations against L. donovani. CONCLUSION Suramin is used to treat the first stage of African sleeping sickness and its mechanism of action is unknown. Our results showed that suramin was the best-predicted inhibitor compound for LdALO enzyme activity.
Collapse
Affiliation(s)
- Keivan Adinehbeigi
- Department of Parasitology and Mycology, Faculty of Medicine, AJA University of Medical Sciences, Etemad Zadeh Street, Fatemi Street, Tehran, Iran
| | - Minoo Shaddel
- Department of Parasitology and Mycology, Faculty of Medicine, AJA University of Medical Sciences, Etemad Zadeh Street, Fatemi Street, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Science, Shahid Rajaee University, Tehran, Iran
| | - Alireza Zakeri
- Department of Biology Science, Shahid Rajaee University, Tehran, Iran
| |
Collapse
|
11
|
Mesías AC, Garg NJ, Zago MP. Redox Balance Keepers and Possible Cell Functions Managed by Redox Homeostasis in Trypanosoma cruzi. Front Cell Infect Microbiol 2019; 9:435. [PMID: 31921709 PMCID: PMC6932984 DOI: 10.3389/fcimb.2019.00435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
The toxicity of oxygen and nitrogen reactive species appears to be merely the tip of the iceberg in the world of redox homeostasis. Now, oxidative stress can be seen as a two-sided process; at high concentrations, it causes damage to biomolecules, and thus, trypanosomes have evolved a strong antioxidant defense system to cope with these stressors. At low concentrations, oxidants are essential for cell signaling, and in fact, the oxidants/antioxidants balance may be able to trigger different cell fates. In this comprehensive review, we discuss the current knowledge of the oxidant environment experienced by T. cruzi along the different phases of its life cycle, and the molecular tools exploited by this pathogen to deal with oxidative stress, for better or worse. Further, we discuss the possible redox-regulated processes that could be governed by this oxidative context. Most of the current research has addressed the importance of the trypanosomes' antioxidant network based on its detox activity of harmful species; however, new efforts are necessary to highlight other functions of this network and the mechanisms underlying the fine regulation of the defense machinery, as this represents a master key to hinder crucial pathogen functions. Understanding the relevance of this balance keeper program in parasite biology will give us new perspectives to delineate improved treatment strategies.
Collapse
Affiliation(s)
- Andrea C Mesías
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| | - Nisha J Garg
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - M Paola Zago
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
12
|
Henriques SF, Duque P, López-Fernández H, Vázquez N, Fdez-Riverola F, Reboiro-Jato M, Vieira CP, Vieira J. Multiple independent L-gulonolactone oxidase (GULO) gene losses and vitamin C synthesis reacquisition events in non-Deuterostomian animal species. BMC Evol Biol 2019; 19:126. [PMID: 31215418 PMCID: PMC6582580 DOI: 10.1186/s12862-019-1454-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND L-ascorbate (Vitamin C) is an important antioxidant and co-factor in eukaryotic cells, and in mammals it is indispensable for brain development and cognitive function. Vertebrates usually become L-ascorbate auxothrophs when the last enzyme of the synthetic pathway, an L-gulonolactone oxidase (GULO), is lost. Since Protostomes were until recently thought not to have a GULO gene, they were considered to be auxothrophs for Vitamin C. RESULTS By performing phylogenetic analyses with tens of non-Bilateria and Protostomian genomes, it is shown, that a GULO gene is present in the non-Bilateria Placozoa, Myxozoa (here reported for the first time) and Anthozoa groups, and in Protostomians, in the Araneae family, the Gastropoda class, the Acari subclass (here reported for the first time), and the Priapulida, Annelida (here reported for the first time) and Brachiopoda phyla lineages. GULO is an old gene that predates the separation of Animals and Fungi, although it could be much older. We also show that within Protostomes, GULO has been lost multiple times in large taxonomic groups, namely the Pancrustacea, Nematoda, Platyhelminthes and Bivalvia groups, a pattern similar to that reported for Vertebrate species. Nevertheless, we show that Drosophila melanogaster seems to be capable of synthesizing L-ascorbate, likely through an alternative pathway, as recently reported for Caenorhabditis elegans. CONCLUSIONS Non-Bilaterian and Protostomians seem to be able to synthesize Vitamin C either through the conventional animal pathway or an alternative pathway, but in this animal group, not being able to synthesize L-ascorbate seems to be the exception rather than the rule.
Collapse
Affiliation(s)
- Sílvia F. Henriques
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Pedro Duque
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Hugo López-Fernández
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESEI – Escuela Superior de Ingeniería Informática, Universidade de Vigo, Vigo, Spain
- CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS - Universidade de Vigo, Vigo, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Noé Vázquez
- ESEI – Escuela Superior de Ingeniería Informática, Universidade de Vigo, Vigo, Spain
- CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Vigo, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Florentino Fdez-Riverola
- ESEI – Escuela Superior de Ingeniería Informática, Universidade de Vigo, Vigo, Spain
- CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS - Universidade de Vigo, Vigo, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Miguel Reboiro-Jato
- ESEI – Escuela Superior de Ingeniería Informática, Universidade de Vigo, Vigo, Spain
- CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS - Universidade de Vigo, Vigo, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Cristina P. Vieira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Jorge Vieira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
13
|
Puente V, Demaria A, Frank FM, Batlle A, Lombardo ME. Anti-parasitic effect of vitamin C alone and in combination with benznidazole against Trypanosoma cruzi. PLoS Negl Trop Dis 2018; 12:e0006764. [PMID: 30240395 PMCID: PMC6169970 DOI: 10.1371/journal.pntd.0006764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 10/03/2018] [Accepted: 08/17/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Drugs currently used for the treatment of Chagas' disease, nifurtimox and benznidazole, have a limited effectiveness and toxic side effects. With the aim of finding new therapeutic approaches, in vitro and in vivo anti-Trypanosoma cruzi activity of vitamin C alone and combined with benznidazole were investigated. METHODOLOGY/PRINCIPAL FINDINGS The trypanocidal activity on epimastigote and trypomastigote forms was evaluated by counting parasites in a Neubauer chamber after treatment with the compounds. For the amastigote stage, transgenic parasites expressing β-galactosidase were used and quantified by measuring the β-galactosidase activity. The cytotoxicity of compounds was tested on Vero cells. The redox state of the parasite was evaluated by determining the reduced thiol levels (spectrophotometric assay) and the intracellular oxidative state (by flow cytometry). The in vivo trypanocidal activity was evaluated on a murine model of Chagas' disease. The trypanocidal activity of vitamin C and benznidazole was similar for the three parasite forms. When combining both drugs, vitamin C did not induce any change in the antiparasitic activity of benznidazole on trypomastigotes; however, on mammal cells, vitamin C diminished the cytotoxicity degree of benznidazole. Two mechanisms of action may be postulated for vitamin C: a lethal pro-oxidant effect on the parasite when used alone, and an antioxidant effect, when combined with benznidazole. A similar behavior was observed on infected mice; i.e., parasite counts in infected mice treated with vitamin C were lower than that of the control group. Animals treated with benznidazole presented lower parasitemia levels, as compared with those treated with vitamin C alone. Again, vitamin C did not cause any effect on the antiparasitic profile of benznidazole. Even though a combined treatment was employed, the antioxidant effect of vitamin C on the host was evidenced; a 100% survival was observed and the weight loss occurring during the acute phase of the infection was reduced. CONCLUSIONS/SIGNIFICANCE Based on these results, the combination of vitamin C with benznidazole could be considered as an alternative treatment for Chagas' disease. These preliminary results encourage further research to improve the treatment of Chagas' disease.
Collapse
Affiliation(s)
- Vanesa Puente
- Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina
| | - Agostina Demaria
- Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina
| | - Fernanda M. Frank
- Instituto de Microbiología y Parasitología Médica, IMPAM (Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Medicina, UBA, Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina
| | - Maria Elisa Lombardo
- Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| |
Collapse
|
14
|
Aboobucker SI, Suza WP, Lorence A. Characterization of Two Arabidopsis L-Gulono-1,4-lactone Oxidases, AtGulLO3 and AtGulLO5, Involved in Ascorbate Biosynthesis. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 4:389-417. [PMID: 30112455 PMCID: PMC6088757 DOI: 10.20455/ros.2017.861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
L-Ascorbic acid (AsA, vitamin C) is an essential antioxidant for plants and animals. There are four known ascorbate biosynthetic pathways in plants: the L-galactose, L-gulose, D-galacturonate, and myo-inositol routes. These pathways converge into two AsA precursors: L-galactono-1,4-lactone and L-gulono-1,4-lactone (L-GulL). This work focuses on the study of L-gulono-1,4-lactone oxidase (GulLO), the enzyme that works at the intersect of the gulose and inositol pathways. Previous studies have shown that feeding L-gulono-1,4-lactone to multiple plants leads to increased AsA. There are also reports showing GulLO activity in plants. We describe the first detailed characterization of a plant enzyme specific to oxidize L-GulL to AsA. We successfully purified a recombinant Arabidopsis GulLO enzyme (called AtGulLO5) in a transient expression system. The biochemical properties of this enzyme are similar to the ones of bacterial isozymes in terms of substrate specificity, subcellular localization, use of flavin adenine dinucleotide (FAD) as electron acceptor, and specific activity. AtGulLO5 is an exclusive dehydrogenase with an absolute specificity for L-GulL as substrate thus differing from the existing plant L-galactono-1,4-lactone dehydrogenases and mammalian GulLOs. Feeding L-GulL to N. benthamiana leaves expressing AtGulLO5 constructs led to increased foliar AsA content, but it was not different from that of controls, most likely due to the observed low catalytic efficiency of AtGulLO5. Similar results were also obtained with another member of the AtGulLO family (AtGulLO3) that appears to have a rapid protein turnover. We propose that AsA synthesis through L-GulL in plants is regulated at the post-transcriptional level by limiting GulLO enzyme availability.
Collapse
Affiliation(s)
- Siddique I Aboobucker
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Current address: 2104 Agronomy Hall, Iowa State University, Ames, IA 50011, USA
| | - Walter P Suza
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Current address: 2104 Agronomy Hall, Iowa State University, Ames, IA 50011, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA
| |
Collapse
|
15
|
Ewing TA, Fraaije MW, Mattevi A, van Berkel WJ. The VAO/PCMH flavoprotein family. Arch Biochem Biophys 2017; 632:104-117. [DOI: 10.1016/j.abb.2017.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/15/2023]
|
16
|
Biochemistry and Physiology of Vitamins in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:65-90. [DOI: 10.1007/978-3-319-54910-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Beltrame-Botelho IT, Talavera-López C, Andersson B, Grisard EC, Stoco PH. A Comparative In Silico Study of the Antioxidant Defense Gene Repertoire of Distinct Lifestyle Trypanosomatid Species. Evol Bioinform Online 2016; 12:263-275. [PMID: 27840574 PMCID: PMC5100842 DOI: 10.4137/ebo.s40648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022] Open
Abstract
Kinetoplastids are an ancestral group of protists that contains free-living species and parasites with distinct mechanisms in response to stress. Here, we compared genes involved in antioxidant defense (AD), proposing an evolution model among trypanosomatids. All genes were identified in Bodo saltans, suggesting that AD mechanisms have evolved prior to adaptation for parasitic lifestyles. While most of the monoxenous and dixenous parasites revealed minor differences from B. saltans, the endosymbiont-bearing species have an increased number of genes. The absence of these genes was mainly observed in the extracellular parasites of the genera Phytomonas and Trypanosoma. In trypanosomes, a distinction was observed between stercorarian and salivarian parasites, except for Trypanosoma rangeli. Our analyses indicate that the variability of AD among trypanosomatids at the genomic level is not solely due to the geographical isolation, being mainly related to specific adaptations of their distinct biological cycles within insect vectors and to a parasitism of a wide range of hosts.
Collapse
Affiliation(s)
- Ingrid Thaís Beltrame-Botelho
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Universidade do Sul de Santa Catarina, Palhoça, SC, Brazil
| | | | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Edmundo Carlos Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Patricia Hermes Stoco
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
18
|
Marim RG, de Gusmão AS, Castanho REP, Deminice R, Therezo ALS, Jordão Júnior AA, de Assis MR, Taipeiro EDF, Martins LPA. EFFECTS OF VITAMIN C SUPPLEMENTATION ON THE CHRONIC PHASE OF CHAGAS DISEASE. Rev Inst Med Trop Sao Paulo 2016. [PMID: 26200966 PMCID: PMC4544250 DOI: 10.1590/s0036-46652015000300011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction: In order to examine the effectiveness of vitamin C (ascorbic acid) in combating
the oxidative insult caused by Trypanosoma cruzi during the
development of the chronic phase of Chagas disease, Swiss mice were infected
intraperitoneally with 5.0 × 104 trypomastigotes of T.
cruzi QM1strain. Methods: Mice were given supplements of two different doses of vitamin C for 180 days.
Levels of lipid oxidation (as indicated by thiobarbituric acid reactive
substances-TBARS), total peroxide, vitamin C, and reduced glutathione were
measured in the plasma, TBARS, total peroxide and vitamin C were measured in the
myocardium and histopathologic analysis was undertaken in heart, colon and
skeletal muscle. Results: Animals that received a dose equivalent to 500 mg of vitamin C daily showed
increased production of ROS in plasma and myocardium and a greater degree of
inflammation and necrosis in skeletal muscles than those that received a lower
dose or no vitamin C whatsoever. Conclusion: Although some research has shown the antioxidant effect of vitamin C, the results
showed that animals subject to a 500 mg dose of vitamin C showed greater tissue
damage in the chronic phase of Chagas disease, probably due to the paradoxical
actions of the substance, which in this pathology, will have acted as a
pro-oxidant or pro-inflammatory.
Collapse
Affiliation(s)
| | | | | | - Rafael Deminice
- Department of Medical Clinic, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | | | - Alceu Afonso Jordão Júnior
- Department of Medical Clinic, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
19
|
Aboobucker SI, Lorence A. Recent progress on the characterization of aldonolactone oxidoreductases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:171-85. [PMID: 26696130 PMCID: PMC4725720 DOI: 10.1016/j.plaphy.2015.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
L-Ascorbic acid (ascorbate, AsA, vitamin C) is essential for animal and plant health. Despite our dependence on fruits and vegetables to fulfill our requirement for this vitamin, the metabolic network leading to its formation in plants is just being fully elucidated. There is evidence supporting the operation of at least four biosynthetic pathways leading to AsA formation in plants. These routes use D-mannose/L-galactose, L-gulose, D-galacturonate, and myo-inositol as the main precursors. This review focuses on aldonolactone oxidoreductases, a subgroup of the vanillyl alcohol oxidase (VAO; EC 1.1.3.38) superfamily, enzymes that catalyze the terminal step in AsA biosynthesis in bacteria, protozoa, animals, and plants. In this report, we review the properties of well characterized aldonolactone oxidoreductases to date. A shared feature in these proteins is the presence of a flavin cofactor as well as a thiol group. The flavin cofactor in many cases is bound to the N terminus of the enzymes or to a recently discovered HWXK motif in the C terminus. The binding between the flavin moiety and the protein can be either covalent or non-covalent. Substrate specificity and subcellular localization differ among the isozymes of each kingdom. All oxidases among these enzymes possess dehydrogenase activity, however, exclusive dehydrogenases are also found. We also discuss recent evidence indicating that plants have both L-gulono-1,4-lactone oxidases and L-galactono-1,4-lactone dehydrogenases involved in AsA biosynthesis.
Collapse
Affiliation(s)
- Siddique I Aboobucker
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA; Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA.
| |
Collapse
|
20
|
Cristina Desoti V, Lazarin-Bidóia D, Martins Ribeiro F, Cardoso Martins S, da Silva Rodrigues JH, Ueda-Nakamura T, Vataru Nakamura C, Farias Ximenes V, de Oliveira Silva S. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process. PLoS One 2015; 10:e0144033. [PMID: 26641473 PMCID: PMC4671608 DOI: 10.1371/journal.pone.0144033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022] Open
Abstract
Chagas' disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas' disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.
Collapse
Affiliation(s)
- Vânia Cristina Desoti
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Danielle Lazarin-Bidóia
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Fabianne Martins Ribeiro
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Solange Cardoso Martins
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Jean Henrique da Silva Rodrigues
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Tania Ueda-Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Celso Vataru Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- Programa de Pós Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Valdecir Farias Ximenes
- Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SP, Brasil
| | - Sueli de Oliveira Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- * E-mail:
| |
Collapse
|
21
|
Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife 2015; 4. [PMID: 25768426 PMCID: PMC4396506 DOI: 10.7554/elife.06369] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, l-gulonolactone oxidase (GULO). The alternative pathways found in land plants and Euglena use a different terminal enzyme, l-galactonolactone dehydrogenase (GLDH). The evolutionary processes leading to these differing pathways and their contribution to the cellular roles of ascorbate remain unclear. Here we present molecular and biochemical evidence demonstrating that GULO was functionally replaced with GLDH in photosynthetic eukaryote lineages following plastid acquisition. GULO has therefore been lost repeatedly throughout eukaryote evolution. The formation of the alternative biosynthetic pathways in photosynthetic eukaryotes uncoupled ascorbate synthesis from hydrogen peroxide production and likely contributed to the rise of ascorbate as a major photoprotective antioxidant. DOI:http://dx.doi.org/10.7554/eLife.06369.001 Animals, plants, algae and other eukaryotic organisms all need vitamin C to enable many of their enzymes to work properly. Vitamin C also protects plant and algal cells from damage by molecules called reactive oxygen species (ROS), which can be produced when these cells harvest energy from sunlight in a process called photosynthesis. Photosynthesis occurs inside structures called chloroplasts, and has evolved on multiple occasions in eukaryotes when non-photosynthetic organisms acquired chloroplasts from other algae and then had to develop improved defences against ROS. There are several steps involved in the production of vitamin C. In many animals, an enzyme called GULO carries out the final step by converting a molecule known as an aldonolactone into vitamin C; this reaction also produces ROS as a waste product. The GULO enzyme is missing in humans, primates and some other groups of animals, so these organisms must get all the vitamin C they need from their diet. Plants and algae use a different enzyme—called GLDH—to make vitamin C from aldonolactone. GLDH is very similar to GULO, but it does not produce ROS as a waste product. It is not clear how the different pathways have evolved, or why some animals have lost the ability to make their own vitamin C. Here, Wheeler et al. used genetics and biochemistry to investigate the evolutionary origins of vitamin C production in a variety of eukaryotic organisms. This investigation revealed that although GULO is missing from the insects and several other groups of animals, it is present in the sponges and many other eukaryotes. This suggests that GULO evolved in early eukaryotic organisms and has since been lost by the different groups of animals. On the other hand, GLDH is only found in plants and the other eukaryotes that can photosynthesize. Wheeler et al.'s findings suggest that GULO has been lost and replaced by GLDH in all plants and algae following their acquisition of chloroplasts. GDLH allows plants and algae to make vitamin C without also producing ROS, which could explain why vitamin C has been able to take on an extra role in these organisms. The results allow us to better understand the functions of vitamin C in photosynthetic organisms and the processes associated with the acquisition of chloroplasts during evolution. DOI:http://dx.doi.org/10.7554/eLife.06369.002
Collapse
Affiliation(s)
- Glen Wheeler
- Marine Biological Association, Plymouth, United Kingdom
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Varissa Pornsaksit
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
22
|
Stoco PH, Wagner G, Talavera-Lopez C, Gerber A, Zaha A, Thompson CE, Bartholomeu DC, Lückemeyer DD, Bahia D, Loreto E, Prestes EB, Lima FM, Rodrigues-Luiz G, Vallejo GA, Filho JFDS, Schenkman S, Monteiro KM, Tyler KM, de Almeida LGP, Ortiz MF, Chiurillo MA, de Moraes MH, Cunha ODL, Mendonça-Neto R, Silva R, Teixeira SMR, Murta SMF, Sincero TCM, Mendes TADO, Urmenyi TP, Silva VG, DaRocha WD, Andersson B, Romanha ÁJ, Steindel M, de Vasconcelos ATR, Grisard EC. Genome of the avirulent human-infective trypanosome--Trypanosoma rangeli. PLoS Negl Trop Dis 2014; 8:e3176. [PMID: 25233456 PMCID: PMC4169256 DOI: 10.1371/journal.pntd.0003176] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/08/2014] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. Conclusions/Significance Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets. Comparative genomics is a powerful tool that affords detailed study of the genetic and evolutionary basis for aspects of lifecycles and pathologies caused by phylogenetically related pathogens. The reference genome sequences of three trypanosomatids, T. brucei, T. cruzi and L. major, and subsequent addition of multiple Leishmania and Trypanosoma genomes has provided data upon which large-scale investigations delineating the complex systems biology of these human parasites has been built. Here, we compare the annotated genome sequence of T. rangeli strain SC-58 to available genomic sequence and annotation data from related species. We provide analysis of gene content, genome architecture and key characteristics associated with the biology of this non-pathogenic trypanosome. Moreover, we report striking new genomic features of T. rangeli compared with its closest relative, T. cruzi, such as (1) considerably less amplification on the gene copy number within multigene virulence factor families such as MASPs, trans-sialidases and mucins; (2) a reduced repertoire of genes encoding anti-oxidant defense enzymes; and (3) the presence of vestigial orthologs of the RNAi machinery, which are insufficient to constitute a functional pathway. Overall, the genome of T. rangeli provides for a much better understanding of the identity, evolution, regulation and function of trypanosome virulence determinants for both mammalian host and insect vector.
Collapse
Affiliation(s)
- Patrícia Hermes Stoco
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| | - Glauber Wagner
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina, Brazil
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | - Diana Bahia
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Elgion Loreto
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Fábio Mitsuo Lima
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | | | | | - Sérgio Schenkman
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Kevin Morris Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, United Kingdom
| | | | - Mauro Freitas Ortiz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Miguel Angel Chiurillo
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
| | | | | | | | - Rosane Silva
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Turán Peter Urmenyi
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Álvaro José Romanha
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| |
Collapse
|
23
|
Güther MS, Urbaniak MD, Tavendale A, Prescott A, Ferguson MAJ. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res 2014; 13:2796-806. [PMID: 24792668 PMCID: PMC4052807 DOI: 10.1021/pr401209w] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Indexed: 01/23/2023]
Abstract
The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed.
Collapse
Affiliation(s)
- Maria
Lucia S. Güther
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael D. Urbaniak
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Amy Tavendale
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Alan Prescott
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
24
|
Aldonolactone oxidoreductases. Methods Mol Biol 2014; 1146:95-111. [PMID: 24764090 DOI: 10.1007/978-1-4939-0452-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Vitamin C is a widely used vitamin. Here we review the occurrence and properties of aldonolactone oxidoreductases, an important group of flavoenzymes responsible for the ultimate production of vitamin C and its analogs in animals, plants, and single-cell organisms.
Collapse
|
25
|
Manhas R, Anand S, Tripathi P, Madhubala R. Deletion of Vitamin C biosynthesis enzyme, Arabino-1, 4-lactone oxidase inLeishmania donovaniresults in increased pro-inflammatory responses from host immune cells. Mol Microbiol 2014; 91:1227-39. [DOI: 10.1111/mmi.12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Reetika Manhas
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Sneha Anand
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Pankaj Tripathi
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Rentala Madhubala
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
26
|
Adak S, Pal S. Ascorbate peroxidase acts as a novel determiner of redox homeostasis in Leishmania. Antioxid Redox Signal 2013; 19:746-54. [PMID: 22703594 DOI: 10.1089/ars.2012.4745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are produced as natural byproducts of metabolism and respiration. While physiological levels of ROS are required for vital cellular functions (e.g., development and proliferation), a living organism is faced with constant challenges due to accumulation or overproduction of ROS throughout its life. The life cycle of Leishmania parasite has led it to confront the highly oxidizing environment in the macrophage phagosomes, necessitating ROS homeostasis and signaling as key strategies for successful survival and pathogenicity. RECENT ADVANCES Ascorbate peroxidase from Leishmania major (LmAPX) is the only heme peroxidase identified so far in Leishmania. Structural analysis and functional characterization of LmAPX have yielded interesting and novel insight on this enzyme. The protein has been found to be a hybrid of cytochrome c peroxidase and ascorbate peroxidase. This enzyme is colocalized with cytochrome c in the inner mitochondrial membrane facing the intermembrane space and shows higher activity toward cytochrome c oxidation. CRITICAL ISSUES Overexpression of LmAPX in L. major cells confers tolerance to oxidative stress-mediated cardiolipin oxidation and consequently protects cells from extensive protein damage. LmAPX-/- mutants show higher intracellular hydrogen peroxide (H₂O₂), which might signal for cellular transformation from noninfective procyclic to infective metacyclic form and ultimately apoptosis. FUTURE DIRECTIONS Manipulation of LmAPX expression has significantly added to the present understanding of the parasite's defense network against oxidative damage caused by H₂O₂. The future investigations will address more exactly the signaling pathways involved in redox homeostasis.
Collapse
Affiliation(s)
- Subrata Adak
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | | |
Collapse
|
27
|
Gusmão ASD, Castanho REP, Andrade RFAD, Farsetti CM, Mathias AB, Therezo ALS, Martins LPA. Vitamin C effects in mice experimentally infected with Trypanosoma cruzi QM2 strain. Rev Soc Bras Med Trop 2012; 45:51-4. [PMID: 22370828 DOI: 10.1590/s0037-86822012000100010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 09/22/2011] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION To evaluate the efficacy of vitamin C in reducing the consequences generated by the production of free radicals in the acute and chronic phases of Chagas disease, two different doses of ascorbic acid were administered orally to 60 mice infected by Trypanosoma cruzi QM2 strain. METHODS The animals were divided into six groups: G1, G2, and G3 for the acute phase study, and G'1, G'2, and G'3 for the chronic stage. The groups G1 and G'1 received 8.6 x 10⁻⁴ mg/g of vitamin C daily, whereas G2 and G'2 received 7.14 x 10⁻³ mg/g daily. The other groups, G3 and G'3, were considered placebos and received 10 µL of mineral water. RESULTS The study of the acute phase showed statistically significant differences between G1 and the other groups at various count days of the parasitemia evolution. The multiplying parasite was slower in G1 until the 11th day, but on the 22nd day it had greater parasitemia than in G2 and G3, and from the 36th day on, parasitemia stabilized at higher levels. However, when the histopathology of acute and chronic phases is considered, one does not note significant differences. CONCLUSIONS The administration of two different doses of vitamin C was not able to protect mice and to contain the oxidative stress caused by free radicals formed by the metabolism of oxygen (reactive oxygen species) and nitrogen (reactive nitrogen species).
Collapse
|
28
|
Neogi T, George J, Rekhraj S, Struthers AD, Choi H, Terkeltaub RA. Are either or both hyperuricemia and xanthine oxidase directly toxic to the vasculature? A critical appraisal. ACTA ACUST UNITED AC 2012; 64:327-38. [PMID: 21953377 DOI: 10.1002/art.33369] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tuhina Neogi
- Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
SIGNIFICANCE Parasitic infections continue to be a major problem for global human health. Vaccines are practically not available and chemotherapy is highly unsatisfactory. One approach toward a novel antiparasitic drug development is to unravel pathways that may be suited as future targets. Parasitic organisms show a remarkable diversity with respect to the nature and functions of their main low-molecular-mass antioxidants and many of them developed pathways that do not have a counterpart in their mammalian hosts. RECENT ADVANCES Work of the last years disclosed the individual antioxidants employed by parasites and their distinct pathways. Entamoeba, Trichomonas, and Giardia directly use cysteine as main low-molecular-mass thiol but have divergent cysteine metabolisms. Malarial parasites rely exclusively on cysteine uptake and generate glutathione (GSH) as main free thiol as do metazoan parasites. Trypanosomes and Leishmania have a unique trypanothione-based thiol metabolism but employ individual mechanisms for their cysteine supply. In addition, some trypanosomatids synthesize ovothiol A and/or ascorbate. Various essential parasite enzymes such as trypanothione synthetase and trypanothione reductase in Trypanosomatids and the Schistosoma thioredoxin GSH reductase are currently intensively explored as drug target molecules. CRITICAL ISSUES Essentiality is a prerequisite but not a sufficient property of an enzyme to become a suited drug target. The availability of an appropriate in vivo screening system and many other factors are equally important. FUTURE DIRECTIONS The current organism-wide RNA-interference and proteome analyses are supposed to reveal many more interesting candidates for future drug development approaches directed against the parasite antioxidant defense systems.
Collapse
|
30
|
Nogueira FB, Rodrigues JFA, Correa MMS, Ruiz JC, Romanha AJ, Murta SMF. The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide. Mem Inst Oswaldo Cruz 2012; 107:494-502. [DOI: 10.1590/s0074-02762012000400009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 12/14/2011] [Indexed: 11/22/2022] Open
|
31
|
Haanstra JR, van Tuijl A, van Dam J, van Winden W, Tielens AGM, van Hellemond JJ, Bakker BM. Proliferating bloodstream-form Trypanosoma brucei use a negligible part of consumed glucose for anabolic processes. Int J Parasitol 2012; 42:667-73. [PMID: 22580731 DOI: 10.1016/j.ijpara.2012.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Our quantitative knowledge of carbon fluxes in the long slender bloodstream form (BSF) Trypanosoma brucei is mainly based on non-proliferating parasites, isolated from laboratory animals and kept in buffers. In this paper we present a carbon balance for exponentially growing bloodstream form trypanosomes. The cells grew with a doubling time of 5.3h, contained 46 μ mol of carbon (10(8) cells)(-1) and had a glucose consumption flux of 160 nmol min(-1) (10(8) cells)(-1). The molar ratio of pyruvate excreted versus glucose consumed was 2.1. Furthermore, analysis of the (13)C label distribution in pyruvate in (13)C-glucose incubations of exponentially growing trypanosomes showed that glucose was the sole substrate for pyruvate production. We conclude that the glucose metabolised in glycolysis was hardly, if at all, used for biosynthetic processes. Carbon flux through glycolysis in exponentially growing trypanosomes was 10 times higher than the incorporation of carbon into biomass. This biosynthetic carbon is derived from other precursors present in the nutrient rich growth medium. Furthermore, we found that the glycolytic flux was unaltered when the culture went into stationary phase, suggesting that most of the ATP produced in glycolysis is used for processes other than growth.
Collapse
Affiliation(s)
- Jurgen R Haanstra
- Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Leishmania donovani encodes a functional enzyme involved in vitamin c biosynthesis: Arabino-1,4-lactone oxidase. Mol Biochem Parasitol 2011; 180:76-85. [DOI: 10.1016/j.molbiopara.2011.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/28/2011] [Accepted: 08/26/2011] [Indexed: 11/24/2022]
|
33
|
Gualdrón-López M, Brennand A, Hannaert V, Quiñones W, Cáceres AJ, Bringaud F, Concepción JL, Michels PAM. When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 2011; 42:1-20. [PMID: 22142562 DOI: 10.1016/j.ijpara.2011.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
Abstract
A characteristic, well-studied feature of the pathogenic protists belonging to the family Trypanosomatidae is the compartmentalisation of the major part of the glycolytic pathway in peroxisome-like organelles, hence designated glycosomes. Such organelles containing glycolytic enzymes appear to be present in all members of the Kinetoplastea studied, and have recently also been detected in a representative of the Diplonemida, but they are absent from the Euglenida. Glycosomes therefore probably originated in a free-living, common ancestor of the Kinetoplastea and Diplonemida. The initial sequestering of glycolytic enzymes inside peroxisomes may have been the result of a minor mistargeting of proteins, as generally observed in eukaryotic cells, followed by preservation and its further expansion due to the selective advantage of this specific form of metabolic compartmentalisation. This selective advantage may have been a largely increased metabolic flexibility, allowing the organisms to adapt more readily and efficiently to different environmental conditions. Further evolution of glycosomes involved, in different taxonomic lineages, the acquisition of additional enzymes and pathways - often participating in core metabolic processes - as well as the loss of others. The acquisitions may have been promoted by the sharing of cofactors and crucial metabolites between different pathways, thus coupling different redox processes and catabolic and anabolic pathways within the organelle. A notable loss from the Trypanosomatidae concerned a major part of the typical peroxisomal H(2)O(2)-linked metabolism. We propose that the compartmentalisation of major parts of the enzyme repertoire involved in energy, carbohydrate and lipid metabolism has contributed to the multiple development of parasitism, and its elaboration to complicated life cycles involving consecutive different hosts, in the protists of the Kinetoplastea clade.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, Postal Box B1.74.01, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kudryashova EV, Leferink NGH, Slot IGM, van Berkel WJH. Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:545-52. [PMID: 21397737 DOI: 10.1016/j.bbapap.2011.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/21/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas' disease, is unable to salvage vitamin C (l-ascorbate) from its environment and relies on de novo synthesis for its survival. Because humans lack the capacity to synthesize ascorbate, the trypanosomal enzymes involved in ascorbate biosynthesis are interesting targets for drug therapy. The terminal step in ascorbate biosynthesis is catalyzed by flavin-dependent aldonolactone oxidoreductases belonging to the vanillyl-alcohol oxidase (VAO) protein family. Here we studied the properties of recombinant T. cruzi galactonolactone oxidoreductase (TcGAL), refolded from inclusion bodies using a reverse micelles system. The refolded enzyme shows native-like secondary structure and is active with both l-galactono-1,4-lactone and d-arabinono-1,4-lactone. At odd with an earlier claim, TcGAL employs a non-covalently bound FAD as redox-active cofactor. Moreover, it is shown for the first time that TcGAL can use molecular oxygen as electron acceptor. This is in line with the absence of a recently identified gatekeeper residue that prevents aldonolactone oxidoreductases from plants to act as oxidases.
Collapse
|
35
|
Santos ÍMS, da Rocha Tomé A, Saldanha GB, Ferreira PMP, Militão GCG, de Freitas RM. Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:214-21. [PMID: 20716907 PMCID: PMC2763259 DOI: 10.4161/oxim.2.4.8876] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 11/28/2022]
Abstract
Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA) in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group), ascorbic acid (500 mg/kg, i.p., AA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of ascorbic acid (500 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of ascorbic acid (AA plus pilocarpine group). After the treatments all groups were observed for 6h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a strong protective effect could be achieved using ascorbic acid.
Collapse
|
36
|
Fighting the oxidative assault: the Trypanosoma cruzi journey to infection. Curr Opin Microbiol 2009; 12:415-21. [PMID: 19616990 DOI: 10.1016/j.mib.2009.06.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 11/23/2022]
Abstract
Activation of professional phagocytes with the concomitant generation of oxidant species is a medullar innate immune process for the control of acute Trypanosoma cruzi infection. Recent data reinforce the hypothesis that parasites more prepared to deal with the host-oxidative assault are more efficient for the establishment of Chagas disease. For instance, parasites overexpressing peroxiredoxins are more resistant to macrophage-derived peroxynitrite, a key cytotoxic oxidant produced in the phagosome towards the internalized parasite. Differentiation to the infective metacyclic trypomastigote is accompanied by an increased expression of antioxidant enzymes. Moreover, augmented antioxidant enzyme expression and activities correlate with higher parasite virulence in experimental infections. The potency of the parasite antioxidant armamentarium influences the final fate of the Trypanosoma cruzi journey to macrophage invasion at the onset of infection.
Collapse
|
37
|
George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 2009; 5:265-72. [PMID: 19436671 PMCID: PMC2672460 DOI: 10.2147/vhrm.s4265] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress plays an important role in the progression of vascular endothelial dysfunction. The two major systems generating vascular oxidative stress are the NADPH oxidase and the xanthine oxidase pathways. Allopurinol, a xanthine oxidase inhibitor, has been in clinical use for over 40 years in the treatment of chronic gout. Allopurinol has also been shown to improve endothelial dysfunction, reduce oxidative stress burden and improve myocardial efficiency by reducing oxygen consumption in smaller mechanistic studies involving various cohorts at risk of cardiovascular events. This article aims to explain the role of xanthine oxidase in vascular oxidative stress and to explore the mechanisms by which allopurinol is thought to improve vascular and myocardial indices.
Collapse
Affiliation(s)
- Jacob George
- Division of Medicine and Therapeutics, Ninewells Hospital and Medical School, Dundee, UK.
| | | |
Collapse
|
38
|
Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T, Shigeoka S. The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase. J Biol Chem 2008; 283:31133-41. [PMID: 18782759 PMCID: PMC2662179 DOI: 10.1074/jbc.m803930200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/05/2008] [Indexed: 11/06/2022] Open
Abstract
We have previously proposed that Euglena gracilis possesses a pathway for the production of ascorbate (AsA) through d-galacturonate/L-galactonate as representative intermediates ( Shigeoka, S., Nakano, Y., and Kitaoka, S. (1979) J. Nutr. Sci. Vitaminol. 25, 299-307 ). However, genetic evidence proving that the pathway exists has not been obtained yet. We report here the identification of a gene encoding aldonolactonase, which catalyzes a penultimate step of the biosynthesis of AsA in Euglena. By a BLAST search, we identified one candidate for the enzyme having significant sequence identity with rat gluconolactonase, a key enzyme for the production of AsA via d-glucuronate in animals. The purified recombinant aldonolactonase expressed in Escherichia coli catalyzed the reversible reaction of L-galactonate and L-galactono-1,4-lactone with zinc ion as a cofactor. The apparent K(m) values for L-galactonate and L-galactono-1,4-lactone were 1.55 +/- 0.3 and 1.67 +/- 0.39 mm, respectively. The cell growth of Euglena was arrested by silencing the expression of aldonolactonase through RNA interference and then restored to the normal state by supplementation with L-galactono-1,4-lactone. Euglena cells accumulated more AsA on supplementation with d-galacturonate than d-glucuronate. The present results indicate that aldonolactonase is significant for the biosynthesis of AsA in Euglena cells, which predominantly utilize the pathwayviad-galacturonate/L-galactonate. The identification of aldonolactonase provides the first insight into the biosynthesis of AsA via uronic acids as the intermediate in photosynthetic algae including Euglena.
Collapse
Affiliation(s)
- Takahiro Ishikawa
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 2008; 45:733-42. [PMID: 18588970 DOI: 10.1016/j.freeradbiomed.2008.05.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/24/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.
Collapse
Affiliation(s)
- Florencia Irigoín
- Departmento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Uruguay
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
This article provides an overview about the recent advances in the dissection of the peroxide metabolism of Trypanosomatidae. This family of protozoan organisms comprises the medically relevant parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. Over the past 10 years, three major families of peroxidases have been identified in these organisms: (a) 2-cysteine peroxiredoxins, (b) nonselenium glutathione peroxidases, and (c) ascorbate peroxidases. In trypanosomatids, these enzymes display the unique feature of using reducing equivalents derived from trypanothione, a dithiol found exclusively in these protozoa. The electron transfer between trypanothione and the peroxidases is mediated by a redox shuttle, which can either be tryparedoxin, ascorbate, or even glutathione. The preference for the intermediate molecule differs among each peroxidase and so does the specificity for the peroxide substrate. These observations, added to the fact that these peroxidases are distributed throughout different subcellular compartments, point to the existence of an elaborate peroxide metabolism in trypanosomatids. With the completion of the trypanosomatids genome, other molecules displaying peroxidase activity might be added to this list in the future.
Collapse
Affiliation(s)
- Helena Castro
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
41
|
Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH. The growing VAO flavoprotein family. Arch Biochem Biophys 2008; 474:292-301. [PMID: 18280246 DOI: 10.1016/j.abb.2008.01.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 11/17/2022]
Abstract
The VAO flavoprotein family is a rapidly growing family of oxidoreductases that favor the covalent binding of the FAD cofactor. In this review we report on the catalytic properties of some newly discovered VAO family members and their mode of flavin binding. Covalent binding of the flavin is a self-catalytic post-translational modification primarily taking place in oxidases. Covalent flavinylation increases the redox potential of the cofactor and thus its oxidation power. Recent findings have revealed that some members of the VAO family anchor the flavin via a dual covalent linkage (6-S-cysteinyl-8alpha-N1-histidyl FAD). Some VAO-type aldonolactone oxidoreductases favor the non-covalent binding of the flavin cofactor. These enzymes act as dehydrogenases, using cytochrome c as electron acceptor.
Collapse
Affiliation(s)
- Nicole G H Leferink
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Leferink NGH, van den Berg WAM, van Berkel WJH. l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J 2008; 275:713-26. [PMID: 18190525 DOI: 10.1111/j.1742-4658.2007.06233.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
l-Galactono-1,4-lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l-ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant Arabidopsis thaliana GALDH (AtGALDH). AtGALDH oxidizes, in addition to l-galactono-1,4-lactone (K(m) = 0.17 mm, k(cat) = 134 s(-1)), l-gulono-1,4-lactone (K(m) = 13.1 mm, k(cat) = 4.0 s(-1)) using cytochrome c as an electron acceptor. Aerobic reduction of AtGALDH with the lactone substrate generates the flavin hydroquinone. The two-electron reduced enzyme reacts poorly with molecular oxygen (k(ox) = 6 x 10(2) m(-1).s(-1)). Unlike most flavoprotein dehydrogenases, AtGALDH forms a flavin N5 sulfite adduct. Anaerobic photoreduction involves the transient stabilization of the anionic flavin semiquinone. Most aldonolactone oxidoreductases contain a histidyl-FAD as a covalently bound prosthetic group. AtGALDH lacks the histidine involved in covalent FAD binding, but contains a leucine instead (Leu56). Leu56 replacements did not result in covalent flavinylation but revealed the importance of Leu56 for both FAD-binding and catalysis. The Leu56 variants showed remarkable differences in Michaelis constants for both l-galactono-1,4-lactone and l-gulono-1,4-lactone and released their FAD cofactor more easily than wild-type AtGALDH. The present study provides the first biochemical characterization of AtGALDH and some active site variants. The role of GALDH and the possible involvement of other aldonolactone oxidoreductases in the biosynthesis of vitamin C in A. thaliana are also discussed.
Collapse
|
43
|
Logan F, Taylor M, Wilkinson S, Kaur H, Kelly J. The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase. Biochem J 2007; 407:419-26. [PMID: 17627608 PMCID: PMC2275072 DOI: 10.1042/bj20070766] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humans lack the ability to synthesize vitamin C (ascorbate) due to the absence of gulonolactone oxidase, the last enzyme in the biosynthetic pathway in most other mammals. The corresponding oxidoreductase in trypanosomes therefore represents a target that may be therapeutically exploitable. This is reinforced by our observation that Trypanosoma cruzi, the causative agent of Chagas' disease, lacks the capacity to scavenge ascorbate from its environment and is therefore dependent on biosynthesis to maintain intracellular levels of this vitamin. Here, we show that T. cruzi galactonolactone oxidase (TcGAL) can utilize both L-galactono-gamma-lactone and D-arabinono-gamma-lactone as substrates for synthesis of vitamin C, in reactions that obey Michaelis-Menten kinetics. It is >20-fold more active than the analogous enzyme from the African trypanosome Trypanosoma brucei. FMN is an essential cofactor for enzyme activity and binds to TcGAL non-covalently. In other flavoproteins, a histidine residue located within the N-terminal flavin-binding motif has been shown to be crucial for cofactor binding. Using site-directed mutagenesis, we show that the corresponding residue in TcGAL (Lys-55) is not essential for this interaction. In contrast, we find that histidine and tryptophan residues (His-447 and Trp-448), localized within a C-terminal motif (HWXK) that is a feature of ascorbate-synthesizing enzymes, are necessary for the FMN association. The conserved lysine residue within this motif (Lys-450) is not required for cofactor binding, but its replacement by glycine renders the protein completely inactive.
Collapse
Affiliation(s)
- Flora J. Logan
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Martin C. Taylor
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Shane R. Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Harparkash Kaur
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - John M. Kelly
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Opperdoes FR, Coombs GH. Metabolism of Leishmania: proven and predicted. Trends Parasitol 2007; 23:149-58. [PMID: 17320480 DOI: 10.1016/j.pt.2007.02.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/04/2007] [Accepted: 02/09/2007] [Indexed: 11/16/2022]
Abstract
The complete analysis of the genomes of three major trypanosomatid parasites has facilitated comparison of the metabolic capabilities of each, as predicted from gene sequences. Not surprisingly, there are differences but is it possible to correlate these with the lives of the parasites themselves and make further predictions of the meaning and physiological importance of the apparently parasite-specific metabolism? In this article, we relate gene predictions with the results from experimental studies. We also speculate on the key metabolic adaptations of Leishmania and reasons why it differs from Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Fred R Opperdoes
- Research Unit for Tropical Diseases and Laboratory of Biochemistry, Christian de Duve Institute of Cellular Pathology and Catholic University of Louvain, Avenue Hippocrate 74-75, B-1200 Brussels, Belgium
| | | |
Collapse
|
45
|
MacLeod ET, Maudlin I, Darby AC, Welburn SC. Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology 2007; 134:827-31. [PMID: 17306056 DOI: 10.1017/s0031182007002247] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Efficient, cyclical transmission of trypanosomes through tsetse flies is central to maintenance of human sleeping sickness and nagana across sub-Saharan Africa. Infection rates in tsetse are normally very low as most parasites ingested with the fly bloodmeal die in the fly gut, displaying the characteristics of apoptotic cells. Here we show that a range of antioxidants (glutathione, cysteine, N-acetyl-cysteine, ascorbic acid and uric acid), when added to the insect bloodmeal, can dramatically inhibit cell death of Trypanosoma brucei brucei in tsetse. Both L- and D-cysteine invoked similar effects suggesting that inhibition of trypanosome death is not dependent on protein synthesis. The present work suggests that antioxidants reduce the midgut environment protecting trypanosomes from cell death induced by reactive oxygen species.
Collapse
Affiliation(s)
- E T MacLeod
- Centre for Infectious Diseases, College of Medicine and Veterinary Medicine, The University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | | | | | | |
Collapse
|
46
|
Prathalingham SR, Wilkinson SR, Horn D, Kelly JM. Deletion of the Trypanosoma brucei superoxide dismutase gene sodb1 increases sensitivity to nifurtimox and benznidazole. Antimicrob Agents Chemother 2006; 51:755-8. [PMID: 17145786 PMCID: PMC1797777 DOI: 10.1128/aac.01360-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It has been more than 25 years since it was first reported that nifurtimox and benznidazole promote superoxide production in trypanosomes. However, there has been no direct evidence of an association between the drug-induced free radicals and trypanocidal activity. Here, we identify a superoxide dismutase required to protect Trypanosoma brucei from drug-generated superoxide.
Collapse
Affiliation(s)
- S Radhika Prathalingham
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | |
Collapse
|
47
|
Wolucka BA, Communi D. Mycobacterium tuberculosispossesses a functional enzyme for the synthesis of vitamin C,L-gulono-1,4-lactone dehydrogenase. FEBS J 2006; 273:4435-45. [PMID: 16956367 DOI: 10.1111/j.1742-4658.2006.05443.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals is catalyzed by L-gulono-1,4-lactone oxidoreductases, which use both L-gulono-1,4-lactone and L-galactono-1,4-lactone as substrates. L-gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans and guinea pigs, which are also highly susceptible to tuberculosis. A blast search using the rat L-gulono-1,4-lactone oxidase sequence revealed the presence of closely related orthologs in a limited number of bacterial species, including several pathogens of human lungs, such as Mycobacterium tuberculosis, Pseudomonas aeruginosa, Burkholderia cepacia and Bacillus anthracis. The genome of M. tuberculosis, the etiologic agent of tuberculosis, encodes a protein (Rv1771) that shows 32% identity with the rat L-gulono-1,4-lactone oxidase protein. The Rv1771 gene was cloned and expressed in Escherichia coli, and the corresponding protein was affinity-purified and characterized. The FAD-binding motif-containing Rv1771 protein is a metalloenzyme that oxidizes L-gulono-1,4-lactone (Km 5.5 mm) but not L-galactono-1,4-lactone. The enzyme has a dehydrogenase activity and can use both cytochrome c (Km 4.7 microm) and phenazine methosulfate as exogenous electron acceptors. Molecular oxygen does not serve as a substrate for the Rv1771 protein. Dehydrogenase activity was measured in cellular extracts of a Mycobacterium bovis BCG strain. In conclusion, M. tuberculosis produces a novel, highly specific L-gulono-1,4-lactone dehydrogenase (Rv1771) and has the capacity to synthesize vitamin C.
Collapse
Affiliation(s)
- Beata A Wolucka
- Laboratory of Mycobacterial Biochemistry, Pasteur Institute of Brussels, Institute of Public Health, Belgium.
| | | |
Collapse
|