1
|
McCluskey G, Heestermans M, Peyron I, Pascal E, Clavel M, Bun E, Bocquet E, Reperant C, Susen S, Christophe OD, Denis CV, Lenting PJ, Casari C. A fully humanized von Willebrand disease type 1 mouse model as unique platform to investigate novel therapeutic options. Haematologica 2025; 110:923-937. [PMID: 39605214 PMCID: PMC11959242 DOI: 10.3324/haematol.2024.286076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Patients suffering from von Willebrand disease (VWD) have reduced quality-of-life despite current treatment options. Moreover, innovation in VWD therapeutic strategies has essentially stalled, and available treatments have remained unchanged for decades. Therefore, there is an unmet need to develop new therapeutic strategies for VWD patients, especially for the large portion of those with VWD-type 1. Due to species differences, the available VWD murine models are not suitable for preclinical studies, making it difficult to test new therapeutic approaches in vivo. With this in mind, we generated mice selectively expressing human von Willebrand factor (VWF) and human GPIbα. Because this fully humanized model was found to express low VWF (12%) and factor VIII (FVIII) (40%) levels with normal multimer profile and activity/antigen ratio, we repositioned it as a VWD-type 1 model (hVWD1 mice). In depth characterization of this model confirmed VWD-type 1 features with a decrease in platelet adhesion and thrombus formation in vitro. In vivo, a moderate bleeding phenotype was observed which was corrected upon the administration of recombinant-VWF or upon histamine-induced release of endothelial VWF. In search of new therapeutic options for VWD, we designed a bispecific single-domain antibody that bridges VWF to albumin (KB-V13A12). Remarkably, a single subcutaneous administration of KB-V13A12 coincided with a sustained 2-fold increase in VWF antigen levels for up to ten days and normalized hemostasis in a tail-clip model in hVWD1 mice. Here, we describe the development of our unique humanized mouse model for VWD-type 1 and a promising new therapeutic that corrected hemostasis in these mice.
Collapse
Affiliation(s)
- Genevieve McCluskey
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | - Marco Heestermans
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | - Ivan Peyron
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | | | | | - Eric Bun
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | - Emilie Bocquet
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | - Christelle Reperant
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | - Sophie Susen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille
| | - Olivier D Christophe
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | - Cecile V Denis
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | - Peter J Lenting
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre
| | - Caterina Casari
- Universite Paris-Saclay, INSERM, Hemostase inflammation thrombose HITh U1176, 94276, Le Kremlin-Bicetre.
| |
Collapse
|
2
|
Huang L, Shao B. New insights of glycoprotein Ib-IX-V complex organization and glycoprotein Ibα in platelet biogenesis. Curr Opin Hematol 2024; 31:294-301. [PMID: 39046849 DOI: 10.1097/moh.0000000000000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW Glycoprotein (GP) Ib-IX-V, a platelet surface receptor that plays a critical role in platelet adhesion and platelet-mediated immune responses, consists of GPIbα, GPIbβ, GPIX, and GPV in a stoichiometry of 2 : 4 : 2 : 1. Forming a complex is essential for GPIb-IX-V to function. GPIb-IX-V also plays an important role in platelet biogenesis by regulating the number and size of platelets. Yet how GPIb-IX-V regulates platelet biogenesis remains elusive. This review will summarize recent findings in the complex organization of GPIb-IX-V and its role in platelet biogenesis. RECENT FINDINGS Proteomics studies suggest that GPIbα, GPIbβ, GPIX, and GPV form the complex in a ratio of 1 : 2 : 1 : 1, which is supported by analysis of molecular weight of GPIb-IX-V and GPIb-IX and the structure of entire GPIb-IX-V. To activate platelets, GPIbα requires binding of CLEC-2 to trigger signals. Furthermore, disrupting the GPIbα anchorage to filamin A causes defects in platelet budding away from proplatelets leading to giant platelets and a low platelet count. SUMMARY New studies challenge the traditional model for the organization of GPIb-IX-V as a complex and indicate the role of GPIb-IX-V in platelet production. Those studies provide insights for GPIb-IX-V in the regulation of platelet activation and platelet biogenesis.
Collapse
Affiliation(s)
- Lulu Huang
- Laboratory of Vascular Inflammation and Thrombosis Research, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | | |
Collapse
|
3
|
Sakamoto A, Uchiyama T, Futatsugi R, Ohara O, Iguchi A, Kaname T, Hikosaka M, Ono H, Kunishima S, Ito S, Ishiguro A. Platelet changes and bleeding symptoms in children, adolescents, and adults with 22q11.2 deletion syndrome. Pediatr Blood Cancer 2024; 71:e31292. [PMID: 39228058 DOI: 10.1002/pbc.31292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND The deletion region of 22q11.2 deletion syndrome (22q11.2DS) contains a gene encoding glycoprotein Ibβ (GPIbβ), which is required to express the GPIb/IX/V complex on the platelet surface. Therefore, patients with 22q11.2DS may have congenital platelet disorders. However, information is limited on platelets and bleeding symptoms. In this study, we investigated clinical information, including bleeding symptoms, platelet counts, and GPIb expression levels in children and adolescents/adults with 22q11.2DS. PROCEDURE Thirty-two patients with 22q11.2DS were enrolled in a prospective cohort study between 2022 and 2023 at outpatient clinics within our institute. RESULTS The median platelet counts in adolescents/adults with 22q11.2DS were significantly lower than those in children (p < .0001). A gradual decrease was found along with increasing age (p = .0006). Values of median GPIb expression on platelet surfaces (66% in children and 70% in adolescents/adults) were significantly lower than those in healthy controls (p < .0001 and p = .0002). Bleeding symptoms included surgery-related bleeding (52%), purpura (31%), and epistaxis (22%); most of them were minor. The median International Society on Thrombosis and Hemostasis bleeding assessment tool score was not significantly different between children and adolescents/adults (p = .2311). CONCLUSION Although there was an age-related decrease in platelet count and a disease-related decrease in GPIb expression, no difference in bleeding symptoms was found between children and adolescents/adults. 22q11.2DS overall had minor bleeding symptoms in daily life, and the disease had little effect on spontaneous bleeding. However, some patients had major bleeding events; further accumulation of data on hemostasis during surgery and trauma is required.
Collapse
Affiliation(s)
- Atsushi Sakamoto
- Division of Hematology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Center for Postgraduate Education and Training, NCCHD, Tokyo, Japan
| | | | - Ryohei Futatsugi
- Center for Postgraduate Education and Training, NCCHD, Tokyo, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Akihiro Iguchi
- Division of Hematology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | | | | | | | - Shinji Kunishima
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Gifu, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Akira Ishiguro
- Division of Hematology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Center for Postgraduate Education and Training, NCCHD, Tokyo, Japan
| |
Collapse
|
4
|
Cao C, Yang Q, Xia X, Chen Z, Liu P, Wu X, Hu H, Ding Z, Li X. WY-14643, a novel antiplatelet and antithrombotic agent targeting the GPIbα receptor. Thromb Res 2024; 238:41-51. [PMID: 38669962 DOI: 10.1016/j.thromres.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND AND PURPOSE Hypolipidemia and platelet activation play key roles in atherosclerotic diseases. Pirinixic acid (WY-14643) was originally developed as a lipid-lowering drug. Here we focused on its antiplatelet and antithrombotic abilities and the underlying mechanism. EXPERIMENTAL APPROACH The effects of WY-14643 on platelet aggregation was measured using a lumi-aggregometer. Clot retraction and spreading on fibrinogen were also assayed. PPARα-/- platelets were used to identify the target of WY-14643. The interaction between WY-14643 and glycoprotein Ibα (GPIbα) was detected using cellular thermal shift assay (CETSA), surface plasmon resonance (SPR) spectroscopy and molecular docking. GPIbα downstream signaling was examined by Western blot. The antithrombotic effect was investigated using mouse mesenteric arteriole thrombosis model. Mouse tail bleeding model was used to study its effect on bleeding side effects. KEY RESULTS WY-14643 concentration-dependently inhibits human washed platelet aggregation, clot retraction, and spreading. Significantly, WY-14643 inhibits thrombin-induced activation of human washed platelets with an IC50 of 7.026 μM. The antiplatelet effect of WY-14643 is mainly dependent of GPIbα. CESTA, SPR and molecular docking results indicate that WY-14643 directly interacts with GPIbα and acts as a GPIbα antagonist. WY-14643 also inhibits phosphorylation of PLCγ2, Akt, p38, and Erk1/2 induced by thrombin. Noteworthily, 20 mg/kg oral administration of WY-14643 inhibits FeCl3-induced thrombosis of mesenteric arteries in mice similarly to clopidogrel without increasing bleeding. CONCLUSION AND IMPLICATIONS WY-14643 is not only a PPARα agonist with lipid-lowering effect, but also an antiplatelet agent as a GPIbα antagonist. It may have more significant therapeutic advantages than current antiplatelet agents for the treatment of atherosclerotic thrombosis, which have lipid-lowering effects without bleeding side effects.
Collapse
Affiliation(s)
- Chen Cao
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qingyuan Yang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaowen Wu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hu Hu
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Zhongren Ding
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
5
|
Ellis ML, Terreaux A, Alwis I, Smythe R, Perdomo J, Eckly A, Cranmer SL, Passam FH, Maclean J, Schoenwaelder SM, Ruggeri ZM, Lanza F, Taoudi S, Yuan Y, Jackson SP. GPIbα-filamin A interaction regulates megakaryocyte localization and budding during platelet biogenesis. Blood 2024; 143:342-356. [PMID: 37922495 DOI: 10.1182/blood.2023021292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.
Collapse
Affiliation(s)
- Marc L Ellis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Antoine Terreaux
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Imala Alwis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Rhyll Smythe
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Anita Eckly
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Susan L Cranmer
- Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - Freda H Passam
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Maclean
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Simone M Schoenwaelder
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| | - Francois Lanza
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Samir Taoudi
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Yuping Yuan
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Shaun P Jackson
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
6
|
Li J, Karakas D, Xue F, Chen Y, Zhu G, Yucel YH, MacParland SA, Zhang H, Semple JW, Freedman J, Shi Q, Ni H. Desialylated Platelet Clearance in the Liver is a Novel Mechanism of Systemic Immunosuppression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0236. [PMID: 37808178 PMCID: PMC10551749 DOI: 10.34133/research.0236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovered, unexpectedly, desialylated platelets (dPLTs) down-regulated immune responses against both platelet-associated and -independent antigen challenges. Utilizing multispectral photoacoustic tomography, we tracked dPLT trafficking to gut vasculature and an exclusive Kupffer cell-mediated dPLT clearance in the liver, a process that we identified to be synergistically dependent on platelet glycoprotein Ibα and hepatic Ashwell-Morell receptor. Mechanistically, Kupffer cell clearance of dPLT potentiated a systemic immunosuppressive state with increased anti-inflammatory cytokines and circulating CD4+ regulatory T cells, abolishable by Kupffer cell depletion. Last, in a clinically relevant model of hemophilia A, presensitization with dPLT attenuated anti-factor VIII antibody production after factor VIII ( infusion. As platelet desialylation commonly occurs in daily-aged and activated platelets, these findings open new avenues toward understanding immune homeostasis and potentiate the therapeutic potential of dPLT and engineered dPLT transfusions in controlling autoimmune and alloimmune diseases.
Collapse
Affiliation(s)
- June Li
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Feng Xue
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yingyu Chen
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Yeni H. Yucel
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Departments of Ophthalmology and Vision Sciences Medicine,
University of Toronto, Toronto, ON, Canada
- Faculty of Engineering and Architectural Science,
Ryerson University, Toronto, ON, Canada
| | - Sonya A. MacParland
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Multi-Organ Transplant Program,
Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology,
University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Critical Care Medicine, Department of Anesthesiology and Pain,
University of Toronto, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - John W. Semple
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Pharmacology,
University of Toronto, Toronto, ON, Canada
- Division of Hematology and Transfusion Medicine,
Lund University, Lund, Sweden
- Clinical Immunology and Transfusion Medicine,
Office of Medical Services, Region Skåne, Lund, Sweden
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| | - Qizhen Shi
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Wisconsin, Wauwatosa, WI, USA
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI, USA
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Martinez-Navajas G, Ceron-Hernandez J, Simon I, Lupiañez P, Diaz-McLynn S, Perales S, Modlich U, Guerrero JA, Martin F, Sevivas T, Lozano ML, Rivera J, Ramos-Mejia V, Tersteeg C, Real PJ. Lentiviral gene therapy reverts GPIX expression and phenotype in Bernard-Soulier syndrome type C. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:75-92. [PMID: 37416759 PMCID: PMC10320622 DOI: 10.1016/j.omtn.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023]
Abstract
Bernard-Soulier syndrome (BSS) is a rare congenital disease characterized by macrothrombocytopenia and frequent bleeding. It is caused by pathogenic variants in three genes (GP1BA, GP1BB, or GP9) that encode for the GPIbα, GPIbβ, and GPIX subunits of the GPIb-V-IX complex, the main platelet surface receptor for von Willebrand factor, being essential for platelet adhesion and aggregation. According to the affected gene, we distinguish BSS type A1 (GP1BA), type B (GP1BB), or type C (GP9). Pathogenic variants in these genes cause absent, incomplete, or dysfunctional GPIb-V-IX receptor and, consequently, a hemorrhagic phenotype. Using gene-editing tools, we generated knockout (KO) human cellular models that helped us to better understand GPIb-V-IX complex assembly. Furthermore, we developed novel lentiviral vectors capable of correcting GPIX expression, localization, and functionality in human GP9-KO megakaryoblastic cell lines. Generated GP9-KO induced pluripotent stem cells produced platelets that recapitulated the BSS phenotype: absence of GPIX on the membrane surface and large size. Importantly, gene therapy tools reverted both characteristics. Finally, hematopoietic stem cells from two unrelated BSS type C patients were transduced with the gene therapy vectors and differentiated to produce GPIX-expressing megakaryocytes and platelets with a reduced size. These results demonstrate the potential of lentiviral-based gene therapy to rescue BSS type C.
Collapse
Affiliation(s)
- Gonzalo Martinez-Navajas
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
- University of Granada, Department of Biochemistry and Molecular Biology I, Faculty of Science, Avenida Fuentenueva S/n, 18071 Granada, Spain
| | - Jorge Ceron-Hernandez
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
- University of Granada, Department of Biochemistry and Molecular Biology I, Faculty of Science, Avenida Fuentenueva S/n, 18071 Granada, Spain
| | - Iris Simon
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
- University of Granada, Department of Biochemistry and Molecular Biology I, Faculty of Science, Avenida Fuentenueva S/n, 18071 Granada, Spain
| | - Pablo Lupiañez
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
- University of Granada, Department of Biochemistry and Molecular Biology I, Faculty of Science, Avenida Fuentenueva S/n, 18071 Granada, Spain
| | - Sofia Diaz-McLynn
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
| | - Sonia Perales
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
- University of Granada, Department of Biochemistry and Molecular Biology I, Faculty of Science, Avenida Fuentenueva S/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Ute Modlich
- Department of Gene and Cell Therapy, Institute of Regenerative Medicine, University of Zürich, Wagistrasse 12, 8952 Schlieren-Zürich, Switzerland
| | - Jose A. Guerrero
- Department of Haematology, University of Cambridge, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Francisco Martin
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
- University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Avenida Ilustracion S/n, 18016 Granada, Spain
| | - Teresa Sevivas
- Serviço de Sangue, Medicina Transfusional e Imunohemoterapia Do Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria L. Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, U765 Murcia, Spain
| | - Jose Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, U765 Murcia, Spain
- Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC), Madrid, Spain
| | - Veronica Ramos-Mejia
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Pedro J. Real
- GENyO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, PTS, Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain
- University of Granada, Department of Biochemistry and Molecular Biology I, Faculty of Science, Avenida Fuentenueva S/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| |
Collapse
|
8
|
Platelet-Neutrophil Crosstalk in Thrombosis. Int J Mol Sci 2023; 24:ijms24021266. [PMID: 36674781 PMCID: PMC9861587 DOI: 10.3390/ijms24021266] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Platelets are essential for the formation of a haemostatic plug to prevent bleeding, while neutrophils are the guardians of our immune defences against invading pathogens. The interplay between platelets and innate immunity, and subsequent triggering of the activation of coagulation is part of the host system to prevent systemic spread of pathogen in the blood stream. Aberrant immunothrombosis and excessive inflammation can however, contribute to the thrombotic burden observed in many cardiovascular diseases. In this review, we highlight how platelets and neutrophils interact with each other and how their crosstalk is central to both arterial and venous thrombosis and in COVID-19. While targeting platelets and coagulation enables efficient antithrombotic treatments, they are often accompanied with a bleeding risk. We also discuss how novel approaches to reduce platelet-mediated recruitment of neutrophils could represent promising therapies to treat thrombosis without affecting haemostasis.
Collapse
|
9
|
Arce NA, Liu Y, Chen W, Zhang XF, Li R. Autoinhibitory module underlies species difference in shear activation of von Willebrand factor. J Thromb Haemost 2022; 20:2686-2696. [PMID: 36031939 PMCID: PMC9588639 DOI: 10.1111/jth.15837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Von Willebrand factor (VWF) is a multimeric plasma protein that bridges the gap between vessel injury and platelet capture at high shear rates. Under high shear or tension, VWF can become activated upon the unfolding of its autoinhibitory module (AIM). AIM unfolding exposes the A1 domain, allowing for binding to platelet glycoprotein (GP)Ibα to initiate primary hemostasis. The characteristics of the AIM and its inhibitory properties within mouse VWF are unknown. OBJECTIVES To determine and characterize the autoinhibitory properties of mouse VWF. METHODS Recombinant mouse VWF A1 fragments containing or lacking the flanking regions around the A1 domain were generated. We tested the ability of these fragments to bind to human or mouse GPIbα and platelets. We compared the unfolding of mouse AIM-A1 to human AIM-A1 by single-molecule force spectroscopy. RESULTS Recombinant mouse AIM-A1 binds with higher affinity to GPIbα than its human counterpart. Recombinant mouse proteins lacking part of the AIM show increased binding to GPIbα. Activated A1 fragments lacking the AIM can effectively agglutinate platelets across the species barrier. Using single-molecule force spectroscopy, we determined that the mouse AIM unfolds under forces similar to the human AIM. Additionally, the human AIM paired with mouse A1 largely recapitulates the behavior of human AIM-A1. CONCLUSIONS Our results suggest that the regulation of VWF-GPIbα binding has been specifically tuned to work optimally in different rheological architectures. Differences in the AIM sequence may contribute to the difference in VWF shear response between human and mice.
Collapse
Affiliation(s)
- Nicholas A. Arce
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi Liu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - X. Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Li R. Recent advances on GPIb-IX-V complex. Platelets 2022; 33:809-810. [PMID: 35543611 PMCID: PMC9378636 DOI: 10.1080/09537104.2022.2075146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Characterization of zebrafish gp1ba mutant and modelling Bernard Soulier syndrome. Blood Coagul Fibrinolysis 2022; 33:272-279. [PMID: 35802508 DOI: 10.1097/mbc.0000000000001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study is to model classical Bernard Soulier Syndrome in the zebrafish by targeting Gp1ba. We obtained gp1ba mutant embryos from Zebrafish International Resource Center and grew them to adulthood. The tail clips from these fish were used to prepare DNA and sequenced to identify heterozygotes. They were then bred to obtain homozygotes. The mutation was confirmed by DNA sequencing as a termination codon UAA in place of AAA codon at position 886 in the gp1ba transcript. Thus, at the Pro-295, the Gp1ba protein could be terminated. The blood from gp1ba homozygous and heterozygous mutants showed decreased ristocetin-mediated agglutination in the whole blood agglutination assay. The gp1ba heterozygous and homozygous larvae were subjected to a laser-assisted arterial thrombosis assay, and the results showed the prolonged occlusion in the caudal artery. These results suggested that the gp1ba mutant had a bleeding phenotype. The blood smears from the adult gp1ba, heterozygous and homozygous mutants, showed macrothrombocytes, similar to the human GP1BA deficiency that showed giant platelets. The bleeding assay on these heterozygous and homozygous mutants showed greater bleeding than wildtype, confirming the above findings. Taken together, the characterization of gp1ba zebrafish mutant suggested an autosomal dominant mode of inheritance. The zebrafish gp1ba mutant models classical Bernard Soulier Syndrome and could be used for reversing this phenotype to identify novel factors by the genome-wide piggyback knockdown method.
Collapse
|
12
|
Strasenburg W, Jóźwicki J, Durślewicz J, Kuffel B, Kulczyk MP, Kowalewski A, Grzanka D, Drewa T, Adamowicz J. Tumor Cell-Induced Platelet Aggregation as an Emerging Therapeutic Target for Cancer Therapy. Front Oncol 2022; 12:909767. [PMID: 35814405 PMCID: PMC9259835 DOI: 10.3389/fonc.2022.909767] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells have the ability to induce platelet activation and aggregation. This has been documented to be involved in tumor progression in several types of cancers, such as lung, colon, breast, pancreatic, ovarian, and brain. During the process, platelets protect circulating tumor cells from the deleterious effects of shear forces, shield tumor cells from the immune system, and provide growth factors, facilitating metastatic spread and tumor growth at the original site as well as at the site of metastasis. Herein, we present a wider view on the induction of platelet aggregation by specific factors primarily developed by cancer, including coagulation factors, adhesion receptors, growth factors, cysteine proteases, matrix metalloproteinases, glycoproteins, soluble mediators, and selectins. These factors may be presented on the surface of tumor cells as well as in their microenvironment, and some may trigger more than just one simple receptor-ligand mechanism. For a better understanding, we briefly discuss the physiological role of the factors in the platelet activation process, and subsequently, we provide scientific evidence and discuss their potential role in the progression of specific cancers. Targeting tumor cell-induced platelet aggregation (TCIPA) by antiplatelet drugs may open ways to develop new treatment modalities. On the one hand, it may affect patients' prognosis by enhancing known therapies in advanced-stage tumors. On the other hand, the use of drugs that are mostly easily accessible and widely used in general practice may be an opportunity to propose an unparalleled antitumor prophylaxis. In this review, we present the recent discoveries of mechanisms by which cancer cells activate platelets, and discuss new platelet-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Wiktoria Strasenburg
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Błażej Kuffel
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Martyna Parol Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Adam Kowalewski
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Drewa
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Jan Adamowicz
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
13
|
Abstract
The utility of mouse models to dissect the molecular basis of hemostasis and thrombosis is now well established. The anucleate properties of circulating blood platelet and their specialized release from mature megakaryocytes makes the use of in vivo models all the more informative and powerful. Indeed, they are powerful but there do exist limitations. Here, we review the contributions of mouse models to the pathogenesis of the Bernard-Soulier syndrome, their use in platelet-specific gene expression, the recent development of mice expressing both human GPIb-IX and human von Willebrand factor (VWF), and finally the use of GPIb-IX mouse models to examine the impact of platelet biology beyond clotting. The humanization of the receptor and ligand axis is likely to be a major advancement in the characterization of therapeutics in the complex pathogenesis that drives thrombosis. When appropriate, we highlight some limitations of each mouse model, but this is not to minimize the contributions these models to the field. Rather, the limitations are meant to provide context for any direct application to the important mechanisms supporting human primary hemostasis and thrombosis.
Collapse
Affiliation(s)
- Jerry Ware
- University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
14
|
Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11:19. [PMID: 35366951 PMCID: PMC8976409 DOI: 10.1186/s40164-022-00273-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet receptor that mediates the initial interaction with subendothelial von Willebrand factor (VWF) causing platelet arrest at sites of vascular injury even under conditions of high shear. GPIb-IX dysfunction or deficiency is the reason for the rare but severe Bernard-Soulier syndrome (BSS), a congenital bleeding disorder. Although knowledge on GPIb-IX structure, its basic functions, ligands, and intracellular signaling cascades have been well established, several advances in GPIb-IX biology have been made in the recent years. Thus, two mechanosensitive domains and a trigger sequence in GPIb were characterized and its role as a thrombin receptor was deciphered. Furthermore, it became clear that GPIb-IX is involved in the regulation of platelet production, clearance and thrombopoietin secretion. GPIb is deemed to contribute to liver cancer development and metastasis. This review recapitulates these novel findings highlighting GPIb-IX in its multiple functions as a key for immune regulation, host defense, and liver cancer development.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany. .,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| |
Collapse
|
15
|
Nording H, Sauter M, Lin C, Steubing R, Geisler S, Sun Y, Niethammer J, Emschermann F, Wang Y, Zieger B, Nieswandt B, Kleinschnitz C, Simon DI, Langer HF. Activated Platelets Upregulate β 2 Integrin Mac-1 (CD11b/CD18) on Dendritic Cells, Which Mediates Heterotypic Cell-Cell Interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1729-1741. [PMID: 35277420 DOI: 10.4049/jimmunol.2100557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Recent evidence suggests interaction of platelets with dendritic cells (DCs), while the molecular mechanisms mediating this heterotypic cell cross-talk are largely unknown. We evaluated the role of integrin Mac-1 (αMβ2, CD11b/CD18) on DCs as a counterreceptor for platelet glycoprotein (GP) Ibα. In a dynamic coincubation model, we observed interaction of human platelets with monocyte-derived DCs, but also that platelet activation induced a sharp increase in heterotypic cell binding. Inhibition of CD11b or GPIbα led to significant reduction of DC adhesion to platelets in vitro independent of GPIIbIIIa, which we confirmed using platelets from Glanzmann thrombasthenia patients and transgenic mouse lines on C57BL/6 background (GPIbα-/-, IL4R-GPIbα-tg, and muMac1 mice). In vivo, inhibition or genetic deletion of CD11b and GPIbα induced a significant reduction of platelet-mediated DC adhesion to the injured arterial wall. Interestingly, only intravascular antiCD11b inhibited DC recruitment, suggesting a dynamic DC-platelet interaction. Indeed, we could show that activated platelets induced CD11b upregulation on Mg2+-preactivated DCs, which was related to protein kinase B (Akt) and dependent on P-selectin and P-selectin glycoprotein ligand 1. Importantly, specific pharmacological targeting of the GPIbα-Mac-1 interaction site blocked DC-platelet interaction in vitro and in vivo. These results demonstrate that cross-talk of platelets with DCs is mediated by GPIbα and Mac-1, which is upregulated on DCs by activated platelets in a P-selectin glycoprotein ligand 1-dependent manner.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,German Research Centre for Cardiovascular Research, Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Chaolan Lin
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Rebecca Steubing
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Sven Geisler
- Cell Analysis Core Facility, University of Lübeck, Lübeck, Germany
| | - Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Joel Niethammer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Fréderic Emschermann
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany
| | - Yunmei Wang
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany; and
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Daniel I Simon
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH.,University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany; .,German Research Centre for Cardiovascular Research, Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Constantinescu-Bercu A, Wang YA, Woollard KJ, Mangin P, Vanhoorelbeke K, Crawley JTB, Salles-Crawley II. The GPIbα intracellular tail - role in transducing VWF- and collagen/GPVI-mediated signaling. Haematologica 2022; 107:933-946. [PMID: 34134470 PMCID: PMC8968903 DOI: 10.3324/haematol.2020.278242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/09/2022] Open
Abstract
The GPIbT-VWF A1 domain interaction is essential for platelet tethering under high shear. Synergy between GPIbα and GPVI signaling machineries has been suggested previously, however its molecular mechanism remains unclear. We generated a novel GPIbα transgenic mouse (GpIbαΔsig/Δsig) by CRISPR-Cas9 technology to delete the last 24 residues of the GPIbα intracellular tail that harbors the 14-3-3 and phosphoinositide-3 kinase binding sites. GPIbαΔsig/Δsig platelets bound VWF normally under flow. However, they formed fewer filopodia on VWF/botrocetin in the presence of a oIIbI3 blocker, demonstrating that despite normal ligand binding, VWF-dependent signaling is diminished. Activation of GpIbαΔsig/Δsig platelets with ADP and thrombin was normal, but GpIbαΔsig/Δsig platelets stimulated with collagen-related-peptide (CRP) exhibited markedly decreased P-selectin exposure and eIIbI3 activation, suggesting a role for the GpIbaaintracellular tail in GPVI-mediated signaling. Consistent with this, while haemostasis was normal in GPIbαΔsig/Δsig mice, diminished tyrosine-phosphorylation, (particularly pSYK) was detected in CRP-stimulated GpIbαΔsig/Δsig platelets as well as reduced platelet spreading on CRP. Platelet responses to rhodocytin were also affected in GpIbαΔsig/Δsig platelets but to a lesser extent than those with CRP. GpIbαΔsig/Δsig platelets formed smaller aggregates than wild-type platelets on collagen-coated microchannels at low, medium and high shear. In response to both VWF and collagen binding, flow assays performed with plasma-free blood or in the presence of bIIbI3- or GPVI-blockers suggested reduced bIIbI3 activation contributes to the phenotype of the GpIbαΔsig/Δsig platelets. Together, these results reveal a new role for the intracellular tail of GPIbiiin transducing both VWF-GPIbGGand collagen-GPVI signaling events in platelets.
Collapse
Affiliation(s)
| | - Yuxiao A Wang
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Pierre Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | | | - James T B Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
17
|
Nakamura T, Morodomi Y, Kanaji S, Okamura T, Nagafuji K, Kanaji T. Detection of anti-GPIbα autoantibodies in a case of immune thrombocytopenia following COVID-19 vaccination. Thromb Res 2022; 209:80-83. [PMID: 34894532 PMCID: PMC8648379 DOI: 10.1016/j.thromres.2021.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Takayuki Nakamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yosuke Morodomi
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Sachiko Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Takashi Okamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Center for Hematology and Oncology, St. Mary's Hospital, Kurume, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Taisuke Kanaji
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, United States of America.
| |
Collapse
|
18
|
Farley A, Lloyd S, Dayton M, Biben C, Stonehouse O, Taoudi S. Severe thrombocytopenia is sufficient for fetal and neonatal intracerebral hemorrhage to occur. Blood 2021; 138:885-897. [PMID: 34189583 DOI: 10.1182/blood.2020010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Intracerebral hemorrhage (ICH) has a devastating impact on the neonatal population. Whether thrombocytopenia is sufficient to cause ICH in neonates is still being debated. In this study, we comprehensively investigated the consequences of severe thrombocytopenia on the integrity of the cerebral vasculature by using 2 orthogonal approaches: by studying embryogenesis in the Nfe2-/- mouse line and by using biologics (anti-GP1Bα antibodies) to induce severe thrombocytopenia at defined times during development. By using a mouse model, we acquired data demonstrating that platelets are required throughout fetal development and into neonatal life for maintaining the integrity of the cerebral vasculature to prevent hemorrhage and that the location of cerebral hemorrhage is dependent on when thrombocytopenia occurs during development. Importantly, this study demonstrates that fetal and neonatal thrombocytopenia-associated ICH occurs within regions of the brain which, in humans, could lead to neurologic damage.
Collapse
Affiliation(s)
- Alison Farley
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Lloyd
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
| | - Merle Dayton
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Olivia Stonehouse
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Samir Taoudi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Liu M, Wang G, Xu R, Shen C, Ni H, Lai R. Soy Isoflavones Inhibit Both GPIb-IX Signaling and αIIbβ3 Outside-In Signaling via 14-3-3ζ in Platelet. Molecules 2021; 26:4911. [PMID: 34443497 PMCID: PMC8399232 DOI: 10.3390/molecules26164911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
Soy diet is thought to help prevent cardiovascular diseases in humans. Isoflavone, which is abundant in soybean and other legumes, has been reported to possess antiplatelet activity and potential antithrombotic effect. Our study aims to elucidate the potential target of soy isoflavone in platelet. The anti-thrombosis formation effect of genistein and daidzein was evaluated in ex vivo perfusion chamber model under low (300 s-1) and high (1800 s-1) shear forces. The effect of genistein and daidzein on platelet aggregation and spreading was evaluated with platelets from both wildtype and GPIbα deficient mice. The interaction of these soy isoflavone with 14-3-3ζ was detected by surface plasmon resonance (SPR) and co-immunoprecipitation, and the effect of αIIbβ3-mediated outside-in signaling transduction was evaluated by western blot. We found both genistein and daidzein showed inhibitory effect on thrombosis formation in perfusion chamber, especially under high shear force (1800 s-1). These soy isoflavone interact with 14-3-3ζ and inhibited both GPIb-IX and αIIbβ3-mediated platelet aggregation, integrin-mediated platelet spreading and outside-in signaling transduction. Our findings indicate that 14-3-3ζ is a novel target of genistein and daidzein. 14-3-3ζ, an adaptor protein that regulates both GPIb-IX and αIIbβ3-mediated platelet activation is involved in soy isoflavone mediated platelet inhibition.
Collapse
Affiliation(s)
- Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
| | - Gan Wang
- Key Laboratory of Bioactive Peptides, Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650032, China; (G.W.); (R.X.)
| | - Runjia Xu
- Key Laboratory of Bioactive Peptides, Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650032, China; (G.W.); (R.X.)
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; (C.S.); (H.N.)
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; (C.S.); (H.N.)
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON M5G 2M1, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ren Lai
- Key Laboratory of Bioactive Peptides, Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650032, China; (G.W.); (R.X.)
| |
Collapse
|
20
|
Quach ME, Chen W, Wang Y, Deckmyn H, Lanza F, Nieswandt B, Li R. Differential regulation of the platelet GPIb-IX complex by anti-GPIbβ antibodies. J Thromb Haemost 2021; 19:2044-2055. [PMID: 33915031 PMCID: PMC8324530 DOI: 10.1111/jth.15359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelets' initial recognition of endothelial damage proceeds through the interaction between collagen, plasma von Willebrand factor (VWF), and the platelet glycoprotein (GP)Ib-IX complex (CD42). The GPIb-IX complex consists of one GPIbα, one GPIX, and two GPIbβ subunits. Once platelets are immobilized to the subendothelial matrix, shear generated by blood flow unfolds a membrane-proximal mechanosensory domain (MSD) in GPIbα, exposing a conserved trigger sequence and activating the receptor. Currently, GPIbα appears to solely facilitate ligand-induced activation because it contains both the MSD and the binding sites for all known ligands to GPIb-IX. Despite being positioned directly adjacent to the MSD, the roles of GPIbβ and GPIX in signal transduction remain murky. OBJECTIVES To characterize a novel rat monoclonal antibody 3G6 that binds GPIbβ. METHODS Effects of 3G6 on activation of GPIb-IX are characterized in platelets and Chinese hamster ovary cells expressing GPIb-IX (CHO-Ib-IX) and compared with those of an inhibitory anti-GPIbβ antibody, RAM.1. RESULTS Both RAM.1 and 3G6 bind to purified GPIbβ and GPIb-IX with high affinity. 3G6 potentiates GPIb-IX-associated filopodia formation in platelets or CHO-Ib-IX when they adhere VWF or antibodies against the ligand-binding domain (LBD) of GPIbα. Pretreatment with 3G6 also increased anti-LBD antibody-induced GPIb-IX activation. Conversely, RAM.1 inhibits nearly all GPIb-IX-related signaling in platelets and CHO-Ib-IX cells. CONCLUSIONS These data represent the first report of a positive modulator of GPIb-IX activation. The divergent modulatory effects of 3G6 and RAM.1, both targeting GPIbβ, strongly suggest that changes in the conformation of GPIbβ underlie outside-in activation via GPIb-IX.
Collapse
Affiliation(s)
- M. Edward Quach
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Francois Lanza
- Université de Strasbourg, INSERM, BPPS UMR-S1255, Strasbourg, France
| | - Bernhard Nieswandt
- Rudolf Virchow Center, Julius Maximilian University of Wurzburg, Würzburg, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
21
|
Mbiandjeu S, Balduini A, Malara A. Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases. Thromb Haemost 2021; 122:666-678. [PMID: 34218430 DOI: 10.1055/s-0041-1731717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.
Collapse
Affiliation(s)
- Serge Mbiandjeu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
22
|
von Willebrand factor variant D1472H has no effect in mice with humanized VWF-platelet interactions. Blood Adv 2021; 4:4065-4068. [PMID: 32870970 DOI: 10.1182/bloodadvances.2020002629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 01/06/2023] Open
Abstract
The von Willebrand factor ristocetin cofactor activity assay (VWF:RCo) is used for diagnosis of von Willebrand disease (VWD) because of its ability to evaluate VWF binding to platelets. VWF sequence variant p.D1472H is associated with lower VWF:RCo levels in the absence of associated bleeding symptoms, indicating the VWF:RCo may not be accurate for characterizing VWF function in individuals with this variant. Thus, this study aimed to determine the implications of the variant on VWF functioning in vivo. Mice were engineered with humanized wild-type (WT*) VWF A1/A2 and VWF with the p.D1472H (1472H) variant along with humanized platelet GPIbα and bred to homozygosity. VWF antigen and VWF binding to GPIbα were measured using enzyme-linked immunosorbent assay. Gel electrophoresis was used for VWF multimer analysis. Tail bleeding assays were performed at a 3-mm defined length. Normal VWF multimers were preserved in both WT* and 1472H mice. VWF expression was normal in the WT* and 1472H mice, and VWF binding to GPIbα did not statistically differ between the groups. Additionally, tail bleeding times were similar for WT* and 1472H mice. These results show the p.D1472H variant does not impair hemostasis in mice, and support the conclusion that p.D1472H is a normal variant in humans.
Collapse
|
23
|
Xu MX, Liu LP, Li YM, Zheng YW. The Opportunities and Challenges regarding Induced Platelets from Human Pluripotent Stem Cells. Stem Cells Int 2021; 2021:5588165. [PMID: 34054969 PMCID: PMC8112939 DOI: 10.1155/2021/5588165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
As a standard clinical treatment, platelet transfusion has been employed to prevent hemorrhage in patients with thrombocytopenia or platelet dysfunctions. Platelets also show therapeutic potential for aiding liver regeneration and bone healing and regeneration and for treating dermatological conditions. However, the supply of platelets rarely meets the rising clinical demand. Other issues, including short shelf life, strict storage temperature, and allogeneic immunity caused by frequent platelet transfusions, have become serious challenges that require the development of high-yielding alternative sources of platelets. Human pluripotent stem cells (hPSCs) are an unlimited substitution source for regenerative medicine, and patient-derived iPSCs can provide novel research models to explore the pathogenesis of some diseases. Many studies have focused on establishing and modifying protocols for generating functional induced platelets (iPlatelets) from hPSCs. To reach high efficiency production and eliminate the exogenous antigens, media supplements and matrix have been optimized. In addition, the introduction of some critical transgenes, such as c-MYC, BMI1, and BCL-XL, can also significantly increase hPSC-derived platelet production; however, this may pose some safety concerns. Furthermore, many novel culture systems have been developed to scale up the production of iPlatelets, including 2D flow systems, 3D rotary systems, and vertical reciprocal motion liquid culture bioreactors. The development of new gene-editing techniques, such as CRISPR/Cas9, can be used to solve allogeneic immunity of platelet transfusions by knocking out the expression of B2M. Additionally, the functions of iPlatelets were also evaluated from multiple aspects, including but not limited to morphology, structure, cytoskeletal organization, granule content, DNA content, and gene expression. Although the production and functions of iPlatelets are close to meeting clinical application requirements in both quantity and quality, there is still a long way to go for their large-scale production and clinical application. Here, we summarize the diverse methods of platelet production and update the progresses of iPlatelets. Furthermore, we highlight recent advances in our understanding of key transcription factors or molecules that determine the platelet differentiation direction.
Collapse
Affiliation(s)
- Meng-Xue Xu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki 305-8575, Japan
- Yokohama City University School of Medicine, Yokohama, Kanagawa 234-0006, Japan
| |
Collapse
|
24
|
Leatherdale A, Parker D, Tasneem S, Wang Y, Bihan D, Bonna A, Hamaia SW, Gross PL, Ni H, Doble BW, Lillicrap D, Farndale RW, Hayward CPM. Multimerin 1 supports platelet function in vivo and binds to specific GPAGPOGPX motifs in fibrillar collagens that enhance platelet adhesion. J Thromb Haemost 2021; 19:547-561. [PMID: 33179420 PMCID: PMC7898486 DOI: 10.1111/jth.15171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multimerin 1 (human: MMRN1, mouse: Mmrn1) is a homopolymeric, adhesive, platelet and endothelial protein that binds to von Willebrand factor and enhances platelet adhesion to fibrillar collagen ex vivo. OBJECTIVES To examine the impact of Mmrn1 deficiency on platelet adhesive function, and the molecular motifs in fibrillar collagen that bind MMRN1 to enhance platelet adhesion. METHODS Mmrn1-deficient mice were generated and assessed for altered platelet adhesive function. Collagen Toolkit peptides, and other triple-helical collagen peptides, were used to identify multimerin 1 binding motifs and their contribution to platelet adhesion. RESULTS MMRN1 bound to conserved GPAGPOGPX sequences in collagens I, II, and III (including GPAGPOGPI, GPAGPOGPV, and GPAGPOGPQ) that enhanced activated human platelet adhesion to collagen synergistically with other triple-helical collagen peptides (P < .05). Mmrn1-/- and Mmrn1+/- mice were viable and fertile, with complete and partial platelet Mmrn1 deficiency, respectively. Relative to wild-type mice, Mmrn1-/- and Mmrn1+/- mice did not have overt bleeding, increased median bleeding times, or increased wound blood loss (P ≥ .07); however, they both showed significantly impaired platelet adhesion and thrombus formation in the ferric chloride injury model (P ≤ .0003). Mmrn1-/- platelets had impaired adhesion to GPAGPOGPX peptides and fibrillar collagen (P ≤ .03) and formed smaller aggregates than wild-type platelets when captured onto collagen, triple-helical collagen mimetic peptides, von Willebrand factor, or fibrinogen (P ≤ .008), despite preserved, low shear, and high shear aggregation responses. CONCLUSIONS Multimerin 1 supports platelet adhesion and thrombus formation and binds to highly conserved, GPAGPOGPX motifs in fibrillar collagens that synergistically enhance platelet adhesion.
Collapse
Affiliation(s)
| | - D’Andra Parker
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Subia Tasneem
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Yiming Wang
- Laboratory Medicine and PathobiologyKeenan Research CentreLi Ka‐Shing Knowledge InstituteSt. Michael's HospitalUniversity of TorontoTorontoONCanada
- Canadian Blood Services Centre for InnovationOttawaONCanada
| | - Dominique Bihan
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
| | - Arkadiusz Bonna
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
- Present address:
CambCol Laboratories LtdElyUK
| | - Samir W. Hamaia
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
| | - Peter L. Gross
- Medicine, Thrombosis and Atherosclerosis Research InstituteMcMaster UniversityHamiltonONCanada
| | - Heyu Ni
- Laboratory Medicine and PathobiologyKeenan Research CentreLi Ka‐Shing Knowledge InstituteSt. Michael's HospitalUniversity of TorontoTorontoONCanada
- Canadian Blood Services Centre for InnovationOttawaONCanada
| | - Bradley W. Doble
- Biochemistry and Biomedical SciencesMcMaster Stem Cell and Cancer Research InstituteMcMaster UniversityHamiltonONCanada
| | - David Lillicrap
- Pathology and Molecular MedicineRichardson LaboratoryQueen’s UniversityKingstonONCanada
| | - Richard W. Farndale
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
- Present address:
CambCol Laboratories LtdElyUK
| | - Catherine P. M. Hayward
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
- Hamilton Regional Laboratory Medicine Program, and Department of MedicineMcMaster UniversityHamiltonONCanada
| |
Collapse
|
25
|
Wang Y, Chen W, Zhang W, Lee-Sundlov MM, Casari C, Berndt MC, Lanza F, Bergmeier W, Hoffmeister KM, Zhang XF, Li R. Desialylation of O-glycans on glycoprotein Ibα drives receptor signaling and platelet clearance. Haematologica 2021; 106:220-229. [PMID: 31974202 PMCID: PMC7776245 DOI: 10.3324/haematol.2019.240440] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
During infection neuraminidase desialylates platelets and induces their rapid clearance from circulation. The underlying molecular basis, particularly the role of platelet glycoprotein (GP)Ibα therein, is not clear. Utilizing genetically altered mice, we report that the extracellular domain of GPIbα, but neither von Willebrand factor nor ADAM17 (a disintegrin and metalloprotease 17), is required for platelet clearance induced by intravenous injection of neuraminidase. Lectin binding to platelet following neuraminidase injection over time revealed that the extent of desialylation of O-glycans correlates with the decrease of platelet count in mice. Injection of α2,3-neuraminidase reduces platelet counts in wild-type but not in transgenic mice expressing only a chimeric GPIbα that misses most of its extracellular domain. Neuraminidase treatment induces unfolding of the O-glycosylated mechanosensory domain in GPIbα as monitored by single-molecule force spectroscopy, increases the exposure of the ADAM17 shedding cleavage site in the mechanosensory domain on the platelet surface, and induces ligand-independent GPIb-IX signaling in human and murine platelets. These results suggest that desialylation of O-glycans of GPIbα induces unfolding of the mechanosensory domain, subsequent GPIb-IX signaling including amplified desialylation of N-glycans, and eventually rapid platelet clearance. This new molecular mechanism of GPIbα-facilitated clearance could potentially resolve many puzzling and seemingly contradicting observations associated with clearance of desialylated or hyposialylated platelet.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Wenchun Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Wei Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA
| | | | - Caterina Casari
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, NC
| | | | - Francois Lanza
- Université de Strasbourg, EFS-Alsace, Strasbourg, France
| | | | | | - X Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA
| | - Renhao Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
26
|
Quach ME, Li R. Structure-function of platelet glycoprotein Ib-IX. J Thromb Haemost 2020; 18:3131-3141. [PMID: 32735697 PMCID: PMC7854888 DOI: 10.1111/jth.15035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
The glycoprotein (GP)Ib-IX receptor complex plays a critical role in platelet physiology and pathology. Its interaction with von Willebrand factor (VWF) on the subendothelial matrix instigates platelet arrest at the site of vascular injury and is vital to primary hemostasis. Its reception to other ligands and counter-receptors in the bloodstream also contribute to various processes of platelet biology that are still being discovered. While its basic composition and its link to congenital bleeding disorders were well documented and firmly established more than 25 years ago, recent years have witnessed critical advances in the organization, dynamics, activation, regulation, and functions of the GPIb-IX complex. This review summarizes important findings and identifies questions that remain about this unique platelet mechanoreceptor complex.
Collapse
Affiliation(s)
- M Edward Quach
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Hegde S, Wellendorf AM, Zheng Y, Cancelas JA. Antioxidant prevents clearance of hemostatically competent platelets after long-term cold storage. Transfusion 2020; 61:557-567. [PMID: 33247486 DOI: 10.1111/trf.16200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/27/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cold storage of platelets (PLTs) has the potential advantage of prolonging storage time while reducing posttransfusion infection given the decreased likelihood of bacterial outgrowth during storage and possibly beneficial effects in treating bleeding patients. However, cold storage reduces PLT survival through the induction of complex storage lesions, which are more accentuated when storage is prolonged. STUDY DESIGN AND METHODS Whole blood-derived PLT-rich plasma concentrates from seven PLT pools (n = 5 donors per pool). PLT additive solution was added (67%/33% plasma) and the product was split into 50-mL bags. Split units were stored in the presence or absence of 1 mM of N-acetylcysteine (NAC) under agitation for up to 14 days at room temperature or in the cold and were analyzed for PLT activation, fibrinogen-dependent spreading, microparticle formation, mitochondrial respiratory activity, reactive oxygen species (ROS) generation, as well as in vivo survival and bleeding time correction in immunodeficient mice. RESULTS Cold storage of PLTs for 7 days or longer induces significant PLT activation, cytoskeletal damage, impaired fibrinogen spreading, enhances mitochondrial metabolic decoupling and ROS generation, and increases macrophage-dependent phagocytosis and macrophage-independent clearance. Addition of NAC prevents PLT clearance and allows a correction of the prolonged bleeding time in thrombocytopenic, aspirin-treated, immunodeficient mice. CONCLUSIONS Long-term cold storage induces mitochondrial uncoupling and increased proton leak and ROS generation. The resulting ROS is a crucial contributor to the increased macrophage-dependent and -independent clearance of functional PLTs and can be prevented by the antioxidant NAC in a magnesium-containing additive solution.
Collapse
Affiliation(s)
- Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jose A Cancelas
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
28
|
Le Chapelain O, Jadoui S, Boulaftali Y, Ho-Tin-Noé B. The reversed passive Arthus reaction as a model for investigating the mechanisms of inflammation-associated hemostasis. Platelets 2020; 31:455-460. [PMID: 32105152 DOI: 10.1080/09537104.2020.1732325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, accumulating evidence has indicated that platelets continuously repair vascular damage at sites of inflammation and/or infection. Studies in mouse models of inflammation have highlighted the fact that the mechanisms underlying bleeding prevention by platelets in inflamed organs can substantially differ from those supporting primary hemostasis following tail tip transection or thrombus formation in models of thrombosis. As a consequence, exploration of the hemostatic function of platelets in inflammation, as well as assessment of the risk of inflammation-induced bleeding associated with a platelet deficit and/or the use of anti-thrombotic drugs, require the use of dedicated experimental models. In the present review, we present the pros and cons of the cutaneous reversed passive Arthus reaction, a model of inflammation which has been instrumental in studying how inflammation causes vascular injury and how platelets continuously intervene to repair it. The limitations and common issues encountered when working with mouse models of inflammation for investigating platelet functions in inflammation are also discussed.
Collapse
Affiliation(s)
| | - Soumaya Jadoui
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France
| | | | | |
Collapse
|
29
|
Abstract
Maternal alloimmunization to paternally inherited antigens on fetal/neonatal platelets can cause fetal/neonatal alloimmune thrombocytopenia (FNAIT) after antibody-mediated removal of platelets from the fetal circulation. The complications vary from mild bleeding symptoms to severe intracranial hemorrhage and subsequent neurological impairment or death. Studies on in vivo mechanisms are challenging to measure directly in pregnant women, rendering murine models as valuable and attractive alternatives, despite some critical differences between mice and men affecting the translational value. Here we present and discuss, the different murine models that substantially have increased our knowledge and understanding of FNAIT pathogenesis - as well as pre-clinical evaluation of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Trude Victoria Rasmussen
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Therese Ahlen
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
30
|
Birnie E, Claushuis TAM, Koh GCKW, Limmathurotsakul D, Day NPJ, Roelofs JJTH, Ware J, Hou B, de Vos AF, van der Poll T, van 't Veer C, Wiersinga WJ. Thrombocytopenia Impairs Host Defense Against Burkholderia pseudomallei (Melioidosis). J Infect Dis 2019; 219:648-659. [PMID: 30312422 PMCID: PMC6350952 DOI: 10.1093/infdis/jiy541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/26/2018] [Indexed: 01/10/2023] Open
Abstract
Background Infection with the gram-negative bacillus Burkholderia pseudomallei (melioidosis) is an important cause of pneumosepsis in Southeast Asia and has a mortality of up to 40%. We aimed to assess the role of platelets in the host response against B. pseudomallei infection. Methods Association between platelet counts and mortality was determined in 1160 patients with culture-proven melioidosis. Mice treated with (low- or high-dose) platelet-depleting antibody were inoculated intranasally with B. pseudomallei and killed. Additional studies using functional glycoprotein Ibα-deficient mice were conducted. Results Thrombocytopenia was present in 31% of patients at admission and predicted mortality in melioidosis patients even after adjustment for confounders. In our murine-melioidosis model, platelet counts decreased, and mice treated with a platelet-depleting antibody showed enhanced mortality and higher bacterial loads compared to mice with normal platelet counts. Low platelet counts had a modest impact on early-pulmonary neutrophil influx. Reminiscent of their role in hemostasis, platelet depletion impaired vascular integrity, resulting in early lung bleeding. Glycoprotein Ibα-deficient mice had reduced platelet counts during B. pseudomallei infection together with an impaired local host defense in the lung. Conclusions Thrombocytopenia predicts mortality in melioidosis patients and, during experimental melioidosis, platelets play a protective role in both innate immunity and vascular integrity.
Collapse
Affiliation(s)
- Emma Birnie
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, The Netherlands
| | - Theodora A M Claushuis
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, The Netherlands
| | - Gavin C K W Koh
- Department of Medicine, University of Cambridge, United Kingdom
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Nicholas P J Day
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jerry Ware
- University of Arkansas for Medical Sciences, Little Rock
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Beijing, China
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, The Netherlands.,Division of Infectious Diseases, Academic Medical Center, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, The Netherlands.,Division of Infectious Diseases, Academic Medical Center, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
31
|
Humanized GPIbα-von Willebrand factor interaction in the mouse. Blood Adv 2019; 2:2522-2532. [PMID: 30287479 DOI: 10.1182/bloodadvances.2018023507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/04/2018] [Indexed: 01/02/2023] Open
Abstract
The interaction of platelet glycoprotein Ibα (GPIbα) with von Willebrand factor (VWF) initiates hemostasis after vascular injury and also contributes to pathological thrombosis. GPIbα binding to the VWF A1 domain (VWFA1) is a target for antithrombotic intervention, but attempts to develop pharmacologic inhibitors have been hindered by the lack of animal models because of the species specificity of the interaction. To address this problem, we generated a knockin mouse with Vwf exon 28-encoding domains A1 and A2 replaced by the human homolog (VWFh28). VWFh28 mice (M1HA) were crossbred with a transgenic mouse strain expressing human GPIbα on platelets (mGPIbαnull;hGPIbαTg; H1MA) to generate a new strain (H1HA) with humanized GPIbα-VWFA1 binding. Plasma VWF levels in the latter 3 strains were similar to those of wild-type mice (M1MA). Compared with the strains that had homospecific GPIbα-VWF pairing (M1MA and H1HA), M1HA mice of those with heterospecific pairing had a markedly greater prolongation of tail bleeding time and attenuation of thrombogenesis after injury to the carotid artery than H1MA mice. Measurements of GPIbα-VWFA1 binding affinity by surface plasmon resonance agreed with the extent of observed functional defects. Ristocetin-induced platelet aggregation was similar in H1HA mouse and human platelet-rich plasma, and it was comparably inhibited by monoclonal antibody NMC-4, which is known to block human GPIbα-VWFA1 binding, which also inhibited FeCl3-induced mouse carotid artery thrombosis. Thus, the H1HA mouse strain is a fully humanized model of platelet GPIbα-VWFA1 binding that provides mechanistic and pharmacologic information relevant to human hemostatic and thrombotic disorders.
Collapse
|
32
|
Chen J, Schroeder JA, Luo X, Montgomery RR, Shi Q. The impact of GPIbα on platelet-targeted FVIII gene therapy in hemophilia A mice with pre-existing anti-FVIII immunity. J Thromb Haemost 2019; 17:449-459. [PMID: 30609275 PMCID: PMC6397061 DOI: 10.1111/jth.14379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Essentials Platelet-specific FVIII gene therapy is effective in hemophilia A mice even with inhibitors. The impact of platelet adherence via VWF/GPIbα binding on platelet gene therapy was investigated. GPIbα does not significantly affect platelet gene therapy of hemophilia A with inhibitors. Platelet gene therapy induces immune tolerance in hemophilia A mice with pre-existing immunity. SUMMARY: Background We have previously demonstrated that von Willebrand factor (VWF) is essential in platelet-specific FVIII (2bF8) gene therapy of hemophilia A (HA) with inhibitory antibodies (inhibitors). At the site of injury, platelet adherence is initiated by VWF binding to the platelet GPIb complex. Objective To investigate the impact of GPIbα on platelet gene therapy of HA with inhibitors. Methods Platelet-FVIII expression was introduced by 2bF8 lentivirus (2bF8LV) transduction of hematopoietic stem cells (HSCs) from GPIbαnull (Ibnull ) mice or rhF8-primed FVIIInull (F8null ) mice followed by transplantation into lethally irradiated rhF8-primed F8null recipients. Animals were analyzed by flow cytometry, FVIII assays and the tail bleeding test. Results After transplantation, 99% of platelets were derived from donors. The macrothrombocytopenia phenotype was maintained in F8null mice that received 2bF8LV-transduced Ibnull HSCs (2bF8-Ibnull /F8null ). The platelet-FVIII expression level in 2bF8-Ibnull /F8null recipients was similar to that obtained from F8null mice that received 2bF8LV-transduced F8null HSCs (2bF8-F8null /F8null ). The tail bleeding test showed that the remaining hemoglobin level in the 2bF8-Ibnull /F8null group was significantly higher than in the F8null control group, but there was no significant difference between the 2bF8-Ibnull /F8null and 2bF8-F8null /F8null groups. The half-life of inhibitor disappearance time was comparable between the 2bF8-Ibnull /F8null and 2bF8-F8null /F8null groups. The rhF8 re-challenge did not elicit a memory immune response once inhibitor titers dropped to undetectable levels after 2bF8 gene therapy. Conclusion GPIbα does not significantly impact platelet gene therapy of HA with inhibitors. 2bF8 gene therapy restores hemostasis and promotes immune tolerance in HA mice with pre-existing immunity.
Collapse
Affiliation(s)
- Juan Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Jocelyn A. Schroeder
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| | - Xiaofeng Luo
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Robert R. Montgomery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| | - Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| |
Collapse
|
33
|
Nagy Z, Vögtle T, Geer MJ, Mori J, Heising S, Di Nunzio G, Gareus R, Tarakhovsky A, Weiss A, Neel BG, Desanti GE, Mazharian A, Senis YA. The Gp1ba-Cre transgenic mouse: a new model to delineate platelet and leukocyte functions. Blood 2019; 133:331-343. [PMID: 30429161 PMCID: PMC6484457 DOI: 10.1182/blood-2018-09-877787] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/26/2018] [Indexed: 12/16/2022] Open
Abstract
Conditional knockout (KO) mouse models are invaluable for elucidating the physiological roles of platelets. The Platelet factor 4-Cre recombinase (Pf4-Cre) transgenic mouse is the current model of choice for generating megakaryocyte/platelet-specific KO mice. Platelets and leukocytes work closely together in a wide range of disease settings, yet the specific contribution of platelets to these processes remains unclear. This is partially a result of the Pf4-Cre transgene being expressed in a variety of leukocyte populations. To overcome this issue, we developed a Gp1ba-Cre transgenic mouse strain in which Cre expression is driven by the endogenous Gp1ba locus. By crossing Gp1ba-Cre and Pf4-Cre mice to the mT/mG dual-fluorescence reporter mouse and performing a head-to-head comparison, we demonstrate more stringent megakaryocyte lineage-specific expression of the Gp1ba-Cre transgene. Broader tissue expression was observed with the Pf4-Cre transgene, leading to recombination in many hematopoietic lineages, including monocytes, macrophages, granulocytes, and dendritic and B and T cells. Direct comparison of phenotypes of Csk, Shp1, or CD148 conditional KO mice generated using either the Gp1ba-Cre or Pf4-Cre strains revealed similar platelet phenotypes. However, additional inflammatory and immunological anomalies were observed in Pf4-Cre-generated KO mice as a result of nonspecific deletion in other hematopoietic lineages. By excluding leukocyte contributions to phenotypes, the Gp1ba-Cre mouse will advance our understanding of the role of platelets in inflammation and other pathophysiological processes in which platelet-leukocyte interactions are involved.
Collapse
Affiliation(s)
- Zoltan Nagy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Timo Vögtle
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mitchell J Geer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jun Mori
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Silke Heising
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Giada Di Nunzio
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center and Howard Hughes Medical Institute, University of California, San Francisco, CA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY; and
| | - Guillaume E Desanti
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Alexandra Mazharian
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
34
|
|
35
|
Abstract
For over 100 years, a link has been recognized between thrombosis and cancer. However, whether this was a causal or correlational relationship was debated. It is now well established that cancer and thrombosis are mechanistically related in intricate ways and can directly fuel each other. Here, we present an historical perspective of platelets and how their physiological function in hemostasis can contribute to tumor development and metastasis. This emerging field has garnered great interest as aspirin therapy has been proposed as a prevention strategy for some malignancies. We highlight the advances that have been made, presenting platelets as a key component that supports many of the hallmarks of cancer that have been described and conclude with future directions and studies that are needed to clarify the role of platelets in cancer and solidify platelet modulating therapies within oncology.
Collapse
Affiliation(s)
- Aime T Franco
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Slot 505, 4301 W. Markham Street, Little Rock, AR, 72205, USA.
| | - Jerry Ware
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Slot 505, 4301 W. Markham Street, Little Rock, AR, 72205, USA
| |
Collapse
|
36
|
The Glycoprotein Ib-IX-V Complex. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
37
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Coller BS. Foreword: A Brief History of Ideas About Platelets in Health and Disease. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Trizuljak J, Kozubík KS, Radová L, Pešová M, Pál K, Réblová K, Stehlíková O, Smejkal P, Zavřelová J, Pacejka M, Mayer J, Pospíšilová Š, Doubek M. A novel germline mutation in GP1BA gene N-terminal domain in monoallelic Bernard-Soulier syndrome. Platelets 2018; 29:827-833. [DOI: 10.1080/09537104.2018.1529300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jakub Trizuljak
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kateřina Staňo Kozubík
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michaela Pešová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karol Pál
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Olga Stehlíková
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Smejkal
- Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiřina Zavřelová
- Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Pacejka
- Outpatient Ward for Hematology and Internal Medicine, Zlín, Czech Republic
| | - Jiří Mayer
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
40
|
Qi Y, Chen W, Liang X, Xu K, Gu X, Wu F, Fan X, Ren S, Liu J, Zhang J, Li R, Liu J, Liang X. Novel antibodies against GPIbα inhibit pulmonary metastasis by affecting vWF-GPIbα interaction. J Hematol Oncol 2018; 11:117. [PMID: 30223883 PMCID: PMC6142402 DOI: 10.1186/s13045-018-0659-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Platelet glycoprotein Ibα (GPIbα) extracellular domain, which is part of the receptor complex GPIb-IX-V, plays an important role in tumor metastasis. However, the mechanism through which GPIbα participates in the metastatic process remains unclear. In addition, potential bleeding complication remains an obstacle for the clinical use of anti-platelet agents in cancer therapy. METHODS We established a series of screening models and obtained rat anti-mouse GPIbα monoclonal antibodies (mAb) 1D12 and 2B4 that demonstrated potential value in suppressing cancer metastasis. To validate our findings, we further obtained mouse anti-human GPIbα monoclonal antibody YQ3 through the same approach. RESULTS 1D12 and 2B4 affected the von Willebrand factor (vWF)-GPIbα interaction via binding to GPIbα aa 41-50 and aa 277-290 respectively, which markedly inhibited the interaction among platelets, tumor cells, and endothelial cells in vitro, and reduced the mean number of surface nodules in the experimental and spontaneous metastasis models in vivo. As expected, YQ3 inhibited lung cancer adhesion and demonstrated similar value in metastasis. More importantly, for all three mAbs in our study, none of their Fabs induced thrombocytopenia. CONCLUSION Our results therefore supported the hypothesis that GPIbα contributes to tumor metastasis and suggested potential value of using anti-GPIbα mAb to suppress cancer metastasis.
Collapse
Affiliation(s)
- Yingxue Qi
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xinyu Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ke Xu
- Central laboratory, General Surgery, Putuo Hospital, and Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai, 200062, People's Republic of China.
| | - Xiangyu Gu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
41
|
GPIbα is required for platelet-mediated hepatic thrombopoietin generation. Blood 2018; 132:622-634. [PMID: 29794068 DOI: 10.1182/blood-2017-12-820779] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Thrombopoietin (TPO), a hematopoietic growth factor produced predominantly by the liver, is essential for thrombopoiesis. Prevailing theory posits that circulating TPO levels are maintained through its clearance by platelets and megakaryocytes via surface c-Mpl receptor internalization. Interestingly, we found a two- to threefold decrease in circulating TPO in GPIbα-/- mice compared with wild-type (WT) controls, which was consistent in GPIbα-deficient human Bernard-Soulier syndrome (BSS) patients. We showed that lower TPO levels in GPIbα-deficient conditions were not due to increased TPO clearance by GPIbα-/- platelets but rather to decreased hepatic TPO mRNA transcription and production. We found that WT, but not GPIbα-/-, platelet transfusions rescued hepatic TPO mRNA and circulating TPO levels in GPIbα-/- mice. In vitro hepatocyte cocultures with platelets or GPIbα-coupled beads further confirm the disruption of platelet-mediated hepatic TPO generation in the absence of GPIbα. Treatment of GPIbα-/- platelets with neuraminidase caused significant desialylation; however, strikingly, desialylated GPIbα-/- platelets could not rescue impaired hepatic TPO production in vivo or in vitro, suggesting that GPIbα, independent of platelet desialylation, is a prerequisite for hepatic TPO generation. Additionally, impaired hepatic TPO production was recapitulated in interleukin-4/GPIbα-transgenic mice, as well as with antibodies targeting the extracellular portion of GPIbα, demonstrating that the N terminus of GPIbα is required for platelet-mediated hepatic TPO generation. These findings reveal a novel nonredundant regulatory role for platelets in hepatic TPO homeostasis, which improves our understanding of constitutive TPO regulation and has important implications in diseases related to GPIbα, such as BSS and auto- and alloimmune-mediated thrombocytopenias.
Collapse
|
42
|
Fc-independent immune thrombocytopenia via mechanomolecular signaling in platelets. Blood 2017; 131:787-796. [PMID: 29203584 DOI: 10.1182/blood-2017-05-784975] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023] Open
Abstract
Immune thrombocytopenia (ITP) is a prevalent autoimmune disease characterized by autoantibody-induced platelet clearance. Some ITP patients are refractory to standard immunosuppressive treatments such as intravenous immunoglobulin (IVIg). These patients often have autoantibodies that target the ligand-binding domain (LBD) of glycoprotein Ibα (GPIbα), a major subunit of the platelet mechanoreceptor complex GPIb-IX. However, the molecular mechanism of this Fc-independent platelet clearance is not clear. Here, we report that many anti-LBD monoclonal antibodies such as 6B4, but not AK2, activated GPIb-IX in a shear-dependent manner and induced IVIg-resistant platelet clearance in mice. Single-molecule optical tweezer measurements of antibodies pulling on full-length GPIb-IX demonstrated that the unbinding force needed to dissociate 6B4 from the LBD far exceeds the force required to unfold the juxtamembrane mechanosensory domain (MSD) in GPIbα, unlike the AK2-LBD unbinding force. Binding of 6B4, not AK2, induced shear-dependent unfolding of the MSD on the platelet, as evidenced by increased exposure of a linear sequence therein. Imaging flow cytometry and aggregometry measurements of platelets and LBD-coated platelet-mimetic beads revealed that 6B4 can sustain crosslinking of platelets under shear, whereas 6B4 Fab and AK2 cannot. These results suggest a novel mechanism by which anti-LBD antibodies can exert a pulling force on GPIb-IX via platelet crosslinking, activating GPIb-IX by unfolding its MSD and inducing Fc-independent platelet clearance.
Collapse
|
43
|
Langer HF, Verschoor A. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost 2017; 110:910-9. [DOI: 10.1160/th13-02-0102] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
SummaryPlatelets have a central function in repairing vascular damage and stopping acute blood loss. They are equally central to thrombus formation in cardiovascular diseases such as myocardial infarction and ischaemic stroke. Beyond these classical prothrombotic diseases, immune mediated pathologies such as haemolytic uraemic syndrome (HUS) or paroxysmal nocturnal haemoglobinuria (PNH) also feature an increased tendency to form thrombi in various tissues. It has become increasingly clear that the complement system, part of the innate immune system, has an important role in the pathophysiology of these diseases. Not only does complement influence prothrombotic disease, it is equally involved in idiopathic thrombocytopenic purpura (ITP), an autoimmune disease characterised by thrombocytopenia. Thus, there are complex interrelationships between the haemostatic and immune systems, and platelets and complement in particular. Not only does complement influence platelet diseases such as ITP, HUS and PNH, it also mediates interaction between microbes and platelets during systemic infection, influencing the course of infection and development of protective immunity. This review aims to provide an integrative overview of the mechanisms underlying the interactions between complement and platelets in health and disease.
Collapse
|
44
|
Ghalloussi D, Saut N, Bernot D, Pillois X, Rameau P, Sébahoun G, Alessi MC, Raslova H, Baccini V. A new heterozygous mutation in GP1BA
gene responsible for macrothrombocytopenia. Br J Haematol 2017; 183:503-506. [DOI: 10.1111/bjh.14986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dorsaf Ghalloussi
- UMR1062 INSERM; Medicine Faculty; Aix Marseille University; Marseille France
| | - Noémie Saut
- Haematology laboratory; Hôpital La Timone; Assistance Publique-Hôpitaux de Marseille; Marseille France
| | - Denis Bernot
- Haematology laboratory; Hôpital La Timone; Assistance Publique-Hôpitaux de Marseille; Marseille France
| | - Xavier Pillois
- INSERM 1034; Haematology Laboratory; Centre Hospitalo-Universitaire; Bordeaux France
| | - Philippe Rameau
- PFIC, UMS AMMICA (UMS 3655 CNRS/US 23 INSERM); Gustave Roussy Cancer Campus; Villejuif France
| | - Gérard Sébahoun
- Haematology Laboratory; Hôpital Nord; Assistance Publique-Hôpitaux de Marseille; Marseille France
| | - Marie-Christine Alessi
- UMR1062 INSERM; Medicine Faculty; Aix Marseille University; Marseille France
- Centre de Référence des Pathologies Plaquettaires; Hôpital La Timone; Assistance Publique-Hôpitaux de Marseille; Marseille France
| | - Hana Raslova
- INSERM 1170; Gustave Roussy Cancer Campus; Villejuif France
| | - Véronique Baccini
- UMR1062 INSERM; Medicine Faculty; Aix Marseille University; Marseille France
- Haematology Laboratory; Hôpital Nord; Assistance Publique-Hôpitaux de Marseille; Marseille France
- Centre de Référence des Pathologies Plaquettaires; Hôpital La Timone; Assistance Publique-Hôpitaux de Marseille; Marseille France
| |
Collapse
|
45
|
Twins actin’ differently. Blood 2017; 130:1688-1689. [DOI: 10.1182/blood-2017-08-799767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Beck S, Leitges M, Stegner D. Protein kinase Cι/λ is dispensable for platelet function in thrombosis and hemostasis in mice. Cell Signal 2017; 38:223-229. [PMID: 28739484 DOI: 10.1016/j.cellsig.2017.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022]
Abstract
Platelet activation at sites of vascular injury is crucial for hemostasis, but it may also cause myocardial infarction or ischemic stroke. Upon platelet activation, cytoskeletal reorganization is essential for platelet secretion and thrombus formation. Members of the protein kinase C family, which includes 12 isoforms, are involved in most platelet responses required for thrombus formation. The atypical protein kinase Cι/λ (PKCι/λ) has been implicated as an important mediator of cell polarity, carcinogenesis and immune cell responses. PKCι/λ is known to be associated with the small GTPase Cdc42, an important mediator of multiple platelet functions; however, its exact function in platelets is not known. To study the role of PKCι/λ, we generated platelet- and megakaryocyte-specific PKCι/λ knockout mice (Prkcifl/fl, Pf4-Cre) and used them to investigate the function of PKCι/λ in platelet activation and aggregation in vitro and in vivo. Surprisingly, lack of PKCι/λ had no detectable effect on platelet spreading and function in vitro and in vivo under all tested conditions. These results indicate that PKCι/λ is dispensable for Cdc42-triggered processes and for thrombosis and hemostasis in mice.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | - David Stegner
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
47
|
Léon C, Dupuis A, Gachet C, Lanza F. The contribution of mouse models to the understanding of constitutional thrombocytopenia. Haematologica 2017; 101:896-908. [PMID: 27478199 DOI: 10.3324/haematol.2015.139394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/04/2016] [Indexed: 11/09/2022] Open
Abstract
Constitutional thrombocytopenias result from platelet production abnormalities of hereditary origin. Long misdiagnosed and poorly studied, knowledge about these rare diseases has increased considerably over the last twenty years due to improved technology for the identification of mutations, as well as an improvement in obtaining megakaryocyte culture from patient hematopoietic stem cells. Simultaneously, the manipulation of mouse genes (transgenesis, total or conditional inactivation, introduction of point mutations, random chemical mutagenesis) have helped to generate disease models that have contributed greatly to deciphering patient clinical and laboratory features. Most of the thrombocytopenias for which the mutated genes have been identified now have a murine model counterpart. This review focuses on the contribution that these mouse models have brought to the understanding of hereditary thrombocytopenias with respect to what was known in humans. Animal models have either i) provided novel information on the molecular and cellular pathways that were missing from the patient studies; ii) improved our understanding of the mechanisms of thrombocytopoiesis; iii) been instrumental in structure-function studies of the mutated gene products; and iv) been an invaluable tool as preclinical models to test new drugs or develop gene therapies. At present, the genetic determinants of thrombocytopenia remain unknown in almost half of all cases. Currently available high-speed sequencing techniques will identify new candidate genes, which will in turn allow the generation of murine models to confirm and further study the abnormal phenotype. In a complementary manner, programs of random mutagenesis in mice should also identify new candidate genes involved in thrombocytopenia.
Collapse
Affiliation(s)
- Catherine Léon
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - Arnaud Dupuis
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - Christian Gachet
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - François Lanza
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| |
Collapse
|
48
|
Dütting S, Gaits-Iacovoni F, Stegner D, Popp M, Antkowiak A, van Eeuwijk JMM, Nurden P, Stritt S, Heib T, Aurbach K, Angay O, Cherpokova D, Heinz N, Baig AA, Gorelashvili MG, Gerner F, Heinze KG, Ware J, Krohne G, Ruggeri ZM, Nurden AT, Schulze H, Modlich U, Pleines I, Brakebusch C, Nieswandt B. A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis. Nat Commun 2017. [PMID: 28643773 PMCID: PMC5481742 DOI: 10.1038/ncomms15838] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.
Collapse
Affiliation(s)
- Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Frederique Gaits-Iacovoni
- INSERM UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires-I2MC, UMR1048, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Michael Popp
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Adrien Antkowiak
- INSERM UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires-I2MC, UMR1048, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | - Judith M M van Eeuwijk
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Paquita Nurden
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Institut Hospitalo-Universitaire LIRYC, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33604 Pessac, France
| | - Simon Stritt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Tobias Heib
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Katja Aurbach
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Oguzhan Angay
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Deya Cherpokova
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Niels Heinz
- Research Group for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main and the Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Ayesha A Baig
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Maximilian G Gorelashvili
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Frank Gerner
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Jerry Ware
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansass 72205, USA
| | - Georg Krohne
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037, USA
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33604 Pessac, France
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main and the Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Cord Brakebusch
- BRIC, Biomedical Institute, University of Copenhagen, Nørregade 10, 1165 Copenhagen, Denmark
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
49
|
Cunin P, Penke LR, Thon JN, Monach PA, Jones T, Chang MH, Chen MM, Melki I, Lacroix S, Iwakura Y, Ware J, Gurish MF, Italiano JE, Boilard E, Nigrovic PA. Megakaryocytes compensate for Kit insufficiency in murine arthritis. J Clin Invest 2017; 127:1714-1724. [PMID: 28375155 DOI: 10.1172/jci84598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2017] [Indexed: 12/12/2022] Open
Abstract
The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1-dependent manner. Transfer of WT but not IL-1-deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1-driven systemic inflammatory disease.
Collapse
|
50
|
Kaur H, Corscadden K, Ware J, Othman M. Thrombocytopathy leading to impaired in vivo haemostasis and thrombosis in platelet type von Willebrand disease. Thromb Haemost 2016; 117:543-555. [PMID: 28004055 DOI: 10.1160/th16-04-0317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/26/2016] [Indexed: 11/05/2022]
Abstract
Platelet defects due to hyper-responsive GPIbα causing enhanced VWF interaction, counter-intuitively result in bleeding rather than thrombosis. The historical explanation of platelet/VWF clearance fails to explain mechanisms of impaired haemostasis particularly in light of reported poor platelet binding to fibrinogen. This study aimed to evaluate the defects of platelets with hyper-responsive GPIbα and their contribution to impaired in vivo thrombosis. Using the PT-VWD mouse model, platelets from the hTgG233V were compared to control hTgWT mice. Platelets' pro-coagulant capacity was evaluated using flowcytometry assessment of P-selectin and annexin V. Whole blood platelet aggregation in response to ADP, collagen and thrombin was tested. Clot kinetics using laser injury thrombosis model and the effect of GPIbα inhibition in vivo using 6B4; a monoclonal antibody, were evaluated. Thrombin-induced platelet P-selectin and PS exposure were significantly reduced in hTgG233V compared to hTgWT and not significantly different when compared to unstimulated platelets. The hTgG233V platelets aggregated normally in response to collagen, and had a delayed response to ADP and thrombin, when compared to hTgWT platelets. Laser injury showed significant impairment of in vivo thrombus formation in hTgG233V compared to hTgWT mice. There was a significant lag in in vitro clot formation in turbidity assay but no impairment in thrombin generation was observed using thromboelastography. The in vivo inhibition of GPIbα facilitated new - unstable - clot formation but did not improve the lag. We conclude platelets with hyper-responsive GPIbα have complex intrinsic defects beyond the previously described mechanisms. Abnormal signalling through GPIbα and potential therapy using inhibitors require further investigations.
Collapse
Affiliation(s)
| | | | | | - Maha Othman
- Dr. Maha Othman, MD MSc PhD, Associate Professor, Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Boterell Hall room 513, Kingston, Ontario K7L 3N6, Canada, Tel.: +1 613 533 6108, Fax: +1 613 533 2022, E-mail:
| |
Collapse
|