1
|
Gong X, Li S, Huang J, Tan S, Zhang Q, Tian Y, Li Q, Wang L, Tong HHY, Yao X, Chen C, Lee SMY, Liu H. Discovery of potent LRRK2 inhibitors by ensemble virtual screening strategy and bioactivity evaluation. Eur J Med Chem 2024; 279:116812. [PMID: 39241668 DOI: 10.1016/j.ejmech.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been reported to be associated with familial and idiopathic Parkinson's disease (PD) risk and is a promising target for drug discovery against PD. To identify novel and effective LRRK2 inhibitors, an ensemble virtual screening strategy by combining fingerprint similarity, complex-based pharmacophore and structure-based molecular docking was proposed and applied. Using this strategy, we finally selected 25 compounds from ∼1.7 million compounds for in vitro and in vivo tests. Firstly, the kinase inhibitory activity tests of compounds based on ADP-Glo assay identified three most potent compounds LY2023-19, LY2023-24 and LY2023-25 with IC50 of 556.4 nM, 218.1 nM and 22.4 nM for LRRK2 G2019S mutant, respectively. The further cellular experiments also indicated that three hit compounds significantly inhibited Ser935 phosphorylation of both wide-type and G2019S LRRK2 with IC50 ranging from 27 nM to 1674 nM in HEK293T cells. The MD simulations of three compounds and G2019S LRRK2 showed the hydrogen bond formed by Glu1948 and Ala1950 is crucial for the binding of LRRK2. Afterwards, 6-OHDA-induced PD zebrafish model was constructed to evaluate the neuroprotective effects of hit compounds. The locomotion of the 6-OHDA treated zebrafish larvae was improved after treatment with LY2023-24. The obtained results can provide valuable guidance for the development of PD drugs by targeting LRRK2.
Collapse
Affiliation(s)
- Xiaoqing Gong
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Shuli Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, China
| | - Junli Huang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Shuoyan Tan
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Qianqian Zhang
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Yanan Tian
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Qin Li
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Lingling Wang
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, China; Research Centre for Chinese Medicine Innovation & Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, China.
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China.
| |
Collapse
|
2
|
Ng XY, Cao M. Dysfunction of synaptic endocytic trafficking in Parkinson's disease. Neural Regen Res 2024; 19:2649-2660. [PMID: 38595283 PMCID: PMC11168511 DOI: 10.4103/nrr.nrr-d-23-01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 04/11/2024] Open
Abstract
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum. The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive. Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease. Notably, several of these genes are linked to the synaptic vesicle recycling process, particularly the clathrin-mediated endocytosis pathway. This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease, followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a "dying back" mechanism. Recently, several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized. These models faithfully recapitulate certain Parkinson's disease-like features at the animal, circuit, and cellular levels, and exhibit defects in synaptic membrane trafficking, further supporting the findings from human genetics and clinical studies. In this review, we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins: auxilin (DNAJC6/PARK19) and synaptojanin 1 (SYNJ1/PARK20). The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect. Subsequently, we will delve into the involvement of several clathrin-mediated endocytosis-related proteins (GAK, endophilin A1, SAC2/INPP5F, synaptotagmin-11), identified as Parkinson's disease risk factors through genome-wide association studies, in Parkinson's disease pathogenesis. We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins (alpha-synuclein (PARK1/4), Parkin (PARK2), and LRRK2 (PARK8)) in synaptic endocytic trafficking. Additionally, we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways, particularly autophagy. Given that synaptic dysfunction is considered as an early event in Parkinson's disease, a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel targets for early diagnosis and the development of interventional therapies for Parkinson's disease. Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Xin Yi Ng
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Mian Cao
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
4
|
Radefeldt M, Lemke S, Chaichoompu K, Paul JJ, Curado F, Valzania F, Cavallieri F, Fioravanti V, Valente EM, Avenali M, Negrotti A, Hanagasi HA, Thonke S, Matarazzo M, Panzavolta A, Cerami C, Westenberger A, Klein C, Bauer P, Beetz C. Genetic and Epidemiological Insights into RAB32-Linked Parkinson's Disease. Mov Disord 2024. [PMID: 39460989 DOI: 10.1002/mds.30041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The p.Ser71Arg RAB32 variant was recently associated with Parkinson's disease (PD). OBJECTIVE The aim was to investigate the presence of RAB32 variants in a large multiethnic group of individuals affected and unaffected by PD. METHODS We queried our proprietary database that contains exome/genome sequencing data of >180,000 individuals. Additional PD patients were genotyped, and proximal p.Ser71Arg-associated haplotypes were constructed. RESULTS p.Ser71Arg was present in 11 PD patients (73% from northern Italy) and in 35 individuals (89% from the Middle East and North Africa [MENA]) aged <50 years without PD-relevant symptoms. It was found in-cis to a set of proximal single-nucleotide polymorphisms. Additional RAB32 variants were comparably frequent in PD and non-PD individuals. CONCLUSIONS The RAB32 p.Ser71Arg variant defines a cluster of PD patients in northern Italy. Globally, it is most prevalent in MENA. Our data indicate that p.Ser71Arg causes PD and that it occurred only once, through a founder event. Other RAB32 variants are unlikely to cause PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | | | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Enza Maria Valente
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Negrotti
- Neurology Unit, University Hospital of Parma, Parma, Italy
| | - Hasmet A Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sven Thonke
- Department of Neurology, Klinikum Hanau, Teaching Hospital of the Goethe-University, Frankfurt, Germany
| | - Michele Matarazzo
- Centro Integral de Neurociencias Abarca Campal, Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain
| | | | - Chiara Cerami
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
5
|
Logan KM, Kaplan W, Simov V, Zhou H, Li D, Torres L, Morriello GJ, Acton JJ, Pio B, Chen YH, Keylor MH, Johnson R, Kattar SD, Chau R, Yan X, Ardolino M, Zarate C, Otte KM, Palte RL, Xiong T, McMinn SE, Lin S, Neelamkavil SF, Liu P, Su J, Hegde LG, Woodhouse JD, Moy LY, Ciaccio PJ, Piesvaux J, Zebisch M, Henry C, Barker J, Wood HB, Kennedy ME, DiMauro EF, Fell MJ, Fuller PH. Discovery and Optimization of N-Heteroaryl Indazole LRRK2 Inhibitors. J Med Chem 2024; 67:16807-16819. [PMID: 39231262 DOI: 10.1021/acs.jmedchem.4c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Inhibition of leucine-rich repeat kinase 2 is a genetically supported mechanism for the treatment of Parkinson's disease. We previously disclosed the discovery of an indazole series lead that demonstrated both safety and translational risks. The safety risks were hypothesized to be of unknown origin, so structural diversity in subsequent chemical matter was prioritized. The translational risks were identified due to a low brain Kpu,u in nonhuman primate studies, which raised concern over the use of an established peripheral biomarker as a surrogate for central target engagement. Given these challenges, the team sought to leverage structure- and property-based drug design and expanded efflux transporter profiling to identify structurally distinct leads with enhanced CNS drug-likeness. Herein, we describe the discovery of a "reinvented" indazole series with improved physicochemical properties and efflux transporter profiles while maintaining excellent potency and off-target kinase selectivity, which resulted in advanced lead, compound 23.
Collapse
Affiliation(s)
- Kaitlyn M Logan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Will Kaplan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Vladimir Simov
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Hua Zhou
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Derun Li
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Luis Torres
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Gregori J Morriello
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - John J Acton
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Barbara Pio
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Yi-Heng Chen
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rebecca Johnson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Solomon D Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Ryan Chau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Cayetana Zarate
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Shishi Lin
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | | | - Ping Liu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jing Su
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lily Y Moy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Paul J Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jennifer Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthias Zebisch
- Evotec (U.K.) Ltd., 90 Park Drive, Milton Park, Abingdon OX14 4RZ, Oxfordshire, U.K
| | - Clare Henry
- Evotec (U.K.) Ltd., 90 Park Drive, Milton Park, Abingdon OX14 4RZ, Oxfordshire, U.K
| | - John Barker
- Evotec (U.K.) Ltd., 90 Park Drive, Milton Park, Abingdon OX14 4RZ, Oxfordshire, U.K
| | - Harold B Wood
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Tezuka T, Ishiguro M, Taniguchi D, Osogaguchi E, Shiba-Fukushima K, Ogata J, Ishii R, Ikeda A, Li Y, Yoshino H, Matsui T, Kaida K, Funayama M, Nishioka K, Kumazawa F, Matsubara T, Tsuda H, Saito Y, Murayama S, Imai Y, Hattori N. Clinical characteristics and pathophysiological properties of newly discovered LRRK2 variants associated with Parkinson's disease. Neurobiol Dis 2024; 199:106571. [PMID: 38901781 DOI: 10.1016/j.nbd.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the most common gene responsible for familial Parkinson's disease (PD). The gene product of LRRK2 contains multiple protein domains, including armadillo repeat, ankyrin repeat, leucine-rich repeat (LRR), Ras-of-complex (ROC), C-terminal of ROC (COR), kinase, and WD40 domains. In this study, we performed genetic screening of LRRK2 in our PD cohort, detecting sixteen LRRK2 rare variants. Among them, we selected seven variants that are likely to be familial and characterized them in terms of LRRK2 protein function, along with clinical information and one pathological analysis. The seven variants were S1120P and N1221K in the LRR domain; I1339M, S1403R, and V1447M in the ROC domain; and I1658F and D1873H in the COR domain. The kinase activity of the LRRK2 variants N1221K, S1403R, V1447M, and I1658F toward Rab10, a well-known phosphorylation substrate, was higher than that of wild-type LRRK2. LRRK2 D1873H showed enhanced self-association activity, whereas LRRK2 S1403R and D1873H showed reduced microtubule-binding activity. Pathological analysis of a patient with the LRRK2 V1447M variant was also performed, which revealed Lewy pathology in the brainstem. No functional alterations in terms of kinase activity, self-association activity, and microtubule-binding activity were detected in LRRK2 S1120P and I1339M variants. However, the patient with PD carrying LRRK2 S1120P variant also had a heterozygous Glucosylceramidase beta 1 (GBA1) L444P variant. In conclusion, we characterized seven LRRK2 variants potentially associated with PD. Five of the seven variants in different LRRK2 domains exhibited altered properties in kinase activity, self-association, and microtubule-binding activity, suggesting that each domain variant may contribute to disease progression in different ways.
Collapse
Affiliation(s)
- Toshiki Tezuka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayu Ishiguro
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Daisuke Taniguchi
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ehoto Osogaguchi
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Faculty of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Kahori Shiba-Fukushima
- Department of Drug Development for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Jun Ogata
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryota Ishii
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Aya Ikeda
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Taro Matsui
- Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kenichi Kaida
- Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Fumihisa Kumazawa
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoyasu Matsubara
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Yuzuru Imai
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Drug Development for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
7
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
8
|
Akyazı O, Korkmaz D, Cevher SC. Experimental Parkinson models and green chemistry approach. Behav Brain Res 2024; 471:115092. [PMID: 38844056 DOI: 10.1016/j.bbr.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.
Collapse
Affiliation(s)
- Ozge Akyazı
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Dılara Korkmaz
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey
| | - Sule Coskun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
9
|
Alessi DR, Pfeffer SR. Leucine-Rich Repeat Kinases. Annu Rev Biochem 2024; 93:261-287. [PMID: 38621236 DOI: 10.1146/annurev-biochem-030122-051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.
Collapse
Affiliation(s)
- Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom;
| | - Suzanne R Pfeffer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Naskar A, Roy RK, Srivastava D, Patra N. Decoding Inhibitor Egression from Wild-Type and G2019S Mutant LRRK2 Kinase: Insights into Unbinding Mechanisms for Precision Drug Design in Parkinson's Disease. J Phys Chem B 2024; 128:6657-6669. [PMID: 38822803 DOI: 10.1021/acs.jpcb.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) remains a viable target for drug development since the discovery of the association of its mutations with Parkinson's disease (PD). G2019S (in the kinase domain) is the most common mutation for LRRK2-based PD. Though various types of inhibitors have been developed for the kinase domain to reduce the effect of the mutation, understanding the working of these inhibitors at the molecular level is still ongoing. This study focused on the exploration of the dissociation mechanism (pathways) of inhibitors from (WT and G2019S) LRRK2 kinase (using homology model CHK1 kinase), which is one of the crucial aspects in drug discovery. Here, two ATP-competitive type I inhibitors, PF-06447475 and MLi-2 (Comp1 and Comp2 ), and one non-ATP-competitive type II inhibitor, rebastinib (Comp3), were considered for this investigation. To study the unbinding process, random accelerated molecular dynamics simulations were performed. The binding free energies of the three inhibitors for different egression paths were determined using umbrella sampling. This work found four major egression pathways that were adopted by the inhibitors Comp1 (path1, path2, and path3), Comp2 (path1, path2 and path3), and Comp3 (path3 and path4). Also, the mechanism of unbinding for each path and key residues involved in unbinding were explored. Mutation was not observed to impact the preference of the particular egression pathways for both LRRK2-Comp1 and -Comp2 systems. However, the findings suggested that the size of the inhibitor molecules might have an effect on the preference of the egression pathways. The binding energy and residence time of the inhibitors followed a similar trend to experimental observations. The findings of this work might provide insight into designing more potent inhibitors for the G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
11
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Nyarko-Danquah I, Pajarillo E, Kim S, Digman A, Multani HK, Ajayi I, Son DS, Aschner M, Lee E. Microglial Sp1 induced LRRK2 upregulation in response to manganese exposure, and 17β-estradiol afforded protection against this manganese toxicity. Neurotoxicology 2024; 103:105-114. [PMID: 38857675 DOI: 10.1016/j.neuro.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Chronic exposure to elevated levels of manganese (Mn) causes a neurological disorder referred to as manganism, presenting symptoms similar to those of Parkinson's disease (PD), yet the mechanisms by which Mn induces its neurotoxicity are not completely understood. 17β-estradiol (E2) affords neuroprotection against Mn toxicity in various neural cell types including microglia. Our previous studies have shown that leucine-rich repeat kinase 2 (LRRK2) mediates Mn-induced inflammatory toxicity in microglia. The LRRK2 promoter sequences contain three putative binding sites of the transcription factor (TF), specificity protein 1 (Sp1), which increases LRRK2 promoter activity. In the present study, we tested if the Sp1-LRRK2 pathway plays a role in both Mn toxicity and the protection afforded by E2 against Mn toxicity in BV2 microglial cells. The results showed that Mn induced cytotoxicity, oxidative stress, and tumor necrosis factor-α production, which were attenuated by an LRRK2 inhibitor, GSK2578215A. The overexpression of Sp1 increased LRRK2 promoter activity, mRNA and protein levels, while inhibition of Sp1 with its pharmacological inhibitor, mithramycin A, attenuated the Mn-induced increases in LRRK2 expression. Furthermore, E2 attenuated the Mn-induced Sp1 expression by decreasing the expression of Sp1 via the promotion of the ubiquitin-dependent degradation pathway, which was accompanied by increased protein levels of RING finger protein 4, the E3-ligase of Sp1, Sp1 ubiquitination, and SUMOylation. Taken together, our novel findings suggest that Sp1 serves as a critical TF in Mn-induced LRRK2 expression as well as in the protection afforded by E2 against Mn toxicity through reduction of LRRK2 expression in microglia.
Collapse
Affiliation(s)
- Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Harpreet Kaur Multani
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Itunu Ajayi
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
13
|
Dederer V, Sanz Murillo M, Karasmanis EP, Hatch KS, Chatterjee D, Preuss F, Abdul Azeez KR, Nguyen LV, Galicia C, Dreier B, Plückthun A, Versees W, Mathea S, Leschziner AE, Reck-Peterson SL, Knapp S. A designed ankyrin-repeat protein that targets Parkinson's disease-associated LRRK2. J Biol Chem 2024; 300:107469. [PMID: 38876305 DOI: 10.1016/j.jbc.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.
Collapse
Affiliation(s)
- Verena Dederer
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Eva P Karasmanis
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kathryn S Hatch
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Kamal R Abdul Azeez
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Landon Vu Nguyen
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Christian Galicia
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Wim Versees
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Andres E Leschziner
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Samara L Reck-Peterson
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA.
| |
Collapse
|
14
|
Chen S, Basiashvili T, Hutchings J, Murillo MS, Suarez AV, Louro JA, Leschziner AE, Villa E. Cryo-electron tomography reveals the microtubule-bound form of inactive LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599606. [PMID: 38948781 PMCID: PMC11212993 DOI: 10.1101/2024.06.18.599606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disorder. Mutations in leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein containing both a kinase and a GTPase, are a leading cause of the familial form of PD. Pathogenic LRRK2 mutations increase LRRK2 kinase activity. While the bulk of LRRK2 is found in the cytosol, the protein associates with membranes where its Rab GTPase substrates are found, and under certain conditions, with microtubules. Integrative structural studies using single-particle cryo-electron microscopy (cryo-EM) and in situ cryo-electron tomography (cryo-ET) have revealed the architecture of microtubule-associated LRRK2 filaments, and that formation of these filaments requires LRRK2's kinase to be in the active-like conformation. However, whether LRRK2 can interact with and form filaments on microtubules in its autoinhibited state, where the kinase domain is in the inactive conformation and the N-terminal LRR domain covers the kinase active site, was not known. Using cryo-ET, we show that full-length LRRK2 can oligomerize on microtubules in its autoinhibited state. Both WT-LRRK2 and PD-linked LRRK2 mutants formed filaments on microtubules. While these filaments are stabilized by the same interfaces seen in the active-LRRK2 filaments, we observed a new interface involving the N-terminal repeats that were disordered in the active-LRRK2 filaments. The helical parameters of the autoinhibited-LRRK2 filaments are different from those reported for the active-LRRK2 filaments. Finally, the autoinhibited-LRRK2 filaments are shorter and less regular, suggesting they are less stable.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Tamar Basiashvili
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joshua Hutchings
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amalia Villagran Suarez
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaime Alegrio Louro
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andres E. Leschziner
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
15
|
Kang J, Huang G, Ma L, Tong Y, Shahapal A, Chen P, Shen J. Cell-autonomous role of leucine-rich repeat kinase in the protection of dopaminergic neuron survival. eLife 2024; 12:RP92673. [PMID: 38856715 PMCID: PMC11164531 DOI: 10.7554/elife.92673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Guodong Huang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Long Ma
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Youren Tong
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Anu Shahapal
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Jie Shen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
16
|
Wetzel A, Lei SH, Liu T, Hughes MP, Peng Y, McKay T, Waddington SN, Grannò S, Rahim AA, Harvey K. Dysregulated Wnt and NFAT signaling in a Parkinson's disease LRRK2 G2019S knock-in model. Sci Rep 2024; 14:12393. [PMID: 38811759 PMCID: PMC11137013 DOI: 10.1038/s41598-024-63130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Parkinson's disease (PD) is a progressive late-onset neurodegenerative disease leading to physical and cognitive decline. Mutations of leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. LRRK2 is a complex scaffolding protein with known regulatory roles in multiple molecular pathways. Two prominent examples of LRRK2-modulated pathways are Wingless/Int (Wnt) and nuclear factor of activated T-cells (NFAT) signaling. Both are well described key regulators of immune and nervous system development as well as maturation. The aim of this study was to establish the physiological and pathogenic role of LRRK2 in Wnt and NFAT signaling in the brain, as well as the potential contribution of the non-canonical Wnt/Calcium pathway. In vivo cerebral Wnt and NFATc1 signaling activity was quantified in LRRK2 G2019S mutant knock-in (KI) and LRRK2 knockout (KO) male and female mice with repeated measures over 28 weeks, employing lentiviral luciferase biosensors, and analyzed using a mixed-effect model. To establish spatial resolution, we investigated tissues, and primary neuronal cell cultures from different brain regions combining luciferase signaling activity, immunohistochemistry, qPCR and western blot assays. Results were analyzed by unpaired t-test with Welch's correction or 2-way ANOVA with post hoc corrections. In vivo Wnt signaling activity in LRRK2 KO and LRRK2 G2019S KI mice was increased significantly ~ threefold, with a more pronounced effect in males (~ fourfold) than females (~ twofold). NFATc1 signaling was reduced ~ 0.5-fold in LRRK2 G2019S KI mice. Brain tissue analysis showed region-specific expression changes in Wnt and NFAT signaling components. These effects were predominantly observed at the protein level in the striatum and cerebral cortex of LRRK2 KI mice. Primary neuronal cell culture analysis showed significant genotype-dependent alterations in Wnt and NFATc1 signaling under basal and stimulated conditions. Wnt and NFATc1 signaling was primarily dysregulated in cortical and hippocampal neurons respectively. Our study further built on knowledge of LRRK2 as a Wnt and NFAT signaling protein. We identified complex changes in neuronal models of LRRK2 PD, suggesting a role for mutant LRRK2 in the dysregulation of NFAT, and canonical and non-canonical Wnt signaling.
Collapse
Affiliation(s)
- Andrea Wetzel
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Si Hang Lei
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tiansheng Liu
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Michael P Hughes
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yunan Peng
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tristan McKay
- Department of Life Sciences, Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, University College London, 86-96 Chenies Mews, London, WC1E 6HXZ, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone Grannò
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Rue Gabrielle-Perret Gentil 4, 1205, Geneva, Switzerland
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
17
|
Ostrozovicova M, Tamas G, Dušek P, Grofik M, Han V, Holly P, Jech R, Kalinova K, Klivenyi P, Kovacs N, Kulcsarova K, Kurca E, Lackova A, Lee H, Lewis P, Magocova V, Marekova M, Murphy D, Necpal J, Pinter D, Rabajdova M, Růžička E, Serranova T, Smilowska K, Soos K, Straka I, Svorenova T, Valkovic P, Zarubova K, Gdovinova Z, Houlden H, Rizig M, Skorvanek M. p.L1795F LRRK2 variant is a common cause of Parkinson's disease in Central Europe. RESEARCH SQUARE 2024:rs.3.rs-4378197. [PMID: 38854119 PMCID: PMC11160925 DOI: 10.21203/rs.3.rs-4378197/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pathogenic variants in LRRK2 are one of the most common genetic risk factors for Parkinson's disease (PD). Recently, the lesser-known p.L1795F variant was proposed as a strong genetic risk factor for PD, however, further families are currently lacking in literature. A multicentre young onset and familial PD cohort (n = 220) from 9 movement disorder centres across Central Europe within the CEGEMOD consortium was screened for rare LRRK2 variants using whole exome sequencing data. We identified 4 PD cases with heterozygous p.L1795F variant. All 4 cases were characterised by akinetic-rigid PD phenotype with early onset of severe motor fluctuations, 2 receiving LCIG therapy and 2 implanted with STN DBS; all 4 cases showed unsatisfactory effect of advanced therapies on motor fluctuations. Our data also suggest that p.L1795F may represent the most common currently known pathogenic LRRK2 variant in Central Europe compared to the more studied p.G2019S, being present in 1.81% of PD cases within the Central European cohort and 3.23% of familial PD cases. Together with the ongoing clinical trials for LRRK2 inhibitors, this finding emphasises the urgent need for more ethnic diversity in PD genetic research.
Collapse
Affiliation(s)
- Miriam Ostrozovicova
- Pavol Jozef Safarik University and University Hospital of L. Pasteur and UCL Queen Square Institute of Neurology
| | | | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Milan Grofik
- Jessenius Faculty of Medicine, Comenius University and University Hospital Martin
| | - Vladimir Han
- P.J. Safarik University and University Hospital of L. Pasteur
| | - Petr Holly
- First Faculty of Medicine, Charles University and General University Hospital in Prague
| | | | | | | | | | | | - Egon Kurca
- Comenius University and University Hospital Martin
| | | | - Hamin Lee
- UCL Queen Square Institute of Neurology
| | | | | | | | | | | | | | | | | | - Tereza Serranova
- First Faculty of Medicine, Charles University and General University Hospital in Prague
| | - Katarzyna Smilowska
- Radboud University Medical Centre; Donders institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC) Nijmegen
| | | | - Igor Straka
- Comenius University in Bratislava Faculty of Medicine, University Hospital Bratislava
| | | | - Peter Valkovic
- Comenius University in Bratislava Faculty of Medicine, University Hospital Bratislava and Centre of Experimental Medicine, Slovak Academy of Sciences
| | - Katerina Zarubova
- Second Faculty of Medicine, Charles University and Motol University Hospital
| | | | - Henry Houlden
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery
| | - Mie Rizig
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
18
|
Li D, Yu SF, Lin L, Guo JR, Huang SM, Wu XL, You HL, Cheng XJ, Zhang QY, Zeng YQ, Pan XD. Deficiency of leucine-rich repeat kinase 2 aggravates thioacetamide-induced acute liver failure and hepatic encephalopathy in mice. J Neuroinflammation 2024; 21:123. [PMID: 38725082 PMCID: PMC11084037 DOI: 10.1186/s12974-024-03125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is closely associated with inflammatory responses. However, as a crucial regulator of the immune and inflammatory responses, the role of leucine-rich repeat kinase 2 (LRRK2) in the pathogenesis of HE remains unraveled. Herein, we investigated this issue in thioacetamide (TAA)-induced HE following acute liver failure (ALF). METHODS TAA-induced HE mouse models of LRRK2 wild type (WT), LRRK2 G2019S mutation (Lrrk2G2019S) and LRRK2 knockout (Lrrk2-/-) were established. A battery of neurobehavioral experiments was conducted. The biochemical indexes and pro-inflammatory cytokines were detected. The prefrontal cortex (PFC), striatum (STR), hippocampus (HIP), and liver were examined by pathology and electron microscopy. The changes of autophagy-lysosomal pathway and activity of critical Rab GTPases were analyzed. RESULTS The Lrrk2-/--HE model reported a significantly lower survival rate than the other two models (24% vs. 48%, respectively, p < 0.05), with no difference found between the WT-HE and Lrrk2G2019S-HE groups. Compared with the other groups, after the TAA injection, the Lrrk2-/- group displayed a significant increase in ammonium and pro-inflammatory cytokines, aggravated hepatic inflammation/necrosis, decreased autophagy, and abnormal phosphorylation of lysosomal Rab10. All three models reported microglial activation, neuronal loss, disordered vesicle transmission, and damaged myelin structure. The Lrrk2-/--HE mice presented no severer neuronal injury than the other genotypes. CONCLUSIONS LRRK2 deficiency may exacerbate TAA-induced ALF and HE in mice, in which inflammatory response is evident in the brain and aggravated in the liver. These novel findings indicate a need of sufficient clinical awareness of the adverse effects of LRRK2 inhibitors on the liver.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China.
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian, 350001, China.
| | - Shu-Fang Yu
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Lin Lin
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jie-Ru Guo
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Si-Mei Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Xi-Lin Wu
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Han-Lin You
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Juan Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qiu-Yang Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yu-Qi Zeng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Dong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, 350001, China.
| |
Collapse
|
19
|
Wallings R, McFarland K, Staley H, Neighbarger N, Schaake S, Brueggemann N, Zittel S, Usnich T, Klein C, Sammler E, Tansey MG. The R1441C-LRRK2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562063. [PMID: 37905053 PMCID: PMC10614788 DOI: 10.1101/2023.10.12.562063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.
Collapse
|
20
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
21
|
Galicia C, Guaitoli G, Fislage M, Gloeckner CJ, Versées W. Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. eLife 2024; 13:RP94503. [PMID: 38666771 PMCID: PMC11052575 DOI: 10.7554/elife.94503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.
Collapse
Affiliation(s)
- Christian Galicia
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Giambattista Guaitoli
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| |
Collapse
|
22
|
Alzahrani FA, Riza YM, Eid TM, Almotairi R, Scherschinski L, Contreras J, Nadeem M, Perez SE, Raikwar SP, Jha RM, Preul MC, Ducruet AF, Lawton MT, Bhatia K, Akhter N, Ahmad S. Exosomes in Vascular/Neurological Disorders and the Road Ahead. Cells 2024; 13:670. [PMID: 38667285 PMCID: PMC11049650 DOI: 10.3390/cells13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasir M. Riza
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Lea Scherschinski
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Muhammed Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sylvia E. Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sudhanshu P. Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T. Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kanchan Bhatia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
23
|
Valderhaug VD, Ramstad OH, van de Wijdeven R, Heiney K, Nichele S, Sandvig A, Sandvig I. Micro-and mesoscale aspects of neurodegeneration in engineered human neural networks carrying the LRRK2 G2019S mutation. Front Cell Neurosci 2024; 18:1366098. [PMID: 38644975 PMCID: PMC11026646 DOI: 10.3389/fncel.2024.1366098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been widely linked to Parkinson's disease, where the G2019S variant has been shown to contribute uniquely to both familial and sporadic forms of the disease. LRRK2-related mutations have been extensively studied, yet the wide variety of cellular and network events related to these mutations remain poorly understood. The advancement and availability of tools for neural engineering now enable modeling of selected pathological aspects of neurodegenerative disease in human neural networks in vitro. Our study revealed distinct pathology associated dynamics in engineered human cortical neural networks carrying the LRRK2 G2019S mutation compared to healthy isogenic control neural networks. The neurons carrying the LRRK2 G2019S mutation self-organized into networks with aberrant morphology and mitochondrial dynamics, affecting emerging structure-function relationships both at the micro-and mesoscale. Taken together, the findings of our study points toward an overall heightened metabolic demand in networks carrying the LRRK2 G2019S mutation, as well as a resilience to change in response to perturbation, compared to healthy isogenic controls.
Collapse
Affiliation(s)
- Vibeke Devold Valderhaug
- Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rosanne van de Wijdeven
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Kristine Heiney
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
- Department of Computer Science, Faculty of Information Technology and Electrical Engineering, NTNU, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
- Department of Computer Science and Communication, Østfold University College, Halden, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Neurology and Clinical Neurophysiology, St Olav’s Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
24
|
Trilling CR, Weng JH, Sharma PK, Nolte V, Wu J, Ma W, Boassa D, Taylor SS, Herberg FW. RedOx regulation of LRRK2 kinase activity by active site cysteines. NPJ Parkinsons Dis 2024; 10:75. [PMID: 38570484 PMCID: PMC10991482 DOI: 10.1038/s41531-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Mutations of the human leucine-rich repeat kinase 2 (LRRK2) have been associated with both, idiopathic and familial Parkinson's disease (PD). Most of these pathogenic mutations are located in the kinase domain (KD) or GTPase domain of LRRK2. In this study we describe a mechanism in which protein kinase activity can be modulated by reversible oxidation or reduction, involving a unique pair of adjacent cysteines, the "CC" motif. Among all human protein kinases, only LRRK2 contains this "CC" motif (C2024 and C2025) in the Activation Segment (AS) of the kinase domain. In an approach combining site-directed mutagenesis, biochemical analyses, cell-based assays, and Gaussian accelerated Molecular Dynamics (GaMD) simulations we could attribute a role for each of those cysteines. We employed reducing and oxidizing agents with potential clinical relevance to investigate effects on kinase activity and microtubule docking. We find that each cysteine gives a distinct contribution: the first cysteine, C2024, is essential for LRRK2 protein kinase activity, while the adjacent cysteine, C2025, contributes significantly to redox sensitivity. Implementing thiolates (R-S-) in GaMD simulations allowed us to analyse how each of the cysteines in the "CC" motif interacts with its surrounding residues depending on its oxidation state. From our studies we conclude that oxidizing agents can downregulate kinase activity of hyperactive LRRK2 PD mutations and may provide promising tools for therapeutic strategies.
Collapse
Affiliation(s)
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, CA, USA
| | | | - Viktoria Nolte
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, VT, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | | |
Collapse
|
25
|
Brooker SM, Naylor GE, Krainc D. Cell biology of Parkinson's disease: Mechanisms of synaptic, lysosomal, and mitochondrial dysfunction. Curr Opin Neurobiol 2024; 85:102841. [PMID: 38306948 DOI: 10.1016/j.conb.2024.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Parkinson's disease (PD) is a growing cause of disability worldwide and there is a critical need for the development of disease-modifying therapies to slow or stop disease progression. Recent advances in characterizing the genetics of PD have expanded our understanding of the cell biology of this disorder. Mitochondrial oxidative stress, defects in synaptic function, and impaired lysosomal activity have been shown to be linked in PD, resulting in a pathogenic feedback cycle involving the accumulation of toxic oxidized dopamine and alpha-synuclein. In this review, we will highlight recent data on a subset of PD-linked genes which have key roles in these pathways and the pathogenic cycle. We will furthermore discuss findings highlighting the importance of dynamic mitochondria-lysosome contact sites that mediate direct inter-organelle cross-talk in the pathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/BrookerSarahM
| | - Grace E Naylor
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/GENaylor
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
26
|
Pena N, Richbourg T, Gonzalez-Hunt CP, Qi R, Wren P, Barlow C, Shanks NF, Carlisle HJ, Sanders LH. G2019S selective LRRK2 kinase inhibitor abrogates mitochondrial DNA damage. NPJ Parkinsons Dis 2024; 10:49. [PMID: 38429321 PMCID: PMC10907374 DOI: 10.1038/s41531-024-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
Pathogenic mutations in LRRK2 cause Parkinson's disease (PD). The G2019S variant is the most common, which results in abnormally high kinase activity. Compounds that target LRRK2 kinase activity are currently being developed and tested in clinical trials. We recently found that G2019S LRRK2 causes mitochondrial DNA (mtDNA) damage and treatment with multiple classes of LRRK2 kinase inhibitors at concentrations associated with dephosphorylation of LRRK2 reversed mtDNA damage to healthy control levels. Because maintaining the normal function of LRRK2 in heterozygous G2019S LRRK2 carriers while specifically targeting the G2019S LRRK2 activity could have an advantageous safety profile, we explored the efficacy of a G2019S mutant selective LRRK2 inhibitor to reverse mtDNA damage in G2019S LRRK2 models and patient cells relative to non-selective LRRK2 inhibitors. Potency of LRRK2 kinase inhibition by EB-42168, a G2019S mutant LRRK2 kinase inhibitor, and MLi-2, a non-selective inhibitor, was determined by measuring phosphorylation of LRRK2 at Ser935 and/or Ser1292 using quantitative western immunoblot analysis. The Mito DNADX assay, which allows for the accurate real-time quantification of mtDNA damage in a 96-well platform, was performed in parallel. We confirmed that EB-42168 selectively inhibits LRRK2 phosphorylation on G2019S LRRK2 relative to wild-type LRRK2. On the other hand, MLi-2 was equipotent for wild-type and G2019S LRRK2. Acute treatment with EB-42168 inhibited LRRK2 phosphorylation and also restored mtDNA damage to healthy control levels. We further investigated the relationship between LRRK2 kinase activity, mtDNA damage and mitophagy. Levels of mtDNA damage caused by G2019S LRRK2 were fully re-established within 2 h of a LRRK2 inhibitor wash out and recovery experiment, indicating the mtDNA damage phenotype is highly dynamic. G2019S LRRK2 mitophagy defects were not alleviated with LRRK2 kinase inhibition, suggesting that mitophagy is not mechanistically regulating LRRK2 kinase-mediated reversal of mtDNA damage in this acute timeframe. Abrogation of mtDNA damage with the mutant selective tool inhibitor EB-42168 demonstrates the potential of a precision medicine approach for LRRK2 G2019S PD. Levels of mtDNA damage may serve as a potential pharmacodynamic biomarker of altered kinase activity that could be useful for small molecule development and clinical trials.
Collapse
Affiliation(s)
- Nicholas Pena
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Tara Richbourg
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Claudia P Gonzalez-Hunt
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Rui Qi
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Paul Wren
- ESCAPE Bio, Inc., South San Francisco, CA, 94080, USA
| | | | | | | | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA.
| |
Collapse
|
27
|
Hwang JA, Choi SK, Kim SH, Kim DW. Pharmacological Inhibition of LRRK2 Exhibits Neuroprotective Activity in Mouse Photothrombotic Stroke Model. Exp Neurobiol 2024; 33:36-45. [PMID: 38471803 PMCID: PMC10938073 DOI: 10.5607/en23023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common cause of Parkinson's disease (PD). Interestingly, recent studies have reported an increased risk of stroke in patients with PD harboring LRRK2 mutations, but there is no evidence showing the functional involvement of LRRK2 in stroke. Here, we found that LRRK2 kinase activity was significantly induced in the Rose-Bengal (RB) photothrombosis-induced stroke mouse model. Interestingly, stroke infarct volumes were significantly reduced, and neurological deficits were diminished by pharmacological inhibition of LRRK2 kinase activity using MLi-2, a brain-penetrant LRRK2 kinase inhibitor. Immunohistochemical analysis showed p-LRRK2 level in stroke lesions, co-localizing with mitophagy-related proteins (PINK, Parkin, LC3B, cytochrome c), suggesting their involvement in stroke progression. Overlapping p-LRRK2 with cytochrome c/TUNEL/JC-1 (an indicator of mitochondrial membrane potential) puncta in RB photothrombosis indicated LRRK2-induced mitochondrial apoptosis, which was blocked by MLi-2. These results suggest that pharmacological inhibition of LRRK2 kinase activity could attenuate mitochondrial apoptosis, ultimately leading to neuroprotective potential in stroke progression. In conclusion, LRRK2 kinase activity might be neuro-pathogenic due to impaired mitophagy in stroke progression, and pharmacological inhibition of LRRK2 kinase activity could be beneficial in reducing the risk of stroke in patients with LRRK2 mutations.
Collapse
Affiliation(s)
- Jeong-Ah Hwang
- Center for Rare Disease Therapeutic Technology, Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Seung Kyu Choi
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Seong Hwan Kim
- Center for Rare Disease Therapeutic Technology, Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Anatomy & Developmental Biology, Kyung Hee University School of Dentistry, Seoul 02447, Korea
| |
Collapse
|
28
|
Chen Z, Chen J, Mori W, Yi Y, Rong J, Li Y, Leon ERC, Shao T, Song Z, Yamasaki T, Ishii H, Zhang Y, Kokufuta T, Hu K, Xie L, Josephson L, Van R, Shao Y, Factor S, Zhang MR, Liang SH. Preclinical Evaluation of Novel Positron Emission Tomography (PET) Probes for Imaging Leucine-Rich Repeat Kinase 2 (LRRK2). J Med Chem 2024; 67:2559-2569. [PMID: 38305157 PMCID: PMC10895652 DOI: 10.1021/acs.jmedchem.3c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Parkinson's disease (PD) is one of the most highly debilitating neurodegenerative disorders, which affects millions of people worldwide, and leucine-rich repeat kinase 2 (LRRK2) mutations have been involved in the pathogenesis of PD. Developing a potent LRRK2 positron emission tomography (PET) tracer would allow for in vivo visualization of LRRK2 distribution and expression in PD patients. In this work, we present the facile synthesis of two potent and selective LRRK2 radioligands [11C]3 ([11C]PF-06447475) and [18F]4 ([18F]PF-06455943). Both radioligands exhibited favorable brain uptake and specific bindings in rodent autoradiography and PET imaging studies. More importantly, [18F]4 demonstrated significantly higher brain uptake in the transgenic LRRK2-G2019S mutant and lipopolysaccharide (LPS)-injected mouse models. This work may serve as a roadmap for the future design of potent LRRK2 PET tracers.
Collapse
Affiliation(s)
- Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Jiahui Chen
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Wakana Mori
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yongjia Yi
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian Rong
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Yinlong Li
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Erick R. Calderon Leon
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tuo Shao
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Zhendong Song
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
| | - Tomoteru Yamasaki
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hideki Ishii
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomomi Kokufuta
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kuan Hu
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lee Josephson
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Richard Van
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Stewart Factor
- Jean and
Paul Amos Parkinson’s Disease and Movement Disorder Program,
Department of Neurology, Emory University
School of Medicine, Atlanta, Georgia 30322, United States
| | - Ming-Rong Zhang
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Steven H. Liang
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| |
Collapse
|
29
|
Ashraf D, Khan MR, Dawson TM, Dawson VL. Protein Translation in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:2393. [PMID: 38397070 PMCID: PMC10888601 DOI: 10.3390/ijms25042393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, research into Parkinson's disease and similar neurodegenerative disorders has increasingly suggested that these conditions are synonymous with failures in proteostasis. However, the spotlight of this research has remained firmly focused on the tail end of proteostasis, primarily aggregation, misfolding, and degradation, with protein translation being comparatively overlooked. Now, there is an increasing body of evidence supporting a potential role for translation in the pathogenesis of PD, and its dysregulation is already established in other similar neurodegenerative conditions. In this paper, we consider how altered protein translation fits into the broader picture of PD pathogenesis, working hand in hand to compound the stress placed on neurons, until this becomes irrecoverable. We will also consider molecular players of interest, recent evidence that suggests that aggregates may directly influence translation in PD progression, and the implications for the role of protein translation in our development of clinically useful diagnostics and therapeutics.
Collapse
Affiliation(s)
- Daniyal Ashraf
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.A.); (M.R.K.)
- School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 111, Cambridge CB2 0SP, UK
| | - Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.A.); (M.R.K.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.A.); (M.R.K.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (D.A.); (M.R.K.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Lian Q, Li S, Kan S, Liao X, Huang S, Sloan DB, Wu Z. Association Analysis Provides Insights into Plant Mitonuclear Interactions. Mol Biol Evol 2024; 41:msae028. [PMID: 38324417 PMCID: PMC10875325 DOI: 10.1093/molbev/msae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Cytonuclear interaction refers to the complex and ongoing process of coevolution between nuclear and organelle genomes, which are responsible for cellular respiration, photosynthesis, lipid metabolism, etc. and play a significant role in adaptation and speciation. There have been a large number of studies to detect signatures of cytonuclear interactions. However, identification of the specific nuclear and organelle genetic polymorphisms that are involved in these interactions within a species remains relatively rare. The recent surge in whole genome sequencing has provided us an opportunity to explore cytonuclear interaction from a population perspective. In this study, we analyzed a total of 3,439 genomes from 7 species to identify signals of cytonuclear interactions by association (linkage disequilibrium) analysis of variants in both the mitochondrial and nuclear genomes across flowering plants. We also investigated examples of nuclear loci identified based on these association signals using subcellular localization assays, gene editing, and transcriptome sequencing. Our study provides a novel perspective on the investigation of cytonuclear coevolution, thereby enriching our understanding of plant fitness and offspring sterility.
Collapse
Affiliation(s)
- Qun Lian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuai Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Marine College, Shandong University, Weihai 264209, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
31
|
Bhatia P, Bickle M, Agrawal AA, Truss B, Nikolaidi A, Brockmann K, Reinhardt L, Vogel S, Szegoe EM, Pal A, Hermann A, Mikicic I, Yun M, Falkenburger B, Sterneckert J. Axonal Lysosomal Assays for Characterizing the Effects of LRRK2 G2019S. BIOLOGY 2024; 13:58. [PMID: 38275734 PMCID: PMC10813644 DOI: 10.3390/biology13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The degeneration of axon terminals before the soma, referred to as "dying back", is a feature of Parkinson's disease (PD). Axonal assays are needed to model early PD pathogenesis as well as identify protective therapeutics. We hypothesized that defects in axon lysosomal trafficking as well as injury repair might be important contributing factors to "dying back" pathology in PD. Since primary human PD neurons are inaccessible, we developed assays to quantify axonal trafficking and injury repair using induced pluripotent stem cell (iPSC)-derived neurons with LRRK2 G2019S, which is one of the most common known PD mutations, and isogenic controls. We observed a subtle axonal trafficking phenotype that was partially rescued by a LRRK2 inhibitor. Mutant LRRK2 neurons showed increased phosphorylated Rab10-positive lysosomes, and lysosomal membrane damage increased LRRK2-dependent Rab10 phosphorylation. Neurons with mutant LRRK2 showed a transient increase in lysosomes at axotomy injury sites. This was a pilot study that used two patient-derived lines to develop its methodology; we observed subtle phenotypes that might correlate with heterogeneity in LRRK2-PD patients. Further analysis using additional iPSC lines is needed. Therefore, our axonal lysosomal assays can potentially be used to characterize early PD pathogenesis and test possible therapeutics.
Collapse
Affiliation(s)
- Priyanka Bhatia
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Marc Bickle
- Roche Institute of Human Biology, 4070 Basel, Switzerland
| | - Amay A. Agrawal
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Buster Truss
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Aikaterina Nikolaidi
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Lydia Reinhardt
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Stefanie Vogel
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Eva M. Szegoe
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Arun Pal
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Ivan Mikicic
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Maximina Yun
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
- Max Planck Institute of Molecular Cellular Biology and Genetics, 01307 Dresden, Germany
- Physics of Life Excellence Cluster, 01307 Dresden, Germany
| | - Björn Falkenburger
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
- Medical Faculty Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
32
|
Luo S, Wang D, Zhang Z. Post-translational modification and mitochondrial function in Parkinson's disease. Front Mol Neurosci 2024; 16:1329554. [PMID: 38273938 PMCID: PMC10808367 DOI: 10.3389/fnmol.2023.1329554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with currently no cure. Most PD cases are sporadic, and about 5-10% of PD cases present a monogenic inheritance pattern. Mutations in more than 20 genes are associated with genetic forms of PD. Mitochondrial dysfunction is considered a prominent player in PD pathogenesis. Post-translational modifications (PTMs) allow rapid switching of protein functions and therefore impact various cellular functions including those related to mitochondria. Among the PD-associated genes, Parkin, PINK1, and LRRK2 encode enzymes that directly involved in catalyzing PTM modifications of target proteins, while others like α-synuclein, FBXO7, HTRA2, VPS35, CHCHD2, and DJ-1, undergo substantial PTM modification, subsequently altering mitochondrial functions. Here, we summarize recent findings on major PTMs associated with PD-related proteins, as enzymes or substrates, that are shown to regulate important mitochondrial functions and discuss their involvement in PD pathogenesis. We will further highlight the significance of PTM-regulated mitochondrial functions in understanding PD etiology. Furthermore, we emphasize the potential for developing important biomarkers for PD through extensive research into PTMs.
Collapse
Affiliation(s)
- Shishi Luo
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Danling Wang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Giusto E, Maistrello L, Iannotta L, Giusti V, Iovino L, Bandopadhyay R, Antonini A, Bubacco L, Barresi R, Plotegher N, Greggio E, Civiero L. Prospective Role of PAK6 and 14-3-3γ as Biomarkers for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:495-506. [PMID: 38640169 DOI: 10.3233/jpd-230402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Lucia Iannotta
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Angelo Antonini
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Singh V, Menard MA, Serrano GE, Beach TG, Zhao HT, Riley-DiPaolo A, Subrahmanian N, LaVoie MJ, Volpicelli-Daley LA. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun 2023; 11:201. [PMID: 38110990 PMCID: PMC10726543 DOI: 10.1186/s40478-023-01704-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.
Collapse
Affiliation(s)
- Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | - Alexis Riley-DiPaolo
- Department of Neuroscience at the University of Florida, Gainesville, FL, 32611, USA
| | - Nitya Subrahmanian
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
35
|
Ohtonen S, Giudice L, Jäntti H, Fazaludeen MF, Shakirzyanova A, Gómez-Budia M, Välimäki NN, Niskanen J, Korvenlaita N, Fagerlund I, Koistinaho J, Amiry-Moghaddam M, Savchenko E, Roybon L, Lehtonen Š, Korhonen P, Malm T. Human iPSC-derived microglia carrying the LRRK2-G2019S mutation show a Parkinson's disease related transcriptional profile and function. Sci Rep 2023; 13:22118. [PMID: 38092815 PMCID: PMC10719377 DOI: 10.1038/s41598-023-49294-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
LRRK2-G2019S is one of the most common Parkinson's disease (PD)-associated mutations and has been shown to alter microglial functionality. However, the impact of LRRK2-G2019S on transcriptional profile of human induced pluripotent stem cell-derived microglia-like cells (iMGLs) and how it corresponds to microglia in idiopathic PD brain is not known. Here we demonstrate that LRRK2-G2019S carrying iMGL recapitulate aspects of the transcriptional signature of human idiopathic PD midbrain microglia. LRRK2-G2019S induced subtle and donor-dependent alterations in iMGL mitochondrial respiration, phagocytosis and cytokine secretion. Investigation of microglial transcriptional state in the midbrains of PD patients revealed a subset of microglia with a transcriptional overlap between the in vitro PD-iMGL and human midbrain PD microglia. We conclude that LRRK2-G2019S iMGL serve as a model to study PD-related effects in human microglia.
Collapse
Affiliation(s)
- Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Fagerlund
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ekaterina Savchenko
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Neurodegenerative Science, The MiND Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
36
|
Wallings RL, Mark JR, Staley HA, Gillett DA, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. ASO-mediated knockdown or kinase inhibition of G2019S-Lrrk2 modulates lysosomal tubule-associated antigen presentation in macrophages. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102064. [PMID: 38028198 PMCID: PMC10661462 DOI: 10.1016/j.omtn.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Genetic variation around the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD therapeutics with LRRK2 antisense oligonucleotides (ASOs) now moving toward clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Here it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR-dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knockdown of mutant Lrrk2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targeting therapies with systemic activity may have therapeutic value with regard to mutant LRRK2, but deleterious effects on the peripheral immune system, such as altered pathogen control in these cells, should be considered when reducing levels of non-mutant LRRK2.
Collapse
Affiliation(s)
- Rebecca L. Wallings
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Julian R. Mark
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Hannah A. Staley
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Drew A. Gillett
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Noelle Neighbarger
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Holly Kordasiewicz
- Neurology, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Warren D. Hirst
- Neurodegenerative Diseases Research Unit, Biogen, 115 Broadway, Cambridge, MA 02142, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Department of Neurology and Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| |
Collapse
|
37
|
Sanz Murillo M, Villagran Suarez A, Dederer V, Chatterjee D, Alegrio Louro J, Knapp S, Mathea S, Leschziner AE. Inhibition of Parkinson's disease-related LRRK2 by type I and type II kinase inhibitors: Activity and structures. SCIENCE ADVANCES 2023; 9:eadk6191. [PMID: 38039358 PMCID: PMC10691770 DOI: 10.1126/sciadv.adk6191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD) and a risk factor for the sporadic form. Increased kinase activity was shown in patients with both familial and sporadic PD, making LRRK2 kinase inhibitors a major focus of drug development efforts. Although much progress has been made in understanding the structural biology of LRRK2, there are no available structures of LRRK2 inhibitor complexes. To this end, we solved cryo-electron microscopy structures of LRRK2, wild-type and PD-linked mutants, bound to the LRRK2-specific type I inhibitor MLi-2 and the broad-spectrum type II inhibitor GZD-824. Our structures revealed an active-like LRRK2 kinase in the type I inhibitor complex, and an inactive DYG-out in the type II inhibitor complex. Our structural analysis also showed how inhibitor-induced conformational changes in LRRK2 are affected by its autoinhibitory N-terminal repeats. The structures provide a template for the rational development of LRRK2 kinase inhibitors covering both canonical inhibitor binding modes.
Collapse
Affiliation(s)
- Marta Sanz Murillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Amalia Villagran Suarez
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Verena Dederer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Deep Chatterjee
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Jaime Alegrio Louro
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Stefan Knapp
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Sebastian Mathea
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Kawakami F, Imai M, Isaka Y, Cookson MR, Maruyama H, Kubo M, Farrer MJ, Kanzaki M, Kawashima R, Maekawa T, Tamaki S, Kurosaki Y, Kojima F, Ohba K, Ichikawa T. LRRK2 negatively regulates glucose tolerance via regulation of membrane translocation of GLUT4 in adipocytes. FEBS Open Bio 2023; 13:2200-2214. [PMID: 37845194 PMCID: PMC10699104 DOI: 10.1002/2211-5463.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Epidemiological studies have shown that abnormalities of glucose metabolism are involved in leucine-rich repeat kinase 2 (LRRK2)-associated Parkinson's disease (PD). However, the physiological significance of this association is unclear. In the present study, we investigated the effect of LRRK2 on high-fat diet (HFD)-induced glucose intolerance using Lrrk2-knockout (KO) mice. We found for the first time that HFD-fed KO mice display improved glucose tolerance compared with their wild-type (WT) counterparts. In addition, high serum insulin and leptin, as well as low serum adiponectin resulting from HFD in WT mice were improved in KO mice. Using western blotting, we found that Lrrk2 is highly expressed in adipose tissues compared with other insulin-related tissues that are thought to be important in glucose tolerance, including skeletal muscle, liver, and pancreas. Lrrk2 expression and phosphorylation of its kinase substrates Rab8a and Rab10 were significantly elevated after HFD treatment in WT mice. In cell culture experiments, treatment with a LRRK2 kinase inhibitor stimulated insulin-dependent membrane translocation of glucose transporter 4 (Glut4) and glucose uptake in mouse 3T3-L1 adipocytes. We conclude that increased LRRK2 kinase activity in adipose tissue exacerbates glucose tolerance by suppressing Rab8- and Rab10-mediated GLUT4 membrane translocation.
Collapse
Affiliation(s)
- Fumitaka Kawakami
- Department of Regulation Biochemistry, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
- Department of Health Administration, School of Allied Health SciencesKitasato UniversitySagamiharaJapan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
| | - Motoki Imai
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
- Department of Molecular Diagnostics, School of Allied Health SciencesKitasato UniversitySagamiharaJapan
| | - Yuki Isaka
- Department of Regulation Biochemistry, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | - Hiroko Maruyama
- Department of Cytopathology, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
- Department of Microbiology, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
| | - Matthew J. Farrer
- Department of Neurology and Fixel InstituteUniversity of FloridaGainesvilleFLUSA
| | - Makoto Kanzaki
- Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
| | - Tatsunori Maekawa
- Department of Regulation Biochemistry, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
| | - Shun Tamaki
- Department of Regulation Biochemistry, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
| | - Yoshifumi Kurosaki
- Department of Regulation Biochemistry, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
- Department of Medical Laboratory Sciences, School of Allied Health SciencesKitasato UniversitySagamiharaJapan
| | - Fumiaki Kojima
- Department of Regulation Biochemistry, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
- Department of Pharmacology, School of Allied Health SciencesKitasato UniversitySagamiharaJapan
| | - Kenichi Ohba
- Department of Health Administration, School of Allied Health SciencesKitasato UniversitySagamiharaJapan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Graduate School of Medical SciencesKitasato UniversitySagamiharaJapan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health ScienceKitasato UniversitySagamiharaJapan
| |
Collapse
|
39
|
Kattar SD, Gulati A, Margrey KA, Keylor MH, Ardolino M, Yan X, Johnson R, Palte RL, McMinn SE, Nogle L, Su J, Xiao D, Piesvaux J, Lee S, Hegde LG, Woodhouse JD, Faltus R, Moy LY, Xiong T, Ciaccio PJ, Pearson K, Patel M, Otte KM, Leyns CEG, Kennedy ME, Bennett DJ, DiMauro EF, Fell MJ, Fuller PH. Discovery of MK-1468: A Potent, Kinome-Selective, Brain-Penetrant Amidoisoquinoline LRRK2 Inhibitor for the Potential Treatment of Parkinson's Disease. J Med Chem 2023; 66:14912-14927. [PMID: 37861679 DOI: 10.1021/acs.jmedchem.3c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Genetic mutation of the leucine-rich repeat kinase 2 (LRRK2) protein has been associated with Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder that is devoid of efficacious disease-modifying therapies. Herein, we describe the invention of an amidoisoquinoline (IQ)-derived LRRK2 inhibitor lead chemical series. Knowledge-, structure-, and property-based drug design in concert with rigorous application of in silico calculations and presynthesis predictions enabled the prioritization of molecules with favorable CNS "drug-like" physicochemical properties. This resulted in the discovery of compound 8, which was profiled extensively before human ether-a-go-go (hERG) ion channel inhibition halted its progression. Strategic reduction of lipophilicity and basicity resulted in attenuation of hERG ion channel inhibition while maintaining a favorable CNS efflux transporter profile. Further structure- and property-based optimizations resulted in the discovery of preclinical candidate MK-1468. This exquisitely selective LRRK2 inhibitor has a projected human dose of 48 mg BID and a preclinical safety profile that supported advancement toward GLP toxicology studies.
Collapse
Affiliation(s)
- Solomon D Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anmol Gulati
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kaila A Margrey
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rebecca Johnson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lisa Nogle
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jing Su
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dong Xiao
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jennifer Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Susi Lee
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Robert Faltus
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lily Y Moy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Paul J Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kara Pearson
- Merck & Co., Inc., 770 Sumneytown Pike., West Point, Pennsylvania 19486, United States
| | - Mayankbhai Patel
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Cheryl E G Leyns
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Naskar A, Bhanja KK, Roy RK, Patra N. Role of the Residue Q1919 in Increasing Kinase Activity of G2019S LRRK2 Kinase: A Computational Study. Chemphyschem 2023; 24:e202300306. [PMID: 37584472 DOI: 10.1002/cphc.202300306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Mutations in multi-domain leucine-rich repeat kinase 2 (LRRK2) have been an interest to researchers as these mutations are associated with Parkinson's disease. G2019S mutation in LRRK2 kinase domain leads to the formation of additional hydrogen bonds by S2019 which results in stabilization of the active state of the kinase, thereby increasing kinase activity. Two additional hydrogen bonds of S2019 are reported separately. Here, a mechanistic picture of the formation of additional hydrogen bonds of S2019 with Q1919 (also with E1920) is presented using 'active' Roco4 kinase as a homology model and its relationship with the stabilization of the 'active' G2019S LRRK2 kinase. A conformational flipping of residue Q1919 was found which helped to form stable hydrogen bond with S2019 and made 'active' state more stable in G2019S LRRK2. Two different states were found within the 'active' kinase with respect to the conformational change (flipping) in Q1919. Two doubly-mutated systems, G2019S/Q1919A and G2019S/E1920 K, were studied separately to check the effect of Q1919 and E1920. For both cases, the stable S2 state was not formed, leading to a decrease in kinase activity. These results indicate that both the additional hydrogen bonds of S2019 (with Q1919 and E1920) are necessary to stabilize the active G2019S LRRK2.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, India
| | - Kousik Kumar Bhanja
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, India
| | - Rakesh Kumar Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, India
| |
Collapse
|
41
|
de Guilhem de Lataillade A, Pellegrini C, Neunlist M, Rolli-Derkinderen M, Derkinderen P. Are LRRK2 mysteries lurking in the gut? Am J Physiol Gastrointest Liver Physiol 2023; 325:G429-G435. [PMID: 37643021 DOI: 10.1152/ajpgi.00162.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Gut-brain axis and inflammation are two hot topics in Parkinson's disease (PD). In this setting, the leucine-rich repeat kinase 2 (LRRK2) gene, which encodes the eponym protein, has attracted much attention. LRRK2 is not only the gene most commonly associated with Parkinson's disease but also a susceptibility gene for Crohn's disease (CD), thereby suggesting that it may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. In contrast to the accumulated data on LRRK2 in the central nervous system (CNS), research on LRRK2 in the digestive tract is still in its infancy, and the scope of the present review article is therefore to review existing studies on LRRK2 in the gastrointestinal tract in both physiological and pathological conditions. In light of current data on LRRK2 in the gastrointestinal tract, we discuss if LRRK2 could be or not regarded as a molecular link between gut inflammation, Parkinson's disease, and Crohn's disease, and we suggest directions for future research.
Collapse
Affiliation(s)
- Adrien de Guilhem de Lataillade
- The Enteric Nervous System In Gut And Brain Disorders, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, Nantes, France
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michel Neunlist
- The Enteric Nervous System In Gut And Brain Disorders, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, Nantes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System In Gut And Brain Disorders, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, Nantes, France
| | - Pascal Derkinderen
- The Enteric Nervous System In Gut And Brain Disorders, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, Nantes, France
| |
Collapse
|
42
|
Kim J, Daadi EW, Daadi ES, Oh T, Deleidi M, Daadi MM. LRRK2 Attenuates Antioxidant Response in Familial Parkinson's Disease Derived Neural Stem Cells. Cells 2023; 12:2550. [PMID: 37947628 PMCID: PMC10648992 DOI: 10.3390/cells12212550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons which leads to impaired motor and cognitive functions. PD is predominantly an idiopathic disease; however, about 5% of cases are linked to hereditary mutations. The most common mutation in both familial and sporadic PD is the G2019S mutation of leucine-rich repeat kinase 2 (LRRK2). Currently, it is not fully understood how this mutation leads to PD pathology. In this study, we isolated self-renewable, multipotent neural stem cells (NSCs) from induced pluripotent stem cells (iPSCs) harboring the G2019S LRRK2 mutation and compared them with their isogenic gene corrected counterparts using single-cell RNA-sequencing. Unbiased single-cell transcriptomic analysis revealed perturbations in many canonical pathways, specifically NRF2-mediated oxidative stress response, and glutathione redox reactions. Through various functional assays, we observed that G2019S iPSCs and NSCs exhibit increased basal levels of reactive oxygen species (ROS). We demonstrated that mutant cells show significant increase in the expression for KEAP1 and decrease in NRF2 associated with a reduced antioxidant response. The decreased viability of mutant NSCs in the H2O2-induced oxidative stress assay was rescued by two potent antioxidant drugs, PrC-210 at concentrations of 500 µM and 1 mM and Edaravone at concentrations 50 µM and 100 µM. Our data suggest that the hyperactive LRRK2 G2019S kinase activity leads to increase in KEAP1, which binds NRF2 and leads to its degradation, reduction in the antioxidant response, increased ROS, mitochondria dysfunction and cell death observed in the PD phenotype.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Department of Cell Systems & Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas Sebastien Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163, Paris Cité University, 75015 Paris, France
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Department of Cell Systems & Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| |
Collapse
|
43
|
Mazaki Y, Handa H, Fumoto Y, Horinouchi T, Onodera Y. LRRK2 is involved in the chemotaxis of neutrophils and differentiated HL-60 cells, and the inhibition of LRRK2 kinase activity increases fMLP-induced chemotactic activity. Cell Commun Signal 2023; 21:300. [PMID: 37904222 PMCID: PMC10614378 DOI: 10.1186/s12964-023-01305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Neutrophils depend heavily on glycolysis for energy production under normal conditions. In contrast, neutrophils require energy supplied by mitochondrial oxidative phosphorylation (OXPHOS) during chemotaxis. However, the mechanism by which the energy supply changes from glycolysis to OXPHOS remains unknown. Leucine-rich repeat kinase 2 (LRRK2) is partially present in the outer mitochondrial membrane fraction. Lrrk2-deficient cells show mitochondrial fragmentation and reduced OXPHOS activity. We have previously reported that mitofusin (MFN) 2 is involved in chemotaxis and OXPHOS activation upon chemoattractant N-formyl-Met-Leu-Phe (fMLP) stimulation in differentiated HL-60 (dHL-60) cells. It has been previously reported that LRRK2 binds to MFN2 and partially colocalizes with MFN2 at the mitochondrial membranes. This study investigated the involvement of LRRK2 in chemotaxis and MFN2 activation in neutrophils and dHL-60 cells. METHODS Lrrk2 knockout neutrophils and Lrrk2 knockdown dHL-60 cells were used to examine the possible involvement of LRRK2 in chemotaxis. Lrrk2 knockdown dHL-60 cells were used a tetracycline-inducible small hairpin RNA (shRNA) system to minimize the effects of LRRK2 knockdown during cell culture. The relationship between LRRK2 and MFN2 was investigated by measuring the GTP-binding activity of MFN2 in Lrrk2 knockdown dHL-60 cells. The effects of LRRK2 kinase activity on chemotaxis were examined using the LRRK2 kinase inhibitor MLi-2. RESULTS fMLP-induced chemotactic activity was reduced in Lrrk2 knockout neutrophils in vitro and in vivo. Lrrk2 knockdown in dHL-60 cells expressing Lrrk2 shRNA also reduced fMLP-induced chemotactic activity. Lrrk2 knockdown dHL-60 cells showed reduced OXPHOS activity and suppressed mitochondrial morphological change, similar to Mfn2 knockdown dHL-60 cells. The amount of LRRK2 in the mitochondrial fraction and the GTP-binding activity of MFN2 increased upon fMLP stimulation, and the MFN2 GTP-binding activity was suppressed in Lrrk2 knockdown dHL-60 cells. Furthermore, the kinase activity of LRRK2 and Ser935 phosphorylation of LRRK2 were reduced upon fMLP stimulation, and LRRK2 kinase inhibition by MLi-2 increased the migration to fMLP. CONCLUSIONS LRRK2 is involved in neutrophil chemotaxis and the GTP-binding activity of MFN2 upon fMLP stimulation. On the other hand, the kinase activity of LRRK2 shows a negative regulatory effect on fMLP-induced chemotactic activity in dHL-60 cells. Video Abstract.
Collapse
Affiliation(s)
- Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Haruka Handa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshizuki Fumoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
44
|
Dues DJ, Ma Y, Nguyen APT, Offerman AV, Beddows I, Moore DJ. Formation of templated inclusions in a forebrain α-synuclein mouse model is independent of LRRK2. Neurobiol Dis 2023; 188:106338. [PMID: 39492414 PMCID: PMC10906965 DOI: 10.1016/j.nbd.2023.106338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 03/05/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.
Collapse
Affiliation(s)
- Dylan J Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Alina V Offerman
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Ian Beddows
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
45
|
Wang X, Espadas J, Wu Y, Cai S, Ge J, Shao L, Roux A, De Camilli P. Membrane remodeling properties of the Parkinson's disease protein LRRK2. Proc Natl Acad Sci U S A 2023; 120:e2309698120. [PMID: 37844218 PMCID: PMC10614619 DOI: 10.1073/pnas.2309698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are responsible for late-onset autosomal dominant Parkinson's disease. LRRK2 has been implicated in a wide range of physiological processes including membrane repair in the endolysosomal system. Here, using cell-free systems, we report that purified LRRK2 directly binds acidic lipid bilayers with a preference for highly curved bilayers. While this binding is nucleotide independent, LRRK2 can also deform low-curvature liposomes into narrow tubules in a guanylnucleotide-dependent but Adenosine 5'-triphosphate-independent way. Moreover, assembly of LRRK2 into scaffolds at the surface of lipid tubules can constrict them. We suggest that an interplay between the membrane remodeling and signaling properties of LRRK2 may be key to its physiological function. LRRK2, via its kinase activity, may achieve its signaling role at sites where membrane remodeling occurs.
Collapse
Affiliation(s)
- Xinbo Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Javier Espadas
- Department of Biochemistry, University of Geneva, GenevaCH-1211, Switzerland
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Shujun Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, GenevaCH-1211, Switzerland
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
46
|
Yao L, Lu F, Koc S, Zheng Z, Wang B, Zhang S, Skutella T, Lu G. LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303711. [PMID: 37672887 PMCID: PMC10602550 DOI: 10.1002/advs.202303711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-β1. Knocking down THBS1 can rescue ER stress by interacting with TGF-β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Longping Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Fengfei Lu
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Sumeyye Koc
- Department of NeuroscienceInstitute of Health SciencesOndokuz Mayıs UniversitySamsun55139Turkey
| | - Zijian Zheng
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| | - Baoyan Wang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Shizhong Zhang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Thomas Skutella
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Guohui Lu
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| |
Collapse
|
47
|
Tan S, Wang J, Gao P, Xie G, Zhang Q, Liu H, Yao X. Unveiling the Selectivity Mechanism of Type-I LRRK2 Inhibitors by Computational Methods: Insights from Binding Thermodynamics and Kinetics Simulation. ACS Chem Neurosci 2023; 14:3472-3486. [PMID: 37647597 DOI: 10.1021/acschemneuro.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Understanding the selectivity mechanisms of inhibitors toward highly similar proteins is very important in new drug discovery. Developing highly selective targeting of leucine-rich repeat kinase 2 (LRRK2) kinases for the treatment of Parkinson's disease (PD) is challenging because of the similarity of the kinase ATP binding pocket. During the development of LRRK2 inhibitors, off-target effects on other kinases, especially TTK and JAK2 kinases, have been observed. As a result, significant time and resources have been devoted to improving the selectivity for the LRRK2 target. DNL201 is an LRRK2 kinase inhibitor entering phase I clinical studies. The experiments have shown that DNL201 significantly inhibits LRRK2 kinase activity, with >167-fold selectivity over JAK2 and TTK kinases. However, the potential mechanisms of inhibitor preferential binding to LRRK2 kinase are still not well elucidated. In this work, to reveal the underlying general selectivity mechanism, we carried out several computational methods and comprehensive analyses from both the binding thermodynamics and kinetics on two representative LRRK2 inhibitors (DNL201 and GNE7915) to LRRK2. Our results suggest that the structural and kinetic differences between the proteins may play a key role in determining the activity of the selective small-molecule inhibitor. The selectivity mechanisms proposed in this work could be helpful for the rational design of novel selective LRRK2 kinase inhibitors against PD.
Collapse
Affiliation(s)
- Shuoyan Tan
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Jun Wang
- Ping An Healthcare Technology, 100000 Beijing, China
| | - Peng Gao
- Ping An Healthcare Technology, 100000 Beijing, China
| | - Guotong Xie
- Ping An Healthcare Technology, 100000 Beijing, China
| | - Qianqian Zhang
- Faculty of Applied Science, Macao Polytechnic University, 999078 Macao SAR, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, 999078 Macao SAR, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, Gansu, China
- Faculty of Applied Science, Macao Polytechnic University, 999078 Macao SAR, China
| |
Collapse
|
48
|
Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson's disease. Transl Neurodegener 2023; 12:44. [PMID: 37718439 PMCID: PMC10506345 DOI: 10.1186/s40035-023-00378-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
A pathological feature of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and decreased dopamine (DA) content in the substantia nigra pars compacta in PD brains. DA is the neurotransmitter of dopaminergic neurons. Accumulating evidence suggests that DA interacts with environmental and genetic factors to contribute to PD pathophysiology. Disturbances of DA synthesis, storage, transportation and metabolism have been shown to promote neurodegeneration of dopaminergic neurons in various PD models. DA is unstable and can undergo oxidation and metabolism to produce multiple reactive and toxic by-products, including reactive oxygen species, DA quinones, and 3,4-dihydroxyphenylacetaldehyde. Here we summarize and highlight recent discoveries on DA-linked pathophysiologic pathways, and discuss the potential protective and therapeutic strategies to mitigate the complications associated with DA.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Ling Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Dennis Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tit Meng Lim
- Department of Biological Science, National University of Singapore, Singapore, 119077, Singapore
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
49
|
Naskar A, Bhanja KK, Roy RK, Patra N. Structural insight into G2019S mutated LRRK2 kinase and brain-penetrant type I inhibitor complex: a molecular dynamics approach. J Biomol Struct Dyn 2023; 42:10129-10149. [PMID: 37702159 DOI: 10.1080/07391102.2023.2255675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
More than 40 mutations in the multidomain leucine-rich repeat kinase 2 (LRRK2) are found and mutation G2019S in the kinase domain is the most concerned with Parkinson's disease (PD). The discovery of the various types of inhibitors has largely emerged recently. However, the comparative study on molecular insight in WT and G2019S LRRK2 kinase domain upon binding of the inhibitors has not yet been explored in detail. This work considered five ATP-competitive Type I inhibitors complexed with WT and mutated LRRK2 kinase. Three reported potent and brain-penetrant inhibitors, GNE-7915, PF-06447475 and MLi-2 (comp1, comp2 and comp3 respectively) and also, another two inhibitors, Pyrrolo[2,3-b] pyridine derivative (comp4) and Pyrrolo[2,3-d] pyrimidine derivative (comp5), were used. In this work, classical and accelerated molecular dynamics (cMD and aMD) simulations were performed for a total of 12 systems (apo and holo). This study found structural and thermodynamic stability for all the inhibitors. Comparatively larger molecules (size 15.3 - 15.4 Å), comp1, comp3 and comp5, showed more selectivity towards mutated LRRK2 kinase in terms of flexibility of residues, compactness and dynamics of kinase, the stability inside the binding-pocket. Also, inhibitors comp3 and comp5 showed higher binding affinity towards G2019S LRRK2 among the five. Residues, E1948 and A1950 (in hinge region) were observed mainly to form hydrogen bonds with inhibitors. Finally, MLi-2 showed a conformational rearrangement by dihedral flipping in both WT and mutated systems but got stability in G2019S LRRK2. This work could potentially help design more improved and effective Type I inhibitors for G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Kousik K Bhanja
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| |
Collapse
|
50
|
Williamson MG, Madureira M, McGuinness W, Heon-Roberts R, Mock ED, Naidoo K, Cramb KML, Caiazza MC, Malpartida AB, Lavelle M, Savory K, Humble SW, Patterson R, Davis JB, Connor-Robson N, Ryan BJ, Wade-Martins R. Mitochondrial dysfunction and mitophagy defects in LRRK2-R1441C Parkinson's disease models. Hum Mol Genet 2023; 32:2808-2821. [PMID: 37384414 PMCID: PMC10481106 DOI: 10.1093/hmg/ddad102] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene have been identified as one of the most common genetic causes of Parkinson's disease (PD). The LRRK2 PD-associated mutations LRRK2G2019S and LRRK2R1441C, located in the kinase domain and in the ROC-COR domain, respectively, have been demonstrated to impair mitochondrial function. Here, we sought to further our understanding of mitochondrial health and mitophagy by integrating data from LRRK2R1441C rat primary cortical and human induced pluripotent stem cell-derived dopamine (iPSC-DA) neuronal cultures as models of PD. We found that LRRK2R1441C neurons exhibit decreased mitochondrial membrane potential, impaired mitochondrial function and decreased basal mitophagy levels. Mitochondrial morphology was altered in LRRK2R1441C iPSC-DA but not in cortical neuronal cultures or aged striatal tissue, indicating a cell-type-specific phenotype. Additionally, LRRK2R1441C but not LRRK2G2019S neurons demonstrated decreased levels of the mitophagy marker pS65Ub in response to mitochondrial damage, which could disrupt degradation of damaged mitochondria. This impaired mitophagy activation and mitochondrial function were not corrected by the LRRK2 inhibitor MLi-2 in LRRK2R1441C iPSC-DA neuronal cultures. Furthermore, we demonstrate LRRK2 interaction with MIRO1, a protein necessary to stabilize and to anchor mitochondria for transport, occurs at mitochondria, in a genotype-independent manner. Despite this, we found that degradation of MIRO1 was impaired in LRRK2R1441C cultures upon induced mitochondrial damage, suggesting a divergent mechanism from the LRRK2G2019S mutation.
Collapse
Affiliation(s)
- Matthew G Williamson
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Marta Madureira
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - William McGuinness
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Rachel Heon-Roberts
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Elliot D Mock
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Kalina Naidoo
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Kaitlyn M L Cramb
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Maria-Claudia Caiazza
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Ana B Malpartida
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
| | - Martha Lavelle
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Katrina Savory
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Stewart W Humble
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
- National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, 20892, USA
| | - Ryan Patterson
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, 20892, USA
| | - John B Davis
- Oxford Drug Discovery Institute, Centre of Medicines Discovery, University of Oxford, NDM Research Building, Old Road Campus, Oxford OX3 7FZ, UK
| | - Natalie Connor-Robson
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
| | - Brent J Ryan
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|