1
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Wang J, Yang L, Chai S, Ren Y, Guan M, Ma F, Liu J. An aquaporin gene MdPIP1;2 from Malus domestica confers salt tolerance in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153711. [PMID: 35550521 DOI: 10.1016/j.jplph.2022.153711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Aquaporins are known as water channel proteins. In this study, an aquaporin gene MdPIP1;2 was cloned from Malus domestica cv. Qinguan encoding a protein of 289 amino acids that formed the typical structure of aquaporin by six transmembrane domains, two asparagine-proline-alanine motifs, aromatic/arginine filter, and Forger's position. MdPIP1;2 was highly expressed in the water-sensitive or water-requiring tissues, and upregulated by salt and PEG stresses. MdPIP1;2 transgenic Arabidopsis exhibited enhanced salt stress tolerance with less Na + accumulation, lower malondialdehyde (MDA) content, lower electrolyte leakage (EL) level, and higher superoxide dismutase (SOD) and peroxidase (POD) activities compared with WT plants. Additionally, transcriptome analysis indicated MdPIP1;2 transgenic Arabidopsis could present healthier growth and development condition probably through regulating morphological structures and accumulating specific secondary metabolites under salt stress. Our results are a useful reference for better understanding the biological function of aquaporin in apple tree, especially in plant response to abiotic stress.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Leilei Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shuangshuang Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yafei Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Guan
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jingying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Tyerman SD, McGaughey SA, Qiu J, Yool AJ, Byrt CS. Adaptable and Multifunctional Ion-Conducting Aquaporins. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:703-736. [PMID: 33577345 DOI: 10.1146/annurev-arplant-081720-013608] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Aquaporins function as water and neutral solute channels, signaling hubs, disease virulence factors, and metabolon components. We consider plant aquaporins that transport ions compared to some animal counterparts. These are candidates for important, as yet unidentified, cation and anion channels in plasma, tonoplast, and symbiotic membranes. For those individual isoforms that transport ions, water, and gases, the permeability spans 12 orders of magnitude. This requires tight regulation of selectivity via protein interactions and posttranslational modifications. A phosphorylation-dependent switch between ion and water permeation in AtPIP2;1 might be explained by coupling between the gates of the four monomer water channels and the central pore of the tetramer. We consider the potential for coupling between ion and water fluxes that could form the basis of an electroosmotic transducer. A grand challenge in understanding the roles of ion transporting aquaporins is their multifunctional modes that are dependent on location, stress, time, and development.
Collapse
Affiliation(s)
- Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Samantha A McGaughey
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| | - Jiaen Qiu
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia;
| | - Caitlin S Byrt
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| |
Collapse
|
4
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
5
|
Sun TW, Yang CL, Kao TT, Wang TH, Lai MW, Ku C. Host Range and Coding Potential of Eukaryotic Giant Viruses. Viruses 2020; 12:E1337. [PMID: 33233432 PMCID: PMC7700475 DOI: 10.3390/v12111337] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced genomes in the last two decades have substantially advanced our knowledge of their host diversity, gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms. The seven well-recognized viral clades (taxonomic families) have drastically different host range. Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory experiments and comparative genomics have shed light on the unprecedented functional potential of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular conditions and cell-environment interactions. Evolutionary genomics can illuminate how current and past hosts shape viral gene repertoires, although it becomes more obscure with divergent sequences and deep phylogenies. Continued works to characterize giant viruses from marine and other environments will further contribute to our understanding of their host range, coding potential, and virus-host coevolution.
Collapse
Affiliation(s)
- Tsu-Wang Sun
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chia-Ling Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Tong Kao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Haw Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Ming-Wei Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
6
|
A Functional K + Channel from Tetraselmis Virus 1, a Member of the Mimiviridae. Viruses 2020; 12:v12101107. [PMID: 33003637 PMCID: PMC7650704 DOI: 10.3390/v12101107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/05/2022] Open
Abstract
Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which are large, double-stranded DNA viruses within the phylum Nucleocytoviricota. Recent sequencing projects revealed that alga-infecting members of Mimiviridae, another family within this phylum, may also contain genes encoding K+ channels. Here we examine the structural features and the functional properties of putative K+ channels from four cultivated members of Mimiviridae. While all four proteins contain variations of the conserved selectivity filter sequence of K+ channels, structural prediction algorithms suggest that only two of them have the required number and position of two transmembrane domains that are present in all K+ channels. After in vitro translation and reconstitution of the four proteins in planar lipid bilayers, we confirmed that one of them, a 79 amino acid protein from the virus Tetraselmis virus 1 (TetV-1), forms a functional ion channel with a distinct selectivity for K+ over Na+ and a sensitivity to Ba2+. Thus, virus-encoded K+ channels are not limited to Phycodnaviridae but also occur in the members of Mimiviridae. The large sequence diversity among the viral K+ channels implies multiple events of lateral gene transfer.
Collapse
|
7
|
Genetic Diversity of Potassium Ion Channel Proteins Encoded by Chloroviruses That Infect Chlorella heliozoae. Viruses 2020; 12:v12060678. [PMID: 32585987 PMCID: PMC7354518 DOI: 10.3390/v12060678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels.
Collapse
|
8
|
González-Dávalos L, Álvarez-Pérez M, Quesada-López T, Cereijo R, Campderrós L, Piña E, Shimada A, Villarroya F, Varela-Echavarria A, Mora O. Glucocorticoid gene regulation of aquaporin-7. VITAMINS AND HORMONES 2020; 112:179-207. [PMID: 32061341 DOI: 10.1016/bs.vh.2019.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AQP7 is the primary glycerol transporter in white (WAT) and brown (BAT) adipose tissues. There are immediate and quantitatively important actions of cortisone over the expression of AQP7 in murine and human adipocytes. Short-term response (minutes) of cortisone treatment result in an mRNA overexpression in white and brown differentiated adipocytes (between 1.5 and 6 folds). Conversely, long-term response (hours or days) result in decreased mRNA expression. The effects observed on AQP7 mRNA expression upon cortisone treatment in brown and white differentiated adipocytes are concordant with those observed for GK and HSD1B11.
Collapse
Affiliation(s)
- Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Mexico
| | - Mariana Álvarez-Pérez
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Mexico
| | - Tania Quesada-López
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Laura Campderrós
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Enrique Piña
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Ciudad de México, Mexico
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Mexico
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Alfredo Varela-Echavarria
- Laboratorio de Diferenciación Neural y Axogénesis, Instituto de Neurobiología, UNAM, Querétaro, Mexico
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Mexico.
| |
Collapse
|
9
|
Ishibashi K, Tanaka Y, Morishita Y. Perspectives on the evolution of aquaporin superfamily. VITAMINS AND HORMONES 2020; 112:1-27. [DOI: 10.1016/bs.vh.2019.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses 2019; 12:E20. [PMID: 31878033 PMCID: PMC7019647 DOI: 10.3390/v12010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.
Collapse
Affiliation(s)
- James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; (I.V.A.); (D.D.D.)
| | | | | |
Collapse
|
11
|
Genes for Membrane Transport Proteins: Not So Rare in Viruses. Viruses 2018; 10:v10090456. [PMID: 30149667 PMCID: PMC6163359 DOI: 10.3390/v10090456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Some viruses have genes encoding proteins with membrane transport functions. It is unknown if these types of proteins are rare or are common in viruses. In particular, the evolutionary origin of some of the viral genes is obscure, where other viral proteins have homologs in prokaryotic and eukaryotic organisms. We searched virus genomes in databases looking for transmembrane proteins with possible transport function. This effort led to the detection of 18 different types of putative membrane transport proteins indicating that they are not a rarity in viral genomes. The most abundant proteins are K+ channels. Their predicted structures vary between different viruses. With a few exceptions, the viral proteins differed significantly from homologs in their current hosts. In some cases the data provide evidence for a recent gene transfer between host and virus, but in other cases the evidence indicates a more complex evolutionary history.
Collapse
|
12
|
Ishibashi K, Morishita Y, Tanaka Y. The Evolutionary Aspects of Aquaporin Family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:35-50. [PMID: 28258564 DOI: 10.1007/978-94-024-1057-0_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aquaporins (AQPs ) are a family of transmembrane proteins present in almost all species including virus. They are grossly divided into three subfamilies based on the sequence around a highly conserved pore-forming NPA motif: (1) classical water -selective AQP (CAQP), (2) glycerol -permeable aquaglyceroporin (AQGP) and (3) AQP super-gene channel, superaquaporin (SAQP). AQP is composed of two tandem repeats of conserved three transmembrane domains and a NPA motif. AQP ancestors probably started in prokaryotes by the duplication of half AQP genes to be diversified into CAQPs or AQGPs by evolving a subfamily-specific carboxyl-terminal NPA motif. Both AQP subfamilies may have been carried over to unicellular eukaryotic ancestors, protists and further to multicellular organisms. Although fungus lineage has kept both AQP subfamilies, the plant lineage has lost AQGP after algal ancestors with extensive diversifications of CAQPs into PIP, TIP, SIP, XIP, HIP and LIP with a possible horizontal transfer of NIP from bacteria. Interestingly, the animal lineage has obtained new SAQP subfamily with highly deviated NPA motifs, especially at the amino-terminal halves in both prostomial and deuterostomial animals. The prostomial lineage has lost AQGP after hymenoptera, while the deuterostomial lineage has kept all three subfamilies up to the vertebrate with diversified CAQPs (AQP0, 1, 2, 4, 5, 6, 8) and AQGPs (AQP3, 7, 9, 10) with limited SAQPs (AQP11, 12) in mammals. Whole-genome duplications, local gene duplications and horizontal gene transfers may have produced the AQP diversity with adaptive selections and functional alternations in response to environment changes. With the above evolutionary perspective in mind, the function of each AQP could be speculated by comparison among species to get new insights into physiological roles of AQPs . This evolutionary guidance in AQP research will lead to deeper understandings of water and solute homeostasis.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan.
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, 1-847 Ohmiya, Saitama-City, Saitama, 330-8503, Japan
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
13
|
Touati M, Knipfer T, Visnovitz T, Kameli A, Fricke W. Limitation of Cell Elongation in Barley (Hordeum vulgare L.) Leaves Through Mechanical and Tissue-Hydraulic Properties. PLANT & CELL PHYSIOLOGY 2015; 56:1364-1373. [PMID: 25907571 DOI: 10.1093/pcp/pcv055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to assess the mechanical and hydraulic limitation of growth in leaf epidermal cells of barley (Hordeum vulgare L.) in response to agents which affect cellular water (mercuric chloride, HgCl(2)) and potassium (cesium chloride, CsCl; tetraethylammonium, TEA) transport, pump activity of plasma membrane H(+)-ATPase and wall acidification (fusicoccin, FC). Cell turgor (P) was measured with the cell pressure probe, and cell osmotic pressure (π) was analyzed through picoliter osmometry of single-cell extracts. A wall extensibility coefficient (M) and tissue hydraulic conductance coefficient (L) were derived using the Lockhart equation. There was a significant positive linear relationship between relative elemental growth rate and P, which fit all treatments, with an overall apparent yield threshold of 0.368 MPa. Differences in growth between treatments could be explained through differences in P. A comparison of L and M showed that growth in all except the FC treatment was co-limited through hydraulic and mechanical properties, though to various extents. This was accompanied by significant (0.17-0.24 MPa) differences in water potential (ΔΨ) between xylem and epidermal cells in the leaf elongation zone. In contrast, FC-treated leaves showed ΔΨ close to zero and a 10-fold increase in L.
Collapse
Affiliation(s)
- Mostefa Touati
- Department of Biology, Faculty of Nature and Life Sciences, University Ziane Achour, Djelfa, Algeria
| | - Thorsten Knipfer
- University College Dublin, School of Biology and Environmental Science, Science Centre West, Belfield, Dublin 4, Ireland Present address: Department of Viticulture and Enology, University of California, Davis, CA 95616-5270, USA
| | - Tamás Visnovitz
- University College Dublin, School of Biology and Environmental Science, Science Centre West, Belfield, Dublin 4, Ireland Present address: Research, Chemical Works of Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary
| | - Abdelkrim Kameli
- Laboratoire d'Eco-Physiologie Végétale, Département des Sciences Naturelles, Ecole Normale Supérieure de Kouba, 16050, Alger, Algeria
| | - Wieland Fricke
- University College Dublin, School of Biology and Environmental Science, Science Centre West, Belfield, Dublin 4, Ireland
| |
Collapse
|
14
|
Large dsDNA chloroviruses encode diverse membrane transport proteins. Virology 2015; 479-480:38-45. [PMID: 25766639 DOI: 10.1016/j.virol.2015.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/20/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022]
Abstract
Many large DNA viruses that infect certain isolates of chlorella-like green algae (chloroviruses) are unusual because they often encode a diverse set of membrane transport proteins, including functional K(+) channels and aquaglyceroporins as well as K(+) transporters and calcium transporting ATPases. Some chloroviruses also encode putative ligand-gated-like channel proteins. No one protein is present in all of the chloroviruses that have been sequenced, but the K(+) channel is the most common as only two chloroviruses have been isolated that lack this complete protein. This review describes the properties of these membrane-transporting proteins and suggests possible physiological functions and evolutionary histories for some of them.
Collapse
|
15
|
Siotto F, Martin C, Rauh O, Van Etten JL, Schroeder I, Moroni A, Thiel G. Viruses infecting marine picoplancton encode functional potassium ion channels. Virology 2014; 466-467:103-11. [PMID: 25441713 DOI: 10.1016/j.virol.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 01/19/2023]
Abstract
Phycodnaviruses are dsDNA viruses, which infect algae. Their large genomes encode many gene products, like small K(+) channels, with homologs in prokaryotes and eukaryotes. Screening for K(+) channels revealed their abundance in viruses from fresh-water habitats. Recent sequencing of viruses from marine algae or from salt water in Antarctica revealed sequences with the predicted characteristics of K(+) channels but with some unexpected features. Two genes encode either 78 or 79 amino acid proteins, which are the smallest known K(+) channels. Also of interest is an unusual sequence in the canonical α-helixes in K(+) channels. Structural prediction algorithms indicate that the new channels have the conserved α-helix folds but the algorithms failed to identify the expected transmembrane domains flanking the K(+) channel pores. In spite of these unexpected properties electophysiological studies confirmed that the new proteins are functional K(+) channels.
Collapse
Affiliation(s)
- Fenja Siotto
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Corinna Martin
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Oliver Rauh
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Indra Schroeder
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Anna Moroni
- Dipartimento di Biologia Università degli Studi di Milano e Istituto di Biofisica, CNR, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany.
| |
Collapse
|
16
|
von Charpuis C, Meckel T, Moroni A, Thiel G. The sorting of a small potassium channel in mammalian cells can be shifted between mitochondria and plasma membrane. Cell Calcium 2014; 58:114-21. [PMID: 25449299 DOI: 10.1016/j.ceca.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain.
Collapse
Affiliation(s)
- Charlotte von Charpuis
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Anna Moroni
- Department of Biology and CNR IBF-Mi, and Istituto Nazionale di Fisica della Materia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Gerhard Thiel
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| |
Collapse
|
17
|
Bihmidine S, Cao M, Kang M, Awada T, Van Etten JL, Dunigan DD, Clemente TE. Expression of Chlorovirus MT325 aquaglyceroporin (aqpv1) in tobacco and its role in mitigating drought stress. PLANTA 2014; 240:209-21. [PMID: 24797278 PMCID: PMC4148780 DOI: 10.1007/s00425-014-2075-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
MAIN CONCLUSIONS A Chlorovirus aquaglyceroporin expressed in tobacco is localized to the plastid and plasma membranes. Transgenic events display improved response to water deficit. Necrosis in adult stage plants is observed. Aquaglyceroporins are a subclass of the water channel aquaporin proteins (AQPs) that transport glycerol along with other small molecules transcellular in addition to water. In the studies communicated herein, we analyzed the expression of the aquaglyceroporin gene designated, aqpv1, from Chlorovirus MT325, in tobacco (Nicotiana tabacum), along with phenotypic changes induced by aqpv1 expression in planta. Interestingly, aqpv1 expression under control of either a constitutive or a root-preferred promoter, triggered local lesion formation in older leaves, which progressed significantly after induction of flowering. Fusion of aqpv1 with GFP suggests that the protein localized to the plasmalemma, and potentially with plastid and endoplasmic reticulum membranes. Physiological characterizations of transgenic plants during juvenile stage growth were monitored for potential mitigation to water dry-down (i.e., drought) and recovery. Phenotypic analyses on drought mimic/recovery of juvenile transgenic plants that expressed a functional aqpv1 transgene had higher photosynthetic rates, stomatal conductance, and water use efficiency, along with maximum carboxylation and electron transport rates when compared to control plants. These physiological attributes permitted the juvenile aqpv1 transgenic plants to perform better under drought-mimicked conditions and hastened recovery following re-watering. This drought mitigation effect is linked to the ability of the transgenic plants to maintain cell turgor.
Collapse
Affiliation(s)
- Saadia Bihmidine
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE
68583-0968, USA
| | - Mingxia Cao
- Department of A gronomy and Horticulture, Center for Plant Science
Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0660, USA
| | - Ming Kang
- Department of Plant Pathology, Nebraska Center for Virology, University of
Nebraska-Lincoln, Lincoln, NE 68583-0900, USA
| | - Tala Awada
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE
68583-0968, USA
| | - James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of
Nebraska-Lincoln, Lincoln, NE 68583-0900, USA
| | - David D. Dunigan
- Department of Plant Pathology, Nebraska Center for Virology, University of
Nebraska-Lincoln, Lincoln, NE 68583-0900, USA
| | - Tom E. Clemente
- Department of A gronomy and Horticulture, Center for Plant Science
Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0660, USA,
| |
Collapse
|
18
|
Romani G, Piotrowski A, Hillmer S, Gurnon J, Van Etten JL, Moroni A, Thiel G, Hertel B. A virus-encoded potassium ion channel is a structural protein in the chlorovirus Paramecium bursaria chlorella virus 1 virion. J Gen Virol 2013; 94:2549-2556. [PMID: 23918407 DOI: 10.1099/vir.0.055251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most chloroviruses encode small K(+) channels, which are functional in electrophysiological assays. The experimental finding that initial steps in viral infection exhibit the same sensitivity to channel inhibitors as the viral K(+) channels has led to the hypothesis that the channels are structural proteins located in the internal membrane of the virus particles. This hypothesis was questioned recently because proteomic studies failed to detect the channel protein in virions of the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1). Here, we used a mAb raised against the functional K(+) channel from chlorovirus MA-1D to search for the viral K(+) channel in the virus particle. The results showed that the antibody was specific and bound to the tetrameric channel on the extracellular side. The antibody reacted in a virus-specific manner with protein extracts from chloroviruses that encoded channels similar to that from MA-1D. There was no cross-reactivity with chloroviruses that encoded more diverse channels or with a chlorovirus that lacked a K(+) channel gene. Together with electron microscopic imaging, which revealed labelling of individual virus particles with the channel antibody, these results establish that the viral particles contain an active K(+) channel, presumably located in the lipid membrane that surrounds the DNA in the mature virions.
Collapse
Affiliation(s)
- Giulia Romani
- Dipartimento di Bioscienze, Università degli Studi di Milano e Istituto di Biofisica, CNR, Milano, Italy
| | - Adrianna Piotrowski
- Membrane Biophysics Group, Department of Biology, Technical University Darmstadt, Germany
| | - Stefan Hillmer
- COS - Entwicklungsbiologie der Pflanzen, University of Heidelberg, Germany
| | - James Gurnon
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Anna Moroni
- Dipartimento di Bioscienze, Università degli Studi di Milano e Istituto di Biofisica, CNR, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics Group, Department of Biology, Technical University Darmstadt, Germany
| | - Brigitte Hertel
- Membrane Biophysics Group, Department of Biology, Technical University Darmstadt, Germany
| |
Collapse
|
19
|
Thiel G, Moroni A, Blanc G, Van Etten JL. Potassium ion channels: could they have evolved from viruses? PLANT PHYSIOLOGY 2013; 162:1215-24. [PMID: 23719891 PMCID: PMC3707557 DOI: 10.1104/pp.113.219360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 05/23/2013] [Indexed: 06/01/2023]
Abstract
Phylogenetic analyses of small viral K+ channels suggests that they did not originate from their hosts, but instead could be the source of the postulated pore precursor in the evolution of K+ channels.
Collapse
Affiliation(s)
- Gerhard Thiel
- Department of Biology, Technische Universität-Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| | | | | | | |
Collapse
|
20
|
Gebhardt M, Henkes LM, Tayefeh S, Hertel B, Greiner T, Van Etten JL, Baumeister D, Cosentino C, Moroni A, Kast SM, Thiel G. Relevance of lysine snorkeling in the outer transmembrane domain of small viral potassium ion channels. Biochemistry 2012; 51:5571-9. [PMID: 22734656 DOI: 10.1021/bi3006016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called "snorkeling" of a cationic amino acid, which is conserved in the outer TMD of small viral K(+) channels. Experimentally, snorkeling activity is not mandatory for Kcv(PBCV-1) because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, Kcv(ATCV-1) and Kcv(MT325), lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of Kcv(PBCV-1) and N-terminally truncated mutants; the truncated mutants mimic Kcv(ATCV-1) and Kcv(MT325). Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K(+) channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.
Collapse
Affiliation(s)
- Manuela Gebhardt
- Botany Institute, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hamacher K, Greiner T, Ogata H, Van Etten JL, Gebhardt M, Villarreal LP, Cosentino C, Moroni A, Thiel G. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis. PLoS One 2012; 7:e38826. [PMID: 22685610 PMCID: PMC3369850 DOI: 10.1371/journal.pone.0038826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/11/2012] [Indexed: 11/26/2022] Open
Abstract
Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+) channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+) channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+) channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+) channels in algae and perhaps even all cellular organisms.
Collapse
Affiliation(s)
- Kay Hamacher
- Computational Biology Group, Technische Universität Darmstadt, Darmstadt, Germany
| | - Timo Greiner
- Membrane Biophysics Group, Technische Universität Darmstadt, Darmstadt, Germany
| | - Hiroyuki Ogata
- Structural and Genomic Information Laboratory, Aix-Marseille University, Marseille, France
| | - James L. Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Manuela Gebhardt
- Membrane Biophysics Group, Technische Universität Darmstadt, Darmstadt, Germany
| | - Luis P. Villarreal
- Center of Virus Research, University of California Irvine, Irvine, California, United States of America
| | | | - Anna Moroni
- Department of Biology, Università degli Studi di Milano, Milan, Italy
| | - Gerhard Thiel
- Membrane Biophysics Group, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
22
|
Van Etten JL, Dunigan DD. Chloroviruses: not your everyday plant virus. TRENDS IN PLANT SCIENCE 2012; 17:1-8. [PMID: 22100667 PMCID: PMC3259250 DOI: 10.1016/j.tplants.2011.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/20/2011] [Accepted: 10/25/2011] [Indexed: 05/29/2023]
Abstract
Viruses infecting higher plants are among the smallest viruses known and typically have four to ten protein-encoding genes. By contrast, many viruses that infect algae (classified in the virus family Phycodnaviridae) are among the largest viruses found to date and have up to 600 protein-encoding genes. This brief review focuses on one group of plaque-forming phycodnaviruses that infect unicellular chlorella-like green algae. The prototype chlorovirus PBCV-1 has more than 400 protein-encoding genes and 11 tRNA genes. About 40% of the PBCV-1 encoded proteins resemble proteins of known function including many that are completely unexpected for a virus. In many respects, chlorovirus infection resembles bacterial infection by tailed bacteriophages.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA.
| | | |
Collapse
|
23
|
Greiner T, Ramos J, Alvarez MC, Gurnon JR, Kang M, Van Etten JL, Moroni A, Thiel G. Functional HAK/KUP/KT-like potassium transporter encoded by chlorella viruses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:977-986. [PMID: 21848655 DOI: 10.1111/j.1365-313x.2011.04748.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chlorella viruses are a source of interesting membrane transport proteins. Here we examine a putative K(+) transporter encoded by virus FR483 and related chlorella viruses. The protein shares sequence and structural features with HAK/KUP/KT-like K(+) transporters from plants, bacteria and fungi. Yeast complementation assays and Rb(+) uptake experiments show that the viral protein, termed HAKCV (high-affinity K(+) transporter of chlorella virus), is functional, with transport characteristics that are similar to those of known K(+) transporters. Expression studies revealed that the protein is expressed as an early gene during viral replication, and proteomics data indicate that it is not packaged in the virion. The function of HAKCV is unclear, but the data refute the hypothesis that the transporter acts as a substitute for viral-encoded K(+) channels during virus infection.
Collapse
Affiliation(s)
- Timo Greiner
- Institute of Botany at the Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Anderberg HI, Danielson JÅH, Johanson U. Algal MIPs, high diversity and conserved motifs. BMC Evol Biol 2011; 11:110. [PMID: 21510875 PMCID: PMC3111385 DOI: 10.1186/1471-2148-11-110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/21/2011] [Indexed: 01/10/2023] Open
Abstract
Background Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.
Collapse
Affiliation(s)
- Hanna I Anderberg
- Department of Biochemistry, Center for Molecular Protein Science, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-221 00 Lund, Sweden
| | | | | |
Collapse
|
25
|
Plant Aquaporins: Roles in Water Homeostasis, Nutrition, and Signaling Processes. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Hachez C, Chaumont F. Aquaporins: a family of highly regulated multifunctional channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 679:1-17. [PMID: 20666220 DOI: 10.1007/978-1-4419-6315-4_1] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aquaporins (AQPs) were discovered as channels facilitatingwater movement across cellular membranes. Whereas much of the research has focused on characterizing AQPs with respect to cell water homeostasis, recent discoveries in terms of the transport selectivity of AQP homologs has shed new light on their physiological roles. In fact, whereas some AQPs behave as "strict" water channels, others can conduct a wide range ofnonpolar solutes, such as urea or glycerol and even more unconventional permeants, such as the nonpolar gases carbon dioxide and nitric oxide, the polar gas ammonia, the reactive oxygen species hydrogen peroxide and the metalloids antimonite, arsenite, boron and silicon. This suggests that AQPs are also key players in various physiological processes not related to water homeostasis. The function, regulation and biological importance of AQPs in the different kingdoms is reviewed in this chapter, with special emphasis on animal and plant AQPs.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Universit4 catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
27
|
Bonza MC, Martin H, Kang M, Lewis G, Greiner T, Giacometti S, Van Etten JL, De Michelis MI, Thiel G, Moroni A. A functional calcium-transporting ATPase encoded by chlorella viruses. J Gen Virol 2010; 91:2620-9. [PMID: 20573858 PMCID: PMC3052600 DOI: 10.1099/vir.0.021873-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium-transporting ATPases (Ca2+ pumps) are major players in maintaining calcium homeostasis in the cell and have been detected in all cellular organisms. Here, we report the identification of two putative Ca2+ pumps, M535L and C785L, encoded by chlorella viruses MT325 and AR158, respectively, and the functional characterization of M535L. Phylogenetic and sequence analyses place the viral proteins in group IIB of P-type ATPases even though they lack a typical feature of this class, a calmodulin-binding domain. A Ca2+ pump gene is present in 45 of 47 viruses tested and is transcribed during virus infection. Complementation analysis of the triple yeast mutant K616 confirmed that M535L transports calcium ions and, unusually for group IIB pumps, also manganese ions. In vitro assays show basal ATPase activity. This activity is inhibited by vanadate, but, unlike that of other Ca2+ pumps, is not significantly stimulated by either calcium or manganese. The enzyme forms a 32P-phosphorylated intermediate, which is inhibited by vanadate and not stimulated by the transported substrate Ca2+, thus confirming the peculiar properties of this viral pump. To our knowledge this is the first report of a functional P-type Ca2+-transporting ATPase encoded by a virus.
Collapse
Affiliation(s)
- Maria Cristina Bonza
- Dipartimento di Biologia e Istituto di Biofisica del CNR, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thiel G, Baumeister D, Schroeder I, Kast SM, Van Etten JL, Moroni A. Minimal art: or why small viral K(+) channels are good tools for understanding basic structure and function relations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:580-8. [PMID: 20417613 DOI: 10.1016/j.bbamem.2010.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 11/17/2022]
Abstract
Some algal viruses contain genes that encode proteins with the hallmarks of K(+) channels. One feature of these proteins is that they are less than 100 amino acids in size, which make them truly minimal for a K(+) channel protein. That is, they consist of only the pore module present in more complex K(+) channels. The combination of miniature size and the functional robustness of the viral K(+) channels make them ideal model systems for studying how K(+) channels work. Here we summarize recent structure/function correlates from these channels, which provide insight into functional properties such as gating, pharmacology and sorting in cells.
Collapse
Affiliation(s)
- Gerhard Thiel
- Institute of Botany, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Thiel G, Moroni A, Dunigan D, Van Etten JL. Initial Events Associated with Virus PBCV-1 Infection of Chlorella NC64A. PROGRESS IN BOTANY. FORTSCHRITTE DER BOTANIK 2010; 71:169-183. [PMID: 21152366 PMCID: PMC2997699 DOI: 10.1007/978-3-642-02167-1_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlorella viruses (or chloroviruses) are very large, plaque-forming viruses. The viruses are multilayered structures containing a large double-stranded DNA genome, a lipid bilayered membrane, and an outer icosahedral capsid shell. The viruses replicate in certain isolates of the coccal green alga, Chlorella. Sequence analysis of the 330-kbp genome of Paramecium bursaria Chlorella virus 1 (PBCV-1), the prototype of the virus family Phycodnaviridae, reveals <365 protein-encoding genes and 11 tRNA genes. Products of about 40% of these genes resemble proteins of known function, including many that are unexpected for a virus. Among these is a virus-encoded protein, called Kcv, which forms a functional K(+) channel. This chapter focuses on the initial steps in virus infection and provides a plausible role for the function of the viral K(+) channel in lowering the turgor pressure of the host. This step appears to be a prerequisite for delivery of the viral genome into the host.
Collapse
Affiliation(s)
- Gerhard Thiel
- Institute of Botany, Technische Universitat Darmstadt, 64287, Darmstadt, Germany
| | | | | | | |
Collapse
|
30
|
Gazzarrini S, Kang M, Abenavoli A, Romani G, Olivari C, Gaslini D, Ferrara G, van Etten JL, Kreim M, Kast SM, Thiel G, Moroni A. Chlorella virus ATCV-1 encodes a functional potassium channel of 82 amino acids. Biochem J 2009; 420:295-303. [PMID: 19267691 PMCID: PMC2903877 DOI: 10.1042/bj20090095] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlorella virus PBCV-1 (Paramecium bursaria chlorella virus-1) encodes the smallest protein (94 amino acids, named Kcv) previously known to form a functional K+ channel in heterologous systems. In this paper, we characterize another chlorella virus encoded K+ channel protein (82 amino acids, named ATCV-1 Kcv) that forms a functional channel in Xenopus oocytes and rescues Saccharomyces cerevisiae mutants that lack endogenous K+ uptake systems. Compared with the larger PBCV-1 Kcv, ATCV-1 Kcv lacks a cytoplasmic N-terminus and has a reduced number of charged amino acids in its turret domain. Despite these deficiencies, ATCV-1 Kcv accomplishes all the major features of K+ channels: it assembles into a tetramer, is K+ selective and is inhibited by the canonical K+ channel blockers, barium and caesium. Single channel analyses reveal a stochastic gating behaviour and a voltage-dependent conductance that resembles the macroscopic I/V relationship. One difference between PBCV-1 and ATCV-1 Kcv is that the latter is more permeable to K+ than Rb+. This difference is partially explained by the presence of a tyrosine residue in the selective filter of ATCV-1 Kcv, whereas PBCV-1 Kcv has a phenylalanine. Hence, ATCV-1 Kcv is the smallest protein to form a K+ channel and it will serve as a model for studying structure-function correlations inside the potassium channel pore.
Collapse
Affiliation(s)
- Sabrina Gazzarrini
- Department of Biology and CNR - Istituto di Biofisica, Università degli Studi di Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Szczerba MW, Britto DT, Kronzucker HJ. K+ transport in plants: physiology and molecular biology. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:447-66. [PMID: 19217185 DOI: 10.1016/j.jplph.2008.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/10/2008] [Accepted: 12/10/2008] [Indexed: 05/06/2023]
Abstract
Potassium (K(+)) is an essential nutrient and the most abundant cation in plant cells. Plants have a wide variety of transport systems for K(+) acquisition, catalyzing K(+) uptake across a wide spectrum of external concentrations, and mediating K(+) movement within the plant as well as its efflux into the environment. K(+) transport responds to variations in external K(+) supply, to the presence of other ions in the root environment, and to a range of plant stresses, via Ca(2+) signaling cascades and regulatory proteins. This review will summarize the molecular identities of known K(+) transporters, and examine how this information supports physiological investigations of K(+) transport and studies of plant stress responses in a changing environment.
Collapse
Affiliation(s)
- Mark W Szczerba
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA.
| | | | | |
Collapse
|
32
|
Wilson WH, Van Etten JL, Allen MJ. The Phycodnaviridae: the story of how tiny giants rule the world. Curr Top Microbiol Immunol 2009; 328:1-42. [PMID: 19216434 DOI: 10.1007/978-3-540-68618-7_1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The family Phycodnaviridae encompasses a diverse and rapidly expanding collection of large icosahedral, dsDNA viruses that infect algae. These lytic and lysogenic viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect them with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The phycodnaviruses have diverse genome structures, some with large regions of noncoding sequence and others with regions of ssDNA. The genomes of members in three genera in the Phycodnaviridae have been sequenced. The genome analyses have revealed more than 1000 unique genes, with only 14 homologous genes in common among the three genera of phycodnaviruses sequenced to date. Thus, their gene diversity far exceeds the number of so-called core genes. Not much is known about the replication of these viruses, but the consequences of these infections on phytoplankton have global affects, including influencing geochemical cycling and weather patterns.
Collapse
Affiliation(s)
- W H Wilson
- Bigelow Laboratory for Ocean Sciences, 180 McKown Point, P.O. Box 475, West Boothbay Harbor, ME 04575-0475, USA.
| | | | | |
Collapse
|
33
|
Britto DT, Kronzucker HJ. Cellular mechanisms of potassium transport in plants. PHYSIOLOGIA PLANTARUM 2008; 133:637-50. [PMID: 18312500 DOI: 10.1111/j.1399-3054.2008.01067.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potassium (K(+)) is the most abundant ion in the plant cell and is required for a wide array of functions, ranging from the maintenance of electrical potential gradients across cell membranes, to the generation of turgor, to the activation of numerous enzymes. The majority of these functions depend more or less directly upon the activities and regulation of membrane-bound K(+) transport proteins, operating over a wide range of K(+) concentrations. Here, we review the physiological aspects of potassium transport systems in the plasma membrane, re-examining fundamental problems in the field such as the distinctions between high- and low-affinity transport systems, the interactions between K(+) and other ions such as NH(4)(+) and Na(+), the regulation of cellular K(+) pools, the generation of electrical potentials and the problems involved in measurement of unidirectional K(+) fluxes. We place these discussions in the context of recent discoveries in the molecular biology of K(+) acquisition and produce an overview of gene families encoding K(+) transporters.
Collapse
Affiliation(s)
- Dev T Britto
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Analyses of the complete sequence of the genome of wheat Eqlid mosaic virus, a novel species in the genus Tritimovirus. Virus Genes 2008; 37:212-7. [PMID: 18648923 DOI: 10.1007/s11262-008-0252-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
The complete nucleotide sequence of the genome of wheat Eqlid mosaic virus (WEqMV) (excluding the poly A tail) comprised 9636 nucleotides including 5' and 3' noncoding regions of 137 and 172 nt, respectively. It contained a single ORF coding for a polyprotein of 3,109 amino acid residues and had a deduced genome organization typical of members of the family Potyviridae and with proteinase cleavage sites very similar to those of the members of the genus Tritimovirus. Pairwise and multiple alignments and phylogenetic analysis showed that WEqMV is a distinct species in the genus Tritimovirus. WEqMV and Wheat streak mosaic virus (WSMV) shared the greatest nucleotide sequence identity in the NIb and HC-Pro cistrons (63.2% and 60.8%, respectively) and the lowest sequence identity in the P1 and CP cistrons (51.2% and 51.1%, respectively). Sequence identity for the complete genome of WEqMV and WSMV was 56.8% at the nucleotide level and 50.7% at the amino acid level. WEqMV had 57.2% nucleotide identity and 50.6% amino acid identity with Oat necrotic mottle virus and 52.5% nucleotide identity and 45.5% amino acid identity with Brome streak mosaic virus. The relationship of WEqMV with other members of the family Potyviridae was more distant. Structural analysis of WEqMV protein showed presence of potential transmembrane helices in 6k1, 6k2, and P3 proteins.
Collapse
|
35
|
Invertebrate aquaporins: a review. J Comp Physiol B 2008; 178:935-55. [DOI: 10.1007/s00360-008-0288-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/03/2008] [Accepted: 06/10/2008] [Indexed: 10/25/2022]
|
36
|
Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology 2008; 372:340-8. [DOI: 10.1016/j.virol.2007.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/30/2007] [Accepted: 10/24/2007] [Indexed: 11/18/2022]
|
37
|
Mah AK, Armstrong KR, Chew DS, Chu JS, Tu DK, Johnsen RC, Chen N, Chamberlin HM, Baillie DL. Transcriptional regulation of AQP-8, a Caenorhabditis elegans aquaporin exclusively expressed in the excretory system, by the POU homeobox transcription factor CEH-6. J Biol Chem 2007; 282:28074-86. [PMID: 17660295 DOI: 10.1074/jbc.m703305200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Due to the ever changing environmental conditions in soil, regulation of osmotic homeostasis in the soil-dwelling nematode Caenorhabditis elegans is critical. AQP-8 is a C. elegans aquaporin that is expressed in the excretory cell, a renal equivalent tissue, where the protein participates in maintaining water balance. To better understand the regulation of AQP-8, we undertook a promoter analysis to identify the aqp-8 cis-regulatory elements. Using progressive 5' deletions of upstream sequence, we have mapped an essential regulatory region to roughly 300 bp upstream of the translational start site of aqp-8. Analysis of this region revealed a sequence corresponding to a known DNA functional element (octamer motif), which interacts with POU homeobox transcription factors. Phylogenetic footprinting showed that this site is perfectly conserved in four nematode species. The octamer site's function was further confirmed by deletion analyses, mutagenesis, functional studies, and electrophoretic mobility shift assays. Of the three POU homeobox proteins encoded in the C. elegans genome, CEH-6 is the only member that is expressed in the excretory cell. We show that expression of AQP-8 is regulated by CEH-6 by performing RNA interference experiments. CEH-6's mammalian ortholog, Brn1, is expressed both in the kidney and the central nervous system and binds to the same octamer consensus binding site to drive gene expression. These parallels in transcriptional control between Brn1 and CEH-6 suggest that C. elegans may well be an appropriate model for determining gene-regulatory networks in the developing vertebrate kidney.
Collapse
Affiliation(s)
- Allan K Mah
- Department Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fitzgerald LA, Graves MV, Li X, Hartigan J, Pfitzner AJP, Hoffart E, Van Etten JL. Sequence and annotation of the 288-kb ATCV-1 virus that infects an endosymbiotic chlorella strain of the heliozoon Acanthocystis turfacea. Virology 2007; 362:350-61. [PMID: 17276475 PMCID: PMC2018652 DOI: 10.1016/j.virol.2006.12.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/16/2006] [Accepted: 12/24/2006] [Indexed: 11/25/2022]
Abstract
Acanthocystis turfacea chlorella virus (ATCV-1), a prospective member of the family Phycodnaviridae, genus Chlorovirus, infects a unicellular, eukaryotic, chlorella-like green alga, Chlorella SAG 3.83, that is a symbiont in the heliozoon A. turfacea. The 288,047-bp ATCV-1 genome is the first virus to be sequenced that infects Chlorella SAG 3.83. ATCV-1 contains 329 putative protein-encoding and 11 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands and intergenic space is minimal. Thirty-four percent of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. For example, these unique gene products include ribonucleoside-triphosphate reductase, dTDP-d-glucose 4,6 dehydratase, potassium ion transporter, aquaglyceroporin, and mucin-desulfating sulfatase. Comparison of ATCV-1 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that about 80% of the ATCV-1 genes are present in PBCV-1.
Collapse
Affiliation(s)
- Lisa A Fitzgerald
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Shim JW, Yang M, Gu LQ. In vitro synthesis, tetramerization and single channel characterization of virus-encoded potassium channel Kcv. FEBS Lett 2007; 581:1027-34. [PMID: 17316630 DOI: 10.1016/j.febslet.2007.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/02/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Chlorella virus-encoded membrane protein Kcv represents a new class of potassium channel. This 94-amino acids miniature K(+) channel consists of two trans-membrane alpha-helix domains intermediated by a pore domain that contains a highly conserved K(+) selectivity filter. Therefore, as an archetypal K(+) channel, the study of Kcv may yield valuable insights into the structure-function relationships underlying this important class of ion channel. Here, we report a series of new properties of Kcv. We first verified Kcv can be synthesized in vitro. By co-synthesis and assembly of wild-type and the tagged version of Kcv, we were able to demonstrate a tetrameric stoichiometry, a molecular structure adopted by all known K(+) channels. Most notably, the tetrameric Kcv complex retains its functional integrity in SDS (strong detergent)-containing solutions, a useful feature that allows for direct purification of protein from polyacrylamide gel. Once purified, the tetramer can form single potassium-selective ion channels in a lipid bilayer with functions consistent to the heterologously expressed Kcv. These finding suggest that the synthetic Kcv can serve as a model of virus-encoded K(+) channels; and its newly identified properties can be applied to the future study on structure-determined mechanisms such as K(+) channel functional stoichiometry.
Collapse
Affiliation(s)
- Ji Wook Shim
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
40
|
Fitzgerald LA, Graves MV, Li X, Feldblyum T, Hartigan J, Van Etten JL. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology 2006; 358:459-71. [PMID: 17023017 PMCID: PMC1890046 DOI: 10.1016/j.virol.2006.08.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/26/2022]
Abstract
Viruses MT325 and FR483, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella Pbi. The 314,335-bp genome of MT325 and the 321,240-bp genome of FR483 are the first viruses that infect Chlorella Pbi to have their genomes sequenced and annotated. Furthermore, these genomes are the two smallest chlorella virus genomes sequenced to date, MT325 has 331 putative protein-encoding and 10 tRNA-encoding genes and FR483 has 335 putative protein-encoding and 9 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Approximately 40% of the viral gene products resemble entries in public databases, including some that are the first of their kind to be detected in a virus. For example, these unique gene products include an aquaglyceroporin in MT325, a potassium ion transporter protein and an alkyl sulfatase in FR483, and a dTDP-glucose pyrophosphorylase in both viruses. Comparison of MT325 and FR483 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that approximately 82% of the genes are present in all three viruses.
Collapse
Affiliation(s)
- Lisa A. Fitzgerald
- Deparment of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Michael V. Graves
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Xiao Li
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Tamara Feldblyum
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
| | - James Hartigan
- Agencourt Bioscience Corporation, 500 Cummings Center, Suite 2450, Beverly, MA 01915
| | - James L. Van Etten
- Deparment of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722 and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68588-0666
- *Corresponding author. Mailing address: Department of Plant Pathology, University of Nebraska-Lincoln, NE 68383-0722. Phone: (402) 472-3168. Fax: (402) 472-2853. E-mail:
| |
Collapse
|