1
|
Jafari-Sabet M, Amiri S, Sheibani M, Fatahi N, Aghamiri H. Cross state-dependent memory retrieval between tramadol and ethanol: involvement of dorsal hippocampal GABAA receptors. Psychopharmacology (Berl) 2024; 241:139-152. [PMID: 37758936 DOI: 10.1007/s00213-023-06469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
RATIONALE Tramadol and ethanol, as psychoactive agents, are often abused. Discovering the molecular pathways of drug-induced memory creation may contribute to preventing drug addiction and relapse. OBJECTIVE The tramadol- and ethanol-induced state-dependent memory (SDM) and cross-SDM retrieval between tramadol and ethanol were examined in this study. Moreover, because of the confirmed involvement of GABAA receptors and GABAergic neurotransmission in memory retrieval impairment, we assessed cross-SDM retrieval between tramadol and ethanol with a specific emphasis on the role of the GABAA receptors. The first hypothesis of this study was the presence of cross-SDM between tramadol and ethanol, and the second hypothesis was related to possible role of GABAA receptors in memory retrieval impairment within the dorsal hippocampus. The cannulae were inserted into the hippocampal CA1 area of NMRI mice, and a step-down inhibitory avoidance test was used to evaluate state dependence and memory recovery. RESULTS The post-training and/or pre-test administration of tramadol (2.5 and 5 mg/kg, i.p.) and/or ethanol (0.5 and 1 g/kg, i.p.) induced amnesia, which was restored after the administration of the drugs 24 h later during the pre-test period, proposing ethanol and tramadol SDM. The pre-test injection of ethanol (0.25 and 0.5 g/kg, i.p.) with tramadol at an ineffective dose (1.25 mg/kg) enhanced tramadol SDM. Moreover, tramadol injection (1.25 and 2.5 mg/kg) with ethanol at the ineffective dose (0.25 g/kg) promoted ethanol SDM. Furthermore, the pre-test intra-CA1 injection of bicuculline (0.0625, 0.125, and 0.25 μg/mouse), a GABAA receptor antagonist, 5 min before the injection of tramadol (5 mg/kg) or ethanol (1 g/kg) inhibited tramadol- and ethanol-induced SDM dose-dependently. CONCLUSION The findings strongly confirmed cross-SDM between tramadol and ethanol and the critical role of dorsal hippocampal GABAA receptors in the cross-SDM between tramadol and ethanol.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gore-Langton JK, Varlinskaya EI, Werner DF. Ethanol-induced conditioned taste aversion and associated neural activation in male rats: Impact of age and adolescent intermittent ethanol exposure. PLoS One 2022; 17:e0279507. [PMID: 36548243 PMCID: PMC9778589 DOI: 10.1371/journal.pone.0279507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Individuals that initiate alcohol use at younger ages and binge drink during adolescence are more susceptible to developing alcohol use disorder. Adolescents are relatively insensitive to the aversive effects of alcohol and tend to consume significantly more alcohol per occasion than adults, an effect that is conserved in rodent models. Adolescent typical insensitivity to the aversive effects of alcohol may promote greater alcohol intake by attenuating internal cues that curb its consumption. Attenuated sensitivity to the aversive effects of alcohol is also retained into adulthood following protracted abstinence from adolescent intermittent ethanol (AIE) exposure. Despite these effects, much remains unknown regarding the neural contributors. In the present study, we used a conditioned taste aversion (CTA) paradigm to investigate neuronal activation in late-developing forebrain structures of male adolescents and adult cFos-LacZ transgenic rats as well as in AIE adults following consumption of 0.9% sodium chloride previously paired with an intraperitoneal injection of 0, 1.5 or 2.5 g/kg of ethanol. Adults that were non-manipulated or received water exposure during adolescence showed CTA to both ethanol doses, whereas adolescents displayed CTA only to the 2.5 g/kg ethanol dose. Adults who experienced AIE did not show CTA. Adults displayed increased neuronal activation indexed via number of β-galactosidase positive (β-gal+) cells in the prefrontal and insular cortex that was absent in adolescents, whereas adolescents but not adults had a reduced number of β-gal+ cells in the central amygdala. Adults also displayed greater cortical-insular functional connectivity than adolescents as well as insular-amygdalar and prefrontal cortex-accumbens core functional connectivity. Like adolescents, adults previously exposed to AIE displayed reduced prefrontal-insular cortex and prefrontal-accumbal core functional connectivity. Taken together, these results suggest that attenuated sensitivity to the aversive effects of ethanol is related to a loss of an insular-prefrontal cortex-accumbens core circuit.
Collapse
Affiliation(s)
- Jonathan K. Gore-Langton
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York, United States of America
- Department of Psychology, Binghamton University, Binghamton, New York, United States of America
| | - Elena I. Varlinskaya
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York, United States of America
- Department of Psychology, Binghamton University, Binghamton, New York, United States of America
- Developmental Exposure Alcohol Research Center, Binghamton, New York, United States of America
| | - David F. Werner
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York, United States of America
- Department of Psychology, Binghamton University, Binghamton, New York, United States of America
- Developmental Exposure Alcohol Research Center, Binghamton, New York, United States of America
- * E-mail:
| | | |
Collapse
|
3
|
Mahringer D, Zmarz P, Okuno H, Bito H, Keller GB. Functional correlates of immediate early gene expression in mouse visual cortex. PEER COMMUNITY JOURNAL 2022; 2:e45. [PMID: 37091727 PMCID: PMC7614465 DOI: 10.24072/pcjournal.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
During visual development, response properties of layer 2/3 neurons in visual cortex are shaped by experience. Both visual and visuomotor experience are necessary to co-ordinate the integration of bottom-up visual input and top-down motor-related input. Whether visual and visuomotor experience engage different plasticity mechanisms, possibly associated with the two separate input pathways, is still unclear. To begin addressing this, we measured the expression level of three different immediate early genes (IEG) (c-fos, egr1 or Arc) and neuronal activity in layer 2/3 neurons of visual cortex before and after a mouse's first visual exposure in life, and subsequent visuomotor learning. We found that expression levels of all three IEGs correlated positively with neuronal activity, but that first visual and first visuomotor exposure resulted in differential changes in IEG expression patterns. In addition, IEG expression levels differed depending on whether neurons exhibited primarily visually driven or motor-related activity. Neurons with strong motor-related activity preferentially expressed EGR1, while neurons that developed strong visually driven activity preferentially expressed Arc. Our findings are consistent with the interpretation that bottom-up visual input and top-down motor-related input are associated with different IEG expression patterns and hence possibly also with different plasticity pathways.
Collapse
Affiliation(s)
- David Mahringer
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Zmarz
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima 890-8544, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Georg B Keller
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
4
|
Ruiz-López CX, Medina AC, Bello-Medina PC, Quirarte GL, Prado-Alcalá RA. Recruitment of neurons in basolateral amygdala after intense training produces a stronger memory trace. Neurobiol Learn Mem 2021; 181:107428. [PMID: 33798697 DOI: 10.1016/j.nlm.2021.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
Typical amnestic treatments are ineffective when administered to subjects trained in aversively-motivated tasks using relatively high foot-shock intensities. This effect has been found when treatments that disrupt neuronal activity are administered to different regions of the brain, including the amygdala. However, the molecular mechanisms induced by this intense training are unknown. We made a detailed mapping of c-Fos-expressing neurons in four regions of the amygdala after moderate and intense one-trial inhibitory avoidance training. Rats were sacrificed 90 min after training or after appropriate control procedures, and their brains were prepared for immunohistochemical c-Fos protein detection in the central, lateral, and in the anterior and posterior parts of the basolateral amygdaloid nucleus. We found a high percentage of neurons expressing c-Fos in the anterior part of the basolateral nucleus after moderate training, and this percentage increased further after intense training. Moderate and intense training did not induce changes in c-Fos expression in the other explored amygdaloid regions. These results show that inhibitory avoidance training produces a localized expression of c-Fos in the basolateral anterior nucleus of the amygdala, which is dependent upon the intensity of training, and indicate that synaptic plastic changes in this region may be required for the formation of memory of moderate and intense aversive learning.
Collapse
Affiliation(s)
- C X Ruiz-López
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - A C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico; División de Ciencias de Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México 52005, Mexico
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| |
Collapse
|
5
|
Li HJ, Su X, Zhang LW, Zhang CY, Wang L, Li WQ, Yang YF, Lv LX, Li M, Xiao X. Transcriptomic analyses of humans and mice provide insights into depression. Zool Res 2021; 41:632-643. [PMID: 32987454 PMCID: PMC7671914 DOI: 10.24272/j.issn.2095-8137.2020.174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating studies have been conducted to identify risk genes and relevant biological mechanisms underlying major depressive disorder (MDD). In particular, transcriptomic analyses in brain regions engaged in cognitive and emotional processes, e.g., the dorsolateral prefrontal cortex (DLPFC), have provided essential insights. Based on three independent DLPFC RNA-seq datasets of 79 MDD patients and 75 healthy controls, we performed differential expression analyses using two alternative approaches for cross-validation. We also conducted transcriptomic analyses in mice undergoing chronic variable stress (CVS) and chronic social defeat stress (CSDS). We identified 12 differentially expressed genes (DEGs) through both analytical methods in MDD patients, the majority of which were also dysregulated in stressed mice. Notably, the mRNA level of the immediate early gene FOS ( Fos proto-oncogene) was significantly decreased in both MDD patients and CVS-exposed mice, and CSDS-susceptible mice exhibited a greater reduction in Fos expression compared to resilient mice. These findings suggest the potential key roles of this gene in the pathogenesis of MDD related to stress exposure. Altered transcriptomes in the DLPFC of MDD patients might be, at least partially, the result of stress exposure, supporting that stress is a primary risk factor for MDD.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xi Su
- Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Lu-Wen Zhang
- Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wen-Qiang Li
- Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yong-Feng Yang
- Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Lu-Xian Lv
- Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Province People's Hospital, Zhengzhou, Henan 450003, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
6
|
Lonstein JS, Charlier TD, Pawluski JL, Aigueperse N, Meurisse M, Lévy F, Lumineau S. Fos expression in the medial preoptic area and nucleus accumbens of female Japanese quail (Coturnix japonica) after maternal induction and interaction with chicks. Physiol Behav 2021; 234:113357. [PMID: 33582165 DOI: 10.1016/j.physbeh.2021.113357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
The neural system underlying maternal caregiving has often been studied using laboratory rodents and a few other mammalian species. This research shows that the medial preoptic area (mPOA) integrates sensory cues from the young that, along with hormonal and other environmental signals, control maternal acceptance of neonates. The mPOA then activates the mesolimbic system to drive maternal motivation and caregiving activities. How components of this neural system respond to maternal experience and exposure to young in non-mammals has rarely been examined. To gain more insight into this question, virgin female Japanese quail (Coturnix japonica) were induced to be maternal through four days of continuous exposure to chicks (Maternal), or were not exposed to chicks (Non-Maternal). Chicks were removed overnight from the Maternal group and half the females from each group were then exposed to chicks for 90 minutes (Exposed), or not exposed to chicks (Non-Exposed), before euthanasia. The number of Fos-immunoreactive (Fos-ir) cells was examined as a marker of neuronal activation. As expected, repeated exposure to chicks induced caregiving behavior in the Maternal females, which persisted after the overnight separation, suggesting the formation of a maternal memory. In contrast, Non-Maternal females were aggressive and rejected the chicks when exposed to them. Exposed females, whether or not they were given prior experience with chicks (i.e., regardless if they accepted or rejected chicks during the exposure before euthanasia), had more Fos-ir cells in the mPOA compared to Non-Exposed females. In the nucleus accumbens (NAC), the number of Fos-ir cells was high in all Maternal females whether or not they were Exposed to chicks again before euthanasia. In the lateral bed nucleus of the stria terminalis, a site involved in general stress responding, groups did not differ in the number of Fos-ir cells. These data indicate a conserved role for the mPOA and NAC in maternal caregiving across vertebrates, with the mPOA acutely responding to the salience rather than valence of offspring cues, and the NAC showing longer-term changes in activity after a positive maternal experience even without a recent exposure to young.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, 48824, United States.
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France
| | - Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France
| | - Nadege Aigueperse
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Maryse Meurisse
- Unité de Physiologie de la Reproduction et des Comportemenst (PRC), INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Frédéric Lévy
- Unité de Physiologie de la Reproduction et des Comportemenst (PRC), INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Sophie Lumineau
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| |
Collapse
|
7
|
Naderipoor P, Amani M, Abedi A, Sakhaie N, Sadegzadeh F, Saadati H. Alterations in the behavior, cognitive function, and BDNF level in adult male rats following neonatal blockade of GABA-A receptors. Brain Res Bull 2021; 169:35-42. [PMID: 33440220 DOI: 10.1016/j.brainresbull.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the mature brain. At an early developmental period, it acts in an excitatory manner that influences many processes of proliferation, migration, and differentiation of the neurons. Previous evidence indicated that manipulation of the GABAergic system function by activation or blockade of its receptors during developmental periods leads to behavioral and cognitive abnormality in adulthood. Therefore, we examined the effects of neonatal blockade of GABA-A receptors by bicuculline on behavior, cognitive function, and hippocampal and prefrontal cortex (PFC) brain-derived neurotrophic factors level (BDNF) in adulthood. As a result, neonatal rats were treated with either bicuculline (75,150, and 300 μg/kg) or DMSO on postnatal days 7,9, and 11. These groups underwent the behavioral (open field, elevated plus maze, and hot plate) and learning and memory (passive avoidance learning and memory) tests in postnatal days (PNDs) 61-70. After the ending of the behavioral tests, the rats were sacrificed under deep anesthesia and the hippocampi and prefrontal cortex (PFC) of the brain were removed for assessing the BDNF mRNA expression. Our results indicated that neonatal administration of bicuculline at the highest dose increased passive avoidance memory and hippocampal BDNF level. Meanwhile, this drug at a low dose impaired this type of memory and increased PFC BDNF level. Besides, treatment with bicuculline during postnatal days increased anxiety and pain sensitivity in a dose-dependent manner. Taken together, these findings confirmed the notion that GABA-A receptors during the developmental period are important for programming neurobehavioral phenotypes in adult life.
Collapse
Affiliation(s)
- Parviz Naderipoor
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amani
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Abedi
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Prado-Alcalá RA, González-Salinas S, Antaramián A, Quirarte GL, Bello-Medina PC, Medina AC. Imbalance in cerebral protein homeostasis: Effects on memory consolidation. Behav Brain Res 2020; 393:112767. [DOI: 10.1016/j.bbr.2020.112767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
|
9
|
Levitan D, Liu C, Yang T, Shima Y, Lin JY, Wachutka J, Marrero Y, Ali Marandi Ghoddousi R, da Veiga Beltrame E, Richter TA, Katz DB, Nelson SB. Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long-term aversive memory. eLife 2020; 9:e61036. [PMID: 32779566 PMCID: PMC7445010 DOI: 10.7554/elife.61036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Conditioned taste aversion (CTA) is a form of one-trial learning dependent on basolateral amygdala projection neurons (BLApn). Its underlying cellular and molecular mechanisms remain poorly understood. RNAseq from BLApn identified changes in multiple candidate learning-related transcripts including the expected immediate early gene Fos and Stk11, a master kinase of the AMP-related kinase pathway with important roles in growth, metabolism and development, but not previously implicated in learning. Deletion of Stk11 in BLApn blocked memory prior to training, but not following it and increased neuronal excitability. Conversely, BLApn had reduced excitability following CTA. BLApn knockout of a second learning-related gene, Fos, also increased excitability and impaired learning. Independently increasing BLApn excitability chemogenetically during CTA also impaired memory. STK11 and C-FOS activation were independent of one another. These data suggest key roles for Stk11 and Fos in CTA long-term memory formation, dependent at least partly through convergent action on BLApn intrinsic excitability.
Collapse
Affiliation(s)
- David Levitan
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Chenghao Liu
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Tracy Yang
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Yasuyuki Shima
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Jian-You Lin
- Departments of Psychology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Joseph Wachutka
- Departments of Psychology, Brandeis UniversityWalthamUnited States
| | - Yasmin Marrero
- Departments of Psychology, Brandeis UniversityWalthamUnited States
| | | | | | - Troy A Richter
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Donald B Katz
- Departments of Psychology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Sacha B Nelson
- Departments of Biology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| |
Collapse
|
10
|
Abe K, Kuroda M, Narumi Y, Kobayashi Y, Itohara S, Furuichi T, Sano Y. Cortico-amygdala interaction determines the insular cortical neurons involved in taste memory retrieval. Mol Brain 2020; 13:107. [PMID: 32723372 PMCID: PMC7385890 DOI: 10.1186/s13041-020-00646-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
The insular cortex (IC) is the primary gustatory cortex, and it is a critical structure for encoding and retrieving the conditioned taste aversion (CTA) memory. In the CTA, consumption of an appetitive tastant is associated with aversive experience such as visceral malaise, which results in avoidance of consuming a learned tastant. Previously, we showed that levels of the cyclic-AMP-response-element-binding protein (CREB) determine the insular cortical neurons that proceed to encode a conditioned taste memory. In the amygdala and hippocampus, it is shown that CREB and neuronal activity regulate memory allocation and the neuronal mechanism that determines the specific neurons in a neural network that will store a given memory. However, cellular mechanism of memory allocation in the insular cortex is not fully understood. In the current study, we manipulated the neuronal activity in a subset of insular cortical and/or basolateral amygdala (BLA) neurons in mice, at the time of learning; for this purpose, we used an hM3Dq designer receptor exclusively activated by a designer drug system (DREADD). Subsequently, we examined whether the neuronal population whose activity is increased during learning, is reactivated by memory retrieval, using the expression of immediate early gene c-fos. When an hM3Dq receptor was activated only in a subset of IC neurons, c-fos expression following memory retrieval was not significantly observed in hM3Dq-positive neurons. Interestingly, the probability of c-fos expression in hM3Dq-positive IC neurons after retrieval was significantly increased when the IC and BLA were co-activated during conditioning. Our findings suggest that functional interactions between the IC and BLA regulates CTA memory allocation in the insular cortex, which shed light on understanding the mechanism of memory allocation regulated by interaction between relevant brain areas.
Collapse
Affiliation(s)
- Konami Abe
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Marin Kuroda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yosuke Narumi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, Center for Brain Science, Wako, Saitama 351-0198 Japan
- Present Address: Brain/MINDS, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Center for Brain Science, Wako, Saitama 351-0198 Japan
- Present Address: Brain/MINDS, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| |
Collapse
|
11
|
Saalfield J, Spear L. Fos activation patterns related to acute ethanol and conditioned taste aversion in adolescent and adult rats. Alcohol 2019; 78:57-68. [PMID: 30797833 DOI: 10.1016/j.alcohol.2019.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
Studies in rats have revealed marked age differences in sensitivity to the aversive properties of ethanol, with a developmental insensitivity to ethanol aversion that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion; however, it is unknown how ontogenetic changes within this reward/aversion circuitry contribute to developmental differences in aversive sensitivity. The current study examined early adolescent (postnatal day [P]28-30) and adult (P72-74) Sprague-Dawley male rats for conditioned taste aversion (CTA) after doses of 0, 1.0, or 2.5 g/kg ethanol, and patterns of neuronal activation in response to ethanol using Fos-like immunohistochemistry (Fos+) to uncover regions where age differences in activation are associated with ethanol aversion. An adolescent-specific ethanol-induced increase in Fos+ staining was seen within the nucleus accumbens shell and core. An age difference was also noted within the Edinger-Westphal nucleus (EW) following administration of the lower dose of ethanol, with 1 g/kg ethanol producing CTA in adults but not in adolescents and inducing a greater EW Fos response in adults than adolescents. Regression analysis revealed that greater numbers of Fos+ neurons within the EW and insula (Ins) were related to lower consumption of the conditioned stimulus (CS) on test day (reflecting greater CTA). Some regionally specific age differences in Fos+ were noted under baseline conditions, with adolescents displaying fewer Fos+ neurons than adults within the prelimbic (PrL) cortex, but more than adults in the bed nucleus of the stria terminalis (BNST). In the BNST (but not PrL), ethanol-induced increases in Fos-immunoreactivity (IR) were evident at both ages. Increased ethanol-induced activity within critical appetitive brain regions (NAc core and shell) supports a role for greater reward-related activation during adolescence, possibly along with attenuated responsiveness to ethanol in EW and Ins in the age-typical resistance of adolescents to the aversive properties of ethanol.
Collapse
|
12
|
Flores VL, Parmet T, Mukherjee N, Nelson S, Katz DB, Levitan D. The role of the gustatory cortex in incidental experience-evoked enhancement of later taste learning. Learn Mem 2018; 25:587-600. [PMID: 30322892 PMCID: PMC6191014 DOI: 10.1101/lm.048181.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/07/2018] [Indexed: 11/24/2022]
Abstract
The strength of learned associations between pairs of stimuli is affected by multiple factors, the most extensively studied of which is prior experience with the stimuli themselves. In contrast, little data is available regarding how experience with "incidental" stimuli (independent of any conditioning situation) impacts later learning. This lack of research is striking given the importance of incidental experience to survival. We have recently begun to fill this void using conditioned taste aversion (CTA), wherein an animal learns to avoid a taste that has been associated with malaise. We previously demonstrated that incidental exposure to salty and sour tastes (taste preexposure-TPE) enhances aversions learned later to sucrose. Here, we investigate the neurobiology underlying this phenomenon. First, we use immediate early gene (c-Fos) expression to identify gustatory cortex (GC) as a site at which TPE specifically increases the neural activation caused by taste-malaise pairing (i.e., TPE did not change c-Fos induced by either stimulus in isolation). Next, we use site-specific infection with the optical silencer Archaerhodopsin-T to show that GC inactivation during TPE inhibits the expected enhancements of both learning and CTA-related c-Fos expression, a full day later. Thus, we conclude that GC is almost certainly a vital part of the circuit that integrates incidental experience into later associative learning.
Collapse
Affiliation(s)
- Veronica L Flores
- Department of Psychology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Tamar Parmet
- Department of Psychology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Narendra Mukherjee
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Sacha Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
- National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Donald B Katz
- Department of Psychology, Brandeis University, Waltham, Massachusetts 02454, USA
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David Levitan
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
13
|
Guzmán-Ramos K, Venkataraman A, Morin JP, Osorio-Gómez D, Bermúdez-Rattoni F. Differential requirement of de novo Arc protein synthesis in the insular cortex and the amygdala for safe and aversive taste long-term memory formation. Behav Brain Res 2018; 342:89-93. [DOI: 10.1016/j.bbr.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
|
14
|
Song H, Zheng Y, Cai F, Ma Y, Yang J, Wu Y. c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model. J Mol Histol 2018; 49:147-155. [PMID: 29330744 DOI: 10.1007/s10735-018-9754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.
Collapse
Affiliation(s)
- Honghua Song
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Fuying Cai
- Department of Pediatrics, Yin Shan Lake Hospital of Wuzhong District, Suzhou, 215100, Jiangsu Province, China
| | - Yanyan Ma
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Jingyue Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
15
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
Systemic administration of anorexic gut peptide hormones impairs hedonic-driven sucrose consumption in mice. Physiol Behav 2016; 171:158-164. [PMID: 28040488 DOI: 10.1016/j.physbeh.2016.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
A number of reports suggest that gut hormones such as cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY(3-36) (PYY3-36), which are released postprandially, suppress homeostatic food intake and result in satiety and the termination of feeding. However, it remains unclear whether these peptide hormones also suppress non-homeostatic consumption of palatable foods or fluids. To examine whether gut hormones reduce hedonically motivated sugar consumption, we assessed the effects of intraperitoneal administration of these gut hormones on the consumption of a highly palatable sucrose solution, using a mouse model we previously established for binge-like sucrose overconsumption (Yasoshima and Shimura, 2015). To reduce homeostatic hunger, chow was available at nighttime prior to testing. After a limited-access training procedure for 10days, during which access to both sucrose and chow were controlled, on the test day, control mice injected with saline consumed significantly more sucrose than during the pre-training period. In contrast, sucrose consumption on the test day in the mice injected with CCK-8 (2 and 4μg/kg), GLP-1 (500 and 1000nmol/kg), or PYY3-36 (12.5 and 25nmol/kg) was significantly less than that in saline-injected mice. In a separate cohort of mice, the higher doses of CCK-8 and GLP-1 and a greater dose of PYY3-36 (50nmol/kg) did not produce conditioned taste aversion to saccharin, suggesting that the doses of exogenous hormones in the present study do not cause aversive visceral distress. The present findings suggest that the systemic administration of these three gut hormones suppresses hedonic-driven sugar consumption due to the anorexic, but not aversive-visceral, effects of these hormones.
Collapse
|
17
|
Shandilya J, Gao Y, Nayak TK, Roberts SGE, Medler KF. AP1 transcription factors are required to maintain the peripheral taste system. Cell Death Dis 2016; 7:e2433. [PMID: 27787515 PMCID: PMC5133999 DOI: 10.1038/cddis.2016.343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023]
Abstract
The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.
Collapse
Affiliation(s)
- Jayasha Shandilya
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Yankun Gao
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Tapan K Nayak
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY 14214, USA
| | - Stefan G E Roberts
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
18
|
Levitan D, Gal-Ben-Ari S, Heise C, Rosenberg T, Elkobi A, Inberg S, Sala C, Rosenblum K. The differential role of cortical protein synthesis in taste memory formation and persistence. NPJ SCIENCE OF LEARNING 2016; 1:16001. [PMID: 27721985 PMCID: PMC5053367 DOI: 10.1038/npjscilearn.2016.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n ≥ 5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P = 8.9E - 5), but had no effect on LTM persistence when infused 3 days post acquisition (P = 0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P = 0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-d-aspartate receptor antagonist (P = 0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.
Collapse
Affiliation(s)
- David Levitan
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Mt Carmel, Haifa, Israel
| | - Shunit Gal-Ben-Ari
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Mt Carmel, Haifa, Israel
| | - Christopher Heise
- Consiglio Nazionale delle Ricerche Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Tali Rosenberg
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Mt Carmel, Haifa, Israel
| | - Alina Elkobi
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Mt Carmel, Haifa, Israel
| | - Sharon Inberg
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Mt Carmel, Haifa, Israel
| | - Carlo Sala
- Consiglio Nazionale delle Ricerche Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Mt Carmel, Haifa, Israel
- ()
| |
Collapse
|
19
|
Identification and Characterization of the V(D)J Recombination Activating Gene 1 in Long-Term Memory of Context Fear Conditioning. Neural Plast 2015; 2016:1752176. [PMID: 26843989 PMCID: PMC4710954 DOI: 10.1155/2016/1752176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022] Open
Abstract
An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs) may be associated with long-term memory (LTM) processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(D)J recombination-activating gene 1 (RAG1), which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(D)J recombination-activating gene 1, RAG1, may play a role in LTM consolidation.
Collapse
|
20
|
Xie C, Jonak CR, Kauffman AS, Coss D. Gonadotropin and kisspeptin gene expression, but not GnRH, are impaired in cFOS deficient mice. Mol Cell Endocrinol 2015; 411:223-31. [PMID: 25958044 PMCID: PMC4764054 DOI: 10.1016/j.mce.2015.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022]
Abstract
cFOS is a pleiotropic transcription factor, which binds to the AP1 site in the promoter of target genes. In the pituitary gonadotropes, cFOS mediates induction of FSHβ and GnRH receptor genes. Herein, we analyzed reproductive function in the cFOS-deficient mice to determine its role in vivo. In the pituitary cFOS is necessary for gonadotropin subunit expression, while TSHβ is unaffected. Additionally, cFOS null animals have the same sex-steroid levels, although gametogenesis is impeded. In the brain, cFOS is not necessary for GnRH neuronal migration, axon targeting, cell number, or mRNA levels. Conversely, cFOS nulls, particularly females, have decreased Kiss1 neuron numbers and lower Kiss1 mRNA levels. Collectively, our novel findings suggest that cFOS plays a cell-specific role at multiple levels of the hypothalamic-pituitary-gonadal axis, affecting gonadotropes but not thyrotropes in the pituitary, and kisspeptin neurons but not GnRH neurons in the hypothalamus, thereby contributing to the overall control of reproduction.
Collapse
Affiliation(s)
- Changchuan Xie
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, CA 92093-0674, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Alexander S Kauffman
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, CA 92093-0674, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Kim DH, Lee Y, Lee HE, Park SJ, Jeon SJ, Jeon SJ, Cheong JH, Shin CY, Son KH, Ryu JH. Oroxylin A enhances memory consolidation through the brain-derived neurotrophic factor in mice. Brain Res Bull 2014; 108:67-73. [PMID: 25218897 DOI: 10.1016/j.brainresbull.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Memory consolidation is a process by which acquired information is transformed from a labile into a more stable state that can be retrieved at a later time. In the present study, we investigated the role of oroxylin A on the memory consolidation process in mice. Oroxylin A improved the memory retention administered at 0 h, 1 h and 3 h after training in a passive avoidance task, suggesting that oroxylin A facilitates memory consolidation. Oroxylin A increased mature brain-derived neurotrophic factor (mBDNF) levels in the hippocampus from 6h to 24h after administration. Moreover, 3h post-training administration of oroxylin A enhanced the mBDNF level at 9h after the acquisition trial compared to the level at 6h after the acquisition trial. However, 6h post-training administration of oroxylin A did not increase the mBDNF level at 9h after the acquisition trial. Blocking mBDNF signaling with recombinant tropomyosin receptor kinase B (TrkB)-Fc or k252a at 9h after the acquisition trial obstructed the effect of oroxylin A on memory consolidation. Taken together, our data suggest that oroxylin A facilitates memory consolidation through BDNF-TrkB signaling and confirms that the increase of BDNF in a specific time window plays a crucial role in memory consolidation.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Natural Resources and Life Science, Dong-A University, #37 Nakdong-Daero, 550 Beon-Gil, Saha-Gu, Busan 604-714, Korea
| | - Younghwan Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, #26 Kyungheedae-ro, Dongdaemoon-Ku, Seoul 130-701, Korea
| | - Hyung Eun Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, #26 Kyungheedae-ro, Dongdaemoon-Ku, Seoul 130-701, Korea
| | - Se Jin Park
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, #26 Kyungheedae-ro, Dongdaemoon-Ku, Seoul 130-701, Korea
| | - Su Jin Jeon
- Department of Food and Nutrition, Andong National University, Andong 760-749, Korea
| | - Se Jin Jeon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, #26 Kyungheedae-ro, Dongdaemoon-Ku, Seoul 130-701, Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Nowon-goo, Seoul 139-742, Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine and Center for Geriatric Neuroscience Research, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Kun Ho Son
- Department of Food and Nutrition, Andong National University, Andong 760-749, Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, #26 Kyungheedae-ro, Dongdaemoon-Ku, Seoul 130-701, Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, #26 Kyungheedae-ro, Dongdaemoon-Ku, Seoul 130-701, Korea.
| |
Collapse
|
22
|
Quintero E, Vargas JP, Diaz E, Escarabajal MD, Carrasco M, López JC. c-Fos positive nucleus reveals that contextual specificity of latent inhibition is dependent of insular cortex. Brain Res Bull 2014; 108:74-9. [DOI: 10.1016/j.brainresbull.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/23/2014] [Accepted: 08/26/2014] [Indexed: 12/12/2022]
|
23
|
Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory. Brain Res 2014; 1552:17-25. [DOI: 10.1016/j.brainres.2014.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/19/2013] [Accepted: 01/15/2014] [Indexed: 12/11/2022]
|
24
|
Niessen NA, Balthazart J, Ball GF, Charlier TD. C-fos down-regulation inhibits testosterone-dependent male sexual behavior and the associated learning. Eur J Neurosci 2013; 38:3325-37. [PMID: 23895306 DOI: 10.1111/ejn.12321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/24/2013] [Indexed: 01/20/2023]
Abstract
Environmental stimulation results in an increased expression of transcription factors called immediate early genes (IEGs) in specific neuronal populations. In male Japanese quail, copulation with a female increases the expression of the IEGs zenk and c-fos in the medial pre-optic nucleus (POM), a key nucleus controlling male sexual behavior. The functional significance of this increased IEG expression that follows performance of copulatory behavior is unknown. We addressed this question by repeatedly quantifying the performance of appetitive (learned social proximity response) and consummatory (actual copulation) sexual behavior in castrated, testosterone-treated males that received daily intra-cerebroventricular injection of an antisense oligodeoxynucleotide targeting c-fos or control vehicle. Daily antisense injections significantly inhibited the expression of copulatory behavior as well as the acquisition of the learned social proximity response. A strong reduction of the proximity response was still observed in antisense-treated birds that copulated with a female, ruling out the indirect effect of the absence of interactions with females on the learning process. After a 2-day interruption of behavioral testing but not of antisense injections, birds were submitted to a final copulatory test that confirmed the behavioral inhibition in antisense-injected birds. Brains were collected at 90 min after the behavioral testing for quantification of c-fos-immunoreactive cells. A significant reduction of the number of c-fos-positive cells in the POM but not in other brain regions was observed following antisense injection. Taken together, the data suggest that c-fos expression in the POM modulates copulatory behavior and sexual learning in male quail.
Collapse
Affiliation(s)
- Neville-Andrew Niessen
- Research Group in Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liège, Avenue de l'Hôpital 1 (Bat. B36), B-4000, Liège 1, Belgium
| | | | | | | |
Collapse
|
25
|
Gene Network Analysis in Amygdala following Taste Aversion Learning in Rats. NEUROSCIENCE JOURNAL 2013; 2013:739764. [PMID: 26317099 PMCID: PMC4437262 DOI: 10.1155/2013/739764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/28/2013] [Accepted: 04/02/2013] [Indexed: 11/17/2022]
Abstract
Conditioned taste aversion (CTA) is an adaptive behavior that benefits survival of animals including humans and also serves as a powerful model to study the neural mechanisms of learning. Memory formation is a necessary component of CTA learning and involves neural processing and regulation of gene expression in the amygdala. Many studies have been focused on the identification of intracellular signaling cascades involved in CTA, but not late responsive genes underlying the long-lasting behavioral plasticity. In this study, we explored in silico experiments to identify persistent changes in gene expression associated with CTA in rats. We used oligonucleotide microarrays to identify 248 genes in the amygdala regulated by CTA. Pathway Studio and IPA software analyses showed that the differentially expressed genes in the amygdala fall in diverse functional categories such as behavior, psychological disorders, nervous system development and function, and cell-to-cell signaling. Conditioned taste aversion is a complex behavioral trait which involves association of visceral and taste inputs, consolidation of taste and visceral information, memory formation, retrieval of stored information, and extinction phase. In silico analysis of differentially expressed genes is therefore necessary to manipulate specific phase/stage of CTA to understand the molecular insight.
Collapse
|
26
|
Sugita M, Yamamoto K, Hirono C, Shiba Y. Functional dissection of sweet and bitter taste pathways. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Suzuki E, Eda-Fujiwara H, Satoh R, Saito R, Miyamoto T. The effect of androgen on the retention of extinction memory after conditioned taste aversion in mice. J Physiol Sci 2013; 63:171-81. [PMID: 23539343 PMCID: PMC10717145 DOI: 10.1007/s12576-013-0258-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/24/2013] [Indexed: 11/29/2022]
Abstract
Conditioned taste aversion (CTA) induced by the application of a novel taste such as sodium saccharin (Sac) as the conditioned stimulus (CS) and a malaise-inducing agent as the unconditioned stimulus (US), results in acquisition of CTA memory to Sac. In contrast, CTA is extinguished by repeated presentations of the CS without the US, resulting in acquisition of the extinction memory. We examined the effects of androgenic hormones on acquisition and retention of extinction memory in mice. We gonadectomized sexually immature mice and continuously administered androgens to these animals. After sexual maturation, the mice underwent a conditioning period followed by an extinction period. Retrieval tests revealed that the androgen-treated group showed significantly greater retention of extinction memory than the non-treated group 5 weeks later, whereas such significant difference was not observed in acquisition of extinction memory. These results demonstrate the enhancing effect of androgens on retention of extinction memory.
Collapse
Affiliation(s)
- Ema Suzuki
- Laboratory of Behavioral Neuroscience, Division of Material and Biological Sciences, Graduate School of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681 Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-8472 Japan
| | - Hiroko Eda-Fujiwara
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-8472 Japan
- Laboratory of Behavioral Neuroscience, Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Ryohei Satoh
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Rika Saito
- Laboratory of Behavioral Neuroscience, Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Takenori Miyamoto
- Laboratory of Behavioral Neuroscience, Division of Material and Biological Sciences, Graduate School of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681 Japan
- Laboratory of Behavioral Neuroscience, Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681 Japan
| |
Collapse
|
28
|
Benes J, Mravec B, Kvetnansky R, Myslivecek J. The restructuring of muscarinic receptor subtype gene transcripts in c-fos knock-out mice. Brain Res Bull 2013; 94:30-9. [PMID: 23395867 DOI: 10.1016/j.brainresbull.2013.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
Although c-Fos plays a key role in intracellular signalling, the disruption of the c-fos gene has only minor consequences on the central nervous system (CNS) function. As muscarinic receptors (MR) play important roles in many CNS functions (attention, arousal, and cognition), the c-fos knock-out might be compensated through MR changes. The aim of this study was to evaluate changes in the M1-M5 MR mRNA in selected CNS areas: frontal, parietal, temporal and occipital cortex, striatum, hippocampus, hypothalamus and cerebellum (FC, PC, TC, OC, stria, hip, hypo, and crbl, respectively). Knocking out the c-fos gene changed the expression of MR in FC (reduced M1R, M4R and M5R expression), TC (increased M4R expression), OC (decreased M2R and M3R expression) and hippocampus (reduced M3R expression). Moreover, gender differences were observed in WT mice: increased expression of all M1-M5R in the FC in males and M1-M4R in the striatum in females. A detailed analysis of MR transcripts showed pre-existing correlations in the amount of MR-mRNA between specific regions. WT mice showed three major types of cortico-cortical correlations: fronto-occipital, temporo-parietal and parieto-occipital. The cortico-subcortical correlations involved associations between the FC, PC, TC and striatum. In KO mice, a substantial rearrangement of the correlation pattern was observed: only a temporo-parietal correlation and correlations between the FC and striatum remained, and a new correlation between the hypothalamus and cerebellum appeared. Thus, in addition to the previously described dopamine receptor restructuring, the restructuring of MR mRNA correlations reveals an additional mechanism for adaptation to the c-fos gene knockout.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
29
|
Seoane A, Tinsley CJ, Brown MW. Interfering with Fos expression in rat perirhinal cortex impairs recognition memory. Hippocampus 2012; 22:2101-13. [PMID: 22532480 DOI: 10.1002/hipo.22028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 12/27/2022]
Abstract
Previous work has shown that immunohistochemical imaging of Fos protein is a reliable marker for changes in activity related to recognition memory in the perirhinal (PRH) cortex of the medial temporal lobe; however, whether PRH Fos expression is necessary for recognition memory had not been established. To investigate this potential requirement, antisense Fos oligodeoxynucleotide (ODN) was infused locally into PRH cortex to interfere with Fos production. As in previous studies, differential Fos expression produced by viewing novel or familiar visual stimuli was measured by immunohistochemistry: antisense Fos ODN infusion into PRH cortex disrupted the normal pattern of differential Fos expression in PRH cortex. The effect of antisense Fos ODN infusion into PRH cortex was therefore sought on recognition memory. Infusion before or immediately after acquisition impaired recognition memory for objects when the memory delay was 3 or 24 h, but not when the delay was 20 min, or when the ODN was infused before retrieval after a 24-h delay. The findings indicate a role for Fos in consolidation processes underlying long-term recognition memory for objects and establish that interfering with its expression impairs recognition memory. Antisense Fos ODN infusion also impaired object-in-place recognition memory. The results demonstrate that Fos is necessary for neuronal mechanisms in PRH cortex essential to recognition memory.
Collapse
Affiliation(s)
- Ana Seoane
- Department of Physiology and Pharmacology, Medical Research Council Centre for Synaptic Plasticity, University of Bristol, United Kingdom
| | | | | |
Collapse
|
30
|
Benes J, Mravec B, Krizanova O, Kvetnansky R, Myslivecek J. The restructuring of dopamine receptor subtype gene transcripts in c-fos KO mice. Brain Res Bull 2012; 87:511-20. [DOI: 10.1016/j.brainresbull.2012.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 01/31/2023]
|
31
|
Panguluri SK, Kuwabara N, Kang Y, Cooper N, Lundy RF. Conditioned taste aversion dependent regulation of amygdala gene expression. Physiol Behav 2012; 105:996-1006. [PMID: 22119580 PMCID: PMC3260345 DOI: 10.1016/j.physbeh.2011.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/05/2023]
Abstract
The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning.
Collapse
Affiliation(s)
- Siva K. Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Nobuyuki Kuwabara
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Yi Kang
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis MO
| | - Nigel Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| |
Collapse
|
32
|
Abstract
Memory consolidation is the process by which acquired information is converted to something concrete to be retrieved later. Here we examined a potential role for brain-derived neurotrophic factor (BDNF) in mediating the enhanced memory consolidation induced by the GABA(A) receptor antagonist, bicuculline methiodide. With the administration of an acquisition trial in naïve mice using a passive avoidance task, mature BDNF (mBDNF) levels were temporally changed in the hippocampal CA1 region, and the lowest levels were observed 9 h after the acquisition trial. In the passive avoidance task, bicuculline methiodide administration within 1 h of training but not after 3 h significantly increased latency time in the retention trial 24 h after the acquisition trial. Concomitantly, 1 h post-training administration of bicuculline methiodide, which enhanced memory consolidation, significantly increased mBDNF levels 9 h after training compared to those of the vehicle-treated control group. In addition, exogenous human recombinant BDNF (hrBDNF) administration 9 h after training into the hippocampal CA1 region facilitated memory consolidation confirming that the increase in mBDNF at around 9 h after training plays a key role in the enhancement of memory consolidation. Moreover, the increases in latency time and immediate early gene expressions by bicuculline methiodide or hrBDNF were significantly blocked by anisomycin, a protein synthesis inhibitor, K252a, a tyrosine receptor kinase (Trk) inhibitor, or anti-TrkB IgG. These findings suggest that the increase in the level of mBDNF and its function during a restricted time window after training are required for the enhancement of memory consolidation by GABA(A) receptor blockade.
Collapse
|
33
|
Abstract
Taste is the final arbiter of which chemicals from the environment will be admitted to the body. The action of swallowing a substance leads to a physiological consequence of which the taste system should be informed. Accordingly, taste neurons in the central nervous system are closely allied with those that receive input from the viscera so as to monitor the impact of a recently ingested substance. There is behavioral, anatomical, electrophysiological, gene expression, and neurochemical evidence that the consequences of ingestion influence subsequent food selection through development of either a conditioned taste aversion (CTA) (if illness ensues) or a conditioned taste preference (CTP) (if nutrition). This ongoing communication between taste and the viscera permits the animal to tailor its taste system to its individual needs over a lifetime.
Collapse
Affiliation(s)
- Thomas R Scott
- Graduate and Research Affairs, San Diego State University San Diego, CA, USA
| |
Collapse
|
34
|
Guzmán-Ramos K, Bermúdez-Rattoni F. Post-learning molecular reactivation underlies taste memory consolidation. Front Syst Neurosci 2011; 5:79. [PMID: 21991247 PMCID: PMC3181436 DOI: 10.3389/fnsys.2011.00079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022] Open
Abstract
It is considered that memory consolidation is a progressive process that requires post-trial stabilization of the information. In this regard, it has been speculated that waves of receptors activation, expression of immediate early genes, and replenishment of receptor subunit pools occur to induce functional or morphological changes to maintain the information for longer periods. In this paper, we will review data related to neuronal changes in the post-acquisition stage of taste aversion learning that could be involved in further stabilization of the memory trace. In order to achieve such stabilization, evidence suggests that the functional integrity of the insular cortex (IC) and the amygdala (AMY) is required. Particularly the increase of extracellular levels of glutamate and activation of N-methyl-d-aspartate (NMDA) receptors within the IC shows a main role in the consolidation process. Additionally the modulatory actions of the dopaminergic system in the IC appear to be involved in the mechanisms that lead to taste aversion memory consolidation through the activation of pathways related to enhancement of protein synthesis such as the Protein Kinase A pathway. In summary, we suggest that post-acquisition molecular and neuronal changes underlying memory consolidation are dependent on the interactions between the AMY and the IC.
Collapse
|
35
|
Zhang C, Kang Y, Lundy RF. Terminal field specificity of forebrain efferent axons to the pontine parabrachial nucleus and medullary reticular formation. Brain Res 2011; 1368:108-18. [PMID: 21040715 PMCID: PMC3053030 DOI: 10.1016/j.brainres.2010.10.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/06/2023]
Abstract
The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non-specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yi Kang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
36
|
Kwon B, Houpt TA. A combined method of laser capture microdissection and X-Gal histology to analyze gene expression in c-Fos-specific neurons. J Neurosci Methods 2009; 186:155-64. [PMID: 19925827 DOI: 10.1016/j.jneumeth.2009.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 01/28/2023]
Abstract
c-Fos is a member of the activator protein 1 family that regulates transcription of target genes. c-Fos is transiently induced in specific regions of the brain after a variety of external stimuli including learning and memory formation. Analysis of gene expression in c-Fos-expressing cells of the brain may help identify target genes that play important roles in synaptic strength or neuronal morphology. In the present study, we developed a combined method of laser capture microdissection and 5-bromo-4-chloro-3-indoly-beta-D-galactopyranosidase (X-Gal) histology to analyze gene expression in stimulus-induced c-Fos-positive cells. Using transgenic mice carrying a c-fos-lacZ fusion gene, c-Fos-positive cells were easily identified by measuring of beta-galactosidase (beta-Gal) activity. To establish the fidelity of the reporter transgene, the time course of endogenous c-Fos and the c-fos-lacZ transgene expression in the amygdala induced by LiCl administration was investigated by immunohistochemistry and X-Gal staining. LiCl increased the numbers of c-Fos- and beta-Gal-positive cells in the central and basolateral amygdala of the transgenic mice. To ensure that RNA was preserved in X-Gal stained tissue sections, different fixations were examined, with the conclusion that ethanol fixation was best for both RNA preservation and X-Gal staining quality. Finally, in combining X-Gal staining, single-cell LCM and RT-PCR, we confirmed mRNA expression of endogenous c-fos and beta-actin genes in LiCl-induced beta-Gal-positive cells in the CeA, cortex and hippocampus. Combining LCM and transgenic reporter genes provides a powerful tool with which to investigate tissue- or cell-specific gene expression.
Collapse
Affiliation(s)
- Bumsup Kwon
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
37
|
Ploski JE, Park KW, Ping J, Monsey MS, Schafe GE. Identification of plasticity-associated genes regulated by Pavlovian fear conditioning in the lateral amygdala. J Neurochem 2009; 112:636-50. [PMID: 19912470 DOI: 10.1111/j.1471-4159.2009.06491.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Most recent studies aimed at defining the cellular and molecular mechanisms of Pavlovian fear conditioning have focused on protein kinase signaling pathways and the transcription factor cAMP-response element binding protein (CREB) that promote fear memory consolidation in the lateral nucleus of the amygdala (LA). Despite this progress, there still remains a paucity of information regarding the genes downstream of CREB that are required for long-term fear memory formation in the LA. We have adopted a strategy of using microarray technology to initially identify genes induced within the dentate gyrus following in vivo long-term potentiation (LTP) followed by analysis of whether these same genes are also regulated by fear conditioning within the LA. In the present study, we first identified 34 plasticity-associated genes that are induced within 30 min following LTP induction utilizing a combination of DNA microarray, qRT-PCR, and in situ hybridization. To determine whether these genes are also induced in the LA following Pavlovian fear conditioning, we next exposed rats to an auditory fear conditioning protocol or to control conditions that do not support fear learning followed by qRT-PCR on mRNA from microdissected LA samples. Finally, we asked whether identified genes induced by fear learning in the LA are downstream of the extracellular-regulated kinase/mitogen-activated protein kinase signaling cascade. Collectively, our findings reveal a comprehensive list of genes that represent the first wave of transcription following both LTP induction and fear conditioning that largely belong to a class of genes referred to as 'neuronal activity dependent genes' that are likely calcium, extracellular-regulated kinase/mitogen-activated protein kinase, and CREB-dependent.
Collapse
Affiliation(s)
- Jonathan E Ploski
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Yamamoto T, Takemura M, Inui T, Torii K, Maeda N, Ohmoto M, Matsumoto I, Abe K. Functional organization of the rodent parabrachial nucleus. Ann N Y Acad Sci 2009; 1170:378-82. [PMID: 19686162 DOI: 10.1111/j.1749-6632.2009.03883.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rodent parabrachial nucleus (PBN) is not merely a sensory relay station but also plays an important role in integrating various ascending and descending inputs together with plastic changes of neuronal responses after learning and experience. The limbic and reward systems receive ingestion-related information via the cortical areas in primates, whereas in rodents the information is sent to these systems mostly via the PBN. To explore how the rat PBN is functionally organized, we detected activation patterns of neurons mainly by means of c-fos immunohistochemistry to show neuronal activation in different situations of ingestive behavior. The expression pattern was different under nutritionally replete and deficient conditions, perceptually new and familiar conditions, and learned and unlearned conditions. As for the possible functions, the rostral part of the external lateral subnucleus is related to general visceral inputs; the caudal part of the external lateral subnucleus, aversive behavior; the dorsal lateral subnucleus, ingestive behavior; and the central medial subnucleus, taste of NaCl. Because several genes were localized in specific subnuclei, we are trying to correlate the gene expressions with possible functional significance.
Collapse
|
40
|
Dardou D, Datiche F, Cattarelli M. Does the olfactory cue activate the same brain network during aging in the rat after taste potentiated odor aversion retrieval? Neurobiol Learn Mem 2009; 93:137-50. [PMID: 19761859 DOI: 10.1016/j.nlm.2009.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 09/03/2009] [Accepted: 09/09/2009] [Indexed: 11/29/2022]
Abstract
Depending on the brain networks involved, aging is not accompanied by a general decrease in learning and memory capabilities. We demonstrated previously that learning and retrieval of taste potentiated odor aversion (TPOA) is preserved, and even slightly improved, in senescent rats showing some memory deficiencies in cognitive tasks (Dardou, Datiche, & Cattarelli, 2008). TPOA is a particular behavior in which the simultaneous presentation of odor and taste cues followed by a delayed visceral illness leads to a robust aversion towards both conditioned stimuli, which permits diet selection and animal survival. The present experiment was performed in order to investigate the stability or the evolution of the brain network underlying TPOA retrieval during aging. By using immunocytochemical detection of Fos and Egr1 proteins we mapped the cerebral activation induced by TPOA retrieval elicited by the odor presentation in the young, the adult and the senescent rats. The pattern of brain activation changed and the number of activated areas decreased with age. Nevertheless, the piriform cortex and the basolateral amygdala nucleus were always activated and seemed essential for TPOA retrieval. The hippocampus and the neocortical areas could have different implications in TPOA memory in relation to age. The patterns of expression of Fos and Egr1 were different, suggesting their differential involvement in TPOA retrieval. Data are discussed according to the possible roles of the brain areas studied and a model of schematic brain network subtending TPOA retrieval induced by the odor cue is proposed.
Collapse
Affiliation(s)
- David Dardou
- Centre Européen des Sciences du Goût, CNRS UMR 5170, 15 rue Hugues Picardet, 21000 Dijon, France.
| | | | | |
Collapse
|
41
|
Saavedra-Rodríguez L, Vázquez A, Ortiz-Zuazaga HG, Chorna NE, González FA, Andrés L, Rodríguez K, Ramírez F, Rodríguez A, de Ortiz SP. Identification of flap structure-specific endonuclease 1 as a factor involved in long-term memory formation of aversive learning. J Neurosci 2009; 29:5726-37. [PMID: 19420241 PMCID: PMC2699464 DOI: 10.1523/jneurosci.4033-08.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 03/11/2009] [Accepted: 03/24/2009] [Indexed: 01/19/2023] Open
Abstract
We previously proposed that DNA recombination/repair processes play a role in memory formation. Here, we examined the possible role of the fen-1 gene, encoding a flap structure-specific endonuclease, in memory consolidation of conditioned taste aversion (CTA). Quantitative real-time PCR showed that amygdalar fen-1 mRNA induction was associated to the central processing of the illness experience related to CTA and to CTA itself, but not to the central processing resulting from the presentation of a novel flavor. CTA also increased expression of the Fen-1 protein in the amygdala, but not the insular cortex. In addition, double immunofluorescence analyses showed that amygdalar Fen-1 expression is mostly localized within neurons. Importantly, functional studies demonstrated that amygdalar antisense knockdown of fen-1 expression impaired consolidation, but not short-term memory, of CTA. Overall, these studies define the fen-1 endonuclease as a new DNA recombination/repair factor involved in the formation of long-term memories.
Collapse
Affiliation(s)
- Lorena Saavedra-Rodríguez
- Molecular and Cellular Cognition Laboratory and
- Functional Genomics Research Center, Department of Biology, and
| | - Adrinel Vázquez
- Molecular and Cellular Cognition Laboratory and
- Functional Genomics Research Center, Department of Biology, and
| | - Humberto G. Ortiz-Zuazaga
- High Performance Computing Facility, University of Puerto Rico, Central Administration, San Juan, Puerto Rico 00931
| | - Nataliya E. Chorna
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931-3360, and
| | - Fernando A. González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931-3360, and
| | | | | | | | | | - Sandra Peña de Ortiz
- Molecular and Cellular Cognition Laboratory and
- Functional Genomics Research Center, Department of Biology, and
| |
Collapse
|
42
|
Fos and Jun potentiate individual release sites and mobilize the reserve synaptic vesicle pool at the Drosophila larval motor synapse. Proc Natl Acad Sci U S A 2009; 106:4000-5. [PMID: 19228945 DOI: 10.1073/pnas.0806064106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In all nervous systems, short-term enhancement of transmitter release is achieved by increasing the weights of unitary synapses; in contrast, long-term enhancement, which requires nuclear gene expression, is generally thought to be mediated by the addition of new synaptic vesicle release sites. In Drosophila motor neurons, induction of AP-1, a heterodimer of Fos and Jun, induces cAMP- and CREB-dependent forms of presynaptic enhancement. Light and electron microscopic studies indicate that this synaptic enhancement is caused by increasing the weight of unitary synapses and not through the insertion of additional release sites. Electrophysiological and optical measurements of vesicle dynamics demonstrate that enhanced neurotransmitter release is accompanied by an increase in the actively cycling synaptic vesicle pool at the expense of the reserve pool. Finally, the observation that AP-1 mediated enhancement eliminates tetanus-induced forms of presynaptic potentiation suggests: (i) that reserve-pool mobilization is required for tetanus-induced short-term synaptic plasticity; and (ii) that long-term synaptic plasticity may, in some instances, be accomplished by stable recruitment of mechanisms that normally underlie short-term synaptic change.
Collapse
|
43
|
Affiliation(s)
- Marc D. Binder
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle Washington, USA
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine University of Tokyo Hongo, Bunkyo‐ku Tokyo, Japan
| | | |
Collapse
|
44
|
Terminal field specificity of forebrain efferent axons to brainstem gustatory nuclei. Brain Res 2008; 1248:76-85. [PMID: 19028464 DOI: 10.1016/j.brainres.2008.10.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/22/2022]
Abstract
Rostral forebrain structures like the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) send projections to the nucleus of solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence originates from a shared or distinct population of forebrain neurons. Under electrophysiological guidance, the retrograde tracers fast blue (FB) and fluorogold (FG) or green (GFB) and red (RFB) fluorescent latex microbeads were injected iontophoretically or by pressure pulses (10 ms at 20 psi) into the taste-responsive regions of the NST and the ipsilateral PBN in six rats. Seven days later, the animals were euthanized and tissue sections containing the LH, CeA, BNST, and GC were processed for co-localization of FB and FG or GFB and RFB. The results showed that the CeA is the major source of input to the NST (82.3+/-7.6 cells/section) and the PBN (76.7+/-11.5), compared to the BNST (31.8+/-4.5; 37.0+/-4.8), the LH (35.0+/-5.4; 33.6+/-5.7), and the GC (27.5+/-4.0; 29.0+/-4.6). Of the total number of retrogradely labeled cells, the incidence of tracer co-localization was 17+/-3% in the GC, 17+/-2% in the CeA, 15+/-3% in the BNST and 16+/-1% in the LH. Thus, irrespective of forebrain source the majority of descending input to the gustatory NST and PBN originates from distinct neuronal populations. This arrangement provides an anatomical substrate for differential modulation of taste processing in the first and second central relays of the ascending gustatory system.
Collapse
|
45
|
Overexpression screen in Drosophila identifies neuronal roles of GSK-3 beta/shaggy as a regulator of AP-1-dependent developmental plasticity. Genetics 2008; 180:2057-71. [PMID: 18832361 DOI: 10.1534/genetics.107.085555] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AP-1, an immediate-early transcription factor comprising heterodimers of the Fos and Jun proteins, has been shown in several animal models, including Drosophila, to control neuronal development and plasticity. In spite of this important role, very little is known about additional proteins that regulate, cooperate with, or are downstream targets of AP-1 in neurons. Here, we outline results from an overexpression/misexpression screen in Drosophila to identify potential regulators of AP-1 function at third instar larval neuromuscular junction (NMJ) synapses. First, we utilize >4000 enhancer and promoter (EP) and EPgy2 lines to screen a large subset of Drosophila genes for their ability to modify an AP-1-dependent eye-growth phenotype. Of 303 initially identified genes, we use a set of selection criteria to arrive at 25 prioritized genes from the resulting collection of putative interactors. Of these, perturbations in 13 genes result in synaptic phenotypes. Finally, we show that one candidate, the GSK-3beta-kinase homolog, shaggy, negatively influences AP-1-dependent synaptic growth, by modulating the Jun-N-terminal kinase pathway, and also regulates presynaptic neurotransmitter release at the larval neuromuscular junction. Other candidates identified in this screen provide a useful starting point to investigate genes that interact with AP-1 in vivo to regulate neuronal development and plasticity.
Collapse
|
46
|
Sanders JD, Happe HK, Bylund DB, Murrin LC. Differential effects of neonatal norepinephrine lesions on immediate early gene expression in developing and adult rat brain. Neuroscience 2008; 157:821-32. [PMID: 18938224 DOI: 10.1016/j.neuroscience.2008.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 08/19/2008] [Accepted: 09/15/2008] [Indexed: 12/23/2022]
Abstract
Activity regulated cytoskeletal protein (Arc), c-fos and zif268 are immediate early genes (IEGs) important for adult brain plasticity. We examined developmental expression of these IEGs and the effect of neonatal noradrenergic lesion on their expression in developing and mature brain. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a specific noradrenergic neurotoxin, was administered to rats on postnatal day (PND) 3 and in situ hybridization was used to assay Arc, c-fos and zif268 mRNA on PND 13, 25 and 60. In contrast to decreases in Arc, c-fos and zif268 expression produced by noradrenergic lesions of mature brain, lesions on PND 3 yield a strikingly different effect. Neonatal lesions produce increases in c-fos and zif268 expression in specific frontal cortical layers on PND 13, while Arc shows no change. These lesions lead to increases in zif268 expression in frontal cortical layers on PND 25, with no changes in c-fos or Arc expression, and on PND 60 they produce a significant increase in c-fos expression in hippocampus with no significant changes in Arc or zif268 expression. 2-[2-(2-Methoxy-1,4-benzodioxanyl)]imidazoline hydrochloride (RX821002), an alpha-2 adrenergic receptor (A2AR) antagonist, administered to control PND 60 animals produces elevations of Arc, zif268 and c-fos mRNAs. This response was eliminated in animals lesioned with DSP-4 on PND 3. These data indicate that norepinephrine regulation of IEG expression differs in developing and mature brain and that loss of developmental norepinephrine leads to abnormally high postnatal IEG expression. Previous studies have shown an important role for norepinephrine in brain development. Our data support the idea that norepinephrine plays an important role during CNS development and that changes in noradrenergic signaling during development may have long lasting effects, potentially on learning and memory.
Collapse
Affiliation(s)
- J D Sanders
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | | | |
Collapse
|
47
|
Central mechanisms of taste: Cognition, emotion and taste-elicited behaviors. JAPANESE DENTAL SCIENCE REVIEW 2008. [DOI: 10.1016/j.jdsr.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
48
|
Internal body state influences topographical plasticity of sensory representations in the rat gustatory cortex. Proc Natl Acad Sci U S A 2008; 105:4010-5. [PMID: 18305172 DOI: 10.1073/pnas.0708927105] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Primary sensory cortices are remarkably organized in spatial maps according to specific sensory features of the stimuli. These cortical maps can undergo plastic rearrangements after changes in afferent ("bottom-up") sensory inputs such as peripheral lesions or passive sensory experience. However, much less is known about the influence of "top-down" factors on cortical plasticity. Here, we studied the effect of a visceral malaise on taste representations in the gustatory cortex (GC). Using in vivo optical imaging, we showed that inducing conditioned taste aversion (CTA) to a sweet and pleasant stimulus induced plastic rearrangement of its cortical representation, becoming more similar to a bitter and unpleasant taste representation. Using a behavior task, we showed that changes in hedonic perception are directly related to the maps plasticity in the GC. Indeed imaging the animals after CTA extinction indicated that sweet and bitter representations were dissimilar. In conclusion, we showed that an internal state of malaise induces plastic reshaping in the GC associated to behavioral shift of the stimulus hedonic value. We propose that the GC not only encodes taste modality, intensity, and memory but extends its integrative properties to process also the stimulus hedonic value.
Collapse
|
49
|
Reisch A, Illing RB, Laszig R. Immediate early gene expression invoked by electrical intracochlear stimulation in some but not all types of neurons in the rat auditory brainstem. Exp Neurol 2007; 208:193-206. [PMID: 17825819 DOI: 10.1016/j.expneurol.2007.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/20/2007] [Accepted: 06/29/2007] [Indexed: 11/27/2022]
Abstract
Specific patterns of sensory activity may induce plastic remodeling of neurons and the communication network they form in the adult mammalian brain. Among the indicators for the initiation of neuronal remodeling is the expression of immediate early genes (IEGs). The IEGs c-fos and egr-1 encode transcription factors. Following spectrally and temporally precisely defined unilateral electrical intracochlear stimulation (EIS) that corresponded in strength to physiological acoustic stimuli and lasted for 2 h under anesthesia, we characterized those neuronal cell types in ventral (VCN) and dorsal cochlear nucleus (DCN), lateral superior olive (LSO) and central nucleus of the inferior colliculus (CIC) of the rat brain that expressed IEGs. We found that EIS affected only specific types of neurons. Whereas sub-populations of glutamatergic and glycinergic cells responded in all four regions, GABAergic neurons failed to do so except in DCN. Combining immunocytochemistry with axonal tracing, neurons participating in major ascending pathways, commissural cells of VCN and certain types of neurons of the descending auditory system were seen to respond to EIS with IEG expression. By contrast, principal LSO cells projecting to the contralateral CIC as well as collicular efferents of the DCN did not. In total, less than 50% of the identified neurons turned up expression of the IEGs studied. The pattern of IEG expression caused by unilateral EIS led us to suggest that dominant sensory activity may quickly initiate a facilitation of central pathways serving the active ear at the expense of those serving the unstimulated ear.
Collapse
Affiliation(s)
- Adrian Reisch
- Neurobiological Research Laboratory, Killianstr. 5, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
50
|
Schiltz CA, Bremer QZ, Landry CF, Kelley AE. Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biol 2007; 5:16. [PMID: 17462082 PMCID: PMC1868707 DOI: 10.1186/1741-7007-5-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 04/26/2007] [Indexed: 12/20/2022] Open
Abstract
Background Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain. Results Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes homer1a, arc, zif268, ngfi-b and c-fos in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues. Conclusion The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.
Collapse
Affiliation(s)
- Craig A Schiltz
- Medical Scientist and Neuroscience Training Programs, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | - Quentin Z Bremer
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | - Charles F Landry
- Medical Scientist and Neuroscience Training Programs, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | - Ann E Kelley
- Medical Scientist and Neuroscience Training Programs, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53719, USA
| |
Collapse
|