1
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
3
|
Ravikumar R, Chan J, Prabakaran M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022; 14:v14061195. [PMID: 35746665 PMCID: PMC9230070 DOI: 10.3390/v14061195] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022] Open
Abstract
The poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain. Mass vaccination is one of the main strategies for controlling and preventing viral infection in poultry. The development of broadly protective vaccines against avian viral diseases will alleviate selection pressure on field virus strains and simplify vaccination regimens for commercial farms with overall savings in husbandry costs. With the increasing number of emerging and re-emerging viral infectious diseases in the poultry industry, there is an urgent need to understand the strategies for broadening the protective efficacy of the vaccines against distinct viral strains. The current review provides an overview of viral vaccines and vaccination regimens available for common avian viral infections, and strategies for developing safer and more efficacious viral vaccines for poultry.
Collapse
|
4
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
5
|
Yang W, Dai J, Liu J, Guo M, Liu X, Hu S, Gu M, Hu J, Hu Z, Gao R, Liu K, Chen Y, Liu X, Wang X. Intranasal Immunization with a Recombinant Avian Paramyxovirus Serotypes 2 Vector-Based Vaccine Induces Protection against H9N2 Avian Influenza in Chicken. Viruses 2022; 14:v14050918. [PMID: 35632659 PMCID: PMC9144924 DOI: 10.3390/v14050918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022] Open
Abstract
Commercial inactivated vaccines against H9N2 avian influenza (AI) have been developed in China since 1990s and show excellent immunogenicity with strong HI antibodies. However, currently approved vaccines cannot meet the clinical demand for a live-vectored vaccine. Newcastle disease virus (NDV) vectored vaccines have shown effective protection in chickens against H9N2 virus. However, preexisting NDV antibodies may affect protective efficacy of the vaccine in the field. Here, we explored avian paramyxovirus serotype 2 (APMV-2) as a vector for developing an H9N2 vaccine via intranasal delivery. APMV-2 belongs to the same genus as NDV, distantly related to NDV in the phylogenetic tree, based on the sequences of Fusion (F) and hemagglutinin-neuraminidase (HN) gene, and has low cross-reactivity with anti-NDV antisera. We incorporated hemagglutinin (HA) of H9N2 into the junction of P and M gene in the APMV-2 genome by being flanked with the gene start, gene end, and UTR of each gene of APMV-2-T4 to generate seven recombinant APMV-2 viruses rAPMV-2/HAs, rAPMV-2-NPUTR-HA, rAPMV-2-PUTR-HA, rAPMV-2-FUTR-HA, rAPMV-2-HNUTR-HA, rAPMV-2-LUTR-HA, and rAPMV-2-MUTR-HA, expressing HA. The rAPMV-2/HAs displayed similar pathogenicity compared with the parental APMV-2-T4 virus and expressed HA protein in infected CEF cells. The NP-UTR facilitated the expression and secretion of HA protein in cells infected with rAPMV-2-NPUTR-HA. Animal studies demonstrated that immunization with rAPMV-2-NPUTR-HA elicited effective H9N2-specific antibody (6.14 ± 1.2 log2) responses and conferred complete immune protection to prevent viral shedding in the oropharyngeal and cloacal swabs from chickens challenged with H9N2 virus. This study suggests that our recombinant APMV-2 virus is safe and immunogenic and can be a useful tool in the combat of H9N2 outbreaks in chicken.
Collapse
Affiliation(s)
- Wenhao Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Jing Dai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Jingjing Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Mengjiao Guo
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Zenglei Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Kaituo Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Correspondence: (X.L.); (X.W.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
6
|
Lee J, Kim DH, Noh J, Youk S, Jeong JH, Lee JB, Park SY, Choi IS, Lee SW, Song CS. Live Recombinant NDV-Vectored H5 Vaccine Protects Chickens and Domestic Ducks From Lethal Infection of the Highly Pathogenic H5N6 Avian Influenza Virus. Front Vet Sci 2022; 8:773715. [PMID: 35187138 PMCID: PMC8850738 DOI: 10.3389/fvets.2021.773715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022] Open
Abstract
The H5 subtype highly pathogenic avian influenza virus (HPAIV) has been introduced to South Korea every 2 or 3 years via wild migratory waterfowls, causing devastating damages to the poultry industry. Although most damages and economic losses by HPAIV are focused on chicken layers, domestic ducks are known to play a major role in the farm-to-farm transmission. However, most HPAIV vaccine studies on poultry have been performed with oil-emulsion inactivated vaccines. In this study, we developed a live recombinant Newcastle disease virus (NDV)-vectored vaccine against H5 HPAIV (rK148/ES2-HA) using a previously established NDV vaccine strain (K148/08) isolated from a wild mallard duck. The efficacy of the vaccine when administered via the oculonasal route or as a spray was evaluated against lethal H5 HPAIV infection in domestic ducks and chickens. Oculonasal inoculation of the rK148/ES2-HA in chickens and ducks elicited antibody titers against HPAIV as early as 1 or 2 week after the single dose of vaccination, whereas spray vaccination in ducks elicited antibodies against HPAIV after the booster vaccination. The chickens and ducks vaccinated with rK148/ES2-HA showed high survival rates and low viral shedding after H5N6 HPAIV challenge. Collectively, vaccination with rK148/ES2-HA prevented lethal infection and decreased viral shedding in both chickens and ducks. The vaccine developed in this study could be useful in suppressing the viral shedding in H5 HPAIV outbreaks, with the ease of vaccine application and fast onset of immunity.
Collapse
Affiliation(s)
- Jiho Lee
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Deok-hwan Kim
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | - Sungsu Youk
- Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, U.S. National Poultry Research Center, Athens, GA, United States
| | - Jei-hyun Jeong
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Joong-bok Lee
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Seung-Yong Park
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - In-soo Choi
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sang-Won Lee
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Chang-seon Song
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- KCAV Co., Ltd., Seoul, South Korea
- *Correspondence: Chang-seon Song
| |
Collapse
|
7
|
The phosphatase and tensin homolog gene inserted between NP and P gene of recombinant New castle disease virus oncolytic effect test to glioblastoma cell and xenograft mouse model. Virol J 2022; 19:21. [PMID: 35093115 PMCID: PMC8800283 DOI: 10.1186/s12985-022-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Glioblastoma is one of the most serious brain cancer. Previous studies have demonstrated that PTEN function disorder affects the causing and exacerbation of glioblastoma. Newcastle disease virus (NDV) has been studied as a cancer virotherapeutics. In this study, PTEN gene was delivered to glioblastoma by recombinant NDV (rNDV) and translated into protein at the cytoplasm of the glioblastoma.
Methods We did comparison tests PTEN protein expression efficiency and oncolytic effect depend on the PTEN gene insertion site at the between NP and P genes and the between P and M gene. PTEN protein mRNA transcription, translation in glioblastoma cell, and functional PTEN protein effect of the rNDV in vitro and in vivo test performed using western blotting, RT-qPCR, MTT assay, and Glioblastoma xenograft animal model test. Results The result of this study demonstrates that rNDV-PTEN kills glioblastoma cells and reduces cancer tissue better than rNDV without the PTEN gene. In molecular immunological and cytological assays, PTEN expression level was high at located in the between NP and P gene, and PTEN gene was successfully delivered to the glioblastoma cell using rNDV and PTEN gene translated to functional protein and inhibits hTERT and AKT gene. Conclusions PTEN gene enhances the oncolytic effect of the rNDV. And our study demonstrated that NP and P gene site is better than P and M gene site which is commonly and conventionally used. PTEN gene containing rNDV is a good candidate virotherapeutics for glioblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01746-w.
Collapse
|
8
|
Hein R, Koopman R, García M, Armour N, Dunn JR, Barbosa T, Martinez A. Review of Poultry Recombinant Vector Vaccines. Avian Dis 2021; 65:438-452. [PMID: 34699141 DOI: 10.1637/0005-2086-65.3.438] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
The control of poultry diseases has relied heavily on the use of many live and inactivated vaccines. However, over the last 30 yr, recombinant DNA technology has been used to generate many novel poultry vaccines. Fowlpox virus and turkey herpesvirus are the two main vectors currently used to construct recombinant vaccines for poultry. With the use of these two vectors, more than 15 recombinant viral vector vaccines against Newcastle disease, infectious laryngotracheitis, infectious bursal disease, avian influenza, and Mycoplasma gallisepticum have been developed and are commercially available. This review focuses on current knowledge about the safety and efficacy of recombinant viral vectored vaccines and the mechanisms by which they facilitate the control of multiple diseases. Additionally, the development of new recombinant vaccines with novel vectors will be briefly discussed.
Collapse
Affiliation(s)
- Ruud Hein
- Consultant Poultry Diseases Molecular Vaccine Technology Georgetown DE 19947,
| | - Rik Koopman
- MSD Animal Health/Intervet International BV, Boxmeer, 5831 AN Netherlands
| | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Natalie Armour
- Poultry Research and Diagnostic Laboratory, Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39208
| | - John R Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30602
| | | | - Algis Martinez
- Cobb-Vantress Global Veterinary Services, Siloam Springs, AR 72761
| |
Collapse
|
9
|
Dimitrov KM, Taylor TL, Marcano VC, Williams-Coplin D, Olivier TL, Yu Q, Gogal RM, Suarez DL, Afonso CL. Novel Recombinant Newcastle Disease Virus-Based In Ovo Vaccines Bypass Maternal Immunity to Provide Full Protection from Early Virulent Challenge. Vaccines (Basel) 2021; 9:vaccines9101189. [PMID: 34696297 PMCID: PMC8538074 DOI: 10.3390/vaccines9101189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Newcastle disease (ND) is one of the most economically important poultry diseases. Despite intensive efforts with current vaccination programs, this disease still occurs worldwide, causing significant mortality even in vaccinated flocks. This has been partially attributed to a gap in immunity during the post-hatch period due to the presence of maternal antibodies that negatively impact the replication of the commonly used live vaccines. In ovo vaccines have multiple advantages and present an opportunity to address this problem. Currently employed in ovo ND vaccines are recombinant herpesvirus of turkeys (HVT)-vectored vaccines expressing Newcastle disease virus (NDV) antigens. Although proven efficient, these vaccines have some limitations, such as delayed immunogenicity and the inability to administer a second HVT vaccine post-hatch. The use of live ND vaccines for in ovo vaccination is currently not applicable, as these are associated with high embryo mortality. In this study, recombinant NDV-vectored experimental vaccines containing an antisense sequence of avian interleukin 4 (IL4R) and their backbones were administered in ovo at different doses in 18-day-old commercial eggs possessing high maternal antibodies titers. The hatched birds were challenged with virulent NDV at 2 weeks-of-age. Post-hatch vaccine shedding, post-challenge survival, challenge virus shedding, and humoral immune responses were evaluated at multiple timepoints. Recombinant NDV (rNDV) vaccinated birds had significantly reduced post-hatch mortality compared with the wild-type LaSota vaccine. All rNDV vaccines were able to penetrate maternal immunity and induce a strong early humoral immune response. Further, the rNDV vaccines provided protection from clinical disease and significantly decreased virus shedding after early virulent NDV challenge at two weeks post-hatch. The post-challenge hemagglutination-inhibition antibody titers in the vaccinated groups remained comparable with the pre-challenge titers, suggesting the capacity of the studied vaccines to prevent efficient replication of the challenge virus. Post-hatch survival after vaccination with the rNDV-IL4R vaccines was dose-dependent, with an increase in survival as the dose decreased. This improved survival and the dose-dependency data suggest that novel attenuated in ovo rNDV-based vaccines that are able to penetrate maternal immunity to elicit a strong immune response as early as 14 days post-hatch, resulting in high or full protection from virulent challenge, show promise as a contributor to the control of Newcastle disease.
Collapse
Affiliation(s)
- Kiril M. Dimitrov
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
- Texas A&M Veterinary Medical Diagnostic Laboratory, 483 Agronomy Road, College Station, TX 77843, USA
| | - Tonya L. Taylor
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Valerie C. Marcano
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Dawn Williams-Coplin
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Timothy L. Olivier
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Qingzhong Yu
- Endemic Poultry Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA;
| | - Robert M. Gogal
- Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| | - David L. Suarez
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, 934 College Station Road, Athens, GA 30605, USA or (K.M.D.); (T.L.T.); (V.C.M.); (D.W.-C.); (T.L.O.); (D.L.S.)
- Correspondence: ; Tel.: +1-800-817-7160
| |
Collapse
|
10
|
Newcastle Disease Virus Vectored Chicken Infectious Anaemia Vaccine Induces Robust Immune Response in Chickens. Viruses 2021; 13:v13101985. [PMID: 34696415 PMCID: PMC8540149 DOI: 10.3390/v13101985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 01/31/2023] Open
Abstract
Newcastle disease virus (NDV) strain R2B, with an altered fusion protein cleavage site, was used as a viral vector to deliver the immunogenic genes VP2 and VP1 of chicken infectious anaemia virus (CIAV) to generate a bivalent vaccine candidate against these diseases in chickens. The immunogenic genes of CIAV were expressed as a single transcriptional unit from the NDV backbone and the two CIA viral proteins were obtained as separate entities using a self-cleaving foot-and-mouth disease virus 2A protease sequence between them. The recombinant virus (rR2B-FPCS-CAV) had similar growth kinetics as that of the parent recombinant virus (rR2B-FPCS) in vitro with similar pathogenicity characteristics. The bivalent vaccine candidate when given in specific pathogen-free chickens as primary and booster doses was able to elicit robust humoral and cell-mediated immune (CMI) responses obtained in a vaccination study that was conducted over a period of 15 weeks. In an NDV and CIAV ELISA trial, there was a significant difference in the titres of antibody between vaccinated and control groups which showed slight reduction in antibody titre by 56 days of age. Hence, a second booster was administered and the antibody titres were maintained until 84 days of age. Similar trends were noticed in CMI response carried out by lymphocyte transformation test, CD4+ and CD8+ response by flow cytometry analysis and response of real time PCR analysis of cytokine genes. Birds were challenged with virulent NDV and CIAV at 84 days and there was significant reduction in the NDV shed on the 2nd and 4th days post challenge in vaccinated birds as compared to unvaccinated controls. Haematological parameters comprising PCV, TLC, PLC and PHC were estimated in birds that were challenged with CIAV that indicated a significant reduction in the blood parameters of controls. Our findings support the development and assessment of a bivalent vaccine candidate against NDV and CIAV in chickens.
Collapse
|
11
|
Generation and Evaluation of Recombinant Thermostable Newcastle Disease Virus Expressing the HA of H9N2 Avian Influenza Virus. Viruses 2021; 13:v13081606. [PMID: 34452473 PMCID: PMC8402907 DOI: 10.3390/v13081606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
H9N2 avian influenza virus (AIV) has become endemic in many countries, causing great economic losses when co-infected with other pathogens. So far, several live vaccines based on Newcastle disease virus (NDV) vectors expressing influenza hemagglutinin (HA) have been developed. However, the thermostable recombinant NDV is rarely reported. In this study, using a thermostable NDV rAHR09 strain as the vector, three recombinant NDVs expressing native HA, chimeric HA ectodomain with transmembrane domain/C-terminal cytoplasmic tail domain from fusion protein of NDV, and HA ectodomain were generated, designated rAHR09-HA, rAHR09-HAF, and rAHR09-HAE. The MDT value of three recombinant NDVs was above 120 h, their ICPI value was about 0.03, and the recombinant NDVs were still infectious when treated for 100 min under 56 °C, which demonstrated that the recombinant NDVs kept the lentogenic and thermostable nature of rAHR09. The immunization data showed that rAHR09-HA and rAHR09-HAF induced a higher HI antibody titer against H9N2 AIV and NDV. After being challenged with H9N2 AIV, the rAHR09-HA and rAHR09-HAF could significantly reduce the virus shedding in cloacal and tracheal swab samples. Our results suggest that rAHR09-HA and rAHR09-HAF might be vaccine candidates against H9N2 AIV.
Collapse
|
12
|
The Expression of Hemagglutinin by a Recombinant Newcastle Disease Virus Causes Structural Changes and Alters Innate Immune Sensing. Vaccines (Basel) 2021; 9:vaccines9070758. [PMID: 34358174 PMCID: PMC8310309 DOI: 10.3390/vaccines9070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant Newcastle disease viruses (rNDV) have been used as bivalent vectors for vaccination against multiple economically important avian pathogens. NDV-vectored vaccines expressing the immunogenic H5 hemagglutinin (rNDV-H5) are considered attractive candidates to protect poultry from both highly pathogenic avian influenza (HPAI) and Newcastle disease (ND). However, the impact of the insertion of a recombinant protein, such as H5, on the biological characteristics of the parental NDV strain has been little investigated to date. The present study compared a rNDV-H5 vaccine and its parental NDV LaSota strain in terms of their structural and functional characteristics, as well as their recognition by the innate immune sensors. Structural analysis of the rNDV-H5 demonstrated a decreased number of fusion (F) and a higher number of hemagglutinin-neuraminidase (HN) glycoproteins compared to NDV LaSota. These structural differences were accompanied by increased hemagglutinating and neuraminidase activities of rNDV-H5. During in vitro rNDV-H5 infection, increased mRNA expression of TLR3, TLR7, MDA5, and LGP2 was observed, suggesting that the recombinant virus is recognized differently by sensors of innate immunity when compared with the parental NDV LaSota. Given the growing interest in using NDV as a vector against human and animal diseases, these data highlight the importance of thoroughly understanding the recombinant vaccines’ structural organization, functional characteristics, and elicited immune responses.
Collapse
|
13
|
Mezhenskaya D, Isakova-Sivak I, Kotomina T, Matyushenko V, Kim MC, Bhatnagar N, Kim KH, Kang SM, Rudenko L. A Strategy to Elicit M2e-Specific Antibodies Using a Recombinant H7N9 Live Attenuated Influenza Vaccine Expressing Multiple M2e Tandem Repeats. Biomedicines 2021; 9:biomedicines9020133. [PMID: 33535408 PMCID: PMC7912525 DOI: 10.3390/biomedicines9020133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses remain a serious public health problem. Vaccination is the most effective way to prevent the disease; however, seasonal influenza vaccines demonstrate low or no effectiveness against antigenically drifted and newly emerged influenza viruses. Different strategies of eliciting immune responses against conserved parts of various influenza virus proteins are being developed worldwide. We constructed a universal live attenuated influenza vaccine (LAIV) candidate with enhanced breadth of protection by modifying H7N9 LAIV by incorporating four epitopes of M2 protein extracellular part into its hemagglutinin molecule. The new recombinant H7N9+4M2e vaccine induced anti-M2e antibody responses and demonstrated increased protection against heterosubtypic challenge viruses in direct and serum passive protection studies, compared to the classical H7N9 LAIV. The results of our study suggest that the H7N9+4M2e warrants further investigation in pre-clinical and phase 1 clinical trials.
Collapse
Affiliation(s)
- Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
- Correspondence:
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (M.-C.K.); (N.B.); (K.-H.K.); (S.-M.K.)
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (M.-C.K.); (N.B.); (K.-H.K.); (S.-M.K.)
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (M.-C.K.); (N.B.); (K.-H.K.); (S.-M.K.)
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (M.-C.K.); (N.B.); (K.-H.K.); (S.-M.K.)
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
| |
Collapse
|
14
|
Murr M, Grund C, Breithaupt A, Mettenleiter TC, Römer-Oberdörfer A. Protection of Chickens with Maternal Immunity Against Avian Influenza Virus (AIV) by Vaccination with a Novel Recombinant Newcastle Disease Virus Vector. Avian Dis 2020; 64:427-436. [PMID: 33347549 DOI: 10.1637/aviandiseases-d-20-00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/18/2020] [Indexed: 11/05/2022]
Abstract
Newcastle disease virus (NDV) vectors expressing avian influenza virus (AIV) hemagglutinin of subtype H5 protect specific pathogen-free chickens from Newcastle disease and avian influenza. However, maternal AIV antibodies (AIV-MDA+) are known to interfere with active immunization by influencing vaccine virus replication and gene expression, resulting in inefficient protection. To overcome this disadvantage, we inserted a transgene encoding a truncated soluble hemagglutinin (HA) in addition to the gene encoding membrane-bound HA from highly pathogenic avian influenza virus (HPAIV) H5N1 into lentogenic NDV Clone 30 genome (rNDVsolH5_H5) to overexpress H5 antigen. Vaccination of 3-wk-old AIV-MDA+ chickens with rNDVsolH5_H5 and subsequent challenge infection with HPAIV H5N1 3 wk later resulted in 100% protection. Vaccination of younger chickens with higher AIV-MDA levels 1 and 2 wk after hatch resulted in protection rates of 40% and 85%, respectively. However, all vaccinated chickens showed strongly reduced shedding of challenge virus compared with age-matched, nonvaccinated control chickens. All control chickens succumbed to the HPAIV infection with a grading in disease progression between the three groups, indicating the influence of AIV-MDAs even at a low level. Furthermore, the shedding and serologic data gathered after immunization indicate sufficient replication of the vaccine virus, which leads to the assumption that lower protection rates in younger AIV-MDA+ chickens are caused by an H5 antigen-specific block and not by the interference of the AIV-MDA and the vaccine virus itself. In summary, solid protective efficacy and reduced virus transmission were achieved in 3-wk-old AIV-MDA+ chickens, which is relevant especially in regions endemically infected with HPAIV H5N1.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
15
|
Romanutti C, Keller L, Zanetti FA. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine 2020; 38:6990-7001. [PMID: 32951939 DOI: 10.1016/j.vaccine.2020.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023]
Abstract
The most effective strategies for the control of disease in poultry are vaccination and biosecurity. Vaccines useful against pathogens affecting poultry must be safe, effective with a single dose, inexpensive, applicable by mass vaccination methods, and able to induce a protective immune response in the presence of maternal antibodies. Viral vector meet some of these characteristics and if the attenuated virus used as vector infects birds, the vaccine will have the advantage of being bivalent. Thus, viral vectors are currently a tool of choice for the development of new poultry vaccines. This review describes the main viruses used as vectors for the delivery and in vivo expression of antigens of poultry pathogens. It also presents the methodologies most frequently used to obtain recombinant viral vectors and summarizes the state-of-the-art related to vectored vaccines in poultry (some of them currently licensed), the pathogens targeted and their antigens, and the ability of these vaccines to induce an effective immune response. Finally, the review discusses the results of a few studies comparing recombinant viral vector vaccines and live-attenuated vaccines in vaccine matching challenges, and mentions strategies and future researches that can help to improve the efficacy of vectored vaccines in poultry birds.
Collapse
Affiliation(s)
- Carina Romanutti
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Leticia Keller
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Flavia Adriana Zanetti
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Hautefeuille C, Azzouguen B, Mouchel S, Dauphin G, Peyre M. Evaluation of vaccination strategies to control an avian influenza outbreak in French poultry production networks using EVACS tool. Prev Vet Med 2020; 184:105129. [PMID: 33002655 DOI: 10.1016/j.prevetmed.2020.105129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/31/2020] [Accepted: 08/23/2020] [Indexed: 11/27/2022]
Abstract
France recently faced two epizootic waves of highly pathogenic avian influenza (HPAI) in poultry (H5N6 in 2015-2016 and H5N8 in 2016-2017), mainly in the fattening duck production sector. Vaccination against avian influenza (AI) is currently not authorised in France even though its potential benefits were discussed during these epizootic events. The objective of this work was to evaluate the potential efficiency of different vaccination strategies that could be applied against AI in France. The EVACS tool, which is a decision support tool developed to evaluate vaccination strategies, was applied in several French poultry production sectors: broiler, layer, turkey, duck and guinea fowl. EVACS was used to simulate the performance of vaccination strategies in terms of vaccination coverage, immunity levels and spatial distribution of the immunity level. A cost-benefit analysis was then applied based on EVACS results to identify the most efficient strategy. For each sector, vaccination protocols were tested according to the production type (breeders/production, indoor/outdoor), the integration level (integrated/independent) and the type of vaccine (hatchery vaccination using a recombinant vaccine/farm vaccination using an inactivated vaccine). The most efficient protocols for each sector were then combined to test different overall vaccination strategies at the national level. Even if it was not possible to compare vaccination protocols with the two vaccines types in "foie gras" duck, meat duck and guinea fowl production sectors as no hatchery vaccine currently exist for these species, these production sectors were also described and included in this simulation. Both types of vaccination (at hatchery and farm level) enabled protective immunity levels for the control of AI, but higher poultry population immunity level was reached (including independent farms) using hatchery vaccination. We also showed that hatchery vaccination was more efficient (higher benefit-cost ratio) than farm vaccination. Sufficient and homogeneously spatially distributed protective levels were reached in the overall poultry population with vaccination strategies targeting breeders, chicken layers and broilers and turkeys, without the need to include ducks and guinea fowls. However, vaccination strategies involving the highest number of species and production types were the most efficient in terms of cost-benefit. This study provides critical information on the efficiency of different vaccination strategies to support future decision making in case vaccination was applied to prevent and control HPAI in France.
Collapse
Affiliation(s)
- Claire Hautefeuille
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France; CEVA Santé animale, 33500, Libourne, France.
| | - Billal Azzouguen
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | | | | - Marisa Peyre
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
17
|
Transcriptome Analysis Reveals Inhibitory Effects of Lentogenic Newcastle Disease Virus on Cell Survival and Immune Function in Spleen of Commercial Layer Chicks. Genes (Basel) 2020; 11:genes11091003. [PMID: 32859030 PMCID: PMC7565929 DOI: 10.3390/genes11091003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
As a major infectious disease in chickens, Newcastle disease virus (NDV) causes considerable economic losses in the poultry industry, especially in developing countries where there is limited access to effective vaccination. Therefore, enhancing resistance to the virus in commercial chickens through breeding is a promising way to promote poultry production. In this study, we investigated gene expression changes at 2 and 6 days post inoculation (dpi) at day 21 with a lentogenic NDV in a commercial egg-laying chicken hybrid using RNA sequencing analysis. By comparing NDV-challenged and non-challenged groups, 526 differentially expressed genes (DEGs) (false discovery rate (FDR) < 0.05) were identified at 2 dpi, and only 36 at 6 dpi. For the DEGs at 2 dpi, Ingenuity Pathway Analysis predicted inhibition of multiple signaling pathways in response to NDV that regulate immune cell development and activity, neurogenesis, and angiogenesis. Up-regulation of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) in response to NDV was consistent between the current and most previous studies. Sprouty RTK signaling antagonist 1 (SPRY1), a DEG in the current study, is in a significant quantitative trait locus associated with virus load at 6 dpi in the same population. These identified pathways and DEGs provide potential targets to further study breeding strategy to enhance NDV resistance in chickens.
Collapse
|
18
|
Shirvani E, Paldurai A, Varghese BP, Samal SK. Contributions of HA1 and HA2 Subunits of Highly Pathogenic Avian Influenza Virus in Induction of Neutralizing Antibodies and Protection in Chickens. Front Microbiol 2020; 11:1085. [PMID: 32582071 PMCID: PMC7291869 DOI: 10.3389/fmicb.2020.01085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 causes a devastating disease in poultry. Vaccination is an effective method of controlling avian influenza virus (AIV) infection in poultry. The hemagglutinin (HA) protein is the major determinant recognized by the immune system of the host. Cleavage of the HA precursor HA0 into HA1 and HA2 subunits is required for infectivity of the AIV. We evaluated the individual contributions of HA1 and HA2 subunits to the induction of HPAIV serum neutralizing antibodies and protective immunity in chickens. Using reverse genetics, recombinant Newcastle disease viruses (rNDVs) were generated, each expressing HA1, HA2, or HA protein of H5N1 HPAIV. Chickens were immunized with rNDVs expressing HA1, HA2, or HA. Immunization with HA induced high titers of serum neutralizing antibodies and prevented death following challenge. Immunization with HA1 or HA2 alone neither induced serum neutralizing antibodies nor prevented death following challenge. Our results suggest that interaction of HA1 and HA2 subunits is necessary for the display of epitopes on HA protein involved in the induction of neutralizing antibodies and protection. These epitopes are lost when the two subunits are separated. Therefore, vaccination with either a HA1 or HA2 subunit may not provide protection against HPAIV.
Collapse
Affiliation(s)
- Edris Shirvani
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Anandan Paldurai
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Berin P Varghese
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
19
|
Murr M, Hoffmann B, Grund C, Römer-Oberdörfer A, Mettenleiter TC. A Novel Recombinant Newcastle Disease Virus Vectored DIVA Vaccine against Peste des Petits Ruminants in Goats. Vaccines (Basel) 2020; 8:vaccines8020205. [PMID: 32354145 PMCID: PMC7348985 DOI: 10.3390/vaccines8020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Peste des petits ruminants virus (PPRV, species: small ruminant morbillivirus) is the causative agent of the eponymous notifiable disease, the peste des petits ruminants (PPR) in wild and domestic sheep and goats. Mortality rates vary between 50% and 100%, causing significant losses of estimated 1.5 to 2 billion US Dollars per year. Live-attenuated PPRV vaccine strains are used in the field for disease prevention, but the application of a more thermostable vaccine enabling differentiation between infected and vaccinated animals (DIVA) would be highly desirable to achieve the goal of global disease eradication. We generated a recombinant Newcastle disease virus (rNDV) based on the live-attenuated NDV Clone 30 that expresses the surface protein hemagglutinin (H) of PPRV strain Kurdistan/11 (rNDV_HKur). In vitro analyses confirmed transgene expression as well as virus replication in avian, caprine, and ovine cells. Two consecutive subcutaneous vaccinations of German domestic goats with rNDV_HKur prevented clinical signs and hematogenic dissemination after an intranasal challenge with virulent PPRV Kurdistan/11. Virus shedding by different routes was reduced to a similar extent as after vaccination with the live-attenuated PPRV strain Nigeria 75/1. Goats that were either not vaccinated or inoculated with parental rNDV were used as controls. In summary, we demonstrate in a proof-of-concept study that an NDV vectored vaccine can protect against PPR. Furthermore, it provides DIVA-applicability and a high thermal tolerance.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-7-1629
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
20
|
Murr M, Karger A, Steglich C, Mettenleiter TC, Römer-Oberdörfer A. Coexpression of soluble and membrane-bound avian influenza virus H5 by recombinant Newcastle disease virus leads to an increase in antigen levels. J Gen Virol 2020; 101:473-483. [PMID: 32209169 DOI: 10.1099/jgv.0.001405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Newcastle disease virus (NDV) vectors expressing avian influenza virus (AIV) haemagglutinin (HA) of subtype H5 simultaneously protect chickens from Newcastle disease (ND) as well as avian influenza (AI). The expressed, membrane-bound surface protein HA is incorporated into virions while soluble HA has been described as a potent antigen. We tested whether co-expression of both HA variants from the same NDV vector increased the overall level of HA, which could be important for optimal immunogenicity. Recombinant NDVsolH5_H5 co-expressed membrane-bound H5 of highly pathogenic (HP) AIV H5N1, detectable in infected cells, and soluble H5, which was secreted into the supernatant. This virus was compared to recombinant NDV that express either membrane-bound (rNDVH5) or soluble H5 (rNDVsolH5). Replication in embryonated chicken eggs (ECEs) and in cell culture, as well as pathogenicity in ECEs, was not influenced by the second heterologous transcriptional unit. However, the co-expression of soluble H5 with membrane-bound H5 increased total protein level about 5.25-fold as detected by MS quantification. Hence, this virus is very interesting as a vaccine virus in chickens against HPAIV infections in situations in which previous H5-expressing NDVs have reached their limit, such as in the face of pre-existing AIV maternal immunity.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Constanze Steglich
- Present address: Ceva Riems GmbH, An der Wiek 7, 17493 Greifswald - Insel Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
21
|
Shirvani E, Varghese BP, Paldurai A, Samal SK. A recombinant avian paramyxovirus serotype 3 expressing the hemagglutinin protein protects chickens against H5N1 highly pathogenic avian influenza virus challenge. Sci Rep 2020; 10:2221. [PMID: 32042001 PMCID: PMC7010735 DOI: 10.1038/s41598-020-59124-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) is a devastating disease of poultry and a serious threat to public health. Vaccination with inactivated virus vaccines has been applied for several years as one of the major policies to control highly pathogenic avian influenza virus (HPAIV) infections in chickens. Viral-vectored HA protein vaccines are a desirable alternative for inactivated vaccines. However, each viral vector possesses its own advantages and disadvantages for the development of a HA-based vaccine against HPAIV. Recombinant Newcastle disease virus (rNDV) strain LaSota expressing HA protein vaccine has shown promising results against HPAIV; however, its replication is restricted only to the respiratory tract. Therefore, we thought to evaluate avian paramyxovirus serotype 3 (APMV-3) strain Netherlands as a safe vaccine vector against HPAIV, which has high efficiency replication in a greater range of host organs. In this study, we generated rAPMV-3 expressing the HA protein of H5N1 HPAIV using reverse genetics and evaluated the induction of neutralizing antibodies and protection by rAPMV3 and rNDV expressing the HA protein against HPAIV challenge in chickens. Our results showed that immunization of chickens with rAPMV-3 or rNDV expressing HA protein provided complete protection against HPAIV challenge. However, immunization of chickens with rAPMV-3 expressing HA protein induced higher level of neutralizing antibodies compared to that of rNDV expressing HA protein. These results suggest that a rAPMV-3 expressing HA protein might be a better vaccine for mass-vaccination of commercial chickens in field conditions.
Collapse
Affiliation(s)
- Edris Shirvani
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Berin P Varghese
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Anandan Paldurai
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
22
|
Xu L, Qin Z, Qiao L, Wen J, Shao H, Wen G, Pan Z. Characterization of thermostable Newcastle disease virus recombinants expressing the hemagglutinin of H5N1 avian influenza virus as bivalent vaccine candidates. Vaccine 2020; 38:1690-1699. [PMID: 31937412 DOI: 10.1016/j.vaccine.2019.12.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/11/2023]
Abstract
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated the thermostable recombinant NDV (rNDV) expressing the different forms of hemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) H5N1 based on the full-length cDNA clone of thermostable TS09-C strain. The recombinant thermostable Newcastle disease viruses, rTS-HA, rTS-HA1 and rTS-tPAs/HA1, expressed the HA, HA1 or modified HA1 protein with the tissue plasminogen activator signal sequence (tPAs), respectively. The rNDVs displayed similar thermostability, growth kinetics and pathogenicity compared with the parental TS09-C virus. The tPAs facilitated the expression and secretion of HA1 protein in cells infected with rNDV. Animal studies demonstrated that immunization with rNDVs elicited effective H5N1- and NDV-specific antibody responses and conferred immune protection against lethal H5N1 and NDV challenges in chickens and mice. Importantly, vaccination of rTS-tPAs/HA1 resulted in enhanced protective immunity in chickens and mice. Our study thus provides a novel thermostable NDV-vectored vaccine candidate expressing a soluble form of a heterologous viral protein, which will greatly aid the poultry industry in developing countries.
Collapse
Affiliation(s)
- Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Wen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
23
|
Tsunekuni R, Tanikawa T, Nakaya T, Saito T. Improvement of a recombinant avian avulavirus serotype 10 vectored vaccine by the addition of untranslated regions. Vaccine 2019; 38:822-829. [PMID: 31718900 DOI: 10.1016/j.vaccine.2019.10.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND We have previously developed a recombinant avian avulavirus serotype 10 (rAAvV-10/HA) expressing the hemagglutinin (HA) gene of a highly pathogenic avian influenza virus (HPAIV) as an emergency vaccine for poultry. rAAvV-10/HA can overcome the activity of the anti-AAvV-1 (Newcastle disease virus) antibody acquired by commercial chickens upon routine vaccination. Most chickens do not have the anti-AAvV-10 antibody, which could interfere with the vaccine efficacy. However, the vaccine efficacy of rAAvV-10/HA is not satisfactory in chickens even though it affords protection against an HPAIV challenge. In the present study, we improved the rAAvV-10/HA vaccine by enhancing the expression of the exogenous HA protein. METHODS The 5' and 3' untranslated regions (UTR) of each AAvV-10 gene were flanked with the exogenous HA gene cassette to modify rAAvV-10/HA, yielding different rAAv10-UTRs. As a control, rAAv10-nonUTR that did not contain any UTRs was generated. The effects of UTRs on mRNA transcription, HA protein expression, and vaccine efficacy were then examined using embryonated chicken eggs and white leghorn chickens. RESULTS The proportion of the HA gene mRNA among the vector-derived mRNAs (1.55-1.84-fold increase vs. the control) and HA protein levels (148-1151-fold increase vs. the control) in cells infected with rAAv10-UTRs were higher than in those infected with rAAv10-nonUTR. In vivo, vaccination of chickens with rAAv10-UTRs resulted in 100% protection against an HPAIV challenge. No chickens vaccinated with rAAv10-NP-UTR, rAAv10-F-UTR, or rAAv10-HN-UTR shed the virus in the throat and cloaca swabs. By contrast, rAAv10-nonUTR vaccination offered 70% protection, with 50% of chickens shedding the virus in the cloaca or throat swabs after the challenge. We conclude that the AAvV-10 UTRs can enhance the expression of the exogenous HA gene, resulting in improved efficacy of the rAAvV-10/HA vector vaccine. This improvement aids in the protection of flocks worldwide from the highly pathogenic avian influenza.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan.
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan.
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan; United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1193, Japan.
| |
Collapse
|
24
|
Recombinant Newcastle Disease Virus (NDV) Expressing Sigma C Protein of Avian Reovirus (ARV) Protects against Both ARV and NDV in Chickens. Pathogens 2019; 8:pathogens8030145. [PMID: 31510020 PMCID: PMC6789743 DOI: 10.3390/pathogens8030145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/25/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Newcastle disease (ND) and avian reovirus (ARV) infections are a serious threat to the poultry industry, which causes heavy economic losses. The mesogenic NDV strain R2B is commonly used as a booster vaccine in many Asian countries to control the disease. In this seminal work, a recombinant NDV strain R2B expressing the sigma C (σC) gene of ARV (rNDV-R2B-σC) was generated by reverse genetics, characterized in vitro and tested as a bivalent vaccine candidate in chickens. The recombinant rNDV-R2B-σC virus was attenuated as compared to the parent rNDV-R2B virus as revealed by standard pathogenicity assays. The generated vaccine candidate, rNDV-R2B-σC, could induce both humoral and cell mediated immune responses in birds and gave complete protection against virulent NDV and ARV challenges. Post-challenge virus shedding analysis revealed a drastic reduction in NDV shed, as compared to unvaccinated birds.
Collapse
|
25
|
Molouki A, Nagy A. Rescue of recombinant Newcastle disease virus: a promising vector with two decades of intensive vaccine research. Future Virol 2019. [DOI: 10.2217/fvl-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two decades have passed since the first reverse genetics system for the rescue of recombinant Newcastle disease virus was developed. Since then, the recombinant Newcastle disease virus vector has shown promising results as a safe and potent vector for development of many vaccines for both avian and human use. Herein, we review several technical topics that would be useful to further understanding of this technology. First, the effect of using helper plasmids encoding proteins belonging to strains other than the full-length cDNA and the possible incorporation of these expressed proteins into progeny virus will be discussed. Then, we will discuss the effect of removal of additional G residues from the T7 initiation sequence and finally, we will review different ways to improve rescue efficiency.
Collapse
Affiliation(s)
- Aidin Molouki
- Department of Avian Disease Research & Diagnostic, Razi Vaccine & Serum Research Institute, Agricultural Research Education & Extension Organization (AREEO), Karaj, Iran
| | - Abdou Nagy
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharqyiah 44519, Egypt
| |
Collapse
|
26
|
Innovation in Newcastle Disease Virus Vectored Avian Influenza Vaccines. Viruses 2019; 11:v11030300. [PMID: 30917500 PMCID: PMC6466292 DOI: 10.3390/v11030300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/12/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) and Newcastle disease are economically important avian diseases worldwide. Effective vaccination is critical to control these diseases in poultry. Live attenuated Newcastle disease virus (NDV) vectored vaccines have been developed for bivalent vaccination against HPAI viruses and NDV. These vaccines have been generated by inserting the hemagglutinin (HA) gene of avian influenza virus into NDV genomes. In laboratory settings, several experimental NDV-vectored vaccines have protected specific pathogen-free chickens from mortality, clinical signs, and virus shedding against H5 and H7 HPAI viruses and NDV challenges. NDV-vectored H5 vaccines have been licensed for poultry vaccination in China and Mexico. Recently, an antigenically chimeric NDV vector has been generated to overcome pre-existing immunity to NDV in poultry and to provide early protection of poultry in the field. Prime immunization of one-day-old poults with a chimeric NDV vector followed by boosting with a conventional NDV vector has shown to protect broiler chickens against H5 HPAI viruses and a highly virulent NDV. This novel vaccination approach can provide efficient control of HPAI viruses in the field and facilitate poultry vaccination.
Collapse
|
27
|
Xu X, Xue C, Liu X, Li J, Fei Y, Liu Z, Mu J, Bi Y, Qian J, Yin R, Ding Z. A novel recombinant attenuated Newcastle disease virus expressing H9 subtype hemagglutinin protected chickens from challenge by genotype VII virulent Newcastle disease virus and H9N2 avian influenza virus. Vet Microbiol 2018; 228:173-180. [PMID: 30593364 DOI: 10.1016/j.vetmic.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 12/09/2022]
Abstract
Newcastle disease virus (NDV) and H9 subtype avian influenza virus (AIV) are two avian pathogens across the globe. Inasmuch as most poultry flocks worldwide are vaccinated with a live low-virulence or attenuated NDV vaccine, we embarked on the development of vaccine prototypes that would have dual specificities and would allow a single immunization against both avian influenza (AI) and Newcastle disease (ND). Therefore, in the present work, a cloned full-length copy of the genome of the lentogenic NDV strain rmNA-1 was selected as a backbone vector to construct three chimeric NDVs that expressed (i) the ORF encoding the HA, (ii) the ectodomain of HA fused with the transmembrane domain and cytoplasmic tail regions derived from the NDV F protein and (iii) the ectodomain of HA fused with a short GS linker and the GCN4 sequences, and designated as rmNA-H9, rmNA-H9F, and rmNA-H9 (ECTO), respectively. rmNA-H9, rmNA-H9F, and rmNA-H9 (ECTO) stably expressed the modified HA gene for 10 egg passages and the three recombinants were found innocuous to chickens. The insertion of the chimeric HA-F, rather than HA-ECTO or ORF of HA, resulted in a recombinant virus with enhanced incorporation of the HA protein into the viral surface. A single immunization of SPF chickens with the three recombinants induced NDV- and AIV H9-specific antibodies, and protected chickens against a challenge with a lethal dose of velogenic NDV or AIV H9N2. Remarkably, non-shedding of influenza virus and higher levels of H9 subtype HI titers were observed 7 days post challenge (dpc) in rmNA-H9F vaccinated chickens, than other recombinants. Furthermore, a prime-boost vaccination of chickens with rmNA-H9F induced higher levels of NDV- and H9- HI and secretory IgA, as well as reduced viral shedding and virus-induced gross lesions, compared with the commercial vaccine. Therefore, the recombinant rmNA-H9F is a promising bivalent vaccine candidate against NDV and H9 subtype AIV in chickens.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, China
| | - Cong Xue
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - Xinxin Liu
- College of Food Science and Engineering, Jilin University, Xi'an Road 5333, Changchun, Jilin, 130062, China
| | - Junjiao Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, China
| | - Yidong Fei
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, China
| | - Zhe Liu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, China
| | - Jiaqi Mu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing 210014, China
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, China
| | - Zhuang Ding
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, Jilin 130062, China.
| |
Collapse
|
28
|
Cho Y, Lamichhane B, Nagy A, Chowdhury IR, Samal SK, Kim SH. Co-expression of the Hemagglutinin and Neuraminidase by Heterologous Newcastle Disease Virus Vectors Protected Chickens against H5 Clade 2.3.4.4 HPAI Viruses. Sci Rep 2018; 8:16854. [PMID: 30443041 PMCID: PMC6237909 DOI: 10.1038/s41598-018-35337-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Avian influenza remains an important zoonotic disease with a significant global impact. The spread of H5 highly pathogenic avian influenza (HPAI) viruses (clade 2.3.4.4) by migratory birds has caused outbreaks in wide geographic regions (Asia, Europe, and North America) with great economic losses during 2014-2015. Efficient vaccines and vaccination approaches are needed to enhance protective immunity against HPAI viruses. Although several vaccination strategies have been developed, none has been satisfactory. Our strategy has been to use avirulent vaccine strain of Newcastle disease virus (NDV) as a vaccine vector for HPAI viruses. For poultry vaccination, we previously generated a new platform of chimeric NDV vector to overcome preexisting maternal antibodies to NDV in poultry. In this study, we have generated vaccine candidates targeting H5 clade 2.3.4.4 HPAI viruses by using our chimeric NDV and conventional NDV strain LaSota vectors for a heterologous prime-boost immunization approach. Co-expression of the HA and NA proteins by our vaccine vectors induced enhanced HPAI virus specific immune responses in specific-pathogen free and broiler chickens prior to challenge. Further, these vaccine candidates efficiently protected broiler chickens from mortality, clinical signs, and shedding of homologous and heterologous H5 HPAI viruses and highly virulent NDV, thus providing a dual vaccination approach in the field.
Collapse
Affiliation(s)
- Yeonwoo Cho
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Barisha Lamichhane
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Abdou Nagy
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Ishita Roy Chowdhury
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Siba K Samal
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Shin-Hee Kim
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
29
|
Yu GM, Zu SL, Zhou WW, Wang XJ, Shuai L, Wang XL, Ge JY, Bu ZG. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels. J Vet Sci 2018; 18:351-359. [PMID: 27515260 PMCID: PMC5583423 DOI: 10.4142/jvs.2017.18.s1.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.
Collapse
Affiliation(s)
- Gui Mei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu Long Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wei Wei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi Jun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Shuai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue Lian Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Ying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi Gao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
30
|
Tsunekuni R, Hikono H, Tanikawa T, Kurata R, Nakaya T, Saito T. Recombinant Avian Paramyxovirus Serotypes 2, 6, and 10 as Vaccine Vectors for Highly Pathogenic Avian Influenza in Chickens with Antibodies Against Newcastle Disease Virus. Avian Dis 2018; 61:296-306. [PMID: 28957006 DOI: 10.1637/11512-100616-regr1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recombinant Newcastle disease virus (rNDV) expressing the hemagglutinin of highly pathogenic avian influenza virus (HPAIV HA) induces protective immunity against HPAIV in chickens. However, the efficacy of rNDV vectors is hampered when chickens are pre-immune to NDV, and most commercial chickens are routinely vaccinated against NDV. We recently showed that avian paramyxovirus serotypes 2, 6, and 10 (APMV-2, APMV-6, and APMV-10), which belong to the same genus as NDV, have low cross-reactivity with anti-NDV antisera. Here, we used reverse genetics to generate recombinant APMV-2, APMV-6, and APMV-10 (rAPMV-2/HA, rAPMV-6/HA, and rAPMV-10/HA) that expressed an HA protein derived of subtype H5N1 HPAIV, A/chicken/Yamaguchi/7/2004. Chickens pre-immunized against NDV (age, 7 wk) were vaccinated with rAPMV/HAs; 14 days after vaccination, chickens were challenged with a lethal dose of HPAIV. Immunization of chickens pre-immunized against NDV with rAPMV-2/HA, rAPMV-6/HA, or rAPMV-10/HA protected 50%, 50%, and 25%, respectively, in groups of chickens given an rAPMV/HA with 106 median embryo infectious dose (EID50) or 50%, 50%, and 90%, respectively, in those with 107 EID50; in contrast, rNDV/HA protected none of the chicken vaccinated with 106 EID50 and induced only partial protection even with 107 EID50. Therefore, the presence of anti-NDV antibodies did not hamper the efficacy of rAPMV-2/HA, rAPMV-6/HA, or rAPMV-10/HA. These results suggest that rAPMV-2, rAPMV-6, and rAPMV-10 are potential vaccine vectors, especially for commercial chickens, which are routinely vaccinated against NDV.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Hirokazu Hikono
- B National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Taichiro Tanikawa
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Riho Kurata
- B National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Takaaki Nakaya
- C Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiko Saito
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| |
Collapse
|
31
|
Wang X, Wang X, Jia Y, Wang C, Tang Q, Han Q, Xiao S, Yang Z. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge. J Interferon Cytokine Res 2017; 37:467-473. [PMID: 29028432 DOI: 10.1089/jir.2017.0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log2) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.
Collapse
Affiliation(s)
- Xiangwei Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Xinglong Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Yanqing Jia
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Chongyang Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Qiuxia Tang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Qingsong Han
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Sa Xiao
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| | - Zengqi Yang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University , Yangling, People's Republic of China
| |
Collapse
|
32
|
Lardinois A, Vandersleyen O, Steensels M, Desloges N, Mast J, van den Berg T, Lambrecht B. Stronger Interference of Avian Influenza Virus-Specific Than Newcastle Disease Virus-Specific Maternally Derived Antibodies with a Recombinant NDV-H5 Vaccine. Avian Dis 2017; 60:191-201. [PMID: 27309055 DOI: 10.1637/11133-050815-reg] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maternally derived antibodies (MDA) are known to provide early protection from disease but also to interfere with vaccination efficacy of young chicks. This interference phenomenon is well described in the literature for viral diseases such as infectious bursal disease, Newcastle disease (ND), and avian influenza (AI). The goal of this work was to investigate the impact of H5 MDA and/or ND virus (NDV) MDA on the vaccine efficacy of a recombinant NDV-H5-vectored vaccine (rNDV-H5) against two antigenically divergent highly pathogenic AI (HPAI) H5N1 challenges. In chickens with both H5 and NDV MDA, a strong interference was observed with reduced clinical protection when compared to vaccinated specific-pathogen-free (SPF) chickens. In contrast, in chickens from commercial suppliers with NDV MDA only, a beneficial impact on the vaccine efficacy was observed with full protection and reduced viral excretion in comparison with rNDV-H5-vaccinated SPF chickens. To distinguish between the respective effects of the H5 and NDV MDA, an SPF model where passive immunity had been artificially induced by inoculations of H5 and NDV hyperimmunized polysera, respectively, was used. In the presence of H5 artificial MDA, a strong interference reflected by a reduction in vaccine protection was demonstrated whereas no interference and even an enhancing protective effect was confirmed in presence of NDV MDA. The present work suggests that H5 and NDV MDA interact differently with the rNDV-H5 vaccine with different consequences on its efficacy, the mechanisms of which require further investigations.
Collapse
Affiliation(s)
- Amélyne Lardinois
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Olivier Vandersleyen
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Mieke Steensels
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Nathalie Desloges
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Jan Mast
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Thierry van den Berg
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| | - Bénédicte Lambrecht
- A Avian Virology and Immunology Service, Veterinary and Agrochemical Research Centre, Groeselenberg 99, 1180-Brussels, Belgium
| |
Collapse
|
33
|
Oliveira Cavalcanti M, Vaughn E, Capua I, Cattoli G, Terregino C, Harder T, Grund C, Vega C, Robles F, Franco J, Darji A, Arafa AS, Mundt E. A genetically engineered H5 protein expressed in insect cells confers protection against different clades of H5N1 highly pathogenic avian influenza viruses in chickens. Avian Pathol 2017; 46:224-233. [PMID: 27807985 DOI: 10.1080/03079457.2016.1250866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of highly pathogenic H5N1 avian influenza viruses (HPAI-H5N1) has resulted in the appearance of a number of diverse groups of HPAI-H5N1 based on the presence of genetically similar clusters of their haemagglutinin sequences (clades). An H5 antigen encoded by a recombinant baculovirus and expressed in insect cells was used for oil-emulsion-based vaccine prototypes. In several experiments, vaccination was performed at 10 days of age, followed by challenge infection on day 21 post vaccination (PV) with HPAI-H5N1 clades 2.2, 2.2.1, and 2.3.2. A further challenge infection with HPAI-H5N1 clade 2.2.1 was performed at day 42 PV. High haemagglutination inhibition titres were observed for the recH5 vaccine antigen, and lower haemagglutination inhibition titres for the challenge virus antigens. Nevertheless, the rate of protection from mortality and clinical signs was 100% when challenged at 21 days PV and 42 days PV, indicating protection over the entire broiler chicken rearing period without a second vaccination. The unvaccinated control chickens mostly died between two and five days after challenge infection. A low level of viral RNA was detected by reverse transcription followed by a quantitative polymerase chain reaction in a limited number of birds for a short period after challenge infection, indicating a limited spread of HPAI-H5N1 at flock level. Furthermore, it was observed that the vaccine can be used in a differentiation infected from vaccinated animals (DIVA) approach, based on the detection of nucleoprotein antibodies in vaccinated/challenged chickens. The vaccine fulfilled all expectations of an inactivated vaccine after one vaccination against challenge with different clades of H5N1-HPAI and is suitable for a DIVA approach.
Collapse
Affiliation(s)
| | - Eric Vaughn
- b Boehringer Ingelheim Vetmedica, Inc. , Ames , IA , USA
| | - Ilaria Capua
- c OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza , Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università , Legnaro , Italy
| | - Giovanni Cattoli
- c OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza , Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università , Legnaro , Italy
| | - Calogero Terregino
- c OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza , Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università , Legnaro , Italy
| | - Timm Harder
- d Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Christian Grund
- d Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Carlos Vega
- e Boehringer Ingelheim Vetmedica, S.A. de C.V , Guadalajara , Mexico
| | - Francisco Robles
- e Boehringer Ingelheim Vetmedica, S.A. de C.V , Guadalajara , Mexico
| | - Julio Franco
- e Boehringer Ingelheim Vetmedica, S.A. de C.V , Guadalajara , Mexico
| | - Ayub Darji
- f Centre de Recerca en Sanitat Animal , CReSA, UAB-IRTA , Barcelona , Spain
| | - Abdel-Satar Arafa
- g National Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute , Giza , Egypt
| | - Egbert Mundt
- a Boehringer Ingelheim Veterinary Research Center , Hannover , Germany
| |
Collapse
|
34
|
Kim SH, Paldurai A, Samal SK. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus. Virology 2017; 503:31-36. [PMID: 28110247 DOI: 10.1016/j.virol.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
35
|
Suarez DL, Pantin-Jackwood MJ. Recombinant viral-vectored vaccines for the control of avian influenza in poultry. Vet Microbiol 2016; 206:144-151. [PMID: 27916319 DOI: 10.1016/j.vetmic.2016.11.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022]
Abstract
Vaccination is a commonly used tool for the control of both low pathogenic and highly pathogenic avian influenza (AI) viruses. Traditionally, inactivated adjuvanted vaccines made from a low pathogenic field strain have been used for vaccination, but advances in molecular biology have allowed a number of different viral vectored vaccines, expressing the AI virus hemagglutinin (HA) gene, to be developed and licensed for use for control of AI. This review summarizes the licensed vector vaccines available for use in poultry. As a group, these vaccines can stimulate both a cellular and humoral immune response and, when antigenically well matched to the target AI strain, are effective at preventing clinical disease and reducing virus shedding if vaccinated birds do become infected. The vaccines can often be given to one-day old chicks in the hatchery, which can provide early protection and is a cost effective route of administration of the vaccine. All the licensed vectored vaccines, because they only express the HA gene, can potentially be used to differentiate vaccinated from vaccinated and infected birds, which is often referred to as a DIVA strategy. Although a potentially valuable tool for the surveillance of the virus in countries that vaccinate, the DIVA principle has currently not been applied. Concern remains that maternal antibody or pre-existing immunity to the vector or to the AI HA insert can suppress the immune response to the vaccine. The viral vectored vaccines appear to work well with a prime boost strategy where the vectored vaccine is given first and a different type of vaccine, often a killed adjuvanted vaccine is given two or three weeks later.
Collapse
Affiliation(s)
- David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| |
Collapse
|
36
|
Characterization of a recombinant Newcastle disease virus expressing the glycoprotein of bovine ephemeral fever virus. Arch Virol 2016; 162:359-367. [PMID: 27757685 PMCID: PMC5306239 DOI: 10.1007/s00705-016-3078-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/19/2016] [Indexed: 11/13/2022]
Abstract
Bovine ephemeral fever (BEF) is caused by the arthropod-borne bovine ephemeral fever virus (BEFV), which is a member of the family Rhabdoviridae and the genus Ephemerovirus. BEFV causes an acute febrile infection in cattle and water buffalo. In this study, a recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of BEFV (rL-BEFV-G) was constructed, and its biological characteristics in vitro and in vivo, pathogenicity, and immune response in mice and cattle were evaluated. BEFV G enabled NDV to spread from cell to cell. rL-BEFV-G remained nonvirulent in poultry and mice compared with vector LaSota virus. rL-BEFV-G triggered a high titer of neutralizing antibodies against BEFV in mice and cattle. These results suggest that rL-BEFV-G might be a suitable candidate vaccine against BEF.
Collapse
|
37
|
Packaging and Prefusion Stabilization Separately and Additively Increase the Quantity and Quality of Respiratory Syncytial Virus (RSV)-Neutralizing Antibodies Induced by an RSV Fusion Protein Expressed by a Parainfluenza Virus Vector. J Virol 2016; 90:10022-10038. [PMID: 27581977 DOI: 10.1128/jvi.01196-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.
Collapse
|
38
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
39
|
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016; 8:v8070183. [PMID: 27384578 PMCID: PMC4974518 DOI: 10.3390/v8070183] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
Collapse
|
40
|
Nagy A, Lee J, Mena I, Henningson J, Li Y, Ma J, Duff M, Li Y, Lang Y, Yang J, Abdallah F, Richt J, Ali A, García-Sastre A, Ma W. Recombinant Newcastle disease virus expressing H9 HA protects chickens against heterologous avian influenza H9N2 virus challenge. Vaccine 2016; 34:2537-45. [PMID: 27102817 DOI: 10.1016/j.vaccine.2016.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
Abstract
In order to produce an efficient poultry H9 avian influenza vaccine that provides cross-protection against multiple H9 lineages, two Newcastle disease virus (NDV) LaSota vaccine strain recombinant viruses were generated using reverse genetics. The recombinant NDV-H9Con virus expresses a consensus-H9 hemagglutinin (HA) that is designed based on available H9N2 sequences from Chinese and Middle Eastern isolates. The recombinant NDV-H9Chi virus expresses a chimeric-H9 HA in which the H9 ectodomain of A/Guinea Fowl/Hong Kong/WF10/99 was fused with the cytoplasmic and transmembrane domain of the fusion protein (F) of NDV. Both recombinant viruses expressed the inserted HA stably and grew to high titers. An efficacy study in chickens showed that both recombinant viruses were able to provide protection against challenge with a heterologous H9N2 virus. In contrast to the NDV-H9Chi virus, the NDV-H9Con virus induced a higher hemagglutination inhibition titer against both NDV and H9 viruses in immunized birds, and efficiently inhibited virus shedding through the respiratory route. Moreover, sera collected from birds immunized with either NDV-H9Con or NDV-H9Chi were able to cross-neutralize two different lineages of H9N2 viruses, indicating that NDV-H9Con and NDV-H9Chi are promising vaccine candidates that could provide cross-protection among different H9N2 lineage viruses.
Collapse
Affiliation(s)
- Abdou Nagy
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuhao Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Michael Duff
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jianmei Yang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fatma Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Juergen Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Ahmed Ali
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
41
|
Zhang M, Ge J, Li X, Chen W, Wang X, Wen Z, Bu Z. Protective efficacy of a recombinant Newcastle disease virus expressing glycoprotein of vesicular stomatitis virus in mice. Virol J 2016; 13:31. [PMID: 26911572 PMCID: PMC4765107 DOI: 10.1186/s12985-016-0481-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vesicular stomatitis virus (VSV) causes severe losses to the animal husbandry industry. In this study, a recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of VSV (rL-VSV-G) was constructed and its pathogenicity and immune protective efficacy in mouse were evaluated. RESULTS In pathogenicity evaluation test, the analysis of the viral distribution in mouse organs and body weight change showed that rL-VSV-G was safe in mice. In immune protection assay, the recombinant rL-VSV-G triggered a high titer of neutralizing antibodies against VSV. After challenge, the wild-type (wt) VSV viral load in mouse organs was lower in rL-VSV-G group than that in rLaSota groups. wt VSV was not detected in the blood, liver, or kidneys of mice, whereas it was found in these tissues in control groups. The mice body weight had no significant change after challenge in the rL-VSV-G group. Additionally, suckling mice produced from female mice immunized with rL-VSV-G were partially protected from wt VSV challenge. CONCLUSIONS These results demonstrated that rL-VSV-G may be a suitable candidate vaccine against vesicular stomatitis (VS).
Collapse
Affiliation(s)
- Minmin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Xiaofang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Weiye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| |
Collapse
|
42
|
Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F. Avian Influenza Virus and DIVA Strategies. Viral Immunol 2016; 29:198-211. [PMID: 26900835 DOI: 10.1089/vim.2015.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
Collapse
Affiliation(s)
- Noor Haliza Hasan
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah , Sabah, Malaysia
| | - Jagoda Ignjatovic
- 3 School of Veterinary and Agricultural Sciences, The University of Melbourne , Melbourne, Australia
| | - Anne Peaston
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| |
Collapse
|
43
|
Duan Z, Xu H, Ji X, Zhao J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol 2015; 10:1307-23. [PMID: 26234909 DOI: 10.2217/fmb.15.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houqiang Xu
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiafu Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
44
|
Bitrus Y, Andrew JN, Owolodun OA, Luka PD, Umaru DA. The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/bmbr2015.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
45
|
Ge J, Wang X, Tian M, Gao Y, Wen Z, Yu G, Zhou W, Zu S, Bu Z. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks. Vaccine 2015; 33:2457-62. [PMID: 25865465 DOI: 10.1016/j.vaccine.2015.03.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/22/2015] [Accepted: 03/27/2015] [Indexed: 11/26/2022]
Abstract
Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species.
Collapse
Affiliation(s)
- Jinying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xijun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Meijie Tian
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Zhiyuan Wen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guimei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Weiwei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shulong Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
46
|
Rahn J, Hoffmann D, Harder TC, Beer M. Vaccines against influenza A viruses in poultry and swine: Status and future developments. Vaccine 2015; 33:2414-24. [PMID: 25835575 DOI: 10.1016/j.vaccine.2015.03.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/01/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022]
Abstract
Influenza A viruses are important pathogens with a very broad host spectrum including domestic poultry and swine. For preventing clinical disease and controlling the spread, vaccination is one of the most efficient tools. Classical influenza vaccines for domestic poultry and swine are conventional inactivated preparations. However, a very broad range of novel vaccine types ranging from (i) nucleic acid-based vaccines, (ii) replicon particles, (iii) subunits and virus-like particles, (iv) vectored vaccines, or (v) live-attenuated vaccines has been described, and some of them are now also used in the field. The different novel approaches for vaccines against avian and swine influenza virus infections are reviewed, and additional features like universal vaccines, novel application approaches and the "differentiating infected from vaccinated animals" (DIVA)-strategy are summarized.
Collapse
Affiliation(s)
- J Rahn
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - D Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - T C Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
47
|
Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants. Virus Res 2015; 199:20-30. [PMID: 25599604 DOI: 10.1016/j.virusres.2015.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/18/2014] [Accepted: 01/10/2015] [Indexed: 11/20/2022]
Abstract
Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba.
Collapse
|
48
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
49
|
Grund C, Steglich C, Huthmann E, Beer M, Mettenleiter TC, Römer-Oberdörfer A. Avian paramyoxvirus-8 immunization reduces viral shedding after homologous APMV-8 challenge but fails to protect against Newcastle disease. Virol J 2014; 11:179. [PMID: 25297904 PMCID: PMC4203933 DOI: 10.1186/1743-422x-11-179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protection against infection by Newcastle disease virus (NDV), also designated as avian paramyxovirus subtype-1 (APMV-1), is mediated by immune responses to the two surface glycoproteins, hemagglutinin-neuraminidase (HN) and fusion (F) protein. Thus, a chimeric APMV-1 based vaccine that encodes APMV-8 HN- and F-proteins and expresses the hemagglutinin of avian influenza virus (AIV) H5N1, is able to protect against HPAIV H5N1 but fails to protect against NDV [PLoS One8:e72530, 2013]. However, it is unclear whether avirulent APMV-subtypes, like APMV-8 can induce subtype-specific immunity and protect from a homologous challenge. FINDINGS APMV-8 infections of 3- and 6-weeks-old specific pathogen free (SPF)-chickens did not induce any clinical signs but was associated with virus shedding for up to 6 days. Viral replication was only detected in oropharyngeal- and never in cloacal swabs. Upon reinfection with homologous APMV-8, viral shedding was restricted to day 2 and in contrast to naive SPF-chickens, only RNA but no infectious virus was recovered. No protection was induced against virulent NDV challenge, although morbidity and mortality was delayed in APMV-8 primed chickens. This lack of protection is in line with a lack of reactivity of APMV-8 specific sera to APMV-1 HN-protein: Neither by hemagglutin-inhibition (HI) test nor immunoblot analyses, cross-reactivity was detected, despite reactivity to internal proteins. CONCLUSIONS Immune responses mounted during asymptomatic APMV-8 infection limit secondary infection against homologues reinfection and facilitates a delay in the onset of disease in a subtype independent manner but is unable to protect against Newcastle disease, a heterologous APMV-subtype.
Collapse
Affiliation(s)
- Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Ma C, Zhang Z, Zhao P, Duan L, Zhang Y, Zhang F, Chen W, Cui Z. Comparative transcriptional activity of five promoters in BAC-cloned MDV for the expression of the hemagglutinin gene of H9N2 avian influenza virus. J Virol Methods 2014; 206:119-27. [DOI: 10.1016/j.jviromet.2014.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/22/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
|